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Geography and Location Are the Primary
Drivers of Office Microbiome
Composition
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Rob Knight,f,g Scott T. Kelley,c Jeffrey Siegel,d,h J. Gregory Caporasoa,b

Department of Biological Sciencesa and Center for Microbial Genetics and Genomics,b Northern Arizona

University, Flagstaff, Arizona, USA; Department of Biology, San Diego State University, San Diego, California,

USAc; Department of Civil Engineering, University of Toronto, Toronto, Ontario, Canadad; Department of

Mathematics and Statistics, Northern Arizona University, Flagstaff, Arizona, USAe; Department of Computer of

Sciencef and Department of Pediatrics,g University of California San Diego, San Diego, California, USA; Dalla

Lana School of Public Health, University of Toronto, Toronto, Ontario, Canadah

ABSTRACT In the United States, humans spend the majority of their time indoors,

where they are exposed to the microbiome of the built environment (BE) they in-

habit. Despite the ubiquity of microbes in BEs and their potential impacts on health

and building materials, basic questions about the microbiology of these environ-

ments remain unanswered. We present a study on the impacts of geography, mate-

rial type, human interaction, location in a room, seasonal variation, and indoor and

microenvironmental parameters on bacterial communities in offices. Our data eluci-

date several important features of microbial communities in BEs. First, under normal

office environmental conditions, bacterial communities do not differ on the basis of

surface material (e.g., ceiling tile or carpet) but do differ on the basis of the location

in a room (e.g., ceiling or floor), two features that are often conflated but that we

are able to separate here. We suspect that previous work showing differences in

bacterial composition with surface material was likely detecting differences based on

different usage patterns. Next, we find that offices have city-specific bacterial com-

munities, such that we can accurately predict which city an office microbiome sam-

ple is derived from, but office-specific bacterial communities are less apparent. This

differs from previous work, which has suggested office-specific compositions of bac-

terial communities. We again suspect that the difference from prior work arises from

different usage patterns. As has been previously shown, we observe that human skin

contributes heavily to the composition of BE surfaces.

IMPORTANCE Our study highlights several points that should impact the design

of future studies of the microbiology of BEs. First, projects tracking changes in BE

bacterial communities should focus sampling efforts on surveying different locations

in offices and in different cities but not necessarily different materials or different of-

fices in the same city. Next, disturbance due to repeated sampling, though detect-

able, is small compared to that due to other variables, opening up a range of longi-

tudinal study designs in the BE. Next, studies requiring more samples than can be

sequenced on a single sequencing run (which is increasingly common) must control

for run effects by including some of the same samples in all of the sequencing runs

as technical replicates. Finally, detailed tracking of indoor and material environment

covariates is likely not essential for BE microbiome studies, as the normal range of

indoor environmental conditions is likely not large enough to impact bacterial com-

munities.
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In the United States, humans spend over 90% of their time in built environments (BEs)

(1, 2) such as homes, offices, hospitals, and cars. We know that microbes in the BE

affect human health (3–5) and the rate of degradation of building materials (6, 7).

However, until recently, very little was known about the microorganisms that cohabit

with us in these environments. Over the past decade, molecular microbial diversity

studies have shed new light on the spatial and temporal variations of microbial

communities in BEs (8–11). Recent work has revealed how microbial communities, or

microbiomes, differ with different building systems (e.g., ventilation mechanisms) (5),

how new buildings are colonized by microorganisms (11, 12), and how the human

microbiome both impacts and is impacted by the microbiome of a home (13). Differ-

ences in microbiomes have been reported across different BE spaces (8, 10, 13),

suggesting that our offices and homes have individualized microbiomes, and it has

been suggested that microbiome composition differs on the basis of the surface

material where the community is found (13–15).

Prior work has not directly tested whether variation in BE microbiomes is due mainly

to the geographic location, the material that is being sampled, the location in the room

that is being sampled, the specific inhabitants, or the environmental conditions that

exist within a given indoor environment, all of which have been noted as potential

sources of variation but are difficult to separate. This study aimed to expand our basic

understanding of the microbiology of BEs by separating factors that are often conflated

in BE studies, such as the surface material type (e.g., ceiling tile) and the location in an

office (e.g., the ceiling), to understand how factors independently contribute to the

composition of BE microbiomes. Similarly, we aimed to understand which, if any, indoor

or material microenvironment parameters, such as temperature or humidity, are asso-

ciated with differences in office microbiomes. Finally, we wished to understand how the

human microbiome of an office’s inhabitants relates to the personalized office micro-

biome effect that has previously been suggested (14) and specifically whether this

effect extends to surfaces that office inhabitants are not in direct contact with.

Determining the sources of variation in BE microbiomes requires that multiple

offices be evaluated and that multiple locations, material types, and human inhabitants

of each office be sampled. Further, if office microbiomes differ geographically, we must

survey across a wide enough geographic range that climatic differences are apparent

in the indoor environments. We therefore monitored nine offices, three each in

Flagstaff, AZ; San Diego, CA; and Toronto, ON, and collected microbiome samples over

the course of a year, along with dense indoor environment data such as temperature,

occupancy, and humidity. If office microbiomes differ because of material and/or

location in the office, we need to be able to separate these variables to determine their

relative contributions. Accordingly, we installed carpet, ceiling tile, and drywall

swatches on the floor, wall, and ceiling. Microbiome samples were collected in four

6-week intensive sampling periods in the summer, fall, winter, and spring, and some

material swatches were sampled more frequently than others. Finally, we collected

human microbiome samples from the individuals who performed the sampling and

from 11 inhabitants of one of the offices.

