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Abstract

Indirect land use changes (iLUC) triggered by the expansion of crop-based biofuels has became a

critical issue in the debate over biofuels policy. In their Renewable Fuel Standard Programs both

US-EPA and the State of California have required measurement of iLUC. Yet the estimates are

highly contentious. One critical point of discussion is where the iLUC will take place and this in turn

depends on the assumed relationships between international trade and global output distribution.

The geography of iLUC matters due to differences in yields, which determine how much land

conversion is necessary, and land cover types, which determine the greenhouse-gas emissions of the

converted land. This paper tests which of the two trade assumptions used in the leading economic

models employed to study iLUC has better support from the historical data on trade and harvested

areas of coarse grains.



1 Introduction

Crop-based biofuels have the potential to sequester carbon in the land employed in their production

and thus counteract the greenhouse gases (GHG) they release when burned (McCarl and Schneider,

2000). However, an influential article by Searchinger et al. (2008) which combines results from a

physical model of land emissions with the results of a large-scale economic model (FAPRI), reports

that when the indirect land use changes (iLUC) triggered by the expansion of biofuels crops are

taken into account, current-technology crop-based biofuels are likely to actually increase GHG

emissions in the medium as well as in the long run. The idea brought to light by Searchinger et al.

(2008) is simple. Following the price incentives of U.S. biofuels policies, the output of currently

productive areas in the U.S. is diverted to biofuels, thus leaving a gap in the supply of food. Hence,

to fill in this gap, crop production must increase either in the U.S. or elsewhere. To the extent that

new lands are brought into production, their clearing will release GHG according to the existing

land cover and the area of land converted.

Although the idea is simple, the mechanisms for implementing it in a modeling framework are

not. The fact that GHG estimates depend on the existing land cover makes it necessary to project

where production will occur, how much land will be needed, and what type of land will be brought

into production. In principle, the increases in production can come from a combination of increasing

yields, a change in the use of current croplands, or the incorporation of new areas. Keeney and

Hertel (2009) use a general equilibrium model with explicit subnational markets for heterogeneous

lands to examine the relative importance and uncertainty surrounding each of these processes. As

discussed below, their conclusions differ in important ways from those of Searchinger et al. (2008).

As noted by Keeney and Hertel (2009), much of this discrepancy is due to different assumptions

about how international trade shapes the geographic distribution of production. While Searchinger

et al. (2008) assume the existence of an integrated world market (IWM), Keeney and Hertel (2009)

use an Armington formulation which assumes that products are differentiated by national origin.

Starting with the recent decision of the California Air Resources Board to factor indirect land

use into the state’s renewable fuels standard, the conflicting results of different assumptions are

no longer restricted to academic debate. More generally, the U.S. Energy Independence Act of
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2007 (EISA) has instructed governmental bodies to develop analytical capabilities for assessing

the GHG emissions of biofuels, including those stemming from indirect land use effects. In the

case of corn-based ethanol, the exercises carried out by the U.S. Energy Protection Agency (EPA)

indicate that, although ethanol is less GHG intensive than fossil oil, corn-based ethanol falls short

of the necessary reductions in GHG to be classified as a renewable fuel. Based on the uncertainty

surrounding iLUC estimates, the recommendations from EPA stemming from its findings have been

controversial among ethanol interests (ACE, 2009). More generally, due to the uncertainty in the

assumptions of the leading economic models used in the iLUC predictions, some scientists remain

skeptical about their accuracy (Wang and Haq, 2008).

This paper seeks to further inform the current debate by examining which of the two competing

views of international trade in homogeneous products has better support in the data of cross-

country land allocations for the production of coarse grains. The focus on coarse grains is justified

by the fact that the products in this category (corn, oats, barley, sorghum) substitute closely for

the corn destined for ethanol in production and consumption both in the U.S. and overseas.

An overview of the main players and dynamics in the market for coarse grains is discussed in

the next section. The rest of the paper combines analytical and simulation elements to show how

the different trade assumptions mentioned above lead to important differences in the conclusions

drawn about the location of land conversion, and by extension, about the size of associated GHG

emissions. To test which assumption has better support from the historical data, a standard

production function is used to derive a land equation that connects domestic returns to land to

a unique world price, and thus, is consistent with the idea of an integrated-world market. Then,

using an export demand equation as in Armington (1969) an alternative pricing mechanism that

takes into account competition between countries in international markets is derived. Our findings

on global land use changes under the two different pricing mechanisms highlight the importance of

the role of bilateral trade flows in shaping global cropping patterns.
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2 Background on the Global Coarse Grains Sector

Corn, sorghum, barley, oats, and rye comprise the trade category known as coarse grains. While

maize (corn) is by far the largest traded product in this category (Allen and Lutman, 2009), the

composition of the sector varies widely across countries. This can be seen in Figure 7, which

shows the relative contribution of each individual crop to the total national area under coarse

grains for a sample of countries (the same employed in the econometric exercise below). This area

constitutes approximately 75% (average 1975-2002) of the global area harvesting coarse grains.

These countries are sorted by their average (1992-2002) hectarage (indicated within parentheses

next to each country’s name) which reveal that the U.S. has the largest area, followed by India

(36.42 million ha), China (27.2), Brazil (12.34), Mexico (9.05), and Canada (7.21). Note that

for the U.S. and China, the coarse grains are mostly maize, while in India, sorghum and millet

dominate. Combining its dominance in area and higher yields, the U.S. is the largest producer of

coarse grains in the world.

During the period 1975-2002, an average of 49% of global exports originated in the U.S. (GTAP

database documented in Gehlhar, 2005). Allen and Lutman (2009) indicated that more recently

(2003-2008), the U.S. share of world exports averaged 60%. According to these authors:

While the United States dominates world corn trade, exports account for only a rela-

tively small portion of demand for U.S. corn — about 15 percent. This means that corn

prices are largely determined by supply-and-demand relationships in the U.S. market,

and the rest of the world must adjust to prevailing U.S. prices. This makes world corn

trade and prices dependent on weather in the U.S. Corn Belt. However, Argentina,

the second-largest corn exporter in most years, is in the Southern Hemisphere. Farm-

ers there plant their corn after the size of the U.S. crop is known, providing a quick,

market-oriented supply response to short U.S. crops.

As discussed in the next section, the “large” country nature of the U.S. is the basic argument

justifying the identification strategy of the links between price events in the U.S. and land use

decisions elsewhere.
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Figure 7 compares trends in area harvested and production in the U.S. and the rest of the world

during the period 1975-2002. The figure broadly reveals similar trends where areas have a slow

declining trend while production is increasing steadily. This is the result of yield improvements

during the last three decades. Figure 7 plots the log of total U.S. corn exports (in bushels) against

time. As can be seen, while the volatility of production translates into a high export volatility, the

average level of exports seems to have been relatively constant over the last three decades. Indeed,

regressing the total U.S. corn exports on a trend variable (period 1975-2007) gives a statistically

insignificant trend coefficient of 0.002 (the straight line in the plot).

Figure 7 shows the time distribution (1975-2002) of imports and exports of total coarse grains

in the countries in the sample (excluding the U.S.). The dots represent mean flow values, while

the segments extend a 95% confidence interval. Imports are plotted to the left of zero and exports

to the right. The countries are sorted by their net trade position (mean exports - mean imports).

Several features of the international market for coarse grains are apparent. First, with the exception

of China (the second largest country in terms of coarse grains area), for the countries that trade,

specialization is the norm. According to the figure, France, Argentina, Australia, Canada, China,

and to a lesser extent, Hungary, South Africa, and Thailand, are the most important exporters.

Japan is by far the largest world importer, followed by Mexico, Germany, Spain and other coun-

tries in western Europe. Second, most countries in the sample do not participate significantly in

international trade, regardless of their size (see for example, India). Likewise, countries with large

croplands such as Mexico, Brazil and China have sizable imports. Overall, the 38 countries in the

sample are responsible for 41% of global exports and 64% of global imports (average 1975-2002).

When the U.S. is added, almost all the global exports are covered. The U.S. is a marginal importer

with average annual imports of coarse grains of less than 2%.

3 Trade Assumptions and Global Land Use Predictions

Under the assumption of an integrated world market, when the relative prices charged by differ-

ent suppliers change, countries easily adjust their trading patterns by shifting to the lowest cost

provider. This arbitrage equalizes global prices. Due to differences in border frictions, area, and
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yield response, the existence of one global price does not translate into a uniform supply response

across countries. However, the assumption of a uniform price signal causes countries with large

areas to tend to have the greatest changes in land use.

The IWM assumption is used in the FAPRI model employed by Searchinger et al. (2008), ar-

guably the most influential study of global iLUC associated with biofuels expansion. These authors

find that out of the new 10,817 thousand hectares (26,729 ’000 acres) needed to accommodate

a 55.92 billion liter (14.77 billion gallons) increase in U.S. corn ethanol, 21% are located in the

U.S., 26% in Brazil, 10% in China, and 11% in India. Although the FAPRI model does take into

account cross-country differences in price transmission, supply elasticity, and yields (Fabiosa et al.,

2008), a glance at the results above reveals that the greatest changes are predicted to happen in

the largest producing countries of the world,and that the pre-shock trading behavior is largely

irrelevant. (While the U.S. and Brazil are active traders, China and India have historically been

relatively closed to trade.)

While the IWM assumption seems sensible for homogeneous products such as coarse grains,

observed trade patterns tend to be highly persistent over time and space. This persistence of trade

patterns is associated with the difficulties of changing supply sources and is behind the idea that

products are differentiated by place of origin, as proposed by Armington (1969). Because of this

differentiation, changes in quantities (consumed, produced, and traded) of each product following

a change in relative prices will depend on the ease with which consumers can substitute among the

different origins of coarse grains, as captured by a constant elasticity of substitution (CES).

