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SUMMARY 
A variety of evidence suggests that at least some hotspots are formed by 
quasi-cylindrical mantle plumes upwelling from deep in the mantle. We model such 
plumes in cylindrical, axisymmetric geometry with depth-dependent, Newtonian 

viscosity. Cylindrical and sheet-like, Cartesian upwellings have significantly 
different geoid and topography signatures. However, Rayleigh number-Nusselt 
number systematics in the two geometries are quite similar. The geoid anomaly and 
topographic uplift over a plume are insensitive to the viscosity of the surface layer, 
provided that it is at least 1000 times the interior viscosity. Increasing the Rayleigh 
number or including a low-viscosity asthenosphere decreases the geoid anomaly and 
the topographic uplift associated with an upwelling plume. Increasing the aspect 
ratio increases both the geoid anomaly and the topographic uplift of a plume. The 
Nusselt number is a weak function of the aspect ratio, with its maximum value 
occurring at an aspect ratio of slightly less than 1. 

Key words: convection, dynamic topography, geoid anomalies, hotspots, mantle 
plumes. 

INTRODUCTION 

Ocean hotspot swells are regions of anomalously shallow 
bathymetry and high rates of volcanism (Crough 1983; Okal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& Batiza 1987; Clague & Dalrymple 1987). The Hawaiian 
Island-Emperor Seamount chain is the archetypal example 
of such a swell. The Cape Verde Islands and the Marquesas 
Islands are other examples of mid-plate hotspot swells; 
Iceland is an example of a hotspot located at a spreading 
centre. Hotspot swells also occur on the continents, for 
example in East Africa. In total, several dozen hotspot 
tracks have been recognized on the Earth. Hotspot swells 
may also occur on other planets. Features such as Beta 
Regio and Atla Regio on Venus and volcanoes in the 
Tharsis and Elysium provinces on Mars are regions of high 
topography, high geoid, and shield volcanism that are 
believed to be hotspot-type structures (e.g., Kiefer & Hager 

* Now at: Geodynamics Branch, Code 921, Goddard Space Flight 
Center, Greenbelt, MD 20771, USA. 
t Now at: Department of Earth, Atmospheric, and Planetary 
Sciences, Massachusetts Institute of Technology, Cambridge, 
MA 02139, USA. 

1989, 1991; Schubert, Bercovici & Glatzmaier 1990). 
On Earth, hotspot swells are typically about 1500 km wide 

and are elongated in the direction of plate motion. Most 
oceanic hotspot swells have a peak topographic uplift, 
measured in areas away from volcanic shields, of about 1 km 
(Crough 1983), although the Cape Verde swell may be 
uplifted as much as 2.4 km (McNutt 1988). This peak uplift 
occurs near the initiation point of the swell and the uplift 
amplitude then decays with distance along the strike of the 
swell in proportion to the square-root of distance. There is a 
strong positive correlation between the global distribution of 
terrestrial hotspots and the longest wavelength components 
of the geoid (Crough & Jurdy 1980; Richards, Hager & 
Sleep 1988). At somewhat shorter wavelengths, individual 
hotspots also tend to be geoid highs, although the size and 
shape of these more localized geoid highs depends on how 
the long-wavelength geoid components are filtered. For 
example, Crough (1982) estimated a regional geoid anomaly 
of 8m for the Cape Verde Rise, whereas McNutt (1988) 
estimated a geoid anomaly of 12 m. A similar range in geoid 
amplitudes has been reported for the Hawaiian Swell 
(Sandwell & Poehls 1980; McNutt & Shure 1986; Richards 
et al. 1988). Although geoid anomalies of this amplitude can 
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simply reflect motion of the lithosphere over the plume. 
Conductive cooling of the thermally elevated lithosphere 
should lead to square-root of age subsidence of the swell zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 
it passes beyond the plume, in agreement with observations 
(Crough 1978; Detrick zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Crough 1978). On the other hand, 
it is not obvious why such a subsidence pattern should arise 
if a swell were supported convectively along its entire 
length. Also, the sharp bends in the trends of Pacific hotspot 
tracks would require equally sharp bends in the geometry of 
convective upwellings. On Venus, the topographic swells 
and geoid anomalies associated with features such as Beta 
Regio (US Geological Survey 1984; Bills, Kiefer & Jones 
1987) are consistent with approximately cylindrical upwell- 
ing plumes (Kiefer & Hager 1991). 

