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Abstract: 

There is much interest in being able to combine crowdsourced data. One of the critical 
issues in information sciences is how to combine data or information that are 
discordant or inconsistent in some way. Many previous approaches have taken a 
majority rules approach under the assumption that most people are correct most of the 
time. This paper analyses crowdsourced land cover data generated by the Geo-Wiki 
initiative in order to infer the land cover present at locations on a 50km grid. It 
compares four evidence combination approaches (Dempster-Shafer, Bayes, Fuzzy 
Sets and Possibility) applied under a geographically weighted kernel with the 
geographically weighted average approach applied in many current Geo-Wiki 
analyses. A geographically weighted approach uses a moving kernel under which 
local analyses are undertaken. The contribution (or salience) of each data point to the 
analysis is weighted by its distance to the kernel centre, reflecting Tobler’s 1st law of 
geography. A series of analyses were undertaken using different kernel sizes (or 
bandwidths). Each of the geographically weighted evidence combination methods 
generated spatially distributed measures of belief in hypotheses associated with the 
presence of individual land cover classes at each location on the grid. These were 
compared with GlobCover, a global land cover product. The results from the 
geographically weighted average approach in general had higher correspondence with 
the reference data and this increased with bandwidth. However, for some classes other 
evidence combination approaches had higher correspondences possibly because of 
greater ambiguity over class conceptualisations and / or lower densities of 
crowdsourced data. The outputs also allowed the beliefs in each class to be mapped. 
The differences in the soft and the crisp maps are clearly associated with the logics of 
each evidence combination approach and of course the different questions that they 
ask of the data. The results show that discordant data can be combined (rather than 
being removed from analysis) and that data integrated in this way can be 
parameterised by different measures of belief uncertainty. The discussion highlights a 
number of critical areas for future research. 
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1. Introduction 

 

One of the critical areas of research in information sciences is how to combine data or 

information that are discordant or inconsistent in some way. Discord may arise from 

different spatial frameworks, different measurement devices, different classifications 

or measurement units. However there is much scientific interest in being able to 

combine data from different sources to enhance information value and utility, to 

measure change if the data are temporal, to compare different treatments and so on. 

This research develops, applies and compares a number of geographically weighted 

evidence combination approaches to a crowdsourced land cover problem. The aim 

was to use the sometimes conflicting crowdsourced data to describe or infer the land 

cover present at specific locations and to generate some measure of confidence or 

belief in the inference. 

 

There has been much recent interest in the potential opportunities for extracting 

information contained in large datasets arising through big data initiatives and the 

many crowdsourcing activities. Much of this interest relates to the high data volumes 

and low cost of crowdsourced data and to the opportunities for extracting useful and 

novel knowledge by integrating information from the many data silos under big data. 

A number of publications have described the potential opportunities arising from 

analysis of crowdsourced data [1-4] but one of the critical and as yet unaddressed 

issues is how to deal with conflicting information. Most of the current solutions to this 

problem adopt a Linus law or majority rules approach, where the majority view of 

contributors is deemed to be correct. In many situations this approach is intuitive and 

logical. However, it implicitly assumes that every contribution (or datum) has equal 

salience, that the majority of observations are correct and pragmatically treats the 

observers and their observations as independent. In reality some observations and 

some observers may be more reliable than others [4, 5], which may matter in some 

circumstances but not in others [5, 6] and observations may be exhibit spatial non-

stationarity and strongly influence by local processes reflecting Tobler’s First law of 

geography1 [7]. 

 

                                                 
1 “Everything is related to everything else, but near things are more related to each other” 



Critically Tobler's First law infers that local information and context should be 

considered when combining spatial data and Geographically Weighted approaches 

have been proposed to do this [8]. In this paper geographically weighted evidence 

combination approaches based on Bayesian Probability, Dempster-Shafer, Fuzzy Sets 

and Possibility theories were developed and applied. Geographically weighted 

approaches use a moving kernel to weight data inputs by their distance to the location 

being considered [8]. The geographically weighted evidence combination approaches 

were applied to crowdsourced data describing land cover to infer the presence of land 

cover at each location in a study area. Other research has shown how different 

evidence combination methods partition uncertain evidence in different ways. This is 

due to their different underlying assumptions and logics and consequently they ask 

different questions of the evidence they combine [9 -11]. The paper develops and 

applies these methods for handling uncertain evidence under a geographically 

weighted framework for the first time. In so doing, it explores their utility for 

generating useable spatial information from crowdsourced data, parameterised by 

uncertainty, and considers their performance under different sized kernels overall and 

for specific land cover classes.  