Econometric estimates from Hertel et al. (2007) based on the cross-country variability of bilateral

trade costs give a CES value for coarse grains of 2.6 (std. error 1.1), suggesting that coarse grains

behave indeed as differentiated products. This estimate is much lower than those obtained by the

same authors for other commodities, such as rice, wheat, and oilseeds. Drawing on this elasticity,

a recent analysis of the importance of the different assumptions employed in assessing the iLUC of

biofuels by Keeney and Hertel (2009) reveals that out of the land needed to satisfy an increase of

1 billion gallons of ethanol in the U.S., 56% is located in the U.S., 4% in Brazil, 6% in China, and

a negligible amount in India.
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Due to differences in modeling strategies, the results of Keeney and Hertel (2009) are not directly

comparable to those of Searchinger et al. (2008); however, the results contrast enough to hint that

ignoring spatial elements of competition leads to very different conclusions about global iLUC

changes. To better understand the consequences of using one or the other assumption, consider the

following compensated CES demand facing country i in each market j (including i itself)1:

Xij = Bσo
ij Xj

(
Pij
Pj

)−σo

where σo is the elasticity of substitution that, depending on the specification, could be different for

substitution between domestic products and imports (σD) and among import sources (σM ). Xij

are exports from country i to market j, Bij is a constant preference weight, Xj is total demand in

the market j, Pij is the price charged by country i’s suppliers in market j, and Pj is the average

price level in market j.

The analysis of changes inXij is facilitated by linearizing in percentage changes the CES demand

equation above2. In the rest of this paper, percentage changes are denoted using the variable names

in lower cases (i.e., xij = dXij
Xi

):

xij = xj − σo (pij − pj) (1)

The first term represents the growth of the overall import market for Xij . The second represents

the percentage change in Xij ’s share of the market, or the substitution effect. Note that the larger

the elasticity of substitution σM , the smaller the difference in price changes needed to cause a large

swing in xij . In the limit, when a product is completely homogeneous such that σM → ∞, the

slightest deviation of the changes in country i’s prices above the deviations in the changes of the

price index of country j, eliminates exporter i from j’s market.

With a finite σo, there is some stickiness in the trade relationship as the substitution effect

depends on the market shares. Appendix A shows that pj =
∑n

i δijpij where δij = PijXij
PjXj

is the

market share of Xik in value terms. Thus the effects on Xij in prices of products competing in

1The derivation of the CES demand in the Armington context and other properties of the Armington model are
in Appendix A.

2Ibidem 1

6



the jth market depend not only on the substitution (and income and price) elasticities of demand

(Armington, 1969, p.174-175), but also on market shares. Substituting the change in the price

index pj in (1):

xij = xj − σo

(
pij −

n∑
i

δijpij

)
(2)

shows that the larger the share of Xij , δij , in market j, the smaller the percentage change from

the substitution associated with a given change in its price and the larger the percentage change

in demand for all the other competitors in the market. This is the main idea underlying the

econometric exercise below.

In order to further illustrate the differences between assumptions in a comparable framework, a

numerical simulation of the effects of a sudden increase of 15% in the industrial domestic demand

for coarse grains within the U.S. is carried out using a partial equilibrium closure in the standard

GTAP model.3 The increased demand for coarse grains in the U.S. drives domestic prices up,

discouraging exports. The lower presence of the U.S. in international markets offers an opportunity

for other countries to increase their market shares. One of the main markets of the U.S. is Japan,

which absorbs around 26% of U.S. coarse grains exports. With very low domestic production in

Japan, the U.S. supplies around 74% of Japan’s market.

Figure 7 plots the percentage changes of exports to Japan (on the vertical axis) from the U.S.,

Argentina, Brazil, China, and India under different elasticities of substitution (on the horizontal

axis). When the standard GTAP parameter of 2.6 is employed, U.S. exports decline by 0.61%.

China, Argentina, and Brazil partially fill the gap left by the U.S. through increasing their exports

around 1.4%. As the elasticity of substitution increases, the decline in U.S. exports becomes larger.

With a very large elasticity of substitution (σM = 100), the price increase causes a reduction of

U.S. exports to Japan of around 14% and dramatically increases the exports of China (by 38.45%),

Argentina (21.62%), and Brazil (30.77%).
3The standard GTAP model (Hertel, 1999) and the GTAP data V.6 (Dimaranan, 2006) are used. To isolate

the substitution effects between domestic and imported sources, regional incomes, output in the non-coarse grain
sectors out of the U.S., and endowment prices are kept constant. This partial equilibrium closure has the effect of
eliminating income effects, decreasing the responsiveness of the coarse-grains sector by keeping resources locked in the
other sectors, and discouraging producers from substituting among production factors — and between these factors
and intermediate inputs— responding only to the expansionary effect of the increase in demand.
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The vertical axis of the lower panel of Figure 7 shows the percentage changes in output associated

with the increase in U.S. industrial demand for coarse grains. Using the standard GTAP elasticity

(σM = 2.6), the largest percentage change (+11%) is in the U.S., the source of the shock. As

the elasticity of substitution increases, the response of the U.S. is mitigated by the fact that it

is displaced with increasing strength by its competitors in international markets; in other words,

a higher substitutability implies that the U.S. is more sensitive to its relative price disadvantage.

Notice that with the lowest elasticity of 2.6, Argentina has the largest output response (+0.32%)

after the U.S., a result consistent with the fact that Argentina is an important exporter of coarse

grains and competes with the U.S. in many of the same foreign markets. With large elasticities of

substitution, the proportional supply response across countries becomes more even. This reasoning

explains the pattern of results obtained by Searchinger et al. (2008) who show that the U.S. has

only a moderately larger supply response than Brazil, China, or India.

To illustrate what happens to countries with low shares, consider the case of Argentina, which

has only 3.8% of the Japanese market share. Figure 7 compares the declines in Argentinean and

U.S. exports to Japan under comparable domestic price increases (percentage changes shown in the

upper horizontal axis)4 across several values of the elasticity of substitution (in the lower horizontal

axis). Starting from the lowest value of σM (2.6), the declines in the exports to Japan are larger

for the Argentina (-1.98%) than for the U.S. (-0.61%). As discussed above, this is due to the low

market share of Argentina in the Japanese market, which is associated with the low participation of

Argentina in the Japanese CES price index. As the goods become more homogeneous (σM=100),

the same price increase implies a much larger loss of market share for Argentina (-46.75%) than for

the U.S. (-14.49%).

The interaction between elasticities and market shares leads to the idea of a geographic pattern

of trade in which countries trade more intensively with some partners than with others. Once the

shares are established, and depending on the substitutability of a given product, changes in prices

are not enough to shift suppliers. As hinted above, in the iLUC-biofuels literature, the difference

in trade assumptions leads to two different sets of results that can have important implications
4For comparison purposes, the Argentinean market price of coarse grains is shocked by the same percentage

changes in the U.S. price obtained under the demand shocks discussed above.
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for the life-cycle analysis of biofuels. First, to the extent that the U.S. is the main supplier of

the U.S. market, the Armington model tends to predict an iLUC effect in the U.S. larger than

what an IWM model would predict. Second, in the IWM framework, prices are equalized so

that, even after correcting by differences in price transmission and supply elasticities, the relatively

uniform price signal received by different countries causes a relatively uniform proportional change

in production. In absolute terms the largest change in land use is assigned to the largest countries,

irrespective of their exposure to the source of the shock in international markets. To see which

of these two assumptions has better support in the historical data, the next section proposes a

conceptual framework to use in statistically investigating the cross country relationship between

areas harvested for coarse grains and developments in the U.S. supply sector.

4 Conceptual Framework

This section uses the perspective of a profit maximizing farmer to link land decisions to the price

of grain. Next, the Armington assumption is used to develop an alternative price transmission

mechanism driven by the intensity of competition in international markets. The section closes by

proposing a regression model based on a derived demand for land that nests the two alternative

price mechanisms.

4.1 The Derived Demand for Land

Let c index the crop choices available to a farmer endowed with a fixed amount of land Ā, facing

output prices Pc, crop-specific input-bundle pricesWc, and a technology fc(Vc, Ac : Z) that combines

inputs and land to produce crop output Xc subject to a set of exogenous shifters Z (e.g., weather).

In order to maximize profits, she allocates Ac hectares of her land to each crop c and chooses the

crop-specific input-bundles Vc which solve the following problem:

max
Vc,Ac

(∑
c

Pcfc(Vc, Ac : Z)−
∑
c

VcWc :
∑
c

Ac = Ā

)
(3)
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The solution of (3) gives the optimal demands for land A∗c as a function of the (1 × c) vectors of

output prices Pc, input bundle prices Wc, the total endowment of land, and the vector of exogenous

shifters (Shumway, Pope, and Nash, 1984):

A∗c = l(Pc,Wc,Z, Ā) (4)

Although this derivation is strictly valid for individual farmers, this study follows the tradition

of most empirical work by assuming that the optimal land demands also apply at an aggregated

level (e.g., Abler and Pick, 1993; Russo, Green, and Howitt, 2008). The interest is in the cross-

country land decisions for a single crop composite of coarse grains production, so below, i will

be used to index producing countries and the subscript c will be dropped. As is also traditional

in this literature, a lagged area term Ait−1 is added to the right hand side of the land equation

to allow for a lagged adjustment in reaching the optimal allocation Ait at each period t. This

lagged adjustment can be associated with the costs of crop rotation, clearing new land, and other

year-to-year adjustment costs. Although theory is mute about functional form, the relationship

between land allocations and its determinants is assumed to be log-linear and can be formalized by

the following behavioral equation:

ln(Ait) = ln(Pit)β + ZitΓ (5)

where Pit is a measure of the relative return to land capturing the price of coarse grains relative to

the prices of competing crops, β is the elasticity of area to changes in relative return to lands, and

Γ is the vector of parameters relating the rest of the exogenous variables contained in matrix Z

which is now augmented with the exogenous variables lagged area ln(Ait−1) and total area ln(Āi).