Our design allowed us to evaluate and distinguish the impacts of the building

material, location in the office, sampling frequency, city, office, time, and indoor

environment covariates on the bacterial communities that established themselves on

each of the sample swatches. Our findings provide information on the factors associ-

ated with office microbiome composition under normal circumstances and provide

essential information for informed experimental design in future studies of the micro-

biology of BEs.

RESULTS

Experimental design. To develop our understanding of how microbes establish

themselves in BEs over time and a range of building parameters, we sampled nine

offices in three cities over a 1-year period. The selected cities, San Diego, CA; Flagstaff,

AZ; and Toronto, ON, are climatically different from one another. Within each city, we
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chose three offices that were as similar to each other as possible (details of our selection

and exclusion criteria are provided in Materials and Methods; for details of the param-

eters of our offices, see Table S7 in the supplemental material). In each office, we

installed three sampling plates, with one plate each on the floor, ceiling, and wall, as

illustrated in Fig. 1a (also see Fig. S1 in the supplemental material). Each plate contained

two or three swatches each of painted drywall, ceiling tile, and carpet, allowing us to

dissociate the location in the room from the material, as well as sensors that allowed

us to monitor parameters of the environment including equilibrium relative humidity

on the surfaces of the swatches, available light, occupancy, temperature, and relative

humidity (Fig. 1b). Samples were collected in four 6-week sampling periods, one per

FIG 1 Experimental design. (a) Configuration of the sampling site in Flagstaff office 1. This configuration was similar to those set up in all of the offices.

Signs on the wall adjacent to the wall sampling plate describe the project and request that the materials not be touched. (b) Diagram of a single sampling

plate illustrating nine sampling swatches (circles) of three different materials, one row for tracking the equilibrium relative humidity of the materials (row

1), one row for infrequent sampling (row 2), and one row for frequent sampling (row 3). (c) Samples were collected from rows 2 and 3 of all of the sampling

plates in three offices in each of our three cities in four intensive sampling periods over the course of 1 year. The coloring of the sampling swatches

illustrates the change in bacterial PD over the year.
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season. Bacterial and fungal genetic markers were sequenced from these samples by

using 16S rRNA gene sequencing to profile bacterial communities and internal tran-

scribed spacer 1 (ITS1, the noncoding region between the 18S and 5.8S rRNA genes)

sequencing to profile fungal communities. Our analysis focused on bacterial data, as we

obtained less usable data for fungi, which we suspect may be a result of the low

biomass of our samples. For the results of our fungal sequencing, see Text S4 in the

supplemental material.

Location in office, but not building material, drives community composi-
tion. This study was designed so that each material (drywall, carpet, or ceiling tile) was

installed at each location (ceiling, floor, or wall) in every office in this study. This design

allowed us to differentiate the roles that the location in an office and the surface

material play in determining the richness (how many types of organisms are present)

and composition (which taxa are present or absent and their relative abundances) of

bacterial communities on those surfaces.

With unweighted and weighted UniFrac (16), qualitative and quantitative measure-

ments of microbial community dissimilarity, respectively, the material was not observed

to be a significant driver of bacterial community composition (Fig. 2 and 3). Similarly,

with Faith’s phylogenetic diversity (PD) (17), a measurement of the phylogenetic

richness of a community, the material did not appear to be a driver of richness (Fig. 1c).

The location within an office where a sample was collected, however, was associated

with both community richness (Fig. 1c and 3) and community composition (Fig. 2; see

Fig. S2 in the supplemental material). Floor samples were significantly richer than either

ceiling or wall samples in all of the cities across all of the sampling periods, except for

the first sampling period (two-sample Monte Carlo t test with 999 permutations, P �

0.05 for all comparisons). We suspect that the lack of difference in the first sampling

period is due to the recent sterilization of the materials (see Materials and Methods).

There were no statistically significant differences in community richness between wall

and ceiling samples. This observation is consistent with the higher deposition rates of

larger particles and dust to upward-facing horizontal surfaces like floors.

We focused our analysis of surface material and location effects on community

composition on the Flagstaff samples taken during the fall and winter sampling

FIG 2 Bacterial community dissimilarity, as measured by weighted UniFrac, a quantitative measurement (a), and unweighted UniFrac, a qualitative

measurement (b), of the Flagstaff samples (similar patterns were observed across all of the cities). Darker colors indicate that groups of samples are more

dissimilar, and lighter colors indicate that groups of samples are more similar. The labels indicate the locations in the office, followed by the material type.

For example, ceiling/carpet indicates the samples of carpet that are installed on the ceiling sampling plate, and investigation of the first column of panel

a shows that the carpet samples on the ceiling are more similar to the carpet samples on the wall than they are to the carpet samples on the floor.
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periods, which were all sequenced in the same sequencing run to avoid the sequencing

run being a variable in this analysis. These samples showed significant differences in

community composition by the location that was sampled in the office (permutational

multivariate analysis of variance [PERMANOVA] with weighted UniFrac pseudo-F �

7.80, P � 0.0001; unweighted UniFrac pseudo-F � 3.54, P � 0.0001), but not by the

surface material (PERMANOVA with weighted UniFrac pseudo-F � 1.17, P � 0.22,

unweighted UniFrac pseudo-F � 1.01, P � 0.89). As with community richness, the floor

samples were more different from the wall and ceiling samples, which were virtually

indistinguishable from one another. For the specific taxa that differed across locations

in the office, see Data Set S8 in the supplemental material.

