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Abstract. Geographically weighted regression and the expansion method are two statistical techniques 
which can be used to examine the spatial variability of regression results across a region and so inform 
on the presence of spatial nonstationarity. Rather than accept one set of 'global' regression results, 
both techniques allow the possibility of producing 'local' regression results from any point within the 
region so that the output from the analysis is a set of mappable statistics which denote local relation-
ships. Within the paper, the application of each technique to a set of health data from northeast 
England is compared. Geographically weighted regression is shown to produce more informative 
results regarding parameter variation over space. 

1 Spatial nonstationarity 

A frequent aim of data analysis is to identify relationships between pairs of variables, 

often after negating the effects of other variables. By far the most common type of 

analysis used to achieve this aim is that of regression, in which relationships between one 

or more independent variables and a single dependent variable are estimated. In spatial 

analysis the data are drawn from geographical units and a single regression equation is 

estimated. This has the effect of producing 'average' or 'global' parameter estimates 

which are assumed to apply equally over the whole region. Tha t is, the relationships 

being measured are assumed to be stationary over space. Relationships which are not 

stationary, and which are said to exhibit spatial nonstationarity, create problems for the 

interpretation of parameter estimates from a regression model. It is the intention of this 

paper to compare the results of two statistical techniques, Geographically weighted 

regression (GWR) and the expansion method (EM), which can be used both to account 

for and to examine the presence of spatial nonstationarity in relationships. 

It would seem reasonable to assume that relationships might vary over space and 

that parameter estimates might exhibit significant spatial variation in some cases. 

Indeed, the assumption that such events do not occur, which until recently has been 

relatively unchallenged, seems rather suspect. There are three reasons why parameter 

estimates from a regression model might exhibit spatial variation: that is, why we might 

expect parameters to be different if we calibrated the same models from data drawn 

from different parts of the region (as shown by Fotheringham et al, 1996; 1997). The 

first and simplest is that parameter estimates will vary because of random sampling 

variations in the data used to calibrate the model. The contribution of this source of 

variation is not of interest here but needs to be eliminated by significance testing. In this 

paper we want to concentrate on large-scale, statistically significant variations in 

parameter estimates over space, the source of which cannot be attributed solely to 

sampling. The second explanation is that, for whatever reason, some relationships 

are intrinsically different across space. Perhaps, for example, there are spatial variations 
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in people's tastes or attitudes or there are different administrative, political, or other 
contextual issues that produce differing responses to the same stimuli across space. In 
which case, it is clearly useful to have a technique that can identify the nature of these 
variations in relationships over space; without such a technique only a global or average 
relationship can be estimated and this may bear little resemblance to particular local 
relationships. This is a situation where we throw away a great deal of interesting spatial 
detail in relationships. 

The third reason why some relationships might exhibit spatial variation is that the 
model from which the relationships are being estimated is a gross misspecification of 
reality and that one or more relevant variables have either been omitted from the 
model or represented by an incorrect functional form and are making their presence 
felt through the parameter estimates. Given that all models, by their nature, are likely 
to be misspecifications of reality, the potential for this misspecification to be suffi-
ciently gross as to cause spatial nonstationarity in parameter estimates would seem 
quite high. 

2 The expansion method approach to measuring spatial nonstationarity 
Several techniques aimed at measuring and incorporating spatial nonstationarity 
already exist in the literature. Perhaps the best known is that of the expansion method 
(Casetti, 1972; Jones and Casetti, 1992) which is an attempt to measure parameter 
'drift'. In this framework, parameters of a global model can be made functions of other 
attributes including geographic space so that trends in parameter estimates over space 
can be measured (Eldridge and Jones, 1991; Fotheringham and Pitts, 1995). 

Initially, a global model is proposed such as: 

y. = a + fixn + ... + TXin + £,- , (1) 

where y represents a dependent variable, the x are independent variables, a, /?, ..., T 
represent parameters to be estimated, e represents an error term, and i represents a 
point in space at which observations on the y and x are recorded. The basic model can 
be expanded by allowing each of the parameters to be functions of other variables. 
Although most applications of the expansion method (see Jones and Casetti, 1992) 
have undertaken aspatial expansions, it is relatively straightforward to allow the 
parameters to vary over geographic space so that 

a/ = a0 + a iM / + a 2 v / > 

P, = P0 + Pi", + P2v,, 

T,- = T0 + T1Ui +T 2V ; - , 

(2) 

where u and v represent spatial coordinates with u being an easting and v being a 
northing. Equation (2) represents very simple linear expansions over space but more 
complex, nonlinear, expansions such as 

a,- = a0 + a, ut + a2 v,- + a3 uf + a4v,2 + a5w,v,-, (3) 

can easily be accommodated although the interpretation of individual parameter 
estimates can then be difficult. 

Whichever form of expansion is selected, once the expanded model has been 
calibrated, the estimated parameters are used to obtain spatially varying estimates of 
the parameters in equation (1) from either equation (2) or equation (3). The estimates 
of a,, pi9 etc can then be mapped to display spatial variations in relationships. Quite 
clearly, though, the technique is limited to displaying trends in relationships over space, 
with the complexity of the trends measured dependent upon the complexity of the 
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expansion equations. It should also be noted that the expansion equations are assumed 
to be deterministic to remove problems of estimation in the terminal model. 