National prices Pit are not observable5. The strategy then is to proxy domestic returns to land

in each country i with a world reference price denoted by Pkt. The relationship between domestic
5The FAO has some data on domestic producer prices; however, the series are available only for limited periods

of time.

10



prices and the world price can be formalized using:

Pit = RERiktPktτit (6)

where RERikt is the real exchange rate in local currency units (LCU/$) in country i, and τit is a

term (in power-of-the-tax form) that collects the myriad of transaction costs that foreign products

face when entering i’s markets — these costs will be discussed in more detail below. Expression

(6) is a classical price transmission equation of the type used to study the Law of One Price and

has been widely tested in agricultural and commodity markets (e.g. Mundlak and Larson, 1992).

An additional assumption is that farmers have naive expectations such that they expect prices

in the current season to be equal to the reference price of the previous year. With this in mind,

substituting (6) into (5) yields the land response equation in terms of the one year lagged reference

price:

ln(Ait) = ln(Pk,t−1)β + [Zit,Zi,t−1]Γ (7)

where the matrix of exogenous covariates Z, and its corresponding parameter vector Γ, now include

the one year lag of exchange rates and trade costs in (6).

Equation (7) is consistent with integrated world markets in which farmers uniformly respond,

other things held constant, to a unique world price. This equation is the basis of the econometric

estimation below. To accomplish the goal of contrasting the IWM and the Armington view, an

alternative theory of international price formation based on product differentiation is next devel-

oped.

4.2 International Trade and Price Transmission

At any point in time t, the disposition of domestically produced output Xi is either destined for

the domestic market or for exports; from now on, these markets are indexed by j. Thus, Xi can be

decomposed into Xi,j=i, domestic consumption, and Xij , exports originating in country i destined
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to country j. There are n countries with potentially m = n− 1 foreign partners. Therefore:

Xi =
n∑
j

Xij , i ∈ j (8)

To guide the estimation below, some structure on how the Xijs behave is needed. We use the

Armington assumption. We also impose equal elasticities of substitution between domestic and

imported and among goods from different countries. Therefore, in what follows σD=σM=σ and (1)

is rewritten as:

xij = xj − σ(pij −
n∑
k

δkjpkj) (9)

Taking the domestic price i out of the summation yields:

xij = xj − σ

pij(1− δij)− m∑
k 6=i

δkjpkj

 (10)

using the fact that (1− δij) =
∑m

k 6=i δkj , (10) is further simplified as:

xij = xj − σ

 m∑
k 6=i

δkj(pij − pkj)

 . (11)

In other words, the percentage change in i’s sales to market j due to the substitution effects is a

function of the weighted sum of the changes in the prices charged by i relative to those charged by

its competitors (indexed by k), using as weights the market share of producer k in market j. For

a given change in relative prices that favors producer k, the larger the participation of k in market

j, the more pronounced the decline of Xij — a fact that reinforces the discussion of the previous

section.

Summing (11) over all the markets j yields:

xi =
n∑
j

θijxj − σ
n∑
j

θij

 m∑
k 6=i

δkj(pij − pkj)

 , (12)

where θij = PijXij
PiXi

is the revenue share that producer i obtains from its sales to market j. Expanding
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terms and rearranging them, Expression (12) can be rewritten as:

xi =
n∑
j

θijxj − σ
m∑
k

n∑
j

θijδkj(pij − pkj). (13)

The first term in the right hand side (RHS) is the expansion effect: a revenue-share weighted sum

of the growth in each of the individual markets j catered by producers from country i. The first

summation in the second term of the RHS is over the m producers that compete with producer

i. The second summation is over destination markets, including producer i’s market. The main

message from (13) is that the percentage change in country i’s total output will depend on the

market share of its competitors in the destination market (δkj), and on the importance that the

destination market has for i’s total production of coarse grains (θij). To focus on the effects of

competition between the U.S. and producer i we can rewrite (13) in the following way:

xi =
n∑
j

θijxj − σ
n∑
j

θijδus,j(pij − pus,j)− σ
m∑

k 6=US

n∑
j

θijδkj(pij − pkj). (14)

The first term in the RHS of 14 can be further decomposed into country i’s own-expansion as

well as expansion in the markets that it sells to. In the second term, the summation over n reflects

that both i and the U.S. compete in each other’s market. This allows one to define weights that

allow one to detect competition in producer i’s own market, in the US market, and in other markets

indexed by j. The third term captures the effects of competition with other suppliers. This entails

rewriting (14) as:

xi = θiixi +
m∑
j 6=i

θijxj

− σ

 n−2∑
j 6=(i,US)

θijδus,j(pij − pus,j) + θi,usδus,us(pi,us − pus,us) + θiiδus,i(pii − pus,i)


+ εi

(15)

where the first term in the RHS is the own-expansion effect, the second term is the expansion effect

from trading partners, the terms within the brackets respectively capture competition between the
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U.S. and country i in country i’s own market, in the US market, and in third markets, and the last

term captures the effects on output associated with competition with other suppliers.

To summarize, the Armington assumption structured in a CES utility framework allows ex-

pressing changes in total output as a weighted sum of changes in each of the markets in which a

given producer sells. To the extent that, in the short run, yields of coarse grains can be treated as

constant, changes in total output map one-to-one with changes in area. This means that area deci-

sions are a function of market growth (the expansion effect) and differences in relative prices (the

substitution effect), and as such, global land use decisions are a function of the relative importance

of foreign markets vis à vis other competitors.

4.3 Regression Model

To test whether the elasticity of harvested area to changes in the reference price varies with the

degree of competition in international markets, it is useful to note that both (7) and (15) propose

that changes in area harvested are a function of relative returns to land. The important difference

is that while (7) postulates a unique channel of transmission between the reference price and the

area decisions, (15) proposes that the price transmission will depend on competition intensity, and

also on whether competition takes place in the domestic or in third markets.

To facilitate notation, the competition indexes in (15) are denoted by:

ωi = θiiδus,i,

ωus = θi,usδus,us, and

ωj =
n−2∑

j 6=(i,US)

θijδus,j ,

(16)

which capture competition between country i and the U.S. in country i’s own market (ωi), in

the U.S. (ωus), and in third markets (ωj). To make the integrated world market and Armington

equations (7)-(15) compatible, we focus only on changes in the U.S. price, thus imposing the

restriction pij = 0.
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The empirical model is given by combining the ω indexes with the US price:

ln(Ait) =β ln(Pus,t−1)

+α1[ωi,t ln(Pus,t−1)] + α2[ωus,t ln(Pus,t−1)] + α3[ωj,t ln(Pus,t−1)]

+[Zit,Zi.t−1]Γ + ηit,

(17)

where β, α1, α2, α3, and Γ are parameters to be estimated. The error term ηit is a disturbance that is

further decomposed in a country-specific fixed effect (µi) and a remainder disturbance εit assumed to

be identically and independently distributed, centered around zero, uncorrelated over time, and with

constant variances. The matrices Zit,Zi,t−1 contain all the covariates from the structural equations

behind the empirical model (i.e., total land endowment Āi, lagged area ln(Ait−1), exogenous shifters

such as temperature and precipitation, real exchange rates ln(RERi,us,t−1), trade costs τit, the

expansion terms from (15), θiitXit and
∑m

j 6=i θijtXjt, and the ω indexes).

The null hypothesis is that geography does not matter. In other words, the integrated world

market is a good depiction of how farmers in different parts of the world make decisions about areas

to plant. The alternative view is that geographic patterns of trade influence planting decisions in

individual countries. Formally:

H0 : [α1, α2, α3] = 0

HA : [α1, α2, α3] 6= 0
(18)

5 Empirical Implementation

The validity of the hypothesis test proposed above depends on the extent that the covariates in

the regression model (17) are controlling for factors that could otherwise obscure the meaning of

the parameters of interest. Moreover, meaningful estimates can only be obtained if the data offers

enough variability. These two issues, along with the compromises needed to take the regression to

the data, are discussed next.
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5.1 Covariates

It is important to ensure that the reference price is uncorrelated with the residuals ηit so we can

be reasonably confident that the parameter estimates are capturing the intended effects. The

first potential concern is that the US price is influenced by the production decisions of other

countries and thus its presence as an explanatory variable will induce simultaneous equations bias.

This potential source of simultaneity is controlled for by using the lagged US price, which cannot

arguably be influenced by current production decisions.

A second potential issue is that many of the variables that affect land use decisions also affect the

US price for periods that can extend over several years — if these covariates are not controlled for,

they will be captured by the disturbances, which will then be correlated with the error term, leading

to biased parameter estimates. Fortunately, the theoretical framework offers strong guidance on

which covariates should be included. In particular, the inclusion of exogenous factors such as

weather and changes in demand ensure that climatic and economic shocks that can affect the U.S.

and its competitors alike (e.g. El Niño or the Asian financial crisis in the mid 1990s) are included

on the right hand side of (17). Weather is controlled for by including country-specific annual mean

temperature and precipitation during a globally defined growing season (See Appendix B). Changes

in demand are considered by including the GDP of both exporters and importers. Following the

Armington specification in Equation 15, the GDPs are weighted by revenue (own GDP) and bilateral

market (partners’ GDP) shares.