Interestingly, within a location, the pattern of differences among samples varied

between floors and walls/ceilings. With unweighted UniFrac, floor samples were more

similar to other floor samples than wall/ceiling samples were to other wall/ceiling

samples (Fig. 2). In contrast, with weighted UniFrac, floor samples were less similar to

one another. Thus, community differences among floor samples were driven primarily

by differences in the relative abundance of the same operational taxonomic units

(OTUs), while the differences among wall/ceiling samples were driven more by the

presence or absence of particular OTUs. The same pattern was statistically significant in

all of the cities but strongest in Flagstaff (see Fig. S6 in the supplemental material).

Sampling disrupts microbial communities detectably, but the effect is
small. Each sampling plate in this study contained at least two rows of sampling

swatches (Fig. 1b). During each of the four sampling periods, the “frequently sampled”

row of materials was sampled every other day, while the “infrequently sampled” row

was sampled every 3 weeks. Through this design, we could detect differences in

bacterial community richness and composition between frequently and infrequently

sampled materials (Fig. 1c and 3; see Fig. S3 in the supplemental material). Comparing

pairs of frequently and infrequently sampled sites showed that the samples from

infrequently sampled surfaces were richer, as measured by PD, than the frequently

sampled surfaces (Monte Carlo t test, 3.75; P � 0.0002; n � 412) (Fig. 1 and 3A). This

sampling frequency effect was the strongest in floor samples (Fig. 3A). While differences

in bacterial community composition between frequently and infrequently sampled

rows existed, they were not statistically significant (weighted UniFrac, PERMANOVA,

P � 0.109, pseudo-F � 1.63; unweighted UniFrac, PERMANOVA, P � 0.175, pseudo-F �

1.13) (Fig. 3B and C). For the specific taxa that were most different between frequently

and infrequently samples sites, see Data Set S9 in the supplemental material.

We note that although this sampling frequency effect is present, it is small com-

pared to the effects of biological interest in our study. Figure 3B and C clearly show that

the compositional differences that we observed as a result of sampling frequency are

much smaller than those based on other effects, such as the season or the location

where the sampling plate was installed (i.e., the floor, ceiling, or wall), which are

statistically significant.

Cities and offices have signature microbial communities, though the effect
is less pronounced in offices. As in previous studies of office bacterial communities

(8), we observed that Proteobacteria, Firmicutes, and Actinobacteria were the three

dominant phyla across all of the locations in all of the offices and in all of the cities. To

investigate the extent to which offices have city-specific bacterial communities (i.e.,

offices within a given city have bacterial communities that look more like the commu-

nities in other offices in the same city than those in offices in other cities), we developed

both support vector machine (SVM) and random forests machine learning classifiers in

an attempt to classify the city from which a microbiome sample was derived, as

described in reference 18. Though the two approaches gave similar results, the SVM

classifiers performed slightly better on the basis of F-1 scores (a weighted average of

precision and recall ranging between 0 and 1).

With SVM, we were able to predict the city of origin of unlabeled samples (where we

knew the city of origin but withheld that information from the classifier) with 85%

accuracy only on the basis of its microbiome composition (Fig. 4; F-1 score, 0.85; see

Office Microbes
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FIG 3 Disturbance due to repeat sampling, though detectable, is small compared to that due to other

variables. (a) The PD of frequently sampled swatches (row 2, see Fig. 1b) was consistently lower than the

PD of the frequently sampled swatches, suggesting that sampling decreases the PD of the sites. (b)

Weighted UniFrac shows that samples with the same sampling frequency are more similar to each other

than samples with different sampling frequencies are, suggesting an effect of repeat sampling. However,

comparison of this difference to effects of biological interest show that the sampling frequency has a

larger effect on the bacterial communities than the material does (which, as shown in Fig. 2, is effectively

null) but a smaller effect than the location of the plate in the office and the sequencing run, which are

shown in Fig. 2 and 5 to impact our observed bacterial communities. (c) Similar results were obtainedwith

unweighted UniFrac.
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Fig. S5 in the supplemental material). The SVM model correctly classified the city and

performed 2.67 times as well as random guessing (where the most common city was

always chosen).

A potential confounding effect related to the city-specific microbial communities

was the effect of office-specific bacterial communities. Because each city contained

three offices, it is possible that our classifier actually predicts individual offices, because

each office is found in only one city. If the bacteria found in each office were primarily

derived from the inhabitants of the office, who are known to have highly personalized

microbiomes (19, 20), we would expect to observe office-specific effects (8). To deter-

mine if individual offices were the source of the city-specific bacterial communities that

we observed, we trained classifiers to predict the office from which a sample was taken.