3 Geographically weighted regression 
Consider the global regression model given by 

y\ = * o + ^ * * * * + « / • (4) 
k 

GWR is a relatively simple technique that extends the traditional regression framework 
of equation (4) by allowing local rather than global parameters to be estimated so that 
the model is rewritten as 

>',• = a0 (u(,vf-) + ^2 a* 0/,v,- )xik + £,-, (5) 
k 

where (w;-,v,) denotes the coordinates of the ith point in space and aA.(w,,v,) is a 
realisation of the continuous function &k (w,v) at point /. That is, we allow there to be 
a continuous surface of parameter values and measurements of this surface are taken 
at certain points to denote the spatial variability of the surface. Note that equation (4) 
is a special case of equation (5) in which the parameter surface is assumed to be 
constant over space. Thus the GWR expression in equation (5) is a recognition that 
spatial variations in relationships might exist and provides a way in which they can be 
measured. 

As it stands, though, there are problems in calibrating equation (5): there are more 
unknowns than observed variables. However, many models of this kind have been 
proposed before and they are reviewed by Rosenberg (1973) and Spjotvoll (1977) and 
more recent work has been carried out by Hastie and Tibshirani (1990). Our approach 
borrows from the latter particularly in the fact that we do not assume the coefficients 
to be random, but rather that they are deterministic functions of some other variables— 
in our case location in space. The general approach when handling such models is to 
note that although an unbiased estimate is not possible, estimates with a small amount 
of bias can be provided. We argue here that the estimation process in GWR can be 
thought of as a trade-off between bias and standard error. Assuming the parameters 
exhibit some degree of spatial consistency then values near to the one being estimated 
should have relatively similar magnitudes and signs. Thus, when estimating a param-
eter for a given point /, one can approximate equation (5) in the region of i by equation 
(4), and perform an ordinary least squares (OLS) regression with a subset of the points 
in the data set that are close to i. Thus, the &k (w, ,v,) are estimated for / in the usual way 
and for the next z, a new subset of 'nearby' points is used, and so on. These estimates 
will have some degree of bias, because the coefficients of equation (5) will exhibit some 
drift across the local calibration subset. However, if the local sample is large enough, 
this will allow a calibration to take place—albeit a biased one. The greater the size of 
the local calibration subset the lower the standard errors of the coefficient estimates; 
but this must be offset against the fact that enlarging-this subset increases the chance 
that the coefficient 'drift' introduces bias. To reduce this effect one final adjustment to 
this approach may also be made. Assuming that points in the calibration subset further 
from / are more likely to have differing coefficients, a weighted OLS calibration is used, 
so that more influence in the calibration is attributable to the points closer to /. 

As noted above, the calibration of equation (5) assumes implicitly that observed 
data near to point / have more of an influence in the estimation of the aA. (w,,v;) than data 
located farther from /. In essence, the equation measures the relationships inherent in 
the model around each point i. Hence weighted least squares provides a basis for 
understanding how GWR operates. In GWR an observation is weighted in accordance 
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with its proximity to point / so that the weighting of an observation is no longer constant 
in the calibration but varies with i. Data from observations close to / are weighted more 
than data from observations farther away. That is, 

a(«„v,) = [X^iu^xy'x^iu^y (6) 

where the bold type denotes a matrix, a represents an estimate of a and W(w,-,v/) is an 
n x n matrix whose off-diagonal elements are zero and whose diagonal elements denote 
the geographical weighting of observed data for point i. There are parallels between 
GWR and that of kernel regression and drift analysis of regression parameters 
(DARP) (Casetti, 1982; Cleveland, 1979; Cleveland and Devlin, 1988). In kernel regres-
sion and DARP, y is modelled as a nonlinear function of X by weighting data in 
attribute space rather than geographic space. That is, data points more similar to x, 
are weighted more heavily than data points which are less similar and the output is a 
set of localized parameter estimates in x-space. However, Casetti and Jones (1983) do 
provide a limited spatial application of DARP which is very similar in intent to GWR 
although it lacks a formal calibration mechanism and significance-testing framework 
and so is treated by the authors as a rather limited heuristic method. 

It should be noted that, as well as producing localised parameter estimates, the 
GWR technique described above will produce localised versions of all standard regres-
sion diagnostics including goodness-of-fit measures such as R

2
. The latter can be 

particularly informative in understanding the application of the model being calibrated 
and for exploring the possibility of adding additional explanatory variables to the 
model. 

4 Model specification 
There are several other multivariate models that allow for spatial effects. One common 
example is the simultaneous autoregressive (SAR) model (for example, see Cliff and 
Ord, 1981). This model is identical to the OLS model in terms of the linkage between 
E(y\ the expected value of y, and the x variables, but differs in the model for the 
distribution of the residuals. In the SAR case the residuals are not independently 
distributed, but exhibit spatial autocorrelation. Essentially, then, SAR still provides a 
global prediction model. In fact, using OLS to calibrate an SAR process would still 
result in unbiased estimates, but would give less efficient coefficient estimators (the 
standard errors would be greater). This is not the case with GWR. Here the predictor 
model is not global in the observed variables, so that OLS (or indeed SAR) would not 
provide unbiased estimates. The basic GWR model agrees with OLS only in the form 
of the error term. 

One could argue that some estimated nonstationarity in the regression coefficients 
may be the result of autocorrelation effects. That is, one may be attempting to calibrate 
a GWR model when in reality an SAR process is occurring—autocorrelation of 
residuals becomes displaced to variation in the regression parameters. However, by 
the same token, on other occasions one may be attempting to calibrate an SAR model 
when the reality is GWR—variation in regression parameters gets displaced to auto-
correlation in residuals. Without divine intervention it is generally difficult to know 
with certainty which (if either) of the two above cases are true. However, looking at a 
GWR model estimation gives some insight into how localised effects affect coefficients 
attached to specific variables—something that SAR cannot do. 