Another source of bias is the presence of a lagged dependent variable on the right hand side

of (17). In (17), the dependent variable Ait is a function of ηit = µi + εit, where µi is a country

specific fixed effect. As µi does not change over time, it turns out that the lagged area term

Ait−1 is also a function of µi, thus inducing correlation between Ait−1 and ηit. Using a fixed effect

estimator (as we do) alleviates this problem by explicitly controlling for µi. However, the underlying

within-transformation is based on the differences in Ait−1 and εit from their respective means. In

calculating the mean value εi., εit−1 is used, and thus, by construction, Ait−1 is correlated with

εi. (Nickell, 1981). The bias induced by correlation between Ait−1 and εi. decreases with the time

dimension of the dataset. Our panel consists of 38 countries with observations ranging from 7
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to 25 years; thus, it is sensible to assume the time dimension of the panel to be fixed. To deal

with the bias, several suggestions have been offered (Baltagi, 2008, p.147-148). The method of

choice in this paper is a bootstrap correction due to Everaert and Pozzi (2007). This is because,

with the small sample in both the time and cross-sectional dimensions, the bootstrap correction

satisfactorily approximates analytical corrections and, as shown in the Monte Carlo experiments of

Everaert and Pozzi (2007), is more efficient than commonly used GMM estimators.

Another issue that deserves a comment is the data on trade barriers from the price transmission

equation (6). Although these are not observable at the required level of detail regarding product,

country coverage, and time span needed here, they are already captured by the indexes ω. This

can be seen by writing the price that country i charges in market j as the product of the market

price in i times a bilateral trade cost τij which equals one plus (or minus) and ad-valorem trade

cost, so Pij = Piτij . τij can be thought of as a comprehensive measure of tariffs, sanitary barriers,

shipping costs, etc. This allows rewriting ωj as:

ωj =
n−2∑

j 6=(i,US)

θijδus,j

=
n−2∑

j 6=(i,US)

PijXij

PiXi

Pus,jXus,j

PusXus

=
n−2∑

j 6=(i,US)

τijXij

Xi

τus,jXus,j

Xus

(19)

which shows that the ωjs capture the variability of trade costs across partners, and although the

subscript t is omitted to avoid clutter, over time. By the same logic, the indexes ωi and ωus capture

the barriers faced by the U.S. when entering country i and the barriers faced by country i when

entering the U.S. The time variation of the indexes is a potential source of endogeneity (current

market shares may influence land decisions); thus, in the estimation, one-year lags of 3 year moving

averages are used.

A final aspect of the estimable version of (17) is the inclusion of country-specific fixed effects

which capture other omitted sources of variation. So, even if they are not constant over time, it

can be plausibly assumed that they vary systematically across countries. This is another strategy
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with a long lineage in the agricultural economics literature used to deal with the lack of availability

of data on management practices (Griliches, 1957; Mundlak, 1961), input prices and the prices of

competing crops (Lyons and Thompson, 1981). In this case, they are designed to capture cross-

country differences in agricultural policies.

Summarizing the discussion thus far, the equation to be estimated takes the following form:

ln(Ait) = µi + γ0 ln(Ai,t−1) + β ln(Pus,t−1)

+α1[ω3−yr−ma
i,t−1 ln(Pus,t−1)] + α2[ω3−yr−ma

us,t−1 ln(Pus,t−1)] + α3[ω3−yr−ma
j,t−1 ln(Pus,t−1)]

+γ1 ln(TMPit) + γ2 ln(PREit) + γ3θii,t−1 lnGDPi,t−1 + γ4

m∑
j 6=i

θij,t−1 lnGDPj,t−1

+γ5 lnRERi,us,t−1 + γ6ω
3−yr−ma
i,t−1 + γ7ω

3−yr−ma
us,t−1 + γ8ω

3−yr−ma
j,t−1

+εit

(20)

where TMPit and PREit are temperature and precipitation and GDPs are used as proxies of the

expansion in demand Xi and Xj . The rest of the variables, the parameters to be estimated, and

the properties of the error term, have already been discussed.

5.2 Data

Table 1 presents summary statistics for all the variables used in the regressions. The dependent

variable is the sum of the annual area harvested for barley, oats, maize, and sorghum for 36 countries

for the period 1975-2002, sourced from FAO (2009). The representativeness of this sample in terms

of area covered and international trade has already been discussed in Section 2.

Key variables for this study are the competition indexes based on the market shares of exporters

in different importing countries. From the modeling framework, two types of shares are needed.

When a given country is seen as an exporter (and thus indexed by i) the relevant share is θijt: the

share of country i’s exports of coarse grains to country j in country i’s total coarse grains output at

time t — we will refer to this share as a sales share. When the same country is seen as an importer

(and thus indexed by j), the needed share is δijt, the share of coarse grains originating in country

i in the total consumption of coarse grains in country j at time t — a budget share.
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In both cases, domestic sales are considered; thus, the first step is to obtain the shares θiit

and δjjt. Details about the procedures and sources used to build these shares and the competition

indexes discussed below are in Appendix B. Figure (7) plots the budget shares allocated to domestic

θii (horizontal axis) against the domestic sales share δjj . In the upper left corner is Argentina, whose

domestic needs are completely satisfied by domestic output, but for which, at the same time, the

domestic market is just a small fraction of total sales, leaving large amounts of excess supplies.

Other countries with large productions and excess supplies are Thailand, France, South Africa,

and Hungary. In the opposite corner at the bottom right is Japan. This country has a very large

demand for coarse grains relative to production, and its limited production goes entirely to its feed

industry. As we move toward the upper right corner, countries become self-sufficient and have fewer

excess supplies to export, as in the case in India.

The market shares just described are used to calculate the competition indexes between a given

country i with the U.S. in third markets (ωjt), in country i’s own market (ωit), and in the US

market (ωkt). These variables, bounded by [0, 1] (they are the product of two different shares.),

are shown in the three panels of Figure 7, which shows, for each country, a box-plot describing

the temporal distribution of the competition index. As will be discussed shortly, this variability

is central in the econometric identification of the price effects. Starting with the leftmost panel,

from bottom to top, Argentina shows the largest median value (thick black bar inside the box) of

the index of competition with the U.S. in third markets. Moreover, going from the minimum value

(vertical bar at the end of the left whisker) to the maximum value (vertical bar at the end of the

right whisker), it can be seen that the intensity of competition varies through time over a range

spanning almost 20 percentage points. The distribution of Argentina’s index is skewed toward the

right, as evidenced by a mass of observations between the median and the third quartile (outer

vertical side of the right box) larger than the mass to the left between the median and the first

quartile (outer vertical side of the left box).

The leftmost panel of Figure 7 shows that most countries do not compete significantly with

the U.S. in third markets. The largest competitors (judging by the median values) are Argentina,

Thailand, Zimbabwe, Australia, France, and Germany. The second panel gives similar information,
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but this time the interest is in competition with US imports in each country. Ranking the countries

using the medians, Japan’s coarse grains sector faces the highest competition, and in contrast with

the previous panel, the U.S. plays an active role in several of the individual markets. Finally, the

third panel (rightmost), shows competition with the U.S. in the US market. Only for Canada,

Argentina, and Chile, does this seem to be important, although the value of the indexes is low.

The price transmission parameter β in Equation 20 is identified solely on the basis of temporal

variation in the US price. The US price is a quantity weighted index of the price of coarse grains

in the most important US markets (see details in Appendix B). The index is normalized to unity

in 1975. As can be seen in Table 1, the US price index has a mean value that coincides with its

mean of 0.95 (However, this price index does not seem to be normally distributed as evidenced by

the fact that 75% of the observations are below 1 — See Q3 in Table 1 — which indicates that the

distribution of prices is skewed toward the left.) During the period 1975-2002, the US price index

has ranged from 0.63 to 1.46, suggesting that price spikes are more acute than price troughs and

also that the US price index varies significantly, providing a good basis for identifying the US price

elasticity of harvested area, β.

However, to estimate the parameters αi (i = 1..3), the competition indexes ω are included by

themselves and combined with the US price index. Because the indexes ω vary both over time

(as does the US price index) and across countries, it is informative to investigate whether the

interaction term retains enough variability to be able to identify the parameters α. To this end, in

Table 2, the column “Source of variation” decomposes each interaction into its three components.

For instance, the variance of the interaction ln(Pust) × ωit is decomposed in the variances due

to year, country, and the interaction per se. The only case in which temporal variation has no

explanatory power is the interaction that captures the price elasticity of area due to competition

within the US market. In all cases, cross-country differences are a significant explanatory variable

of the behavior of the ωs, but they are disproportionately so in the case of interactions in third

markets. Finally, the “Interaction” component shows the variance not explained by time or cross

country variations. This portion ranges from 33% in the case of ωj to 52% in the case of ωk to

55% in the case of ωi. This suggests that the interaction terms have enough variability to properly

20



estimate the parameters α.

The construction of the rest of the variables shown in Table 1, temperature (TMP), precipitation

(PRE), and real exchange rates (RER), is detailed in Appendix B. This last variable has a number of

missing values due to the incomplete series on nominal exchange rates. Excluding the observations

with the missing RER, the dataset employed in the estimation of Equation (20) is a panel with 35

cross-sectional units (countries) and a time dimension that varies from 28 years (31 countries) to 5

years (2 countries)6

6 Results

The null hypothesis proposed at the end of the Section ”Conceptual Framework” (p. 18), is that

global cropping patterns are independent of bilateral trade flows. To test this hypothesis, the

restrictions α1 = α2 = α3 = 0 are imposed on Eq. 20. Then, both the restricted and unrestricted

models are estimated using least squares with country-specific dummy variables (LSDV estimation),

and a Lagrange Multiplier (LM) test is used to compare them.