 

2. Background 

 

There has been much interest in crowdsourced data with applications ranging from 

astronomy to zoology [12]. Data are varied and include all kinds of digital 

information from microblogs, tagged photographs to web based interfaces. These data 

are easily shared with others via dedicated servers to which information is uploaded 

or through informal social networks. The result is a very dynamic data environment 

and there is huge scientific interest in opportunities afforded by the high data volumes 

at low cost. Of note is that data contributed by citizens are increasingly spatially 

referenced due to the increasing number of portable GPS- and web-enabled digital 

devices (e.g. smartphones, tablets, etc.).   

 

The terms ‘crowdsourced’, ‘citizen science’ and ‘volunteered geographic information’ 

have their own nuanced meanings and recent work has developed a typology of 

crowdsourced data to try to capture some of this [13]. The term ‘crowdsourcing’ 

originally referred to the ability of citizens to validate and correct the errors that an 



individual might make and to potentially arrive at some truth [14]. A recent example 

is the Geo-Wiki project. This web-based interface to Google Earth was initially used 

to validate a global biofuels availability dataset [15, 16] and has subsequently been 

used for a number of other campaigns. Typically Geo-Wiki campaigns captures data 

describing the land cover class at a series of locations. In some campaigns additional 

information is captured for example on the amount of human disturbance in the scene, 

the user confidence in their class allocation, etc, and, depending on the campaign, the 

points may be selected at random or they may be repeatedly sampled. Currently many 

Geo-Wiki analyses apply a geographically weighted averaging approach as described 

in Comber et al [4] to combine crowdsourced land cover data.  

 

In contrast to much of the initial research using crowdsourced data to validate other 

data products, recent work has focussed on methods for assessing the quality of the 

crowdsourced data itself. Studies of the data generated by the Geo-Wiki campaigns 

have compared them with external data [4], with control data [5] and have applied 

internally based latency measures [3]. Overall quality, in terms of the correctness of 

land cover class allocation, has been found to vary only marginally between experts 

and non-experts [5] but significant differences have been found for specific land cover 

types in specific areas [6] and in relation to the ‘experiential distance’ of the observer 

to the phenomena being considered [17].  

 

One of the critical issues in citizen science and crowdsourcing is how to deal with 

conflicting information, opinions or versions. Platforms and activities such as 

Wikipedia and OpenStreetMap benefit from crowdsourcing in its original sense: that 

of different citizens arriving at a collective view of what the truth is (with apologies to 

Pickles [18]). This consensual ‘Linus’s Law’ approach generally produces acceptable 

outcomes, although with some known socio-scientific problems, for example on 

occasion the versions of the ‘super user’ or views of the user with the greatest edit 

persistence will win out despite conflicting or contrary edits in so called ‘tag wars’ 

[19].  

 

In many cases, the capture of crowdsourced data is much less nuanced and detailed 

than Wikipedia or OpenStreetMap. Consider the Geo-wiki initiative. Anyone can 

login and evaluate land cover at discrete locations. This may result in people with 



different backgrounds and experiences identifying different land cover types as being 

present at the same location [20]. As a result one of the critical issues is how to 

manage conflicting user evaluations of the land cover class. In many citizen science 

research conflicts over what different observers consider to be there are managed by 

taking the majority view, many eyes or Linus’s Law approach. Haklay et al [2] used 

this approach to determine feature locations and found that locational accuracy 

increased as more people contributed to the solution. However, this was not to 

classify or identify the feature itself and in such contexts other authors have noted that 

Linus's Law may not be as effective for establishing geographic facts [14, 21]. 

Goodchild and Li [14] comment that Linus Law approaches may be most suited to 

what they refer to as ‘prominent’ geographic facts – that is those that are not obscured 

by being in a sparsely populated or under-explored location, that persist over time and 

interest many people. The obvious gap in this list are geographic features that are 

inherently subjective such as land cover classification where few natural kinds exist 

[22].  

 

Other research from the information sciences has noted some of the problems 

associated with multiple crowdsourced opinions. As Zook et al [23, pp 27-28] note 

“duplication is not necessarily a bad thing as it can provide multiple avenues to access 

information. It can, however, make interpretation of a situation more complicated as 

multiple sources can provide conflicting versions of the built and natural 

environments”. Welinder and Perona [24] identified the challenges related to 

conflicting crowdsourced labels for images, for example when different users assert A 

and other users not-A. Some research has suggested that the crowd itself is used to 

deal with conflicts, by supplying rules to resolve disagreements and to merge 

conflicting inputs and to generate automatic solutions by weighting user scores [25, 

26]. Other approaches propose that users contribute to an overall knowledge base in 

order to generate weighting probabilities [27]. Thus there is a belief that data from 

multiple sources and data from multiple but imperfect sources are desirable, because 

they offer the opportunity of insight and knowledge. However many of the solutions 

that have been proposed thus far are aspatial – they do not consider geographic 

context – and are not generic – they rely on specific, local conflict resolution 

strategies to determine whether one assertion should override another [28].  