This paper focuses on numerical modelling of the 
topographic uplift, geoid anomalies, and heat flow 
associated with mantle plumes. We show how plume geoid 
and topography are influenced by the model geometry and 
by parameters such as the Rayleigh number, the variation of 
viscosity with depth, and the aspect ratio. We do not 
consider the effects of temperature-dependent rheology in 
this paper. Inclusion of such effects would significantly 
increase the required computer time, and we believe it is 
preferable to thoroughly understand simpler problems 
before considering computationally harder problems. In a 
separate paper, we show that our models can successfully 
explain both the geoid and topography of features such as 
Beta Regio and Atla Regio on Venus (Kiefer & Hager 1991; 
Kiefer 1990). 

Our models are calculated in cylindrical axisymmetric 
geometry, which distinguishes them from many existing 
studies of mantle plumes in Cartesian geometry (Parsons & 
Daly 1983; Detrick et al. 1986; Robinson et al. 1987; 
Robinson & Parsons 1988; Ceuleneer et al. 1988). As we 
show later, the choice of model geometry has a strong effect 
on calculations of topographic uplift and geoid anomalies. 
Only a few studies exist in the literature on geoid and 
topography for axisymmetric convection. Courtney & White 
(1986) calculated a limited suite of cylindrical axisymmetric 
models and compared their results with observations of the 
Cape Verde Rise. Their models were restricted to an 
isoviscous mantle with a conductive lid to simulate the 
lithosphere. Richards et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf. (1988) examined the effects of 
temperature-dependent rheology on plume-generated geoid 
and topography. They assumed a fixed temperature field 
and solved only the incompressible equations of motion. 
Bercovici, Schubert & Zebib (1988) examined geoid and 
topographic uplift for spherical axisymmetric convection, 
but restricted their study to isoviscous convection at 
Rayleigh numbers less than 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX lo', well below the range 
relevant to Earth, Venus, and Mars. Although some 
workers have begun reporting results of 3-D numerical 
mantle convection models (Houseman, 1988, 1990; Glatz- 
maier 1988; Baumgardner 1988; Bercovici, Schubert & 
Glatzmaier 1989a, b; Schubert et af. 1990; Travis, Weinstein 
& Olson 1990), we have chosen to work with 2-D models. 
By restricting our models to two dimensions, we are able to 
perform calculations at higher grid resolution than is 
currently possible for three dimensions. As a result, we are 
able to calculate well-resolved models at Rayleigh numbers 
that approach those believed to exist in the mantles of Earth 
and Venus. 

be interpreted in terms of compensation within the 
lithosphere, this does not preclude the existence of density 
anomalies deeper within the mantle. Kiefer et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. (1986), 
Robinson, Parsons & Daly (1987), and Ceuleneer et al. 
(1988) have shown that inclusion of a low-viscosity 
asthenosphere can lead to apparent compensation depths in 
convection models that are arbitrarily small. Richards et al. 
(1988) analysed the spectral content of the geoid anomalies 
associated with hotspots globally and with the Hawaiian 
Swell in particular and concluded that density anomalies are 
required at substantial depths in the mantle beneath 
hotspots in order to explain the observed spectral slope. 

It has long been recognized that convective upwellings can 
deform the boundaries of the convecting layer, producing 
surface topography, and that the density anomalies within 
the convecting layer and at the deformed boundaries will 
produce geoid anomalies (e.g., Pekeris 1935; Morgan 1965). 
Two different geometries of convective upwelling have been 
proposed as models for hotspots. Wilson (1963) and Morgan 
(1972a, b) proposed that hotspot swells and their associated 
volcanic island chains are formed by cylindrical convective 
upwellings, or mantle plumes, that rise from deep within the 
mantle. Such upwellings can form as the result of convective 
instability of a thermal boundary layer within the mantle, 
for example at the core-mantle boundary (e.g., Yuen & 
Peltier 1980; Christensen 1984; Olson, Schubert & 
Anderson 1987). Hofmann & White (1982) favoured a 
plume model in which hotspot volcanism is due to recycling 
of oceanic crust, with old subducted slabs being reheated at 
depth and ascending again as thermochemical plumes: 
McKenzie et al. (1980) and Watts et af. (1985) suggested a 
different type of convective geometry, in which hotspot 
swells form over the upwelling limbs of elongated convective 
cells. A non-convective model for hotspot volcanism 
involves magma eruption through propagating lithospheric 
cracks (Turcotte & Oxburgh 1978; Sleep 1984), but the 
geoid spectrum expected for this model is much flatter than 
observed (Richards zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1988). Also, material from the 
uppermost mantle should be emplaced in the crack, but at 
some hotspots the 3He/4He ratio (Kurz et af. 1983; Kurz, 
Meyer & Sigurdsson 1985; Kaneoka, Takaoka & Upton 
1986) is much higher than for typical upper mantle material 
(Kurz et af. 1982). On the other hand, high values of 
3He/4He are consistent with convective upwelling from 
deeper in the mantle (Kellogg & Wasserburg 1990). 