For all nine offices, our best classifiers achieved an F-1 score of 0.28 and a mean

accuracy 2.022 times that achieved by random guessing. Evaluation of the confusion

matrix (Fig. 4b) shows that the majority of misclassifications happen when the classifier

assigns an incorrect office in the correct city, further suggesting that offices within cities

look more similar to each other than to offices in different cities. Our design of

including multiple offices in multiple cities therefore allows us to separate city-specific

bacterial community effects from office-specific bacterial community effects, and our

FIG 4 Confusion matrices illustrating the performance of city and office SVM classifiers. (a) True (actual) city and predicted city for our SVM classifier when

trained and tested on office microbiomes by city. Dark colors on the diagonal indicate that the predicted label is very frequently correct. (b) True and

predicted offices for our SVM classifier when trained and tested on office microbiomes from all of the cities labeled by individual offices. Note that the

diagonal is not as dark as in panel a, illustrating that the predicted office labels are not correct as often as the predicted city labels. When an incorrect

office is predicted, it is often in the correct city, as indicated by the darker colors surrounding the diagonal. (c to e) True and predicted offices for our

SVM classifiers when trained and tested on office microbiomes from cities individually.
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findings suggest that communities differ across cities but not necessarily across the

offices in those cities.

If we train the same classifiers only on offices in individual cities, the classifiers can

predict the office of origin more accurately but still less accurately than they can predict

the city of origin (Flagstaff offices only, F � 1 � 0.41; San Diego offices only, F � 1 �

0.37; Toronto offices only, F � 1 � 0.53; Fig. 4c to e). This is especially interesting

because even within a city, offices were different from each other, for example, in terms

of size, usage patterns, and ventilation systems, suggesting that geography is more

important than any of these features in driving the bacterial community composition

of the offices.

In addition to the community composition differences that are shown by SVM,

Flagstaff offices had richer communities (as determined by PD) than San Diego or

Toronto (two-sample Monte Carlo t test with 999 permutations, test statistic � 7.029,

P � 3.411e-12 and test statistic � 9.156, P � 0.0, respectively), which were more similar

to one another in community richness (two-sample Monte Carlo t test with 999

permutations, test statistic � 2.352, P � 0.019) (Fig. 1). For the specific taxa that were

most different across cities, see Data Set S10 in the supplemental material. Together,

these differences enable the classifiers to differentiate cities.

Office bacterial communities are moderately influenced by indirect contact
with humans. In addition to our office surface samples, we collected human skin,

nasal, oral, and fecal microbiome samples from 11 inhabitants of one of our Flagstaff

offices and from the individuals performing the sampling in all three cities. Using

SourceTracker2 (Biota Technology, Houston, TX) (21), we defined the human micro-

biome samples as potential “sources” and the office surface samples as “sinks.” This

allowed us to determine which human subjects, and which body sites of those subjects,

might serve as sources for the microbes found on the office surfaces.

Across all nine offices, human skin bacterial communities were the largest identifi-

able source of the office bacterial community samples, with at least 25 to 30% of the

office surface microbiome being derived from human skin (see Fig. 7A). The human

nasal microbiome also appeared to be a small but consistent source of office surface

microbial communities. The largest source of microbial communities in these offices

was nonhuman (the unknown proportion; see Fig. 7A).

We next defined the source samples as skin from the individuals who collected the

samples in each city and 11 inhabitants of Flagstaff office 1 (some of whom worked in

that office for only part of the year). Our goal was to determine whether the person-

alized skin microbiomes (20) of the individuals working in an office were drivers of the

office bacterial communities or whether the office bacterial communities looked more

generically like human skin (see Fig. 7B). The surface bacterial communities from office

1 in Flagstaff do not appear to be more derived from the inhabitants of that office than

do those of the other offices in this study. Similarly, the office bacterial communities do

not appear to be influenced more by the individual who sampled in that city (who wore

gloves during sampling) than do those in other cities by the individuals who sampled

there or those in the Flagstaff 1 office by its inhabitants. Thus, it appears that the

personalized microbiomes of the office inhabitants or samplers were not transferred to

our office surfaces.

Other work has shown that the personalized human microbiome is transferred from

human subjects to their offices through direct contact (13, 14). In our study, we

specifically requested that office inhabitants not touch the materials and we required

our samplers to wear gloves while collecting samples. We therefore suspect that our

inability to detect a personalized human microbiome signal in our office microbiome

data is a result of our sampling swatches not being in direct contact with the office

inhabitants, though the surfaces still look more generically like human skin, suggesting

a role for indirect transfer of skin microbes to office surfaces.

The sequencing run can be an important confounding factor in long-term
temporal studies of bacterial communities. Our bacterial samples were sequenced

in three sequencing runs to facilitate the sequencing of the large number of samples
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collected in this study and to provide us with a way to begin analyzing data before all

of the samples were collected. We were specifically interested in using the samples

collected early in this study to inform decisions that would be made during later

sampling periods, such as how frequently we should collect samples to track changes

in the office bacterial communities. As the cost of sequencing continues to decline, we

expect that this model will become increasingly frequent. An issue with this approach,

however, is that it conflates time with the sequencing run, potentially introducing a

batch effect. Samples collected during the summer sampling period were sequenced in

our first sequencing run, samples collected during the fall and winter periods were

sequenced in our second run, and samples collected during the spring period were

sequenced in our third sequencing run (Fig. 5a and b).