The estimates of the restricted model are shown in the first column of Table 3 under the heading

IWM (for integrated world market). For each variable, the three values are stacked. The first is

the LSDV parameter estimate. The second is a traditional standard error calculated assuming

that the regression residuals have a constant variance (within and across countries) and are serially

uncorrelated. To verify whether these two assumptions hold, the bottom panel of Table 3 shows

the p-values of a Breusch-Pagan test for heteroskedasticity and a test for serial autocorrelation due

to Wooldridge (2001, p.275). In general, homoskedasticity is rejected at the 1% significance level,

while the null hypothesis of non-autocorrelation cannot be rejected (with the exceptions of models A

and D, which will be discussed shortly). In principle, it would be natural to fix the standard errors

to be robust to the presence of heteroskedasticity. However, Stock and Watson (2008) indicate

that in panels with fixed T and large N, the conventional white estimator is inconsistent, so they

recommend using errors that are robust to both heteroskedasticity and serial autocorrelation. Thus,
6The number of included years and countries are as follows (years, countries): (5,2), (8,1), (10,2), (11,1), (12,1),

(16,1),(17,1), (18,2), (20,1), (23,2), (28,31).
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despite the weak evidence of autocorrelation, the standard errors calculated using the corrections

suggested by these authors are shown for each parameter underneath the traditional standard

errors.

Interestingly, in many cases, the robust errors tend to overstate the degree of significance of

the parameter estimates relative to their traditional counterparts. This is particularly worrying

in the case of the unrestricted model A, for which the robust errors of α̂2 and α̂3 are less than

half the traditional ones. In the case of α̂2 the robust standard errors make the coefficient appear

statistically significant. It is preferable to err on the conservative side of less significance, so the

rest of this discussion is based on the traditional standard errors.

Returning to the IWM regression shown in Table 3, the included regressors explain around 66%

of the temporal cross-country variation in harvested areas (see adjusted R2 in the middle panel of

Table 3). The coefficient of the lagged area term (γ̂0) is large and highly significant, evidencing the

persistence of harvested areas over time. The coefficient on temperature (γ̂1) is negative and large,

but the precision of the estimates is low. The coefficient on precipitation (γ̂2) is quite small and

insignificant. The terms associated with country size — own-GDP weighted by output consumed at

home (γ̂3) and the revenue-share-weighted average of the GDPs of the trading partners (γ̂4) — are

significant and negative. A possible explanation for this is that the income variables are capturing

the downward trend of global harvested areas shown in Figure 7 (p. 38) and briefly discussed in the

Section “Background on the Global Coarse Grains Sector.” In line with expectations, a depreciation

of the real exchange rate (γ̂5) has a positive effect on output (doubling the RER leads to approx.

1% increase in harvested area). The elasticity of area with respect to the US price, β̂ is statistically

significant and plausibly sized. With a value of 0.04, this elasticity implies that if the US price were

to double, areas harvested everywhere else would increase by 4.4%.

The next column shows the unrestricted model labeled “A.” The two models are similar, with

two important exceptions. First, the coefficient on the real exchange rate lost its significance due

to a slight reduction in the size of the estimate. More importantly, the coefficient on the US price,

β̂, is no longer significant. However, the interaction term between degree of competition overseas

(ωj) and the US price is highly significant. This suggests that a price increase in the U.S. will affect
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areas harvested by the proportion 0.011 × ω3−yr−ma
j,t−1 , and thus, the size of the actual elasticity

is contingent on the importance of output of country i exposed to markets where the U.S. is an

important supplier.

To investigate whether model A explains the temporal cross-country variability of areas har-

vested better than the IWM model, the residuals of the restricted model are regressed on all the

covariates of model A. The sample size and the R2 of this regression are used to compute an LM

statistic that in turn is distributed Chi-squared (Wooldridge, 2002, p. 186). The null hypothesis is

that the excluded parameters, α1, α2, α3, and the parameters on the ω terms, are uncorrelated with

the residuals of the restricted model, for if they are, the restricted parameter estimates are incon-

sistent. The lowest panel of table 3 (row “LM test”) shows the probability (p-values) of rejecting

this null hypothesis given that the excluded restrictions are indeed zero. This probability is 3.7%

in the comparison of models A and IWM, so the null hypothesis of the LM test is rejected at the

5% level of significance. In other words, the inclusion of the interaction terms represents a model

improvement relative to the IWM model. Table 3 also shows that an asymptotically equivalent

Likelihood ratio test (row “LR test”) supports the finding of the LM test.

Before further exploring what is driving the apparent superiority of model A over the IWM

model, recall that the discussion of covariates (see Section 2.5 “Empirical Implementation”) indi-

cated that the presence of a lagged dependent variable in the right hand side of the regression causes

the so called Nickell (1981) bias. In order to assess how severe this bias is in the current setting,

a bootstrap correction due to Everaert and Pozzi (2007) is used (see details in Appendix C). The

results for the restricted (IWM) and unrestricted (A) models are shown in Table 4. Three general

conclusions can be drawn from these results. First, the LSDV parameter γ̂0 is severely biased

downward in both models. Second, the rest of the parameter estimates are virtually identical. In

particular, the price elasticities of area β̂ (in both models) and α̂3 (in model A) are for all practi-

cal matters equal. Third, the pattern of significance based on the bootstrap sample confirms the

pattern of significance observed using traditional standard errors (as opposed to the robust ones),

thus supporting the earlier choice of using them as the basis of inference.

The most consequential finding of the bootstrap correction relates to the estimation of long run
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elasticities, (1 − γ0)−1β for the IWM model or its counterpart for the Armington model, which

will be evidently biased if the LSDV estimates are employed in their calculation. Pesaran and

Zhao (1998) point out that simply using the bootstrap corrected parameter from Table 4 will not

solve the problem due to the nonlinearities involved in the long run elasticity. They compare four

different methods, including a bootstrap correction and conclude that “none of the estimators seem

to be effective when the coefficient of the lagged dependent variable is around 0.8.” Due to this

limitation, this paper will not further pursue the calculation of long run elasticities. Moreover,

due to the similarity between the bootstrap-corrected and the LSDV estimates, the rest of the

discussion will continue focusing on the latter.

In Table 3, a puzzling feature of model A is that, although the addition of the interaction terms

is an improvement over the restricted model,the exclusion restrictions — with parameters γ̂7,γ̂8,

α̂1, and α̂2 — are statistically zero. To investigate whether they are zero because of interactions

with the other price terms or simply because they do not add any additional explanatory power

to the restricted model, columns B, C, and D report regressions keeping one price interaction at

a time. Just as before, the lowest portion of Table 3 shows LM and LR tests for the pairwise

comparison of the IWM model against these models. This exercise gives evidence that neither

competition in country i’s own market (model B including ωi and its interaction with the US price)

nor competition with the U.S. (model C including ωus interacted with the US price) improve the

IWM formulation (with a p-value of 0.085, the LM test rejects the IWM model only marginally in

the case of model B). In contrast, model D, which retains competition in third markets reiterates

the significance of the interaction term and also rejects, albeit in a weaker fashion, the IWM model.

The fact that β̂ is statistically insignificant in model A prompts the question of whether this

is because of multicollinearity with the interaction terms. To investigate this possibility, the lower

panel of Table 3 shows the variance inflation factors (VIF) of β̂ for all the estimated models. The

VIF indicates the proportion by which the variance of β̂ is inflated due to the addition of the

exclusion restrictions. In model IWM, the VIF is 1.016, indicating that there are no other variables

collinear with the US price term. When all the exclusion restrictions are added, the VIF jumps to

1.275, and as noted before, β̂ loses its significance. This is a relatively low VIF. If for example the
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standard error of β̂ in model A were reduced by 30%, the parameter estimate would still not be

significant. In model B, the VIF reduces to 1.169, and β̂ regains its significance; however, in model

D, the VIF is lower (1.09), and β̂ is insignificant. This seems to reinforce the notion that, in these

regressions, higher VIFs are disconnected from the significance of β̂.

6.1 Implications

Despite the lack of significance of a large number of terms in model A, this model is kept as

the preferred regression as it is the best specified model in light of the discussion in the Sections

“Conceptual Framework” and “Empirical Implementation”. To appreciate the differences in the

elasticities implied by each model, Figure 7 plots 95% confidence intervals (CI) of the elasticities

from model A using only the statistically significant part, α̂3, evaluated at the mean value of the

competition indexes wj . These are contrasted with the elasticities from the IWM model with point

estimate β̂ given by the black dashed line and a 95% CI represented by the grey band. Note that

model A gives just a handful of elasticities that are larger than IWM’s β̂. In particular, Argentina

and Thailand appear to be the most responsive countries. Also, there is a group of countries,

from China to Australia, for which IWM’s β̂ seems to fairly represent the elasticities that take into

account competition with the U.S. The rest of the countries appear to have much lower elasticities

under model A than under the IWM model. Indeed, a non-trivial number of countries, from Sri

Lanka downward, appear disconnected from price events in the U.S. This is of course a natural

consequence of having the area elasticities depend on the intensity of competition with the U.S.

overseas and is in line with the simulation results in the Section 2.3 “Trade Assumptions and Global

Land Use Predictions,” particularly those that tie the intensity of supply response to the degree of

competition in third markets.

From the elasticities just discussed, it is clear that the two pricing mechanisms will result in

different area responses. To understand the implications of these differences, the IWM model and

model A are used to predict the changes in harvested area following a 15% increase in the US price

index of coarse grains, while keeping all the variables constant at 1992 levels. Unlike the discussion

on the price elasticities, these predictions use all the parameter estimates of model A regardless of
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their statistical significance. This implies that the predicted standard errors of model A are much

larger than those of model IWM, a fact that does not change the main message of the following

discussion.

The percentage change in areas in each country is plotted in the left panel of Figure 7. Under

the IWM model, the percentage changes are constant because the IWM elasticity β̂ is assumed to

be constant across countries. Under model A, countries with a larger exposure of their exported

outputs to competition with the U.S. will have larger area responses. According to the model

predictions, and under the conditions that prevailed in 1992, Argentina, Australia, and South

Africa will have the largest supply responses. The right panel of Figure 7 shows how the percentage

changes translate into area. With differential elasticities, the incorporated areas no longer depend

on country size, and thus countries such as Argentina, Australia, and South Africa appear to

incorporate more area under model A than under the IWM model. But for China and India, the

opposite is true.