Similar arguments may also be applied to prewhitening procedures (Kendall and 
Ord, 1990). With this approach, spatial filters are applied to all variables (dependent 
and independent) before fitting a regression model, to remove autocorrelation effects. 
Again, however, the prediction model will be global. Thus, as before a global linkage is 
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set up, although in this case variables on both sides of the regression equation are 
assumed to be realisations of random spatial processes. Perhaps a model having the 
'best of both worlds' would be one with the E(y) predictor term of GWR but also 
having spatial autocorrelation in the error terms. Investigation into this kind of model 
is currently in progress (Brunsdon et al, 1998). 

5 Choice of spatial weighting function 
Until this point, it has merely been stated in GWR that W(w/?v;) is a weighting scheme 
based on the proximity of i to the sampling locations around i without an explicit 
relationship being stated. The choice of such a relationship will be considered here. 
First, consider the implicit weighting scheme of the OLS framework in equation (4). 
Here 

*>ij = 1 , V/,y, (7) 

where j represents a specific point in space at which data are observed and i represents 
any point in space for which parameters are estimated. That is, in the global model 
each observation has a weight of unity. An initial step towards weighting based on 
locality might be to exclude from the model calibration observations that are further 
than some distance d from the locality. This would be equivalent to setting their weights 
to zero, giving a weighting function of 

f 1, if du < d, 
w„ = \ (8) 

[ 0, otherwise. 

The use of equation (8) would simplify the calibration procedure because for every 
point for which coefficients are to be computed only a subset of the sample points need 
to be included in the regression model. However, the spatial weighting function in 
equation (8) suffers the problem of discontinuity. As i varies around the study area, 
the regression coefficients could change drastically as one sample point moves into or 
out of the circular buffer around i and which defines the data to be included in the 
calibration for location i. Although sudden changes in the parameters over space might 
genuinely occur, in this case changes in their estimates would be artifacts of the 
arrangement of sample points, rather than any underlying process in the phenomena 
under investigation. One way to combat this is to specify wtj as a continuous function 
of dy, the distance between i andy. One obvious choice is 

"V = e x p ( - | l ) ' (9) 

where /? is referred to as the bandwidth. If / andy coincide (that is, / also happens to be 
a point in space at which data are observed), the weighting of data at that point will be 
unity and the weighting of other data will decrease according to a Gaussian curve as 
the distance between i and j increases. In the latter case the inclusion of data in the 
calibration procedure becomes 'fractional'. For example, in the calibration of a model 
for point /, if w(/ = 0.5 then data at point j contribute only half the weight in the 
calibration procedure as data at point i itself. For data a long way from i the weighting 
will fall to virtually zero, effectively excluding these observations from the estimation 
of parameters for location z. 

Whatever the specific weighting function employed, the essential idea of GWR is 
that for each point / there is a 'bump of influence' around / corresponding to the 
weighting function such that sampled observations near to / have more influence in 
the estimation of the parameters of / than do sampled observations farther away. 
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6 Calibrating the spatial weighting function 

One difficulty with GWR is that the estimated parameters are, in part, functions of the 
weighting function or kernel selected in the method. In equation (8), for example, as d 

becomes larger, the closer will be the model solution to that of OLS and when d is 
equal to the maximum distance between points in the system, the two models will 
be equal. Equivalently, in equation (9) as P tends to infinity, the weights tend to one for 
all pairs of points so that the estimated parameters become uniform and GWR 
becomes equivalent to OLS. Conversely, as the bandwidth becomes smaller, the param-
eter estimates will increasingly depend on observations in close proximity to / and hence 
will have increased variance. The problem is therefore how to select an appropriate 
bandwidth or decay function in GWR. 

Consider the selection of P in equation (9). One possibility is to choose p on a 'least 
squares' criterion. One way to proceed would be to minimise the quantity 

J2[yt-y,(P)]\ do) 

where j>, (/?) is the fitted value of yt with a bandwidth of /?. In order to find the fitted 
value of y,- it is necessary to estimate the ak(u,,Vi) at each of the sample points and 
then combine these with the x-values at these points. However, when minimising the 
sum of squared errors suggested above, a problem is encountered. Suppose ft is made 
very small so that the weightings of all points except for i itself become negligible. Then 
the fitted values at the sampled points will tend to the actual values, so that the value of 
expression (10) becomes zero. This suggests that under such an optimising criterion the 
value of P tends to zero but clearly this degenerate case is not helpful. First, the 
parameters of such a model are not defined in this limiting case and second, the 
estimates will fluctuate wildly throughout space in order to give locally good fitted 
values at each /. 

A solution to this problem is a cross-validation (CV) approach suggested for local 
regression by Cleveland (1979) and for kernel density estimation by Bowman (1984). 
Here, a score of the form 

£,[y,-y#W]
2 (ID 

/ = 1 

is used, where y^ (P) is the fitted value of y{ with the observations for point / omitted 
from the calibration process. This approach has the desirable property of countering 
the 'wrap-around' effect, as when P becomes very small, the model is calibrated only on 
samples near to / and not at / itself. 

Plotting the CV score against the required parameter of whatever weighting function 
is selected will therefore provide guidance on selecting an appropriate value of that 
parameter. If it is desired to automate this process, then the CV score could be maxi-
mised by using an optimisation technique such as a golden section search (Greig, 1980). 

7 Bias - variance trade-off 

It is important at this stage to expand on the ideas discussed briefly in section 3 on 
the relationship between bias and variance both generally and within the context of 
GWR. To do this, one needs to discuss some properties of the estimator of y, y. At 
any point in space (w,v), if we are given a set of predictors, X, and a set of coefficient 
estimators a, then y = XTa is an estimate of y at that point. However, a is an 
estimate of a based on a sample of spatially diffuse X and y observations. Because 
of the randomness of the y term, a is random, and therefore so is y. Two important 
properties of the distribution of y are its standard deviation and its expected value, 
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Figure 1. Prediction error distribution of ^-estimators. 