 



Evidence combination is a strong and long standing area of research within the 

information sciences. Many methods are available to combine conflicting or uncertain 

information – Bayesian Probability, Dempster-Shafer, Fuzzy Sets, Possibility theory, 

etc. – each with different underpinning logics. A number of reviews exists and the 

interested reader is directed to [29-33]. As yet no research has:  

1) considered how approaches that explicitly facilitate reasoning under 

uncertainty may be used to integrate conflicting crowdsourced data, or  

2) applied these methods under explicitly geographical frameworks such as 

geographically weighted kernels [8]. 

This paper develops a number of evidence combination approaches that are typically 

used to handle information uncertainty [11] under a geographically weighted 

framework in order to combine potentially conflicting crowdsourced data on land 

cover. The aim was to combine this data and then to describe or infer the land cover 

present at discrete locations with some indication of the degree of belief in that 

inference. The evidence combination methods operate in different ways, answering 

different questions in relation to the data, and the use of geographic kernel explicitly 

addresses Tobler’s first law of geography by considering geographic context. In this 

way the methods explicitly address the ‘geographic approach’ to quality assurance of 

data created by citizens suggested by Goodchild and Li [14].   

 

3. Methods 

 

In overview, crowdsourced land cover data from the Geo-Wiki initiative [15] were 

analysed using geographically weighted evidence combination approaches to infer the 

actual land cover class present at each location on a 50km grid. These were applied 

under a series of different kernel sizes. At each location on the grid, data falling under 

the kernel were weighted by their distance to the kernel centre and this evidence was 

then combined using different methods. 

 

3.1 Data and study area 

 

This analysis used Geo-Wiki land cover data. The Geo-Wiki initiative [15] collects 

volunteered data on land cover in order to support a number of activities that range 

from land cover data validation to land cover data creation [16]. Geo-Wiki has web 



and smartphone app interfaces, is open to anyone and volunteers can contribute to 

different campaigns. In these they allocate what they observe from Google Earth 

imagery at a series of randomly selected locations, to one of a predefined set of 10 

land cover classes. This legend was chosen to be consistent with the generalized land 

cover classes proposed by Herold et al. [34], which allows for comparison of different 

land cover products. More details of these competitions can be found in See et al. [35].  

In order to provide some form of validation, the inferred land cover at each location 

on the 50km sampling grid was compared with GlobCover 20092, reclassified into the 

10 classes and resampled to 50km. The reclassification was the same as that reported 

in [4]. It was devised by the Geo-Wiki team led by Steffen Fritz and the class to class 

relations were agreed by consensus by 3 experts using images and discussing them 

together. The GlobCover thematic aggregations are shown in Table 1. In this research, 

data from two Geo-Wiki campaigns were combined from 2011 and 2012 for a South 

American case study containing some 13,738 data out of a global datasets of 100,808 

points. The study area, spatial distribution of Geo-Wiki data and the reclassified, 

spatially aggregated GlobCover data are shown in Figure 1. Note that geographically 

weighted approaches, as described below, develop local analyses of data that fall 

under a moving window or kernel. Thus the 50km grid provide a series of locations at 

which the local analyses take place, irrespective of the number of data points within 

each grid cell.  

 
 
Geo-Wiki class GlobCover class 

(1) Tree cover 40, 50, 60, 70, 90, 100, 110, 160, 170 
(2) Shrub cover 130 
(3) Herbaceous / Grassland 120, 140 
(4) Cultivated / Managed 11, 14 
(5) Mosaic of cultivated & natural  20, 30 
(6) Flooded / wetland 180 
(7) Urban 190 
(8) Snow and ice 220 
(9) Barren  150, 200 
(10) Open Water 210 
Table 1. The Geo-Wiki land cover classes and the GlobCover aggregations 
 

                                                 
2 http://due.esrin.esa.int/page_globcover.php  

http://due.esrin.esa.int/page_globcover.php


 
Figure 1. The study area, showing the crowdsourced data locations and the sampling 

grid (left) and the reclassified GlobCover data. 
 
3.2 Geographically weighted crowdsourced data 

 

A discontinuous geographic kernel was used to select crowdsourced data at each 

location on a 50km grid as shown in Figure 1. The idea was to use the land cover data 

points falling under the kernel to infer the land cover present at the centre of the 

kernel (i.e. a grid point), with data points further away from the kernel centre 

contributing less to the overall. The geographical extent of the kernel is determined by 

its bandwidth. In this analysis bandwidths from 5km to 150km at intervals of 5km 

were examined to explore the interactions of the evidence combination approaches 

with different scales of aggregation. Each crowdsourced data point records the 

contributor’s opinion of the land cover at that location. It provides evidence in support 

of a hypothesis of the presence of that land cover class at the centre of the kernel. 

Each single piece of evidence was weighted according by its distance to the location 

under consideration (centre of the kernel) to produce a distinct geographically 

weighted crowdsourced data subset at every grid point. For the smallest bandwidths, 



these localised data sets will be at their most local but relaying the least information. 