In the elongated convective upwelling model, adiabatic 
decompression should lead to partial melting and volcanism 
along the entire length of the upwelling. In fact, the 
Hawaiian Swell and some other hotspot swells have well 
defined age versus distance progressions in their volcanic 
histories (Duncan & Clague 1985), with active volcanism 
confined to one end of the swell. This is consistent with a 
cylindrical, plume-like upwelling but not with an elongated 
upwelling. On the other hand, more complex distributions 
of volcanic activity, as in the Cook-Austral chain (Okal & 
Batiza 1987) or the Easter Island 'hot line' (Bonatti et al. 
1977), could be related to elongated convective upwellings. 
Elongated upwellings are also inconsistent with the observed 
shapes of the seismic low-velocity anomalies associated with 
the Hawaiian Swell and with Iceland (Zhang & Tanimoto 
1989; Tryggvason, Husebye & Stefansson 1983). In the 
axisymmetric plume model, elongated topographic swells 
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NUMERICAL MODELLING PROCEDURES 

Finite element calculations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We use a finite element code to solve the coupled system of 
differential equations that govern mantle convection. We 
non-dimensionalize the governing equations by scaling 
distance according to the cylinder depth d ,  temperature 
according to the temperature contrast AT across the 
cylinder depth, and time according to d 2 / K ,  where K is the 
thermal difisivity. In some models, we use a flux boundary 
condition rather than a temperature boundary condition at 
the base of the convecting layer. In this case, AT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
(F + H d ) d / k ,  where F is the applied basal flux, H is the 
volumetric heating rate, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk is the thermal conductivity. 
In non-dimensional form, the governing equations are the 
incompressible continuity equation (conservation of mass), 

v - v = o ,  (1) 

conservation of momentum for an infinite Prandtl number 
fluid, 

-VP + V - t‘ + RaT6 =0, (2) 

and conservation of energy, 

s + V  VT = V2T + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp .  
at 

(3) 

In equations (1) to (3),- P is the pressure, T is the 
temperature, t is time, and k is a unit vector in the vertical 
direction. t’ is the deviatoric stress tensor: 

For axisymmetry, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzis = ria = 0. V, and V, are the radial and 
vertical components of the velocity field and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq is the 
viscosity. 

The solutions to equations (1) to (3) are controlled by two 
dimensionless parameters. One is the Rayleigh number, 
which for imposed AT is 

p g a  ATd3 

TlK 

Ra = 

where p is the density, g is the gravitational acceleration, 
and a is the thermal expansion coefficient. In models with 
an applied basal flux, the flux Rayleigh number is 

p g a ( F  + Hd)d4 
Ra, = 

V K k  

The second dimensionless parameter is the internal heating 
parameter (McKenzie, Roberts & Weiss 1974), 

Hd 

F + H d ’  
p=- 

p governs the relative strength of basal and internal heating, 
with p = 0 corresponding to heating entirely from below and 
p = 1 to purely internal heating. 