The total hectarage predicted by the IWM model is around 840 thousand hectares (2,075 thou-

sand acres) worldwide. Meanwhile, for the same shock, model A predicts approx. 789 thousand

hectares (1,950 thousand acres). Using average yield estimates of coarse grains (FAO, 2009), the

total tonnage predicted by the IWM model is 2.23 million MT (88.18 million bushels - corn equiva-

lent), while the total tonnage predicted by the Armington model is 2.48 million MT (97.63 million

bushels - corn equivalent). In other words, the model with Armington-type elements of competition

predicts that roughly the same quantity of coarse grains needs to be produced in less area simply

because the countries that compete more heavily with the U.S. have better yields.

6.2 Influential Countries

The results discussed thus far suggest that only a reduced number of countries compete with the

U.S. The question of whether it is possible that these countries are driving the results is tackled

next. Table 5 shows the parameters of interest obtained — β̂ from the IMW and A models and

α3 from model — estimating the restricted and unrestricted model, dropping one country at a

time. The first column of the table shows the country dropped. Starting with Argentina, when it
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is dropped from the sample, the elasticity of the IWM model is reduced from 0.044 (in Table 3) to

0.037. The significance of the parameter estimate, however, is mostly unchanged. Indeed, it does

not matter which country is dropped from the sample; the elasticity β̂ of the IWM model remains

statistically significant (p-values < 0.05) at roughly 0.04.

Next, the elasticities from the Armington-D model, β̂ and α̂3 are presented along with their

significance level. In general, it does not matter which country is dropped; β̂ loses its statistical

significance when the interaction term involving competition with the U.S. is added to the regres-

sion. Likewise, the elasticity estimated using the interaction term, α3 remains around 0.011 and

statistically significant in all the cases (p-values < 0.03) except when Argentina is dropped that

the p-value increases to 8%, this is not a surprising result given that Argentina is the country that

competes most fiercely with the U.S. in third markets (recall Figure 7 discussed in the Section

“Empirical Implementation”).

Finally, the p-values obtained from an LM test identical to the one described at the beginning of

this section shows that, as before, except for the case where Argentina is dropped, there is around

a 5% probability of rejecting the null hypothesis that the exclusion restrictions associated with the

competition indexes (α1- α3 and the parameters γ attached to the ω terms) are zero given that

this was true. When Argentina is dropped, the p-value is 29%, thus, the null cannot be rejected:

this is an expected result given the large degree of competition between Argentina and the U.S.

7 Conclusions

As the indirect land use effects of biofuels expansion transcend from the scientific arena to the

specifics of biofuels policy design, the need to accurately predict where production will occur in

the world, how much land will be needed, and what type of land will be brought into production

becomes more important. Sophisticated large-scale economic models have been used for this task;

however, the results are surrounded by important uncertainties in some of the key assumptions

shaping the global distribution of production. More importantly, these models have very different

predictions about where iLUC changes will occur. This paper tackles one of these assumptions,

specifically the one governing the international trade exchanges of coarse grains, and investigates
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which of the two competing views — an integrated world market vs. products differentiated by

places of origin — has better grounding in the historical data.

The study uses a standard profit maximization framework to derive a reduced form land equa-

tion that controls for a rich set of factors influencing production. This land equation is the base

for nesting two pricing mechanisms characterizing the trade assumptions: one-world-price for the

integrated world market and prices combined with competition indexes for the differentiated prod-

ucts. The focus is on the changes in the harvested areas of coarse grains triggered by changes in

the US price of these products. This is justified because the U.S. is a large player in the market

for coarse grains. Moreover, the U.S. is home to ambitious biofuels objectives and it is in this

country where the indirect land use impact of biofuels policies have been more closely linked to

biofuels regulation. Thus, the competition indexes combine the share of a country’s output in a

given market with the importance of the U.S. as a supplier of that market. The study employs data

for a cross section of countries representative of global production and trade covering the period

1975-2002. This relatively long time period has had important changes in agricultural technology

and trade policy. However, controlling for trends (via incomes) and trade costs (via competition

indexes) helps to capture these changes in a framework that ensures a clean identification of the

area elasticities to changes in the US price.

The main finding is that the integrated world market is rejected in favor of the Armington

model. The dominance of the differentiated products model has important consequences for the

global distribution of land response following a shock in the US price. Simple predictions using

the parameter estimates of the two competing models show that by allowing competition in third

markets, the distribution of land conversion is to some extent independent of current land under

production. Moreover, the results highlight that by taking competition into account, the total

estimates of land converted can be significantly different from those that assume an integrated

world market due to differences in productivity across countries. The size and significance of the

area elasticities to changes in the US price are robust to the correction of the bias generated by the

presence of a lagged dependent variable and to variations in the countries included in the sample.
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Table 1: Descriptive Statistics
mean Std.Dev. min Q1 median Q3 max

Area (Mill Ha) 4.10 7.41 0.03 0.50 1.49 4.30 43.88
Temperature (C) 19.22 5.47 5.70 16.39 20.00 23.17 28.05
Precipitation (ml) 93.21 78.84 0.00 29.56 71.42 141.37 420.72
GDP (Billion 2000 US$) 274.06 640.44 2.12 27.89 87.86 256.08 4680.00
US Price (Index) 0.95 0.16 0.63 0.84 0.95 1.00 1.46
ωi 0.05 0.12 0.00 0.00 0.00 0.03 0.86
ωus 0.00 0.01 0.00 0.00 0.00 0.00 0.12
ωj 0.01 0.04 0.00 0.00 0.00 0.00 0.41

Note: Q1 and Q3 are the first and third quartile of the distribution of each variable. The terms
ω are competition indexes between any country i in the sample and the U.S. in country i’s own
market, the US market, or in third markets (j).
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Table 2: ANOVA of the Interaction Between the US Price and the Competitiveness Indexes
Source of variation Df Sum.Sq Mean.Sq F.value Pr..F.
Year (Pus,t × ωit) 27.00 2961.92 109.70 2.50 0.00
Country (Pus,t × ωit) 35.00 35895.29 1025.58 23.39 0.00
Interaction (Pus,t × ωit) 945.00 41440.70 43.85
Year (Pus,t × ωkt) 27.00 5.47 0.20 1.27 0.16
Country (Pus,t × ωkt) 35.00 118.74 3.39 21.29 0.00
Interaction (Pus,t × ωkt) 945.00 150.59 0.16
Year (Pus,t × ωjt) 27.00 364.08 13.48 2.55 0.00
Country (Pus,t × ωjt) 35.00 10702.92 305.80 57.92 0.00
Interaction (Pus,t × ωjt)) 945.00 4989.23 5.28

Note: The ANOVA decomposes the variability of each interaction term into its time (Year) and cross-
section (Country) dimensions. The residual (Interaction) is the remainder not explained by the two included
dimensions. The ANOVA table shows for each of these components the degrees of freedom (Df), the explained
sum of squared residuals (Sum.Sq), the mean of the Sum.Sq, and an F-test that indicates whether the mean
of the different groups in Year and Country are statistically different.
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Table 3: Regression Results, Diagnosis, and Comparisons

IWM A B C D
ln(Ai,t−1, γ̂0 0.787 0.783 0.783 0.789 0.784

(0.021)*** (0.021)*** (0.021)*** (0.021)*** (0.021)***
(0.040)*** (0.040)*** (0.039)*** (0.040)*** (0.041)***

ln(TMPit), γ̂1 -0.111 -0.091 -0.087 -0.111 -0.116
(0.083) (0.083) (0.083) (0.083) (0.083)
(0.065)* (0.066) (0.065) (0.065)* (0.066)*

ln(PREit), γ̂2 0.015 0.016 0.015 0.015 0.016
(0.010) (0.010) (0.010) (0.010) (0.010)
(0.011) (0.010) (0.011) (0.011) (0.010)

θii,t−1 lnGDPi,t−1, γ̂3 -0.025 -0.025 -0.026 -0.025 -0.024
(0.010)** (0.012)** (0.010)** (0.010)** (0.012)**
(0.009)*** (0.013)* (0.009)*** (0.009)*** (0.013)*Pm

j 6=i θij,t−1 lnGDPj,t−1, γ̂4 -0.001 -0.001 -0.001 -0.001 -0.001

(0.001)** (0.001)*** (0.001)*** (0.001)** (0.001)**
(0.001)* (0.001)** (0.001)** (0.001)* (0.001)*

lnRERi,us,t−1, γ̂5 0.009 0.008 0.007 0.009 0.010
(0.005)* (0.005) (0.005) (0.005)* (0.005)*
(0.007) (0.007) (0.007) (0.007) (0.007)

ln(Pus,t−1), β̂ 0.044 0.021 0.048 0.035 0.026
(0.020)** (0.026) (0.024)** (0.021)* (0.022)
(0.024)* (0.021) (0.023)** (0.024) (0.024)

ω3−yr−ma
i,t−1 , γ̂6 0.001 0.001

(0.001)** (0.001)*
(0.000)*** (0.000)***

ω3−yr−ma
us,t−1 , γ̂7 0.006 0.007

(0.010) (0.010)
(0.006) (0.006)

ω3−yr−ma
j,t−1 , γ̂8 0.001 0.001

(0.002) (0.002)
(0.001) (0.001)

ω3−yr−ma
i,t−1 ln(Pus,t−1), α̂1 -0.001 -0.001

(0.002) (0.002)
(0.002) (0.002)

ω3−yr−ma
us,t−1 ln(Pus,t−1), α2 0.050 0.057

(0.035) (0.035)
(0.016)*** (0.012)***

ω3−yr−ma
j,t−1 ln(Pus,t−1), α̂3 0.011 0.012

(0.005)** (0.005)**
(0.002)*** (0.002)***

N 894.000 894.000 894.000 894.000 894.000
SSR 8.501 8.373 8.454 8.468 8.444
Adj R2 0.656 0.658 0.657 0.656 0.657
Log likelihood 812.488 819.250 814.958 814.240 815.482

