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Geography, Statistics, and Ecological Inference

Gary King
Department of Government, Harvard University

I am grateful for such thoughtful reviews
from these three distinguished geographers.
Fotheringham provides an excellent summary of
the approach offered, including how it com-
bines the two methods that have dominated
applications (and methodological analysis) for
nearly half a century—the method of bounds
(Duncan and Davis 1953) and Goodman’s (1953)
least squares regression. Since Goodman’s re-
gression is the only method of ecological inference
widely used in Geography (O’Loughlin), adding
information that is known to be true from the
method of bounds (for each observation) would
seem to have the chance to improve a lot of re-
search in this field. The other addition that EI
provides is estimates at the lowest level of geog-
raphy available, making it possible to map re-
sults, instead of giving only single summary
numbers for the entire geographic region.
Whether one considers the combined method

offered “the” solution (as some reviewers and
commentators have portrayed it), “a” solution
(as I tried to describe it), or, perhaps better and
more simply, as an improved method of ecologi-
cal inference, is not important. The point is that
more data are better, and this method incorpo-
rates more. I am gratified that all three reviewers
seem to support these basic points. In this re-
sponse, I clarify a few points, correct some mis-
understandings, and present additional evi-
dence. I conclude with some possible directions
for future research.

Ecological Inference as 
Statistical Inference

John O’Loughlin argues that “the specific
problems of geographic data analysis require a
different mode of thinking than is usually found
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in inferential statistics” (p. 595). Although I
recognize the place-space divide he is referenc-
ing here, inferential statistics should not be seen
as a threat to anyone interested in learning
about the world. It is fully general and capable of
evaluating any logically consistent statement
with observable implications. No other ap-
proach dominates it, even when only qualita-
tive information is available (King et al. 1994).
In this section, I address this point in the con-
text of ways the reviewers have characterized
the ecological inference problem.

What Is Inference?

Anselin correctly points out that the quanti-
ties of interest in ecological inference are not
observable. Although they were originally ob-
servable, these quantities have been lost in the
process of aggregation. Unfortunately, he greatly
confuses matters when he describes ecological
inference as “creat[ing] data where no data
exist” (p. 587). In fact, all problems of statistical
inference share exactly this feature.

To be specific, inference is the process of
using facts we know to learn about facts we do
not know.1 In ecological inference, the facts we
do not know are the contents of the cells in a set
of contingency tables. In forecasting, the facts
we do not know are future values of our outcome
variable. In descriptive inference, the facts we
do not know are population parameters (which
we would seek to learn using observations taken
from some type of sample). In causal inference,
the fact we do not know is the average differ-
ence between the dependent variable for a unit
(respondent, country, etc.) when a “treatment”
is applied and the same unit when a “control” is
applied, the problem being that only one value
of the dependent variable is observed for any
unit (this is known as the Fundamental Problem
of Causal Inference; see Holland 1986; King et
al. 1994).

In another context, Anselin (1988) artfully
reviews a variety of methods of making infer-
ences about spatial autocorrelation parameters.
Since no one has ever observed a spatial auto-
correlation parameter in the real world, we
could equally describe his methods as “creating
data where none exist,” being “essentially un-
verifiable” (p. 587), “observationally equiva-
lent” (p. 588) to other contradictory models,
“not a solution to the [spatial autocorrelation]

problem,” or even as estimating quantities that
may not exist. Language can be fun, but none of
this should take away from the very real contri-
bution these models make in enabling scholars
to draw inferences about unknown spatial auto-
correlation parameters from known observa-
tions of geographically coded variables. In sum,
models of ecological inference are not unique in
helping us learn about facts we do not know.
Whether this is “creating data where none exist”
is a small semantic point. Whatever language
one chooses, it applies to all types of inference.