To detect and quantify the run effect, the same eight samples (our technical

replicates) were sequenced in three runs: the run of summer samples (run 1), the run

of spring samples (run 3), and an additional partial run used to understand interrun

variation (run 4). (Run 2 contained our fall and winter samples but did not contain these

eight technical replicate samples.) Theoretically, these eight samples should have been

identical in both composition and richness across the three runs. While we expected

differences between sequencing runs, the observed variation between runs was larger

than we expected. The technical replicates sequenced in run 3 (spring samples), in

particular, were very different in composition (with unweighted UniFrac) and richness

(PD) from those sequenced in runs 1 and 4, but all of these runs were significantly

different from one another on the basis of these metrics (Fig. 5D). With weighted

UniFrac, none of the runs were significantly different from the others. The larger

differences observed with unweighted UniFrac than with weighted UniFrac suggest

that the run effect we observe is due primarily to differences in low-abundance taxa

and not to shifts in the dominant taxa between runs.

We attempted several approaches for removing this run effect. First, we ensured

that the sequence length was the same across all of the runs by trimming longer reads

(251 bases) to the same length as our shortest reads (151 bases). All of the data

presented here are based on these length-normalized reads. We additionally tried

various filtering strategies, including filtering out low-abundance OTUs and filtering out

the OTUs that were the most differentially abundant across the technical replicates (as

identified by analysis of the composition of microbiomes [ANCOM] [22]), where n (the

number of OTUs filtered out) was varied between 0 and 1,000. While the variation

across runs was reduced by these strategies, we did not observe significant differences

in the results until we filtered out �1,000 of the differentially abundant OTUs, and even

at this level, the run effect was only minimally reduced.

Despite the differences in replicates across runs, there is evidence of seasonal

variation in the bacterial communities. Figure 5C illustrates differences between the

bacterial community compositions of two samples each from the same 10 sampling

swatches, in the summer and fall. These samples were sequenced in the same run, so

there is no confounding run effect. In weighted and unweighted UniFrac principal-

coordinate analysis (PCoA), the samples collected during the same season cluster with

one another, suggesting that these are more similar to each other than are samples

collected from the same swatches but in different seasons. Similarly, the fall samples

had higher community richness than the summer samples when sequenced in the

same run (Fig. 5). Taken together, Fig. 5c and d suggest that the observed seasonal

differences are likely representative of the underlying biology though conflated with a

run effect. We note that we were able to determine this only because our experimental

design involved repeated sequencing of samples. This is essential for studies that

require sequencing to be split across multiple runs.

Community richness of office surfaces is consistent over time and im-
pacted by sampling. Our summer sampling period, which took place immediately

after UV sterilization of the plates, showed that bacterial communities were less rich

than the fall or winter sampling periods that followed (see Fig. 8). The spring sampling

period subsequently appears to be less rich, on average, than the summer, fall, or
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winter sampling period. While these data suggest that community richness increases

following the installation of plates, plateaus, and begins to decrease, we note that the

summer, fall/winter, and spring samples were sequenced on sequencing runs 1, 2, and

3, respectively, and that these sequencing runs differed in their mean richness (Fig. 5d),

FIG 5 Investigation of the effect of the sequencing run on the observed bacterial community composition. (a) Weighted and unweighted UniFrac PCoA

and PD by sequencing run for sequencing runs 1 to 3. (b) Weighted and unweighted UniFrac PCoA and PD by season. (c) Weighted and unweighted

UniFrac PCoA and PD for samples at the same sites in summer and fall based on a single sequencing run. (d) Weighted and unweighted UniFrac PCoA

and PD of technical replicate samples sequenced in sequencing runs 1, 3, and 4.
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so as described above, this is likely a combination of real biological effects and run

effects.

For an additional illustration of the divergence of the richness of the floor samples

and the wall/ceiling samples, with the distributions becoming increasingly more bi-

modal with time, see Fig. 8. The upper mode in these distributions is composed

primarily of floor samples, whereas the lower mode is composed of wall/ceiling

samples.

Community compositions were not found to be associated with any indoor
or material environmental covariates. Throughout this study, indoor environment

as well as surface microenvironment (i.e., sensors specifically collecting data from our

sampling swatches) data were collected, including surface and air temperatures, equi-

librium relative humidity, relative humidity, room occupancy, and visible-light illumi-

nation. Despite the extent of these environmental data and a considerable effort to

identify associations between microbial composition and these data, we failed to

identify significant associations between building science and microbiome data. For

example, there were no meaningful correlations between levels of community richness,

composition, or abundance of specific taxa of interest and equilibrium relative humidity

of the material (the humidity at which moisture is no longer being absorbed by or

evaporated from the material). The single exception to this was a weak but significant

positive correlation between fungal community richness and equilibrium relative hu-

midity (r � 0.315, P � 3.24e-12) (Fig. 6). A significant correlation between bacterial

community richness and equilibrium relative humidity was also observed, but this was

weaker and negative, so we suspect that it is a false-positive result. For details of

additional tests we performed to detect associations between the office microbiome

and environmental parameters (though none of these tests yielded significant associ-

ations), see Text S4 in the supplemental material.

DISCUSSION

Our experimental design allowed us to isolate variables that were confounded in

previous studies such as surface material, human usage patterns, and location in an

office (15, 20, 23). It is important to note that the goals of those studies did not

necessarily require separation of these variables, so our findings are not in disagree-

ment with theirs. Our ability to better explore these parameters in isolation has led to

FIG 6 Community richness as a function of equilibrium relative humidity of sites for bacterial (16S)

and fungal (ITS) communities. We found weak correlations between the community richness and

equilibrium relative humidity (ERH) of the sites. While these correlations are statistically significant,

we do not find these relationships to be convincing, for reasons discussed in Results (also see

Text S4 in the supplemental material).
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a better understanding of the microbiology of the BE and enables us to make

recommendations that can improve future studies.