For the largest bandwidths these localised data sets will be at their least local but 

relaying the most information. This is the common bias-variance trade-off 

encountered in any geographically weighted approach [8].  

 

A number of discontinuous kernel functions can be specified as discussed in Gollini et 

al [36]. In this study a tri-cube function was applied, rather than weights derived 

under Gaussian or linear functions, as this generates a greater plateau of higher 

weights near to the kernel centre with a sharp drop off at approximately half the 

bandwidth. For each crowdsourced data point (Pj) under the kernel (with a given 

bandwidth), a weight wi,j was calculated based on its distance to the centre of the 

kernel (Ki) as follows: 

 拳沈┸珍 噺 な 伐 岫岫穴沈┸珍岻戴【決戴岻                     岫Eqn な岻 

 

where di,j is the distance in metres from the centre of the kernel Ki to the 

crowdsourced data point Pj and b is the bandwidth at that location. (Note that the tri-

cube kernel function specified here is not identical to that in Gollini et al [36] as they 

incorrectly specified their function in that publication - Paul Harris, pers com). The 

way that distances to the kernel centre are rescaled by Equation 1 to create distance 

based weightings is shown in Figure 2 for a bandwidth of 1000.  

 



 
Figure 2. A plot of the weights arising from the Tri-cube kernel function, with the 

bandwidth b = 1000. 
 
3.3 Evidence combination methods 

 

Four classic approaches for combining uncertain evidence were applied to the 

weighted data under the kernel: Bayesian Probability, a modified Dempster-Shafer, 

Fuzzy Sets and Possibility theory. These were compared with a geographically 

weighted average that simply calculated the proportions of all weights associated with 

each land cover class. The choice of evidence combination approaches was driven by 

their ability to handle / partition evidence uncertainty, and by the different ways that 

they do that, as well as the inability of classic statistical inferential approaches to 

reason under uncertainty. Some of these have been explored in the context of 

generating maps from Geo-Wiki data [37] including nearest neighbour, Naive Bayes, 

logistic regression, classification and regression trees.  

 

In each analysis, the set of classes allocated to the crowdsourced data points under the 

kernel represent a set of hypotheses to be evaluated. The evidence combination 

approaches were applied and the degree to which each hypothesis of was supported at 

the location ki under consideration was assessed. 

 

A Bayesian approach provides a quantitative estimate of how much belief in a 

particular proposition or hypothesis hc corresponding to class c increases (or 



decreases) when a new piece of evidence, e, corresponding to the data provided by the 

crowdsourced data points, becomes available. Mathematically this is described for 

class c and point Ki by: 

 喧岫月頂】結岻岫件岻 噺 喧岫結】月頂岻喧岫月頂岻デ 喧岫結】月賃岻喧岫月賃岻賃退怠┸陳                                岫Eqn に岻 

 

where, 喧岫月頂岻 is the prior probability of hypothesis 月頂 and p(hc|e) is the posterior 

probability of hypothesis hc, the evidence is e, and p(e|hc) is the probability of 

observing this evidence given that hc is true and m is the number of classes. In this 

case, p(e|hc) was given by the weighted mean of the normalised distances wi,j, 

between the location under consideration and the data points under the kernel that 

where assigned to class c. In this way Bayesian Probability computes a degree of 

belief in an uncertain hypothesis given the numerical evidence for itself and 

competing hypotheses. In this instance, the competing hypotheses relate to other land 

cover classes and posterior probabilities are computed for each land cover for location. 

 

Dempster-Shafer is an extension of Bayes that allows for the situation where weak 

support for a proposition does not have to imply strong support for its negation. It 

assesses the belief that a proposition is provable given the evidence with some 

modifications (see below). Mathematically, for 2 pieces of evidence A and B, such as 

the weights assigned to data points of the same class, this is expressed as, the mass 

assignment, m (C) as follows   

 兼嫗嫗岫系岻 噺 布 兼岫畦沈岻 抜 兼旺岫稽珍岻凋日堪喋乳退寵  】系】】畦沈】弁稽珍弁                     岫Eqn ぬ岻 

 

where m (C), is equal to the sum of the product m(Ai) and m(Bj) for all i and j such 

that that the intersection of sets Ai and Bj equals C. The Fixsen and Mahler 

modification [38], the |C| etc in Equation 3, are the prior probabilities of the respective 

evidence sets. Dempster-Shafer does not consider the evidence hypothesis by 

hypothesis as Bayes does, rather the evidence is considered in light of all of the 

hypotheses. It generates two measures: Belief – the extent to which the evidence 



supports the hypothesis in this case a particular land cover class – and Plausibility – 

the extent to which the evidence does not refute the hypothesis, i.e. Belief with 

Uncertainty. In this analysis, individual pieces of evidence were created from each of 

the crowdsourced data points under the kernel. The weight, w generated by Equation 

1 was assigned to the class recorded in the individual crowdsourced data point and (1 

– w) was allocated to the set of all possible hypotheses for which there is evidence, 

the frame of discernment. The evidence was then combined using Equation 3.  