We solve the governing equations (1 to 3) using the 
cylindrical axisymmetric convection code of Daly & Raefsky 
(1985), which solves the incompressible equations of motion 
using a penalty function formulation (Hughes 1987, section 
4.4) and bilinear shape functions. The energy equation is 
solved using a streamline-upwind Petrov-Galerkin formula- 
tion (Brooks & Hughes 1982), which is more accurate than 
either the Galerkin method or normal upwind methods for 
advection-dominated flows. The code steps between 
solutions of the energy equation and of the equation of 
motion. For a given temperature field, it calculates the 
corresponding velocity field, which is then used to update 
the temperature equation for the next time-step. The code 
uses an implicit time-stepping routine which allows us to 
obtain steady-state solutions efficiently (Hughes 1987). We 
discuss time-dependent solutions in a subsequent section. 
Daly & Raefsky (1985) reported a number of comparisons 
between their code results and laboratory convection 
experiments and analytic boundary layer models. These 
comparisons provide a good check on the accuracy of the 
code. 

We assume zero vertical velocity and free-slip (zero shear 
stress) on the top and bottom of the cylinder, 

- 0. v,=-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAav, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
az 

Similarly, along the axis and outer rim, 

We apply an insulating sidewall condition along the axis and 
outer rim of the cylinder, 

-= aT 0. 
ar 

In models which are heated entirely from below, we assume 
constant temperature boundaries, T = 0 on top and T = 1 
on the bottom. For models that are partially heated from 
within, we still apply T = 0 on the top and impose a flux 
boundary condition on the bottom, 

dT F 

az - k ’  

where F is the specified basal heat flux and k is the thermal 
conductivity. 

Scaling parameters 

The various scaling parameters used to dimensionalize our 
calculations are identified in Table 1, along with the specific 
numerical values assumed. Comments on several of these 
numerical values are in order. We assume that the 
convective layer thickness, d ,  is that for whole mantle 
convection. For Earth, this is 2900 km, or somewhat less if 
part of the D” layer is a chemically distinct region. Because 
Venus is about 300km smaller in radius than Earth, its 
mantle is probably 100 to 150km thinner than Earth’s 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
0
8
/1

/1
9
8
/6

6
1
7
0
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Geoid anomalies and dynamic topography zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA201 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, is the density of the surface layer. For continental 
hotspots, ps is the same as p, because both crust and 
mantle material are uplifted. For oceanic hotspots, 
ps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= pm - pw. where pw is the density of sea water. In the 
results given in this paper, we have set p, = p, - pw; thus, 
for continental hotspots it is necessary to multiply our 
results for topography by (p ,  - pw) /p ,  = 0.70. We use a 
similar procedure to calculate the topography at the base of 
the convecting layer. It is necessary to include the effects of 
density anomalies due to topography at this interface in 
calculating geoid anomalies. 

The geoid is a surface of constant gravitational potential, 
U ,  where U is given by the solution to Poisson's equation, 
V z U =  -4nGp. G is the gravitational constant. Our sign 
convention is chosen to give positive potentials for positive 
density anomalies. In cylindrical geometry, Poisson's 
equation is solved by expanding the lateral variations of 
temperature and of topography in terms of a series of Bessel 
functions, Jo(knr), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, is a horizontal wavenumber. 
The external potential varies vertically as exp ( - knz) ,  and 
at the surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( z  = 0), the potential is given by 

Table 1. Scaling parameters. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pm Mantle Density 3.3 gm ~ r n - ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g Gravitational Acceleration 980 cm s-* (Eanh) 

887 cm s - ~  (Venus) 

a Thermal Expansion Coefficient 3.10-5 O C 1  

AT Vemcal Temperature Contrast loo0 OC 

d Depth of Convecting Layer 2800 km 

K Thermal Diffusivity cm2 sec-' 

k Thermal Conductivity 3 W K-' 

mantle (Basaltic Volcanism Study Project 1981, pp. 
682-685). We have therefore adopted d = 2800 km for use 
in our models. The value of A T  given in Table 1 does not 
represent the entire temperature change that occurs 
vertically through the mantle. For example, because we 
assume incompressible convection, it is inappropriate to 
include temperature differences associated with the adiaba- 
tic gradient or with phase transitions. For the purpose of 
modeling geoid anomalies, topographic uplift, and heat flow 
anomalies, the more critical parameter is the horizontal 
variations of temperature within the mantle. As we discuss 
in more detail later, our choice of AT leads to a temperature 
contrast between the plume centre and the mean mantle of 
about 30O0C, a value which agrees with several lines of 
observational constraints. 