VIF of β̂ 1.016 1.275 1.169 1.045 1.090
Heteroskedasticity (p-values) 0.000 0.002 0.000 0.000 0.000
Autocorrelation (p-values) 0.129 0.084 0.131 0.104 0.097
LM test (p-values) 0.000 0.037 0.085 0.174 0.051
LR test (p-values) 0.000 0.035 0.085 0.173 0.050

Note: The dependent variable is the log of annual area harvested in each country. The number of years included for each
country vary between 7 up to a maximum of 28 (1975-2002). Standard errors, traditional and robust to heteroskedasticity and
serial autocorrelation of general form (Stock and Watson, 2008) are underneath each parameter estimate. The middle panel
presents some measures of goodness of fit. The lowest panel is a diagnosis of the regression. First, the variance inflation factor
(VIF) of the US price coefficient is presented. Then, the last four rows show the probability (p-values) of not rejecting the
following null hypotheses: 1) the LSDV residuals are homoskedastic (Breusch-Pagan test for heteroskedasticity); 2) the LSDV
residuals are serially uncorrelated (test for short panels by Wooldridge (2001, p.275)); and 3) the omitted terms in the “Base”
model but present in models A to D add no explanatory power to the former equation. These tests are a Lagrange Multiplier
(LM) distributed Chi-square..
*** p ≤ 0.01, ** p ≤ 0.05, * p ≤ 0.10
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Table 4: Bootstrap Corrected Parameters
Variable IWM A
ln(Ai,t−1), γ̂0 0.864 *** 0.859 ***
ln(TMPit), γ̂1 -0.101 -0.072
ln(PREit), γ̂2 0.016 * 0.017 *
θii,t−1 lnGDPi,t−1, γ̂3 -0.018 * -0.018∑m

j 6=i θij,t−1 lnGDPj,t−1, γ̂4 -0.001 ** -0.001 **
lnRERi,us,t−1, γ̂5 0.006 0.005
ln(Pus,t−1), β̂ 0.043 ** 0.019
ω3−yr−ma

i,t−1 , γ̂6 0.001 *
ω3−yr−ma

us,t−1 , γ̂7 0.008
ω3−yr−ma

j,t−1 , γ̂8 0.001
ω3−yr−ma

i,t−1 ln(Pus,t−1), α̂1 -0.000
ω3−yr−ma

us,t−1 ln(Pus,t−1), α̂2 0.052
ω3−yr−ma

j,t−1 ln(Pus,t−1), α̂3 0.011 **

Note: Parameter estimates corrected using bootstrap algorithm by Everaert and Pozzi (2007). Significance
levels based on confidence intervals using procedure described in Appendix C. *** p ≤ 0.01, ** p ≤ 0.05, *
p ≤ 0.10
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Table 5: Parameter Estimates and Hypotheses Tests Dropping one Country at a Time
Country β̂ IWM p-value β̂ Arm-D p-value.1 α3 Arm-D p-value.2 LM p-value

Argentina 0.04 0.04 0.03 0.12 0.01 0.07 0.29
Australia 0.04 0.02 0.03 0.11 0.01 0.01 0.03
Austria 0.04 0.02 0.02 0.14 0.01 0.01 0.05
Bulgaria 0.05 0.01 0.03 0.11 0.01 0.01 0.06
Brazil 0.05 0.01 0.03 0.09 0.01 0.01 0.06
Canada 0.04 0.03 0.02 0.16 0.01 0.01 0.05
Switzerland 0.04 0.02 0.02 0.14 0.01 0.01 0.05
Chile 0.04 0.04 0.02 0.23 0.01 0.01 0.04
China 0.04 0.02 0.03 0.13 0.01 0.01 0.05
Colombia 0.05 0.01 0.03 0.06 0.01 0.01 0.06
Spain 0.05 0.02 0.03 0.12 0.01 0.01 0.05
France 0.05 0.02 0.03 0.12 0.01 0.01 0.04
Greece 0.04 0.02 0.03 0.13 0.01 0.01 0.05
Hungary 0.05 0.01 0.03 0.10 0.01 0.01 0.06
Indonesia 0.04 0.02 0.02 0.14 0.01 0.01 0.05
India 0.04 0.02 0.03 0.13 0.01 0.01 0.05
Italia 0.05 0.02 0.03 0.12 0.01 0.01 0.05
Japan 0.05 0.01 0.03 0.09 0.01 0.01 0.04
Sri Lanka 0.05 0.01 0.03 0.09 0.01 0.01 0.05
Morocco 0.04 0.03 0.02 0.18 0.01 0.01 0.04
Madagascar 0.05 0.01 0.03 0.12 0.01 0.01 0.05
Mexico 0.04 0.02 0.02 0.16 0.01 0.01 0.05
New Zealand 0.04 0.03 0.02 0.16 0.01 0.02 0.08
Peru 0.05 0.01 0.03 0.09 0.01 0.01 0.06
Philippines 0.05 0.02 0.03 0.12 0.01 0.01 0.05
Poland 0.04 0.02 0.03 0.13 0.01 0.01 0.05
Portugal 0.04 0.02 0.03 0.13 0.01 0.01 0.04
Thailand 0.04 0.04 0.02 0.15 0.01 0.02 0.11
Turkey 0.04 0.02 0.02 0.14 0.01 0.01 0.05
Uganda 0.05 0.01 0.03 0.11 0.01 0.01 0.06
Uruguay 0.04 0.02 0.02 0.14 0.01 0.01 0.04
Venezuela 0.06 0.00 0.04 0.03 0.01 0.01 0.07
Vietnam 0.05 0.01 0.03 0.11 0.01 0.01 0.05
South Africa 0.05 0.01 0.03 0.11 0.01 0.01 0.06
Zambia 0.04 0.02 0.02 0.17 0.01 0.01 0.04
Zimbabwe 0.04 0.02 0.02 0.13 0.01 0.01 0.04

Note:The parameter estimates shown in the columns, as well as the LM comparing the restricted
(IWM) and unrestricted (A) models are estimates n times, where n is the number of countries.
Each time, one country is excluded. The exclude country is shown in the rows.
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Figure 1: Composition of the Area Devoted to Coarse Grains in Selected Countries.
Note: The percentages are based on harvested areas of individual crops averaged over 1992:2002.
Countries are ranked according to their total harvested area averaged during the same period. The
total area, in parentheses is in million hectares. Source: FAO.
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Figure 2: Production and Harvested Area of Coarse Grains in the U.S. and in the Rest of the World
(ROW).
Note: The four series are relative to 1975. Source: Allen and Lutman (2009).
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Figure 3: U.S. Exports of Coarse Grains are Volatile in the Short Run but Relatively Stable Over
Time.
Note: The straight line in the plot is obtained by regressing the total log of exports on a trend
variable. The obtained equation is (standard errors in parentheses): log(exportst) = 21.315(0.06)+
0.002T (0.003). Source: Allen and Lutman (2009).
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Trade flows (imports < 0 and exports > 0) in million US$
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Figure 4: Imports, Exports, and Area of Selected Countries.
Note: The midpoints are averages 1975-2002 while the segments extend to the lower and upper
95% confidence interval of the annual distribution of trade flows. Countries are ordered by their
net trading position (exports - imports) using the averages 1975-2002. The trade data is in millions
U.S.$. Sources: GTAP V6 inGehlhar (2005).
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Figure 5: Supply Response and the Elasticity of Substitution.
Note: The upper panel shows, for selected countries, the percentage change in exports to Japan
following a 15% increase in the U.S. industrial demand of U.S. coarse grains under different values of
the elasticity of substitution between import sources, σM . The experiments were performed using
a partial equilibrium closure (income, factor prices, and output in the non-coarse grains sector
are held fixed) in the standard GTAP model (Hertel et al., 2007) using version 6 of the database
(Dimaranan, 2006). The lower panel shows, for the same experiment, the percentage changes in
output.
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Figure 8: Competition of the Sample Countries with the U.S. in Third Markets, Their Own Markets,
and US Markets.
Note: The box-plots show the distribution of the indexes over 1975-2002. The units of the indexes
are between zero and unity.
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Elasticity of harvested area to changes in the US price index
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Figure 9: Short Run Elasticities of Area Harvested to Changes in the US Price of Coarse Grains.
Note: The mean values of the competition index with the U.S. are used to construct the confidence
intervals (thick dots are the point estimates, while the segments indicate the 95% confidence in-
terval). The dashed black line is the point estimate β from the IWM model, while the gray band
represents its 95% CI. Source: Table3.
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Figure 10: Pricing Mechanisms and Area Response.
Note: In the left panel, the values shown are the difference (in percentage terms) between harvested
area predictions with and without shocking the US price index by 15%, keeping all the other
variables constant at 1992 levels. The right panel translates the percentage changes in hectares.
Source: Table 3.
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Appendices

A The Armington specification of trade flows

Start with some notation. Exporting countries are indexed by i, markets are indexed by j. There are

n countries trading among themselves. Armington (1969) assumes separable utilities for different

groups of goods. Goods are assumed to be differentiated by place of origin. Given changes in relative

prices, consumers substitute among origins according to an elasticity of substitution assumed to be

invariant to the share of each good in total consumption and equal across countries. This allows

aggregating total consumption of coarse grains in market j (Xj) using a constant elasticity of

substitution (CES) function:

Xj =

(
n∑
i

BijX
ρ
ij

) 1
ρ

, ρ = 1− 1
σ

(A-1)

where Bij is a constant bilateral preference weight, σ is the elasticity of substitution and Xij are

market j’s imports from each origin i, including itself; thus, the summation above includes all n

countries.