 

Fuzzy Set theory develops models of uncertainty based on the degree to which the 

combined evidence indicates membership to the set under consideration (e.g. the 

membership to a land cover class). The support for different hypotheses can be 

evaluated using a suite of methods in fuzzy theory from (simple) weighted linear or 

convex combination of evidence to (more complex) ordered weighted averaging.  

Fisher [39] noted that the minimum interval is the standard approach for combining 

information in fuzzy sets but is counter-intuitive when it is used to compare different 

land cover classes – it only makes sense in the context of fuzzy land cover when 

comparing fuzzy sets of the same. For these reasons a number of alternative operators 

have been suggested. In this case the fuzzy memberships were defined using the 

weights, wi,j, defined in Equation 1 which were transformed into fuzzy memberships, 

Fc(i) for each land cover class c at the centre i of each kernel, in the following way:  

 繋頂岫件岻 噺 布 拳沈┸賃【券頂 賃退珍牒珍 頂鎮銚鎚鎚沈捗沈勅鳥 銚鎚 頂
             岫Eqn ね岻 

 

where wi,j are the weights derived from the Gaussian transformed distances described 

in Equation 1 considering the crowdsourced points Pj classified as class c by the 

crowd and nc is the number of crowdsourced data points of class c. 

 

Possibility Theory examines the maximum amount of support for a hypothesis (e.g. 

the membership to a particular land cover class) using a supremum or Possibility 

function and an associated uncertainty measure given by a Necessity function [40]. 

Possibility Theory uses a supremum function (or least upper bound) that relates to the 

maximum support for any given hypothesis, x. The possibility function, Poss(X) is the 



supremum of Poss({x}), where x are the set of elements of X and X is the set of all 

hypotheses.  

 鶏剣嫌嫌岫酸岻 噺 な 伐 警欠捲岫拳沈┸珍岻                  岫Eqn の岻 

 

The uncertainty associated with X is given by the corresponding necessity function 

(Nec). The relationship between Necessity and Possibility, in relationship to an 

hypothesis, h, is defined as:  

 軽結潔岫酸岻 噺 な 伐 警欠捲岫鶏剣嫌嫌岫反酸岻岻          岫Eqn は岻 

   

where (¬h) describes ‘not h’. In this way the Necessity function (Nec) gives a simple 

measure of the certainty of the Possibility measure relative to competing hypotheses. 

In this case the Possibility of the location under the kernel being any given class (i.e 

the hypothesis, h) was determined from the maximum weight value for that class and 

the Necessity was calculated as above. 

 

Finally a simple geographically weighted average (GW Average) was applied which 

summed the weights for each class and divided these by the sum of all weights under 

the kernel.  

 

In summary, at each location in the sample grid each of the geographically weighted 

evidence approach approaches generated a belief in a hypothesis of the presence of 

each land cover class at that location. At each location the land cover with the greatest 

belief was identified for each method and was compared with the GlobCover 2009 

land cover class. A correspondence matrix was created and the overall 

correspondence for that method was calculated from the diagonals. Any locations 

where no land cover class was allocated (ie they were classified as NULL) were 

omitted for the correspondence analyses. This was done for each of the kernel 

bandwidths. 

 



All of the analyses were undertaken in R 3.2.1, the open source software 

(http://cran.r-project.org) with extensive spatial analysis and mapping functionality. 

The code and data used in this analysis will be provided on request. 

 

3.4 Worked Example 

 

Consider the following single location on the 50km sample grid described above. 

There are 20 data points under a 50km kernel at that location as in Figure 3. Each of 

these has been labelled with a land cover class and contributes evidence in support of 

an inference about the land cover at that location. The evidence for each point is 

weighted by its distance to the kernel centre, and the weights are combined using the 

formalisms described above. Table 1 shows the support or belief associated with the 

candidate hypotheses.  

 

   
Figure 3. The location being considered in red, the crowdsourced land cover data 
points with class labels and a small random term added to their location (left figure) 
and with a Google image as context (right figure). In both figures the size of the data 
points are related to their distance to the kernel centre and therefore their weight. 
 