Evaluating Model-Based Inferences

Ecological inference and most other statisti-
cal analyses in the social sciences are model-
based, meaning that inferences depend on data
as well as statistical assumptions. This means
that, Anselin’s claims notwithstanding, there
are indeed several “yardstick[s] to compare com-
peting methods” (p. 587) of ecological infer-
ence. They are the same yardsticks used for vir-
tually all statistical methods. For starters, we can
determine whether estimates have attractive
statistical properties when the assumptions are
correct. Anselin seems to apply this approach
when he concludes that “there is no overarching
statistical framework to encompass these meth-
ods (such as asymptotics, or normal distribution
finite samples)” (p. 588). He also recognizes, in a
slightly different context, that the method “is
firmly grounded in modern statistical concepts
familiar in the literatures dealing with Bayesian
hierarchical modeling, . . .” (p. 590). In fact,
the latter statement, which is correct, can be
used to correct the first, which is not. That is,
Bayesian models like EI have the full range of
desirable statistical properties. For example, ag-
gregate estimates conditional on the assumptions
are admissible, statistically consistent, asymptot-
ically normal, and asymptotically efficient (the
same as, say, logistic regression or probit). The
extensive Monte Carlo evidence presented in
the book demonstrates that estimates are ap-
proximately unbiased and efficient in samples as
small as twenty-five (something not true of lo-
gistic regression, for example). The model can
also be justified by appeal to likelihood theory,
since priors are not necessary.

A second way to evaluate model-based infer-
ence is to evaluate the properties of the esti-
mators when the assumptions are wrong. As
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O’Loughlin and Fotheringham point out, my
book contains a forty-page section about what
can go wrong with these assumptions. The con-
clusion from this exploration by me and others
is that the method is more robust to incorrect
assumptions than Goodman’s regression, but
the degree of robustness is specific to the data
chosen. Sometimes including the information
from the bounds provides enormous amounts
of additional information; other times the
bounds do not add much. Fortunately, we can
often tell which situation we are in, and there is
little chance of doing worse by using additional
information.

Third, observable implications of the model
can be checked to assess the fit. Although infor-
mation is lost by the process of aggregation,
some observable implications do indeed exist
and can be used to rule out some models. It
would be nice if there were more (just as it
would be nice if there were no information lost
to aggregation), but at least there are some, and
they should be used. Indeed, the book describes,
and the software implements, many diagnostics
that take advantage of these observable implica-
tions. I think all the reviewers recognize the
value of these kinds of diagnostics, though
Anselin worries that they require “nonrigorous
visual interpretation” (p. 591). The book describes
and the software includes formal hypothesis
tests for aggregation bias (based on the co-
efficient on X in the mean function), but I do
prefer graphical diagnostics. This is in part a
matter of taste: Anselin’s view is that formal
statistical tests are preferable since the decisions
drawn are more clear-cut, and because of the
problems uncovered in the literature on cartog-
raphy and perception. Others prefer graphical
diagnostics, however, since they convey more
information, consider a larger range of observ-
able implications, and have the ability to reveal
features of the substantive problem and data
we did not realize to look for in the first place.
Of course, graphical tests are less precise and
leave more open to interpretation, and so graph-
ics and statistical tests can both be useful tools.
As a general matter, graphical tests are better
when we know less; formal statistical tests are
better when we are confident of all aspects of
the model other than the one being tested (and
are invalid otherwise). For ecological inference,
I would prefer to assume we know less, but I
would welcome any development of other for-
mal theories.

Ecological inferences involve nothing myste-
rious or even unusual from a theoretical statisti-
cal perspective. They share the same character-
istics as all other model-based inferences. What
makes ecological inference an especially hazard-
ous process is that we do not always have suffi-
cient external information to be comfortable with
the assumptions of the model. The fix, for eco-
logical inference and all other such inferences,
is to gather this information. Fortunately, geog-
raphers are in an especially good position to do so.

Consequences of Ignoring 
Spatial Autocorrelation

In my book (x 9.3.1), I found that spatial au-
tocorrelation had minimal effects on estimates
and standard errors from the model. This re-
sult was found to be “particularly interesting”
by Fotheringham (p. 585) but the method by
which I arrived at this conclusion was ques-
tioned by the other two reviewers because I
evaluated the model under a relatively simple
version of spatial autocorrelation. As a result,
O’Loughlin writes that “King’s spatial depen-
dency simulations are unconvincing.” Anselin
agrees and explains that the right Monte Carlo
experiments should include “the simultaneity
induced by multidirectionality and two-dimen-
sionality (Anselin 1988). It remains to be seen
how real spatial autocorrelation would affect the
results of EI” (p. 590).