The price of Xj is an aggregate price of the prices Pij attached to each Xij . This aggregate

price is consistent with the optimality of the choices implied by the utility maximization. Following

Armington (1969, p.165), the price Pj of the aggregate Xj must fulfill the following condition:

Pj = Pij

(
∂Xj

∂Xij

)−1

, ∀i. (A-2)

To see the implications of this condition, solve for Pij in (A-2) and multiply both sides by Xij :

PijXij = Pj
∂Xj

∂Xij
Xij (A-3)

Summing (A-3) over all the exporters i, and employing Euler’s theorem7 coupled with the fact that

7Given y = f(x, z), if f(θx, θz) = θnf(x, z), then ∂f(.)
∂x

x+ ∂f(.)
∂z

z = ny
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Xj in (A-1) is homogeneous of degree 1, the following result is obtained:

n∑
i

PijXij = Pj

n∑
i

∂Xj

∂Xij
Xij = PjXj (A-4)

The expression just derived has two important implications. First, these prices define the budget

constraint, if consumers allocated a portion Ej of their total income to the consumption of coarse

grains, Ej ≤ PjXj =
∑n

i PijXij . Second, solving for Pj in (A-4), and linearizing it in percentage

changes (indicated by variable names in lowercase) yields:

pj =
n∑
i

δijpij , δij =
PijXij

PjXj
(A-5)

In other words, the percentage change in the price of the CES aggregate (A-1), pj , is the weighted

sum of the changes in the prices charged by all the suppliers of j, including j itself, using as weights

the value shares of the consumption of each good in the total consumption of coarse grains in j.

Maximization of (A-1) subject to the money constraint implied by the budgetary allocation to

coarse grains (Ej) yields bilateral demands of the form:

Xij =
Bσ
ijEjP

−σ
ij∑n

i B
σ
ijP

1−σ
ij

(A-6)

Substituting these Marshallian or uncompensated demands in the CES aggregate (A-1) yields the

indirect utility function. Solving the indirect utility function for Ej yields the expenditure function:

E(Pij, Xj) =

(∑
i

Bσ
ijP

1−σ
ij

) 1
1−σ

Xj (A-7)

Where the first term on the right hand side is the CES price index Pj . Substituting E(Pij, Xj)

for Ej in (A-6) and using the definition of the CES price index yields the Hicksian or compensated

CES demands used in the text:

Xij = Bσ
ijXj

(
Pij
Pj

)−σ
(A-8)
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B Data description

B.1 Climate variables

The climate variables are calculated aggregating the climate data of the Climate Research Unit

(Mitchell and Jones, 2005) from the grid cell level (30 min resolution) up to the national level using

as weights the production value of each grid cell calculated using Monfreda, Ramankutty, and

Foley (2008)’s productivity data and FAO (2009) prices. These growing seasons are the contiguous

months within the growing seasons for the major growing regions (Lobell and Field, 2007). These

are July-Aug. (maize), May-Aug. (barley) and Aug. (sorghum). Besides these crops, millet, oats,

and rye are included to better match the GTAP trade category “gro.” Also for the aggregated

“gro,” with growing seasons differing across crops, the monthly climate value of each grid-cell is

weighted by the fraction of the production value corresponding to the crops grown in the grid-cell

during that month.

B.2 Shares and competition indexes

From the modeling framework, two types of shares are needed. When a given country is seen as an

exporter (which is indexed by i) the relevant share is θijt, the share of country i’s exports of coarse

grains to country j in country i’s total coarse grains output at time t. When the same country is

seen as an importer (and thus indexed by j), the needed share is δijt, the share of coarse grains

originating in country i in the total consumption of coarse grains in country j at time t. In both

cases, domestic sales are considered; thus, the first step is to obtain the shares θiit and δjjt given

by:

θiit =
PiitXiit

PitYit
, δjjt =

PjjtXjjt

PjtXjt
(A-9)

Obtaining data on prices or value terms for total output, consumption, and domestic sales

proved difficult without compromising the country and time coverage of the sample. Fortunately,

the equality of the price terms in the numerators and denominators of the shares in (A-9) allows

the obtaining of shares using quantity values, which are readily available from FAO (2009). A small

difficulty is that it would not be appropriate to add quantities of corn, sorghum, etc., to get the
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aggregated coarse grains: the empirical choice was to calculate the own-country shares using data

on maize, which for most countries, comprises the bulk of produced and traded coarse grains.

This implies that the bilateral share θijt can be decomposed in the following way:

θijt =
PijtXijt

PitXit
≡
∑

j 6=i PijtXijt

PitXit

PijtXijt∑
j 6=i PijtXijt

≡ (1− θiit)Vijt (A-10)

where:

(1− θiit) =

∑
j 6=i PijtXijt

PitXit
(A-11)

is the proportion of country i’s output that goes to foreign markets, and

Vijt =
PijtXijt∑
j 6=i PijtXijt

(A-12)

is the share of country i’s exports to country j in country i’s total coarse grains exports. The data

on Vijt comes from the GTAP database, Version 6 (Gehlhar, 2005).

Likewise, δijt can be decomposed and rewritten as follows:

δijt =
PijtXijt

PjtXjt
≡
∑

i 6=j PijtXijt

PjtXjt

PijtXijt∑
i 6=j PijtXijt

≡ (1− δjjt)Vijt (A-13)

where Vijt was defined before, and (1 − δjjt) is the proportion of country j’s consumption that

comes from overseas.

The shares θijt and δijt are used to obtain the competition indexes:

ωj =
∑n−2

j 6=(i,k) θijδkj

ωk = θikδkk

ωi = θiiδki

(A-14)

which stand for competition between country i and country k in country j’s market, in k’s market

and in country i’s market.

50



B.3 US price index of coarse grains

The US price index uses export quantity weights to combine price information obtained from USDA

(2009) on the following markets:

• Corn, No. 2, Yellow at Gulf ports, Louisiana Gulf, barge delivered IN $ per bushel

• Oats, No. 2 heavy white at Minneapolis IN $ per bushel

• Barley, No. 2 or better, feed at Market: Duluth IN $ per bushel

• Sorghum, No. 2, Yellow at Gulf ports, Louisiana Gulf, barge delivered IN $ per cwt

The period covered is 1975-2002.

B.4 Macroeconomic variables

The data on GDPs are in 2000 US$ and come from The World Bank (2009). The real exchange

rates (RERit) denominated in dollars and based on the year 2000 are constructed using consumer

price indexes The World Bank (2009), and nominal exchange rates from the Penn World Tables

(Heston, Summers, and Aten, 2006) using the formula:

RERit =
NERit

NERi,2000

CPIus,t
CPIi,t

(A-15)

C Bootstrap based bias correction for dynamic panels

This section is taken from Everaert and Pozzi (2007) and is included here only as a reference. Given

a model of the form:

yt = γyt−1 + βxt +Dη + ε = Wδ +Dη + ε (B-1)

for i = 1, ..., N (cross-sectional dimension) and t = 2, ..., T (time dimension) and where yt is the

dependent variable, xt is an explanatory variable, η are fixed effects, and εi an error term, the idea

is to get a correction of the biased vector parameter δ:

δ̂ = (W′AW)−1Ay (B-2)
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where A (...) is an indempotent transformation matrix that eliminates the individual

effects η. We know that δ̂ is a biased estimator fpr δ, i.e.

E(δ̂) =
∫ ∞
−∞

zfδ̂(z)dz 6= δ, (B-3)

From (B-3) it is clear that δ̄ is an unbiased estimator for δ if it satisfies:

δ̂ = lim
J→∞

1
J

J∑
j=1

δ̂∗j (δ̄) (B-4)

For practical purposes, a bias-corrected estimate for δ can be obtained by searching

over the parameter space until a vector of parameters δ̂ is found that satisfies (B-4).

This search is implemented through an iterative bootstrap procedure which simulates

the distribution of the LSDV estimator when sampling from (2) with some vector of

known parameters, say δ̃. This bootstrap procedure is described in the following steps:

1. Estimate the individual effect η̃ = (T − 1)−1D′(y − Wδ̃) and the residuals ε̃ =

y −Wσ̄ −Dη̃.

2. Choose the number of bootstrap samples B, and proceed as follows in bootstrap

sample j, with j = 1, ..., B:

a. Obtain a bootstrap sample ε̃b from rescaled estimated residuals ε̃r (see MacKinnon,

2002).

b. Calculate a bootstrap sample yb = W bδ̃ + Dη̃ + ε̃b where W b = (yb−1, x) and with

initialization ybi1 = yi1. So we condition on the initial values yi1 and on x.

c. Obtain the LSDV estimator δ̃bj = (γ̃bj , β̃
b
j).

3. Calculate the mean of the LSDV estimator δ̃bj over the B bootstrap samples as

δ̃b = B−1
∑B

j=1 δ̃
b
j(δ̃).

The mean of the bootstrap distribution δ̃b can now be used to evaluate δ̃ as an estimator

for δ. From 6 we know that for δ̃ to be an unbiased estimator δ̄ for δ, the mean δ̃b of
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the bootstrap distribution δ̃ should equal the original biased LSDV estimates δ̂, i.e.

ω = δ̂ − δ̃b = 0. In order to find a parameter vector δ̃ that satisfies this condition,

we iterate over the bootstrap procedure outlined in steps 1-3 and evaluate δ̃(k), in each

iteration k, as an estimator for δ by calculating ω(k) = δ̂− δ̃b(k). If ω(k) = 0, δ̃(k) is taken

to be the unbiased estimate δ̄ for δ. If ω(k) 6= 0, δ̃(k) is updated as δ̃(k+1) = δ̃(k) + ω(k)

and we iterate over the bootstrap procedure until this condition is satisfied. As the

biased LSDV estimator δ̄ can be thought of as being our first guess for the vector of

population parameters δ, we initialize the algorithm by setting δ̃(1) = δ̂.
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