SD(y) and E(j>), respectively. When, for all X, E(j>) = E(y)9 the estimator is said to be 

unbiased. In this case, SD(j>) is a useful measure of the quality of y as an estimator of 

y. However, zero bias does not in itself guarantee an optimal estimator. 

Consider figure 1. The horizontal line indicates the true value of y and the two box-

plots represent the probability distributions of the two estimates of y. Call these j), and 

y2 respectively. Although y2 is a biased estimator, its overall variability is less than that 

of j)]. Thus, the extreme values of potential errors in the prediction of y are less for 

y2 —the only advantage j>, has to offer is that the error distribution is centred on zero. 

If one were to consider the distributions of the prediction squared error (PSE), that for 

the first estimator would have a much longer tail. 

This is an example of bias-variance trade off—an important issue that occurs in 

many types of statistical modelling [for example, see work on multilevel modelling 

(Goldstein, 1987)]. It is certainly an issue in G W R . If regression coefficients vary 

continuously over space, then using weighted least-squares regression is unlikely to 

provide a completely unbiased estimate of a(w,v) at the given point (w,v) because for 

each observation there will be a different value of a but the regression requires that this 

value is the same for all observations. The best one can hope is that the values do not 

vary too much—and this is best achieved by only considering observations close to the 

point (w,v) at which we wish to estimate a(w,v). However, because this reduces the 

effective sample size for the estimate, the standard error of a(w,v) will increase. Thus, 

the question arises as to how close to (u,v) should points be considered. Too close and 

variance becomes large but the bias is small; too far and the variance is small but the 

bias is large. At one extreme, if a global model is chosen, then a(w,v) is assumed 

constant for all (w,v) and if there is much variability in the true a(w,v) then clearly 

bias will cause problems. It is the consideration of this bias — variance trade-off that 

should guide the choice of bandwidth. 

This provides some justification for the use of cross-validation scores as a means of 

choosing bandwidth. A CV score is essentially the sum of estimated squared prediction 

errors—the quantity discussed earlier. PSEs can be thought of as a measure of the 

overall performance of a particular bias - variance combination. We cannot know the 

exact PSEs (if we did, we would know the true E(y) and a values and would need no 

statistical prediction!), but CV scores provide an estimate which can then be used as a 

basis for selection. 

At this point it is worth making two observations on choice of bandwidth. These 

both depend on the fact that the bandwidth is essentially a measure of how close to 

(w,v) one has to use data to get a 'good' b i a s -va r i ance combination. Note that 

bandwidth choice is a function of the spatial distribution of the observations—if a 
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lot of observations are close to (w,v) then one may not need to look far to find enough 

observations to reduce the standard error satisfactorily. However, if observations are 

sparser, then one may well need to extend the search radius to achieve an optimal 

effect. If the spatial distribution of cases varies notably in density throughout the study 

area, then suitable bandwidths will not be constant over space. Currently G W R is 

calibrated by using a global bandwidth selection method but work is in progress on 

localised bandwidth choice where the bandwidth can vary not only across space but for 

each parameter estimate (Fotheringham et al, 1998). 

The second point also follows from the linkage between sample geography 

and bandwidth choice. For a given set of variables—and therefore a given model— 

optimal bandwidth will change if the sampling strategy is altered. Thus bandwidth 

choice is not a parameter relating to the model itself, but is essentially par t of the 

calibration strategy for a given sample. For example, if further sample points were 

added to the model, although one hopes to achieve better estimates of a(w,v), one would 

expect the optimal bandwidth to decrease. Ultimately, if the sample size is continually 

increased, a(w,v) should tend to a(w,v) but the bandwidth should tend to zero. However, 

this does not mean that by altering the bandwidth, and observing the changes in a(w,v) 

one cannot gain some insight into the different scales of variation in a(w,v). Another 

view of G W R is that of a spatial filter, which is capable of extracting different spatial 

frequency components of spatial nonstationarity in regression coefficients. In the light 

of this interpretation, optimal bandwidth can be regarded as creating a filter which 

allows nonstationarity trends of all frequencies to pass, but filters out random noise. 

8 Testing for spatial nonstationarity 

To this point the techniques associated with GWR have been predominantly descriptive. 
However, it is useful to assess the question: "Does the set of local parameter estimates 
exhibit significant spatial variation?" The variability of the local estimates can be used 
to examine the plausibility of the stationarity assumption held in traditional regression. 
In general terms, this could be thought of as a variance measure. For a given k suppose 
aA.(w,,v;) is the GWR estimate of a^(w/,v;). Suppose we take n values of this parameter 
estimate (one for each point i within the region), an estimate of variability in the 
parameter is given by the standard deviation of the n parameter estimates. This statistic 
will be referred to as sk. 

The next stage is to determine the sampling distribution of sk under the null 
hypothesis that the global model in equation (1) holds. Although it is proposed to 
consider theoretical properties of this distribution in the future, for the time being a 
Monte Carlo approach will be adopted. Under the null hypothesis, any permutation of 
(w,,v;) pairs amongst the geographical sampling points / are equally likely to occur. 
Thus, the observed values of sk could be compared with the values obtained from 
randomly rearranging the data in space and repeating the GWR procedure. The 
comparison between the observed sk value and those obtained from a large number 
(99 in this case) of randomisation distributions forms the basis of the significance test. 
Making use of the Monte Carlo approach, it is also the case that selecting a subset of 
random permutations of (w,,v,) pairs amongst the / and computing sk will also give a 
significance test when compared with the observed statistics. 