Class 

Class  

frequency 

Dempster 

Shafer 

Bayesian 

Probability 

Fuzzy 

Sets 

Possibility 

Theory 

GW 

Average 

Tree 2 0.000 0.000 0.000 0.001 0.000 

Shrub 8 1.000 1.000 0.273 0.996 0.599 

Grass 1 0.000 0.000 0.311 0.402 0.085 

Crop 8 0.000 0.000 0.105 0.996 0.230 

Flood 1 0.000 0.000 0.311 0.402 0.085 

Urban 0 0.000 0.000 0.000 0.000 0.000 

Snow 0 0.000 0.000 0.000 0.000 0.000 

Crop
TreeTree

Crop

Shrub

Shrub

Shrub

Shrub

Shrub

Crop

Crop

Crop

Shrub

Shrub

Crop
Crop

Crop

Shrub

Mosaic
Grass



Barren 0 0.000 0.000 0.000 0.000 0.000 

Water 0 0.000 0.000 0.000 0.000 0.000 
Table 1. The inferences (beliefs, probabilities, memberships, possibilities) of the land 
cover present derived from the evidence combination approaches for the worked 
example.  
 
This generates an interesting set of results: Dempster-Shafer and the Bayes fully 

support the hypothesis that the class is Shrub, and this is driven by the greater weights 

compared to the Crop class. For Fuzzy Sets approach the inference of Crop or Shrub 

class is weakened by the presence weaker weights associated with the data points at 

the edge of the kernel. Possibility has very strong belief in a hypothesis of Crop and 

of Shrub but also has some belief in the possibility of the class being Flood or Grass. 

The GW Average approach identifies Shrub as having the greatest mass of weighted 

evidence. Possibility Theory, Fuzzy Sets and GW Average indicate some degree of 

uncertainty in the inference with more than 1 hypothesis have a high degree of 

support in this example.  

 

4. Results 

 

4.1 Comparison with reference data 

 

The analyses were run for 30 bandwidths of 5km to 150km in intervals of 5km. At 

each location on a 50km grid and for each evidence combination method, the class 

with the greatest support was identified and compared with the land cover class at the 

same location from the aggregated Globcover 2009 dataset. The overall 

correspondences for each combination method were calculated and the results are 

shown in Figure 4. This shows a general trend of increasing rates of correspondence 

with increasing kernel bandwidth for Dempster-Shafer, Bayes and GW Average. The 

geographically weighted average has the greatest correspondence regardless of 

bandwidth and Fuzzy Sets decreases with increased bandwidth (and therefore the 

number of data points being considered at each location) and Possibility plateaus 

around a kernel bandwidth of 75km. 

 



 
Figure 4. The trends in correspondence with GlobCover for the different evidence 
combination approaches as kernel bandwidth increases.  
 
It is also instructive to consider how the correspondences vary for different land cover 

classes: the case study area has a particular mix of cover types and scales of 

ecological and anthropogenic processes. The per class correspondences were 

calculated from collapsed correspondence matrices (ie describing binary classes of 

Class and Not-Class) to determine the degree to which an inference about the 

presence or absence of a particular land cover class was reflected in the reference data. 

The results are not therefore directly comparable with the data in Figure 4. The per 

class correspondences are shown in Figure 5, plotted with the same Y-axis. This 

clearly shows that for some classes bandwidth does not matter (Urban, Flood, Snow) 

regardless of evidence combination method. It also shows that for some classes 

bandwidth is important (Mosaic, Grass) and that for some classes the importance of 

bandwidth depends on the evidence combination method. For example under 

Dempster-Shafer, Grass corresponds well at small bandwidths and Water poorly at 

except larger bandwidths. Table 2 summaries bandwidth and evidence combinations 

that generate the highest correspondences for each class.  

 



 
 
Figure 5. The per class correspondences for the different evidence combination 
approaches with increasing kernel bandwidth. 
 

Class Class Bandwidth (km) Method 

Tree 1 150 GW Average 

Shrub 2 130 GW Average 

Grass 3 15 Dempster-Shafer 

Crop 4 10 Dempster-Shafer 

Mosaic 5 135 GW Average 

Flood 6 20 Dempster-Shafer 

Urban 7 5 Dempster-Shafer 

Snow 8 10 Dempster-Shafer 

Barren 9 10 Dempster-Shafer 

Water 10 10 Bayesian Probability 

Table 2. The bandwidth and evidence combination combinations that produce the 
highest correspondences with the reference data for each class 
 
It is possible to generate maps of the land cover with the highest levels of belief 

generated by each approach. Figure 6 a) to d) shows the maps of these under 10km, 

50km 100km and 150km kernels. These illustrate the interaction of the evidence 

combination approach and bandwidth (and of course the reference data). A number of 

trends are evident:  

- 10km kernel: there is a large amount of land classified as NULL (in grey) because of 

an insufficient number of crowdsourced data points falling under the kernel. As the 



kernel size increases the NULL data decreases (note that any areas classified as NULL 

were omitted for them correspondence analyses above).  

- 50km kernel: the land cover patterns (spatial distributions) start to become more 

similar to the reference data, with fewer NULL areas, with some spatial heterogeneity. 