Our data suggest that the personalized office microbiomes that have previously

been reported are more likely to be the result of direct human contact with the surfaces

sampled, rather than the result of climatic or other differences in the offices themselves.

Many of the studies that report that office microbial communities are personalized

(i.e., that individual offices have signature microbial communities) have sampled ma-

terials that were already present in the offices in areas of high human traffic (9, 10, 13)

rather than materials installed for the specific purpose of microbial tracking. Our

sampling materials were specifically placed in low-traffic areas and included signs

requesting that individuals not touch the materials. While we did observe an office-

specific microbial community effect, the size of the effect was smaller than what has

been previously reported and smaller than the city-specific bacterial community effect

that we observed (Fig. 4b). This suggests that “personalized office microbiomes” are

likely largely a result of the “personalized human microbiomes” (19) of the office

inhabitants, based on the microbes that they leave behind on surfaces through direct

interaction. The source of the city-specific BE microbial communities that we observe

will be important to understand better, as it could, for example, result in city-specific

“cage effects” in murine microbiome studies. We observed that at least 25 to 30% of the

office surface microbiomes were human derived (Fig. 7), primarily from human skin,

suggesting that indirect contact does impact office microbiomes (e.g., through the

office inhabitants’ “personal microbial clouds” [24]), but this is far less than what would

be expected on surfaces with which the inhabitants are in direct contact (14, 20).

Our nested experimental design has allowed us to draw several conclusions that

FIG 7 Human-based source tracking of office microbiome samples. (a) Percent contributions of the microbiomes of different sites

of the human body to the office bacterial communities. Unknown indicates contribution from a source other than the body sites

tested here. (b) Percent contribution of microbiomes of different human subjects to the office bacterial communities. The

unknown contribution is from a source other than the individuals tested here.

Chase et al.

Volume 1 Issue 2 e00022-16 msystems.asm.org 12

msystems.asm.org


should impact the design of future BE microbiome studies. First, the sampling of

different locations (such as the floor and ceiling in multiple locations) in a BE is likely

to result in the detection of greater variability among microbial communities than the

sampling of different surface materials (e.g., carpet versus tile flooring). Thus, limited

sampling effort is likely better expended on the sampling of different locations rather

than of different materials. Next, it is likely more useful to sample offices in buildings

in different climates than to sample multiple offices in the same city, as there seem to

be consistent differences in the compositions of the offices we studied by city. Finally,

sampling of bacterial communities with dry swabs (like those used here) is sufficient to

obtain consistent bacterial community 16S rRNA profiles by Illumina sequencing.

Sampling of these communities does “disturb” them, but the effect size of those

disturbances will likely be small relative to the biological effects of interest. Our

approach of dry swabbing did not work as well for sampling of fungal communities (we

received very low PCR yields; see Text S4 in the supplemental material), though it has

been successfully applied in previous work that used the same swabs (25). We expect

that this differential success is a result of differences in biomass (public rest room floor

tiles were previously sampled by swabbing a larger area with much heavier human

traffic). Additional work should be performed to understand how collection of fungal

samples can be performed on low-biomass BE samples.

Despite considerable effort, we did not detect any difference in microbial commu-

nities associated with material or indoor environment covariates such as temperature

or equilibrium relative humidity. While this does not prove that these parameters do

not impact microbial communities, it does suggests that the variation across indoor

environmental conditions, which are restricted to a narrow range for the comfort of the

inhabitants, may not be enough to drive changes in the microbial communities.

Another compatible and viable hypothesis is that rather than observing a succession of

microbial communities over the course of the year, we instead observed the passive

accumulation of biologically inactive microbes. This is consistent with the relatively

small amount of change in these communities over the year, as illustrated in Fig. 8. BE

surface microbial communities may behave similarly to those found in the soils of the

Atacama Desert (26), waiting for liquid water to become active. Our findings suggest

that detailed monitoring of material and indoor environment covariates is not neces-

sary in studies of the composition of the microbiology of BEs, except perhaps when the

parameters are likely to be microbially relevant (such as the addition of liquid water

through real or simulated flooding) or fall far outside the normal range. This informa-

tion may, however, be important for understanding bacterial and/or fungal loads on BE

surfaces (25, 27).

Our experimental design included incremental sampling over a period of 1 year.

Because of the large number of samples that were collected and to allow us to analyze

data as they accumulated to make decisions about future sampling, it was not possible

to include all of our samples in a single Illumina MiSeq run. As shown in Fig. 5, this

resulted in a sequencing run artifact in our data. As microbiome sequencing becomes

more routine, for example, as we transition toward human microbiome monitoring in

clinical settings to discover early signals of dysbioses, this type of design is likely to

become more common and sequencing run effects will need to be understood,

controlled for, and (ideally) eradicated. We note that in this study we were working with

low-biomass samples and relatively small biological effect sizes, so the possibility of a

run effect interfering with biological effects of interest was likely amplified. However,

our approach to detecting and understanding this run effect was useful here, and we

recommend that this be done routinely. Specifically, we suggest that in studies

necessitating multiple sequencing runs, researchers include either some of their sam-

ples (as we did here) or control samples (such as artificial communities of known

composition) in all sequencing runs as technical replicates. An accumulation of publicly

available sequence data replicated across sequencing runs will help us to understand,

and possibly develop methods to control for, sequencing run effects. As a starting

point, these data could be used to understand whether approaches that have been
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FIG 8 Longitudinal analysis of bacterial PD over 1 year in Flagstaff (a), San Diego (b), and Toronto (c). Each “violin” represents a 2-week

period at the beginning, in the middle, or at the end of our four sampling periods.
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developed for controlling batch effects in gene expression and microarray experiments

(28, 29) would be useful in sequence-based microbiome studies.