These are reasonable criticisms, and I am
grateful for the opportunity they present to ex-
pand on the properties of EI. For this response, I
ran another Monte Carlo experiment according
to the specifications in Anselin (1988). In order
to ensure a realistic form of multidirectionality
and two-dimensionality, I used a spatial contigu-
ity matrix coded from all nations in the world
(with at least one neighbor). So as to avoid con-
founding, the data were generated so that the
other (distributional and correlational) assump-
tions of the model were satisfied. I used the same
number of simulated datasets (250) as in my
book.

The results, reported in Table 1, confirm the
conclusions from the simpler analysis presented
in my book: Spatial autocorrelation has only a
minimal effect on model estimates and standard
errors. For example, the average absolute error
of the aggregate (global) quantity of interest is
approximately zero for both the independently
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generated and spatially autocorrelated data. The
true standard deviation across the 250 simula-
tions (given in parentheses) is fairly close to the
average of the estimated standard errors from
each simulation, indicating that the aggregate
uncertainty estimates are reasonably accurate in
this case. In addition, the average error in cover-
ing the true values for the 80 percent-confidence
intervals is very small for the simulations both
with and without spatial autocorrelation.

Since information is lost in the process of ag-
gregation, using all information in the data and
adding additional qualitative, geographical, and
other external information is the only way to be
reasonably confident when making ecological
inferences. I welcome the suggestions of all three
authors about additional geographical informa-
tion we might include in the analysis to further
improve our inferences. I would welcome at-
tempts to extend the model offered to incorpo-
rate this information, along with analyses like
the one in Table 1 that verify whether or not
they make a difference. The additional evidence
offered here supports my conclusion in the book
that spatial autocorrelation has minimal effects
on other aspects of this model.

Future Directions

The time has never been better for develop-
ing improved methods of ecological inference.
More scholars from more disciplines are working
on improving and applying methods of ecologi-
cal inference than ever before. As a result, more
methodological progress has been made in the
last few years than at any time since Goodman
and Duncan-Davis were writing. The most pro-
ductive future paths will almost surely be those
that bring in the most quantitative and qualita-
tive knowledge external to the data at hand, and
it is hard to think of a discipline with more of

this contextual knowledge than geography. I en-
courage geographers to bring their skills to bear
on this important question for their own re-
search and for those in numerous other disci-
plines and nondisciplinary areas.

For example, John O’Loughlin approaches
the problem from one angle by writing that
“Only careful survey research that incorporates
specific contextual questions will resolve the po-
litical science-political geography difference of
opinion on the nature and significance of con-
text” (p. 600). I agree about the benefits of in-
cluding aggregate and contextual information
in public-opinion surveys (and have indeed ar-
gued for this position in other contexts; see King
1996), but this is only half the story. That is, sur-
vey research is a very powerful tool, but even the
best surveys will not resolve the problem alone.
For example, I doubt anyone would want to
mount a survey in present-day Germany to ask
survivors whether they voted for Hitler in the
1930s and 1940s! Indeed, even in the circum-
stances where survey responses are most likely to
be sincere, no survey includes enough respon-
dents to provide good estimates for local areas.

The other half of the story is to use survey
data to improve methods of ecological infer-
ence. There has been some other work on this
(e.g., Little and Wu 1991), but important op-
portunities remain. In particular, what surveys
are good at, in practice, is providing a good
snapshot of averages over an entire country. For-
tunately, this type of information is precisely
what we need in order to relax some key meth-
odological assumptions in making ecological in-
ferences. For example, even a relatively small
survey can greatly improve the estimation of the
five key parameters in the basic version of my
model, or the degree and direction of aggrega-
tion bias, and once we include this information,
estimating all the precinct-level parameters is
far less dependent on assumptions.

Table 1. Consequences of Spatial Autocorrelation: Monte Carlo Evidence

Aggregate-Level Precinct-level

Model Error (S.D.) Avg. S.E. Error (S.D.)