In many areas the Dempster-Shafer analysis identified Water as the class with the 

greatest degree of belief (in blue). However, it is important to remember that the 

Dempster-Shafer results are only considering the support for the singleton class 

hypotheses. The maps from the other approaches start to resemble the reference data 

but still with some large unclassified areas.  

- 100km kernel: the differences between land cover are apparent with this kernel. All 

of the approaches are converging on the reference data, but with Fuzzy sets showing a 

much greater degree of divergence than the others and GW Average a much greater 

degree of smoothing. 

- 150km kernel. This trend continues with the largest kernel. Fuzzy generates 

numerous large, heterogeneous, aggregated areas and GW Average may be over-

generalising (smoothing) the data. Visually the Possibility and Bayes approaches have 

the closest spatial similarly to the reference data.  

 



 
a) 10km 

 



 
b) 50km 

 



 
c) 100km 

 



 
d) 150km 

 
Figure 6 a to d). Maps of the land cover with the greatest belief under different evidence combination approaches and kernel sizes. 



 
4.2 Soft classifications 

 

It is important to remember that all of the evidence approaches generate measures of 

belief in the hypotheses in the interval [0,1]. These beliefs (or memberships) in land 

cover can be mapped to indicate the uncertainty associated with the competing 

inferences about the land covers that are present. To illustrate the outputs of such 

classifications, the maps in Figure 7 shows the belief in the presence of the Tree land 

cover class arising from different approaches under kernels of 80km and 100km with 

local detail in the north of the study area. This class was chosen to illustrate the soft, 

uncertain classifications because it is the most numerous in the crowdsourced data 

with some 5,466 points. Other classes exhibit similar but sparser spatial structures 

under the different evidence combination approaches. 



 

 
a) 80km 

 



 
b) 80km detail 

 



 
c) 100km 

 



 
d) 100km detail 

 
Figure 7. a) to d) Belief in the presence of Tree land cover inferred from the crowdsourced data under bandwidths of 80km and 100km, with 
local detail. 



 
There are consistent spatial trends across the different bandwidths and the different 

evidence combination approaches. In each case a pattern similar to the distribution of 

Tree land cover in Figure 1 is evident. As bandwidth increases there are also some 

discernable trends in the patterns of inference associated with each of the methods. 

Generally, as the kernel size increases the clusters of inferred land cover increase in 

size – they become more clumped. This is to be expected because of the way that data 

under the kernel are brought together, in a way similar to a smoothing operation. 

Within this, the different approaches aggregate evidence in different ways which 

relate to their logics. The modified Dempster-Shafer generates discrete clumps of high 

belief, with clear areas of low belief between. Bayes shows similar patterns, with 

larger clusters at wider bandwidths. There are fewer extreme beliefs, in this case 

memberships to the set of Tree, in the Fuzzy Sets approach and therefore many fewer 

clusters. This is interesting: the Fuzzy approach does not cleave the evidence into 

belief and disbelief as does Bayes and Dempster-Shafer when there is high consensus 

among the data points. This is because the belief in any hypothesis of fuzzy set 

membership is diluted by the presence of other data points of the same class points 

near the edge of the kernel. The Possibility function generates beliefs that relate to the 

distance from the kernel centre of the nearest data point of the class being considered, 

and thus the class with maximum Possibility is the one that has the data point closest 

to the kernel centre. This is effectively “nearest point wins”. Possibility produces very 

large clusters of high possibility especially at the larger bandwidths as a consequence.  

 

5. Discussion and Conclusions 

 

The main aims of this paper were two-fold. The first was to develop, apply and 

evaluate novel geographically weighted evidence combination approaches for 

integrating conflicting information. The mapped results how these methods are able to 

make inferences about the presence of specific land cover types at each location and 

how each approaches describes the distribution of land cover, but with different 

spatial characteristics and interactions with the kernel bandwidth. Generally there was 

much greater smoothing of land cover clusters under Possibility Theory, more 

cleaving of the evidence into high and low belief under Dempster-Shafer and fewer 

clusters of extreme Fuzzy Set memberships especially at larger kernel bandwidths. 



Analysing the correspondence with the reference data suggests that GW Average is 

the most reliable approach regardless of bandwidth, although this statement has to be 

qualified with 2 observations. First that we do not know how reliable the reference 

data were: a different global dataset may well have generated different results. In a 

similar vein, the approach here was to ‘crisp off’ combined belief (essentially soft 

classifications) into Boolean classes. This is to ignore much of the uncertainty 

embedded in the belief in different land cover class hypotheses. Further work is 

needed to compare the inferences arising from combining crowdsourced data with 

soft references data in the manner suggested by Fisher et al [39] and Comber et al [41] 

and to evaluate frames or subsets of classes such as are generated by Dempster-Shafer 

approaches. Second, that for some land cover classes other evidence combination 

approaches performed better as in Table 2. This may be because of the greater 

ambiguity over what, for example, the class of Barren means and uncertain 

conceptualisations of that class by different contributors, or as a result of different 

densities of crowdsourced data or because of the interaction of these factors. On-

going work is exploring some of the semantic and spatial issues. However, the overall 

performance of the GW Average approach is an important finding as this method is 

used in most of the reported and current applications analysing Geo-Wiki data [eg 35, 

37].  