This work expands our basic understanding of the factors impacting the microbi-

ology of BEs. The human skin microbiome has a considerable impact on the compo-

sition of microbiomes on BE surfaces, even when humans are not in direct contact with

those surfaces. Further, within the range of human comfort, differences in the indoor

environment do not appear to impact microbial community composition. These find-

ings provide insight into what drives the composition of BE microbiomes, and taking

the results together, we suspect that in the absence of extreme conditions (for example,

flooding), microbes may be passively accumulating on surfaces rather than undergoing

an active succession process. We additionally show that features previously suspected

to be important in driving the microbial composition of BE surfaces, such as the surface

material, do not seem to impact community composition under typical circumstances.

As we continue to expand our understanding of the microbiology of the BE, possibly

including routine monitoring of microbial communities as indicators of changes toward

communities that may impact human health, the results presented here will help with

making critical decisions about important dependent and independent variables in

future research efforts.

MATERIALS AND METHODS
City and office selection. To develop our understanding of how microbes establish themselves in BEs

over time and a range of building parameters, we sampled nine offices in three cities over the period of

1 year. We selected three cities that were climatically different from one another, as determined by their

Köppen climate classifications, i.e., San Diego, CA, which has an arid Mediterranean climate (Köppen

classification, Bsh or Csa/Csb); Flagstaff, AZ, which has a semiarid climate (Köppen classification, Dsb/

Csb); and Toronto, ON, which has a humid continental climate (Köppen classification, Dfa/Dfb).

In each of these three cities, we selected three offices with the goal of making these offices as similar

as possible to one another. Offices were always shared spaces, meaning that they had more occupancy

than just a single individual but had controlled access. All of the offices had similar patterns of usage, in

that they tended to have the highest occupancy on weekdays during business hours. We selected offices

that had consistent ventilation rates and were approximately the same size. Finally, we excluded older

buildings that contained laboratory space. For a summary of the parameters of these offices, see Table

S7 in the supplemental material. Human subject research was performed in accordance with University

of Colorado Institutional Review Board protocol 12-0582 and University of California San Diego Human

Research Protection Program protocol 141853.

Sampling plate construction and installation. In each office, we installed three sampling plates,

one on the floor, one on the ceiling, and one on the wall, as illustrated in Fig. 1a (which is a photograph

showing the three installed sampling plates in a single office). The plates were constructed from sheets

of birch plywood measuring 600 by 600 by 6 mm. Swatches of each sampling material (painted drywall,

ceiling tile, and carpet tile) were mounted to the back of the plate and exposed through holes in the

plates. Each plate contained a minimum of two swatches of each material that were sampled for

microbial community composition. One of each of these swatches was sampled frequently (as often as

every 2 days during our sampling periods), and the other was sampled infrequently (every 3 weeks

during our sampling periods) to evaluate the impact of sampling on the microbial communities. Our

wall-mounted plates (i.e., those not on the floor or ceiling) contained an additional three swatches of

each material that were monitored for equilibrium relative humidity on the surfaces. These swatches

were not sampled for microbial composition, as the equilibrium relative humidity sensor covered most

of the available space. The relative location of each material was consistent across all of the plates.

Environmental monitoring. Each plate contained an Onset HOBO UX90-005 occupancy sensor and

an Onset HOBO U12-012 temperature, relative humidity, and light sensor. The occupancy sensors

monitored occupancy by sensing movement up to approximately 5 m away from the plate. The wall

plates additionally contained a Decagon EM-50 data logger with three VP3 sensors that measured

equilibrium relative humidity and near-surface temperatures (one on each material). In one office in each

city, an additional two VP3 sensors were used to measure the same conditions on the drywall samples

on the floor and ceiling. All measurements were recorded every 5 min, except for the occupancy sensors,

which recorded the time of each change of state (e.g., going from occupied to unoccupied). Data were

downloaded from the data loggers once a month with the HOBOware 3.5.0 and the Decagon ECH2O

Utility software packages.

Plate sterilization. The plates were constructed in Toronto and then shipped to San Diego State

University to be sterilized in order to maintain consistent sterilization techniques. We hoped to get all of

the surfaces as close as possible to the same starting point to provide a baseline to compare subsequent

samples. Any DNA present in the first poststerilization sampling event could be controlled for as DNA

present prior to the experiment start. UV sterilization was selected because of its ability to denature DNA

by cross-linking nucleotides and creating thymine dimers while not damaging the surface material. The

sampling portion of the plate containing the six or nine office materials was covered with Saran Wrap
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and sealed around the edges with packing tape. The back of the plate was also sealed with Saran Wrap.

Both sides of the plate were sterilized under UV light for 10 min. This sterilization procedure was repeated

for all 27 plates. Plates were swabbed before sealing and again (at time zero) when the Saran Wrap was

first removed at installation time in each of the nine offices, to determine whether UV sterilization worked

as expected.