Independent .007 (.011) .014 .01 (.05)
Spatial .008 (.011) .014 .01 (.04)

Each row summarizes 250 simulations drawn from a model with areal units that are either independent or spatially autocorre-
lated, as described in the text. The aggregate-level columns report the average absolute difference between the truth and esti-
mates from the model. The precinct-level columns give the deviation from 80 percent in coverage of the 80 percent confidence
intervals (in both cases with standard deviations across simulations in parentheses).
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A second fertile area for future work is mod-
eling the special types of measurement error in
ecological data. Anselin raises one possibility
when he expresses concern about “sampling error
associated with Ti” and suggests that we model
this with binomial random variables. As it turns
out, this has been tried in the literature, in
Brown and Payne (1986) and King et al. (1999),
from which it is clear that including binomial
variation is substantively meaningless in most
realistic political geography applications. For ex-
ample, consider the variance of Ti for an aver-
age-sized electoral precinct (the smallest unit of
political geography in the U.S.). Such a pre-
cinct (with, say, 1000 people), evaluated at 0.5
probability (where the variance is largest), has a
variance of only 0.00025. Of course, this should
not be surprising: sampling error is mostly a
problem in sample surveys. Although aggregate
data has far less sampling error, many other types
of measurement error need to be modeled. For
example, it would be very useful to develop
models for errors induced when matching two
sets of data on overlapping geographies, or due
to mismatched geocoding. As is, these are dealt
with only by cartographers and data providers
and then ignored during statistical analyses. In
fact, these are critical parts of the data genera-
tion process but have not been modeled statisti-
cally in the context of ecological inference.

The reviewers’ suggestions of using geograph-
ically weighted regression, spatial econometrics,
and spatial expansion are also promising general
approaches, and useful for many specific prob-
lems, but of course they cannot be used without
modification to make inferences about individu-
als from aggregate data. In the spirit of these sug-
gestions, however, I experimented with several
extensions of the nonparametric method dis-
cussed in the present work (x 9.3.2) with kernels
defined on the basis of geographic rather than
tomographic proximity. I have no doubt that
this will help in some cases, but I could not find
a real example with political data where it no-
ticeably improved the inferences. This would
seem to be another productive avenue to follow.

Other issues worth further exploration include
methods of model selection, exible specifica-
tions, methods for continuous individual-level
variables, and explicit models of spatial autocor-
relation. Ori Rosen, Martin Tanner, and I have
been working on extensions to multiple cate-
gory variables, Philip Cross and Charles Manski
appear to be making progress on extensions to

continuous variables, and a dozen others have
written articles pushing forward other aspects of
the problem. As Fotheringham reemphasizes,
further work developing aggregation-invariant
statistics will provide additional help in avoid-
ing the Modifiable Areal Unit Problem in new
areas. To further encourage this research, I make
the following offer: Develop a better method of
ecological inference—a test, diagnostic, or other
related tool—demonstrate its value, and provide
some code, and I’ll include it in the EI and EzI,
the widely used software packages that imple-
ment these methods (available at http://GKing.
Harvard.edu).
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Notes

1. In Bayesian analysis, for example, the only two
types of quantities that exist are those that are
known or unknown. Known quantities are fixed
numbers; unknown quantities are modeled via
probable densities.

2. Precinct-level parameter estimates in EI have the
same properties as the aggregate estimates, except
of course that their posteriors do not collapse
asymptotically (for the same reason that the non-
zero variance of 2, ÿ 2, prevents the distribution
of y 5 x 2 1 2 from collapsing asymptotically in
linear regression). A related confusion is Anselin’s
claim that since EI has “2N parameters but only N
observations, estimation is clearly impossible”
(p. 589). This is an intuitive-sounding claim, but
it does not follow in ecological inference or in
other statistical models. For example, in least
squares regression, with k explanatory variables
(including the constant), there are k 1 1 parame-
ters (i.e., the 2s and ÿ 2). But from these we can
estimate any number of conditional expectations
(using fitted values from the regression). Similarly,
the basic version of EI has only five parameters,
from which we can easily estimate two (and in-
deed many more, if desired) observation-level pa-
rameters. Anselin’s misstatement is explained by
the fact that one can estimate at most, N indepen-
dent parameters from N observations, whereas
precinct-level quantities of interest in ecological
inference (and conditional expectations in least
squares regression) are not independent: in fact,
conditional on the data and one precinct-level
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parameter, the other parameter may be computed
deterministically (see King 1997: 80, Equation 5.2).
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