9 An empirical comparison of the expansion method and GWR: the distribution of 

limiting long-term illness in the northeast of England 

The application of both methods of measuring spatial nonstationarity in relationships is 
now described with data on the spatial distribution of limiting long-term illness (LLTI) 
which is a self-reported variable from the UK Census of Population. It encompasses a 
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variety of severe illnesses such as respiratory diseases, multiple sclerosis, heart disease, 

severe arthritis, as well as physical disabilities which prevent people from being in the 

labour market. The study area encompasses 605 census wards in four administrative 

counties in northeast England: Tyne and Wear, Durham, Cleveland, and Nor th York-

shire. Tyne and Wear is a heavily populated service and industrial conurbation in the 

nor thern par t of the study area and is centred on the city of Newcastle. To the south 

D u r h a m has been heavily dependent on coal mining in the eastern half of the county 

with the western half being predominately rural. Cleveland, to the southeast, is a largely 

urban, industrial area with heavy petrochemical and engineering works clustered 

around the Tees estuary and centred on Middlesbrough. Nor th Yorkshire, to the south, 

is a predominantly rural and fairly wealthy county with few urban areas. The distribu-

tion of urban areas throughout the region is shown in figure 2. 

N e w c a s t J ^ ^ m r y n e m 0 U t h 

[Sunderland 

Figure 2. Urban areas in the study region. 

The spatial distribution of a standardised measure of LLTI (defined as the percen-

tage of individuals aged 45 - 65 living in a household where LLTI is reported) throughout 

the study region is shown in figure 3 (over). As one might expect, the LLTI variable 

tends to be higher in the industrial regions of Tyne and Wear, east Durham, and 

Cleveland and lower in the rural areas of west Durham and North Yorkshire. To model 

this distribution, the following global regression model was constructed: 

LLTI,- = a0 +tfjUNEM,. + a2 CROW,- + <33SPF,- + tf4SC1,:+<25DENS,-, (12) 

where LLTI is the age-standardised measure of LLTI described above; UNEM is the 

proportion of economically active males and females who are unemployed (the denom-

inator in this variable does not include those with LLTI who are not classed as being 
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Figure 3. Spatial distribution of standardised limiting long-term illness variable. 

economically active); CROW is the proportion of households whose inhabitants are 
living at a density of over 1 person per room; SPF is the proportion of households 
with single parents and children under 5; SC1 is the proportion of residents living in 
households with the head of household in social class I (employed in professional 
nonmanagerial occupations); and DENS is the density of population in millions per 
square kilometre. This last variable discriminates particularly well between urban and 
rural areas. The model is guided by the findings of Rees (1995) in his examination of 
LLTI at a much coarser spatial resolution (English and Welsh counties and Scottish 
regions). The data are extracted from the 1991 UK Census of Population Local Base 
Statistics. The areal units used are census wards which contain on average approx-
imately 200 households per ward. With these data, the calibrated form of the global 
model is: 

LLTI,. = 3.8 + 96.6UNEM, + 31.1CROW,. - 3.5SPF, - 22.5SC1, - 5.6DENS,- m . 
(1.3) (3.4) (3.9) (2.3) (4.1) (2.5) ^ ; 

where the numbers in parentheses represent ^-statistics and the R
2 value associated 

with the regression is 0.76. The results suggest that across the study region LLTI is 
positively related to unemployment levels and crowding. The relationship with unem-
ployment reflects perhaps that the incidence of LLTI is related to both social and 
employment conditions in that the areas of higher unemployment tend to be the poorer 
wards with declining heavy industries. The relationship with crowding suggests a link 
between LLTI and social conditions, with levels of LLTI being higher in areas with 
high levels of overcrowding. LLTI is negatively related to the proportion of profession-
ally employed people in a ward and to population density. The negative relationship 
between LLTI and SC1 supports the hypothesis that LLTI is more prevalent in poorer 
areas which have fewer people in professional occupations. It also reflects the fact that 
industrial hazards which are a factor in the incidence of LLTI are less likely to occur to 
people in professional occupations. The negative relationship between LLTI and DENS 
is somewhat counterintuitive in that it suggests that LLTI is greater in less densely 
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populated areas, ceteris paribus. The nature of this relationship is explored in greater 

detail below in the discussion of the G W R results. Only the single-parent family variable 

is not significant (at 95%) in the global model. 

To this point, the empirical results and their interpretations are typical of those 

found in s tandard regression applications: parameter estimates are obtained which are 

assumed to describe relationships that are invariant across the study region. We now 

describe the application of both the expansion method and G W R to examine the 

validity of this assumption and explore in greater detail spatial variations in the 

relationships described above. 

9.1 Expansion method results 

Each of the six parameters in the global model given in equation (12) was expanded in 

terms of both linear and quadratic functions of space. The results are given in tables 1 

and 2, below and page 1918, along with the parameter estimates from the global model. 

The linear results are perhaps the easier to interpret (table 1). They suggest that 

significant spatial variation in three parameters exists: the unemployment parameter, 

the crowding parameter, and the density parameter all appear to become less positive 

in the eastern par t of the region. The other parameters apparently exhibit no signifi-

cant spatial variation. To show this more clearly, values of the coordinates (w^v,) for 

each spatial unit (the 605 census wards) are input into the calibrated expansion 

equations for each parameter and the resulting locally varying parameter estimates 

are mapped. These spatial distributions for the linear expansion equations are shown 

below for the three parameters discussed above plus the intercept term. 