Several of the parameters in Table 1, particularly p, a; 
and K ,  are expected to vary with depth (Anderson 1987). In 
our models, these parameters are assumed to have constant 
values. Because the geophysical observables of interest are 
most sensitive to the upper part of the plume's thermal 
structure, we have chosen values of these parameters which 
are representative of upper mantle conditions. Viscosity is 
also expected to be a strong function of depth. As discussed 
in a later section, we explicitly include this in our models. 

Calculation of topographic uplift and geoid anomalies 

Having obtained the temperature and velocity fields for a 
given convection model, we calculate the topographic uplift, 
geoid anomaly, and heat flow for comparison with 
observations. We calculate topographic uplift from the total 
vertical normal stress, 

(9) 

For each element in the top two rows of elements, we 
calculate an element average value of z,, which is assigned 
to the element centre. We convert the non-dimensional t i z  
to dimensional units by multiplying by qoK/d2 ,  or 
equivalently by pgcu A T d / R a .  Here qo is the viscosity used 
to normalize the depth-dependent viscosity profile (see Fig. 
8). We project these values to the surface nodes using a 
modified version of the pressure-smoothing algorithm of 
Hughes (1987, Section 4.4.1) and then calculate the 
horizontally averaged value of the vertical stress at the 
surface, fz,. 

The surface topography, 6 h ,  is given by 

J d k n r )  
6U = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 n G x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 I p s  6h: + (p ,  - p,) 6hz exp ( - k,d)  

T"(z )  exp ( - k,z)  dz 

Here, 6h: and 6h: are the nth harmonics of the surface 
topography and the core-mantle boundary topography, and 
T"( z )  is the nth harmonic of the temperature field at depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z. The sum begins at n = 1, so that 611 represents the 
anomalous potential. For models with 33 horizontal nodes, 
the Nyquist condition shows that we can resolve harmonics 
up to n = 16. Based on the shape of the potential spectrum, 
essentially all of the power in the spectrum occurs for 
n 5 10. In order to determine the values of the harmonic 
coefficients and the depth integral in equation (11) as 
accurately as possible, we use the finite element shape 
functions to interpolate the temperature fields onto 
129 x 129 node meshes. The integrations are then done 
using a mid-point rule. Interpolating the solutions onto finer 
grids does not significantly alter the integration results. 

Although equation (11) formally includes the core 
density, pc,  in practice it is not necessary to specify a value 
for pc. This is because, by analogy with equation (lo), the 
density contrast and the topographic uplift are inversely 
related, with a constant product, namely 

Similarly, the value of the potential does not depend on 
whether or not an ocean is present. 

The geoid anomaly is related to the potential by the 
expression 6 N  = 6U/g .  Equation (11) shows that there are 
three contributions to the geoid anomaly. The first two 
terms are the contributions of the mass anomalies created by 
dynamic topography on the top and bottom surfaces of the 
convecting layer. The third term represents the contnbu- 
tions of mass anomalies due to thermal expansion of 
material within the convecting layer. For a convective 
upwelling, the first two contributions are positive and the 
third contribution is negative. The sign of the potential, and 
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202 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
hence of the geoid anomaly, depends on the relative balance 
of the three terms. For the models described in this paper, 
the topographic mass anomalies dominate, so that the geoid 
is positive over the upwellings. 

In the work that follows, we present both geoid anomalies 
and topography in dimensional form, based on the scaling 
parameters of Table 1. In Table 2, we tabulate the peak 
values of the geoid and topography (along the axis of the 
cylinder) in non-dimensional form. Table 2 also identifies 
the model parameters for each calculation. The non- 
dimensional geoid and topography, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 N ’  and ah’, are related 
to the dimensional values, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 N  and 6h,  by 

W. S.  Kiefer and B. H .  Hager 

6” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGp,a ATd2 

g 
6 N  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Model parameters and results. 