Swabbing procedure. The plates were shipped sealed in Saran Wrap as described above. Immedi-

ately after the plates were unwrapped, each surface was swabbed. This was done to ensure that the

surfaces were sterile or, if they were not sterile, to establish the starting community on each surface.

Once the plates were installed, the regular sampling schedule was initiated. Sampling was done with BD

CultureSwab sterile swabs. Each swab tube was labeled with a unique sample ID and corresponding bar

code. The swab was removed from the tube immediately prior to swabbing. The cotton swab was swiped

left to right across the surface, moving downward (or toward the individual who was performing the

swabbing), for approximately 3 s. The swab was turned 180°, and the process was repeated starting from

the bottom and moving upward. Once the swabbing was complete, the swab was returned to the sterile

tube and the next swab was removed to swab the next surface. Once all of the surfaces were swabbed,

the tubes were placed in a �20°C freezer for storage.

Sampling. Sampling was performed in four 6-week periods, one period per season (summer, fall,

winter, and spring). The first day of sampling in San Diego was 29 May 2013; in Flagstaff, it was 27 June

2013; and in Toronto, it was 3 July 2013. Samples were taken every other day in the first sampling period

and every Monday, Wednesday, and Friday in the subsequent periods to simplify collection. The last

three sampling periods took place simultaneously in all of the cities (this was not possible for the first

sampling period, as we had one team member travel to each city to ensure consistent experimental

setup, and our first sampling period had to begin immediately after removal of the Sara Wrap). Period

2 was 9/23/2013 to 11/4/2013, period 3 was 1/6/2014 to 2/17/2014, and period 4 was 4/7/2014 to

5/19/2014.

Sequencing and data analysis. Samples were collected during four 6-week sampling periods, one

per season. The samples were labeled on the basis of the cual-id labeling protocol (30). 16S rRNA gene

sequencing was used to profile bacterial communities. Human bacterial microbiome samples were

collected and processed through collaboration with American Gut (31).

The V4 hypervariable region of the 16S rRNA gene was amplified by barcoded PCR with primers 515F

(GTGCCAGCMGCCGCGGTAA) and 806R (GGACTACHVGGGTWTCTAAT) in accordance with the Earth

Microbiome Project protocol (32). All sequencing was performed at Argonne National Laboratories on an

Illumina MiSeq. Raw FASTQ files containing sequence data for both the 3= and 5= reads and the bar codes

were provided by the sequencing facility via the secure file transfer protocol. The bacterial raw sequence

data contained 41,335,672 DNA reads for the three runs. The sequence length for the first two

sequencing runs was 251 bases, and it was 151 bases for the third sequencing run. All reads were

trimmed to exactly 151 bases before analysis so they could be directly compared.

All bioinformatic analysis was performed with the 5= reads. The reads were demultiplexed and

assigned to sample IDs with QIIME 1.9.1 (33), and quality filtering was performed as described in

reference 34. After demultiplexing and quality filtering, 33,799,179 reads remained.

The sequences were assigned to OTUs with QIIME’s uclust-based (35) open-reference OTU picking

protocol (36) and the Greengenes 13_8 reference sequence set (37) at 97% similarity. The centroid of

each OTU was chosen as the representative sequence for the OTU. OTU representative sequences were

aligned with PyNAST (38), and phylogenetic trees were constructed with FastTree (39) for PD calculations.

Taxonomy was assigned to sequences with QIIME’s uclust consensus taxonomy assigner (40). The

resulting bacterial OTU table contained 2,309 samples, with a median of 7,849 sequences per sample.

Beta diversity calculations were performed with QIIME’s implementations of weighted and un-

weighted UniFrac (16) by using exactly 1,000 randomly selected sequences per sample (41). Samples with

�1,000 sequences were not included in the calculations. Community richness was calculated by using

PD (17) and compared across categories with a nonparametric t test with 999 permutations. Comparisons

of significantly different OTUs across sample groups were performed with scikit-bio (scikit-bio.org) by

ANCOM (22). For all permutation-based tests, the nested structure of the experimental design was

respected so that after the label shuffling, all further nested observations continued to be grouped

together.

The SVM analysis to predict the city on the basis of sample OTU features was performed with a linear

kernel by randomly splitting the data into two halves (training and test sets), tuning the SVM with 5-fold

cross-validation on the training set, and then observing the prediction error rates on the test set. SVM

and random forests machine analyses were run by using the implementations of these methods from

scikit-learn (42).

Differentially abundant OTUs across plate locations, frequently/infrequently rows, and cities were

identified by ANCOM (22) (see Data Sets S8 to S10 in the supplemental material, respectively). All

analyses were run with jupyter Notebooks (jupyter.org). The notebooks used in this project are all

available at the GitHub website (https://github.com/gregcaporaso/office-microbes). Raw sequence data

are publicly accessible in the European Read Archive under accession number ERP014651.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://dx.doi.org/10.1128/

mSystems.00022-16.

Figure S1, TIF file, 5.6 MB.
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Figure S2, TIF file, 5 MB.

Figure S3, TIF file, 12.8 MB.

Text S4, DOCX file, 0.02 MB.

Figure S5, TIF file, 4.8 MB.

Figure S6, TIF file, 3 MB.

Table S7, XLSX file, 0.05 MB.

Data Set S8, XLSX file, 0.05 MB.

Data Set S9, XLSX file, 0.01 MB.

Data Set S10, XLSX file, 0.1 MB.
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