The spatially varying intercept is shown in figure 4. It depicts a trend in which 

higher values of the constant are found in the northern part of the region suggesting 

that, once spatial variations in the five variables in the model have been accounted for, 

Table 1. Linear expansion method (EM) results. 

Variable Global Linear EM 

Constant 
Constant „ 
Constant,. 

UNEM 

UNEMM 

UNEMV 

CROW 

CROW,, 

CROWv 

SC1 

SC1„ 

SC1V 

DENS 

DENS„ 

DENSv 

SPF 

SPF„ 

SPFv 

R
2 

3.8*** 

93*** 

31*** 

-23*** 

-5.6*** 

- 3 . 5 

0.76 
589 

52 
6.4 xlCT 5 

- 6 . 7 x l O " 5 

430*** 
- 4 . 8 x lO ' 4 

- 2 . 3 x 10 - 4 

- 2 2 0 

1.7 x l O - 4 

3.4 x l O " 4 

210 
- 2 . 8 x l O ' 4 

-2 .2 x lO ' 4 

140 
-1.6 xlO"4 

-1 .3 xl<r 4 

55 
-3.8 x lO - 5 

-8 .3 x lO ' 5 

0.80 
577 Degrees of freedom 

*** Significant at the 95% confidence level 
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Figure 4. Linear expansion of the constant. 

Figure 5. Linear expansion of the unemployment parameter. 

standardised rates of LLTI still appear to be higher in the northern par t of the region 

than in the south. The linear trend in the unemployment parameter estimate is shown 

in figure 5 in which it can be seen that the estimate is larger in the south than in the 

north, suggesting that LLTI rates are more sensitive to unemployment variations in the 

south. The linear trends in both the social class parameter in figure 6 and the density 
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Figure 6. Linear expansion of the social class parameter. 

Figure 7. Linear expansion of the density parameter. 

parameter in figure 7 suggest that the relationships between LLTI and social class and 

between LLTI and housing density both become more negative towards the coast. Of 

course, these are very simple trends which need to be explored in more detail. 

The quadratic expansion results are depicted in table 2 and the spatial distributions 

of the intercept, unemployment, social class, and density parameters, equivalent to 
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Table 2. Quadratic expansion method (EM) results. 

Variable Global Quadratic EM 

480 
-2.0 xlO"3 

1.6 xlO"9 

-7 .3 xlO"5 

1.2 xlO"9 

-6.2 xlO"10 

-8400*** 
2.0 xlO"3 *** 
-1.1 xlO"8 

1.7 xlO"2 

-8 .3 x 10~9 

-2.2 xlO"8 

2400 
-6.8 x 10"3 

1.4 xlO"9 

-3.4 x lO - 3 

-2.7 xlO"9 

1.2 x lO - 8 

-4300 
1.9 xl0~2 *** 
-6.2 x 10"9 *** 
-6.6 xlO"4 

1.7 xlO"8 *** 
-3.0 xlO"8 *** 

-110 
1.7 xlO"3 

-9.8 xlO"10 

-1.3 x lO - 3 

2.8 x 10"9 

-2.1 xlO"9 

-250 
3.0 xlO"3 

-2.0 xlO"9 

-2 .2 xlO"3 

3.9 x 10"9 

-2.5 x 10"9 

Constant 38*** 
Constant,, 
Constants 
Constant,. 
Constant,,,. 
Constant,,,. 

UNEM 93*** 

UNEM,, 

UNEM,,,, 

UNEM,. 

UNEM,.,. 

UNEM,,,. 

CROW 31 
CROW,, 

CROW,,,, 

CROW,. 

CROW,,,. 

CROW,,,, 

SC1 - 2 3 
SC1„ 
bd,,,, 
SC1,. 
SC1,.r 
SC1,„. 

DENS -5.6*** 

DENS,, 

DENS,,,, 

DENS,. 

DENS,.,. 

DENS,,,. 

SPF -3 .5 

SPF„ 

SPF„„ 

SPF,. 

SPF„„ 

SPF„„ 

R
2 0.76 0.83 

Degrees of freedom 589 559 
*** Significant at the 95% confidence level. 

figures 4 - 7 , are shown in figures 8 - 1 1 , respectively. Because of the increased complex-

ity of the parameter surfaces being estimated, it is more difficult to interpret particular 

parameter estimates in table 2. However, two parameters, unemployment and social 

class, appear to exhibit significant spatial variation. The distribution of the expanded 

intercept shown in figure 8 is puzzling being the opposite of that of the linear trend and 

having positive values in the southern par t of the region and negative values in the 

northern part. Presumably, this unexpected result is caused by the complexities of the 

other parameters varying spatially in sometimes complicated ways although this high-

lights a problem of the expansion method in that more complex expansions often 

produce parameter estimates which can be difficult to interpret. 
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Figure 8. Quadratic expansion of the constant. 

Figure 9. Quadratic expansion of the unemployment parameter. 

The result of the quadratic expansion of the unemployment parameter shown in 
figure 9 shows a more complex pattern than that of the linear expansion with a ridge of 
higher values running from the northwest to the southeast. Similarly, the spatial 
distribution of the social class parameter in figure 10 suggests greater sensitivity in 
the relationship between LLTI and social class in areas towards the northeast coast 
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Figure 10. Quadratic expansion of the social class parameter. 

Figure 11. Quadratic expansion of the density parameter. 

and running through a saddle point towards the southwest. The spatial distribution of 
the quadratic expansion of the density parameter in figure 11 now suggests a nor th-
south trend in the relationship between LLTI and density instead of the northeast-to-
southwest trend suggested by the linear expansion. 
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Whereas the quadratic expansions tend to highlight the simplistic nature of the 
linear expansion results, the quadratic results themselves are potentially simplistic 
representations of complex spatial patterns. In order to examine this complexity in 
more detail, it is necessary to move away from the expansion method and to GWR. 