 

There is a paucity of approaches for dealing with conflicts in data generated by 

crowdsourcing and citizen science activities. Previous research has dealt with 

inconsistent data by applying a majority rules approach [13] with more recent work 

exploring, for example, latency analyses [12] outlier identification classification [42] 

as well as classic inferential statistics [37]. These approaches have sought to identify 

inconsistent data so that it can be excluded from the analysis. However, the outliers 

may tell us something about the uncertainty of the pure, crisp  land cover in that 

location. Thus a second aim of this research was explore how methods that explicitly 

reasoned under uncertain information handled conflicting data. If crowdsourced data 

are to be used in scientific analyses then a full panoply of approaches for handling 

information uncertainty are needed in the absence of formal experimental design in 

data collection, training, calibration and validation. This paper was very much 

concerned with methods for managing conflict and not just excluding conflicting data 

from analyses. This is a critical issue in the context of non-expert crowdsourced 



citizen science since it deals with the issue of how to move beyond simple majorities 

if, for example (most of) the crowd are all similarly confused. The results of this work 

suggest that all of the approaches under an appropriate bandwidth are able to 

accommodate such conflicts. The maps and other figures illustrates how they treat 

conflicting evidence: Bayesian Probability pushes evidence into belief and disbelief 

indicating what is there, Dempster-Shafer pushes it into belief and plausibility 

indicating what is not excluded from being there, Fuzzy Sets generates a set 

memberships to the hypothesis under consideration and indicates what combinations 

of things is there and Possibility Theory indicates what could be there. The GW 

Average provides a distance weighted majority rules approach.   

 

There are a couple of further issues to note. First, here a number of bandwidths were 

explored. Methods exist for selecting the bandwidth automatically, for example using 

a leave-one-out cross validation procedure which optimises the prediction probability 

for each individual data point when it is removed from the dataset. As a result, 

optimal bandwidths may therefore be class-specific which will be explored in future 

work. However these approaches are based on variance evaluations and may not be 

appropriate for this kind of analysis with this kind of data. Second, the results only 

indicate the belief in the hypotheses, that is the extent to which the evidence supports 

the different hypotheses. Whereas, any uncertainty arising from the evidence is 

implicitly included in the Fuzzy Sets memberships and is absent in Bayesian 

Probability which partitions evidence into belief and disbelief (what is there), this is 

not the case for Dempster-Shafer and Possibility Theory. The former generates a 

measure of Plausibility describing the extent to which the evidence does not refute the 

hypothesis – that is belief plus uncertainty. The latter generates a Necessity measure 

describing the certainty of the belief measure relative to competing hypotheses, with 

the effect that the lower the Necessity value, the more competition there is. Finally a 

number of scale factors interact to generate the results under each evidence 

combination approach. These include bandwidth, sampling grid and the granularity of 

the data that are collected through a Google Earth interface. Future work will address 

these issues and will explore the analysis of user confidences in their contributions to 

provide a second weighting to complement distance weights. Future work will also 

explore the development of a contributed R package to provide a generic 

geographically weighted framework to support other research activities. In this work 



bespoke code had to be developed but the provision of a suite of functions that 

returned geographically weighted data or even geographically weighted functions 

would be of great interest to the research community.  

 

In conclusion, this work has suggested that the GW Average approach provides the 

most reliable oval approach for combining crowdsourced land cover data such as are 

collected by the Geo-Wiki initiative. There are some caveats to this statement relating 

to the need for comparisons with soft (e.g. fuzzy) reference data and the examination 

of the inherent conceptual and semantic ambiguity of some classes at specific grains 

of analysis. However, the methods and results demonstrate the opportunities for 

generating localised measures of belief to support assessments of crowdsourced data 

quality and uncertainty. The geographically weighted evidence combination methods 

(Dempster-Shafer, Bayesian Probability, Fuzzy Sets and Possibility Theory, GW 

Average) provide a suite of approaches for assessing belief and for combining 

conflicting information when mining large crowdsourced datasets, whether the data 

are contributed actively such as in Geo-Wiki or passively like much social network 

data. The application of a geographically weighted kernel explicitly addresses the 

need to consider Tobler’s first law of geography when mining and combining 

crowdsourced data, reflecting the expectation that similar features and process will be 

clustered and not randomly distributed. The approach of a geographically weighted 

framework with evidence combination approaches allow more nuanced inferences 

about the quality of volunteered information to be generated than simple majorities 

and support the exploitation of large volumes of crowdsourced data about all kinds of 

phenomenon.  
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