9.2 Geographically weighted regression results 
Prior to calibration of the LLTI model by GWR, the Gaussian weighting function in 
equation (9) was calibrated by the cross-validation technique described in equation (11) 
and the estimated value of /? = 13.5 resulted in a weighting function that tends to zero 
at a distance of approximately 19 km from a point at which parameter estimates are 
obtained (for a Gaussian kernel, data at a distance of greater than twice the bandwidth 
are virtually zero weighted). A plot of the CV scores against bandwidth is shown in 
figure 12. 

42 

| 38 f 

26 [ t t t j 

5 10 15 20 25 30 
Bandwidth (km) 

Figure 12. Cross-validation (CV) score as a function of bandwidth. 

Each local parameter estimate is then obtained by weighting the data according to 
this function around each point and using the estimator in equation (6). The spatial 
distributions of the localised estimates of the intercept, unemployment, social class, 
and density parameters are shown in figures 13 -16, respectively. The interpretation of 
each of the spatial estimates depicted in these figures is that it reflects a particular 
relationship, ceteris paribus, in the vicinity of that point in space. 

Figure 13 (see over) shows the spatial variation in the estimated constant term 
obtained from GWR and it clearly exhibits much greater detail than either of the 
intercept maps derived from the expansion method. The estimates in figure 13 show 
the extent of LLTI after the spatial variations in the explanatory variables have been 
taken into account. The high values which occur primarily in the industrial areas of 
Cleveland and east Durham suggest a raised incidence of LLTI in these areas even 
when the relatively high levels of unemployment and low levels of employment in 
professional occupations are accounted for. The Monte Carlo test of significance for 
the spatial variation in these estimates described above indicates that the spatial 
variation is significant. This test might form a useful basis for testing for model 
specification. Presumably there are other attributes that might be added to the model 
that would reduce the spatial variation in the constant term. One could be satisfied 
with the specification of the model once the spatial variation in the constant term fails 
to be significant. The map in figure 13 also acts as a useful guide as to what these 
attributes should be. The model apparently still does not adequately account for the 
raised incidence of LLTI in the mainly industrial areas of the northeast and perhaps 
other employment or social factors would account for this. 

The spatial variation in the unemployment parameter shown in figure 14 (see over) 
depicts the differing effects of unemployment on LLTI across the study area. All the 
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Figure 13. Geographically weighted regression distribution of the constant. 

Figure 14. Geographically weighted regression distribution of unemployment parameter. 

parameters are significantly positive but are smaller in magnitude in the urbanised wards 
centred on Cleveland and Tyne and Wear. Again, the spatial variation in these parameter 
estimates is significant. The results suggest a possible link to environmental causes of 
LLTI, with levels of LLTI being high regardless of employment status in Cleveland which 
has large concentrations of chemical processing plants and, until recently, steelworks. 
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Figure 15. Geographically weighted regression distribution of social class parameter. 

Another possibility is that levels of LLTI are high regardless of employment status in 
these areas because employment is concentrated in declining heavy industries and a 
large proportion of the unemployed were probably formerly employed in such industries 
which are associated with high levels of LLTI. 

The global estimate of the social class 1 variable is significantly negative and all the 
spatial estimates, shown in figure 15, are negative and exhibit significant spatial variation. 
The more negative estimates are concentrated along the industrial parts of Cleveland, 
east Durham, and Tyne and Wear indicating that levels of LLTI are more sensitive to 
variations in social class in urban areas than in rural areas. Within urban areas LLTI is 
presumably linked to blue-collar occupations whereas in rural areas, the incidence of 
LLTI is more evenly distributed across types of employment. 

Perhaps the best example of the use of GWR is provided in the spatial pattern of 
the estimates for the density variable given in figure 16. The global estimate for 
population density is significantly negative which is somewhat counterintuitive: we 
might expect that LLTI would be higher in more densely populated urban wards 
than in sparsely populated rural wards, ceteris paribus. The spatial variation of this 
parameter estimate indicates that the most negative parameter estimates are those for 
wards centred on the coalfields of Eastern Durham. The probable explanation for this 
is that LLTI is closely linked to employment in coal mining (pneumoconiosis and other 
respiratory diseases being particularly prevalent in miners) but that settlements based 
on coal mining do not have particularly high densities of population in this area—the 
area is characterised by many small pit villages. However, population density rises 
rapidly in the urbanised areas both immediately south and north of the coalfields 
where employment is less prone to LLTI. Hence, within the locality of east Durham 
it is clear that the relationship between LLTI and density is significantly negative. In the 
more rural parts of the study area, particularly in west Durham and North Yorkshire, 
the relationship is positive with r-values in excess of 2 in many places. Hence the more 
intuitive relationship, where LLTI increases in more densely populated areas, does exist 
in much of the study region but this information is completely hidden in the global 
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Figure 16. Geographically weighted regression distribution of density parameter. 

estimation of the model and is only seen through GWR. The different relationships 
between LLTI and population density that exist across the region and which are 
depicted in figure 16 highlight the value of GWR as an analytical tool. 

Although they are not reported here because of space limitations, it is quite easy to 
produce maps of ^-values for each parameter estimate from GWR. These maps depict 
each spatially weighted parameter estimate divided by its spatially weighted standard 
error. Generally, the patterns in these maps are very similar to those depicted in the 
maps of the parameter estimates but occasionally some minor differences can occur 
because of spatial variations in standard errors which are based on data points 
weighted by their proximity to each point for which the model is calibrated. The 
statistics are useful, however, for assessing variations in the strengths of relationships 
across space. 

One further spatial distribution from the GWR analysis is that of the spatially 
varying goodness-of-fit statistic, R2

, shown in figure 17. These values depict the accuracy 
with which the model replicates the observed values of LLTI in the vicinity of the point 
for which the model is calibrated. The global value of this goodness-of-fit statistic is 
0.75 but it can be seen that there are large variations in the performance of the model 
across space ranging from a low of 0.23 to a high of 0.99 for the local model. In 
particular, the model explains observed values of LLTI well in a large group of wards 
in south Cleveland and the northern extremity of North Yorkshire and also in a group 
of wards in the southern and westerly extremes of the study region. The model appears 
to replicate the observed values of LLTI less well in parts of North Yorkshire and parts 
of Durham. The distribution of R

2 values in figure 17 can also be used to develop the 
model framework if the areas of poorer replication suggest the addition of a variable 
that is well represented in such areas and less well represented in areas where the 
model already works well. For instance, there is evidently a coalfield effect missing 
from the model and the low values of R

2 in North Yorkshire suggest the model still 
fails to account adequately for rural variations in LLTI. 
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H <0.62364 
H 0.62364-0.67764 

0.67765-0.71268 

0.71269-0.74462 

0.74463-0.77595 

0.77596-0.80245 

0.80246-0.88520 

^ 0.88521 

Figure 17. Geographically weighted regression R
2 distribution. 

6 Intercept .(6) DENS (15) SPF (66) 

•g o 

# Actual value 
Number in brackets 
is rank of score 

CROW (65) SC1 (3) UNEM (1) 

Figure 18. Results of Monte Carlo simulation in box-plot form. 

Finally, it is possible to comment on the spatial variability of each parameter 

estimate from the results from the Monte Carlo procedure. Here, 99 random mixings 

of the data were undertaken and the G W R procedure was run for each data set. Thus, 

for each parameter, there are 100 estimates: 1 from the actual spatial arrangement of 

the data and 99 from the random arrangements of data. The variability of each set of 

parameter estimates is shown in the box-and-whisker plots of figure 18. The number in 

brackets for each parameter is the ranking of the spatial variability of each parameter 

estimate within the 100 sets of estimates with a ranking of 1 indicating the greatest 

amount of spatial variability and a ranking of 100 the least amount of spatial vari-

ability. The parameter estimates obtained from the actual spatial arrangement of the 

data are shown as dots on the plots. It can be seen that those sets of parameter 

estimates which exhibit large amounts of spatial variability from the original data are 

those for the intercept, social class 1 and unemployment with that for density being of 

marginal significance. The parameter estimates for crowding and single-parent families 

do not exhibit any significant spatial variation. 
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10 Discussion 
Both the expansion method and GWR are analytical techniques that can be used to 
produce local or 'mappable' statistics from a regression framework. As such, they are 
both responses to calls such as those of Fotheringham (1992; 1994), Fotheringham and 
Rogerson (1993), and Openshaw (1993) for a move away from 'whole-map' or global 
statistics which merely present averages across space and which therefore discard large 
amounts of potentially interesting information on spatial variations of relationships 
and model performance. The output from GWR, as shown in an empirical example 
using the spatial distribution of limiting long-term illness in four counties in the United 
Kingdom, is much more realistic than that of the expansion method with the latter 
showing very simple trends in parameter variation over space. GWR produces local-
ised parameter estimates which can exhibit a high degree of variability over space and 
demonstrate highly complex spatial patterns. These patterns inform on the spatial 
nature of relationships and on the spatial consequences of modelling such relationships 
which can be used in an exploratory mode to assist in model building. The spatial 
distributions of the regression constant and the goodness-of-fit statistic are seen as 
particularly important in this context. 

The concept of measuring spatial variation in parameter estimates within a GWR 
framework lends itself to some obvious developments beyond those described above. It 
would be interesting and useful for example to show what, if any, relationships exist 
between GWR results and those from more traditional regression diagnostics such as 
the battery of leverage statistics available. Perhaps the most obvious development of the 
GWR is to experiment with various ways of making the spatial weighting function 
adapt to local environments. As defined above, the weighting function is a global one. 
Local versions could be produced with the aim of producing larger kernels in more 
sparsely populated rural areas and smaller kernels in more densely populated urban 
areas. Also it would be possible to examine whether different sizes of kernels were 
appropriate for different parameters and if so, it would be interesting to speculate on 
what this meant in terms of different spatial processes operating at different spatial 
scales. Another avenue of research that is being pursued is to examine the statistical 
estimation of 'mixed' models in which some parameter estimates are allowed to vary 
spatially and others remain fixed over space. One could imagine, for example, a 
hedonic house-price model in which all parameters were fixed except for the constant 
which is allowed to vary spatially. In this way, housing attributes might have a constant 
effect on house price and the geographical components of house-price variation are 
exhibited in the spatially varying constant. Alternatively, certain house-price determi-
nants might vary spatially in their effect on house prices: the determination of which 
variables have a fixed effect and which have a spatially varying effect will probably be a 
matter for empirical investigation in most cases. 

It is felt that GWR provides a significant advance in spatial analysis and that 
global regression applications with spatial data will be seen as rather limited. The 
application of GWR is not difficult and code will soon be available from the authors. 
It is hoped that GWR will promote interest in more genuinely geographical 
approaches to spatial analysis and can be used as a diagnostic to improved spatial 
understanding or as a means of allowing unknown spatial effects to enter the regression 
framework. 
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