Model# zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARa L y ‘1, 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
I5 
16 
17 
18 
19 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m 
21 
22 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

16 0 o.oo00 1 
16 0 o.oo00 1 

16 0 0 . W  I 
10s 0 0 . W  1 

105 o 0.oo00 I 
105 o o . ~  I 

3*104 0 0 . W  1 

6.104 0 0 . W  1 

3.10’ 0 0 . W  1 

16 1 0.0469 1 
16 2 0.0469 1 
16 3 0.0469 1 
16 4 0.0469 I 
16 5 0.0469 1 

los 3 0.0313 1 
10’ 3 0.0391 1 
16 3 0.0547 1 

16 3 0.0469 1 
3.10’ 3 0.0469 1 

lo6 3 0.0469 1 
I 6  3 0.0469 0.1 

3.16 3 0.0469 0.1 
lo6 3 0.0469 0.1 

3.16 3 0.0469 0.01 
lo6 3 0.0469 0.01 
I 6  3 0 . W 9  I 

16 3 0.0469 1 
16 3 0.0469 1 
I 6  3 0.0469 1 
I 6  3 0.0469 1 

106 0 0 . W  1 

I6 3 0.0222 1 

104 3 0.0469 I 

I 6  3 0.0469 0.01 

‘1Um 

1 
I 
I 
1 
1 

1 
1 
I 
I 
1 

1 
1 
1 

I 
1 
1 

1 
1 

1 

I 
1 
I 
1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
I 
I 
1 
1 

1 

AR 

1 
1 

I 
I 
1 

1 
1 

I 
I 
1 
1 
1 
1 
1 
1 
I 
1 
1 
1 

1 
1 

1 

1 
1 

I 
1 
I 
1 
1 
0.5 
0.65 
0.8 
1.2 
1 A 

Grid G T Nu 

17 0.0708 
33 0.0722 
65 0.0733 
17 0.0795 
33 0.0757 
65 0.0742 
33 0.1oOo 
33 0.0855 
65 0.0557 
65 0.0399 
33 0.0762 
33 0.0667 
33 0.0608 
33 0.0588 
33 0.0578 
33 0.0633 
33 0.0624 

33 0.0616 
33 0.06oO 
33 0.1019 
65 0.0609 
65 0.0447 
65 0.0312 
65 0.0259 
65 0.0192 
65 0.0138 
65 0.0057 
65 0.0054 
65 0.0047 
33 0.0194 
33 0.0315 
33 0.0442 
33 0.0765 
33 0.0916 

0.1289 
0. I374 
0.1365 
0.1449 
0.1414 
0.1373 
0.1570 
0.1485 
0.1214 
0.1038 
0.1317 
0.1046 
0.0911 
0.0873 
0.0856 
0.0991 
0.0962 
0.0935 
0.0889 
0.1185 
0.0895 
0.0754 
0.0615 
0.0627 
0.0519 
0.0417 
0.0264 
0.0377 
0.0299 
0.0430 
0.0598 
0.0747 
0.1048 
0.1166 

11.24 
10.62 
10.42 
11.24 
10.62 
10.42 
7.03 
8.94 

14.85 
21.73 
8.86 
6.28 
5.40 
5.24 
5.u) 
6.09 
5.w 
5.61 
5.21 
2.99 
5.29 
6.66 
8.45 
6.49 
7.95 
9.73 
7.51 
9.08 

11.22 
5.06 
5.30 
5.41 
5.30 
5.17 

Notes on Table 2 

(1 )  L and 7 are parameters that define the variation of viscosity with depth in the upper 

boundary layer. See Equation 14. Note that where L-+ in Table 2, the boundary 

layer viscosity is independent of depth. 

(2) qa and qUm are the viscosities of the asthenosphere and transidon zone layers, nor- 

malized relative to a lower mantle viscosity of 1.0. The asthenosphere IS defined to be 

the region between non-dimensional depths z=0.0469 and z=O.1406. The oansition 

zone is defined as the region between z=0.1406 and zS.2578. See Figure 8. 

(3) AR is the aspect ratio of the convection cell, defined as the distance fmm upwel- 

ling to downwelling divided by the cell depth. 

(4) Grid indicates the number of nodes used in each direction. Models 1-3 u x d  a grid 

that is uniformly space in both dimensions. The remaining models used a grid with 

uniform radial spacing and non-uniform vemcal spacing, with high vertical resolution 

in the upper boundary layer and lower vertical resolution elsewhere, as described in 

the text. 

(5)  G and T are the nondimensional geoid anomaly and topographic uplift along the 

axis of the plume, defined by Equations 12a and 12b. 

and 

Calculation of Nusselt number and heat flow anomalies 

In addition to the geoid and topography of a plume, we are 
also interested in the heat transported by plumes. The 
non-dimensional heat flux is simply 

d T  
= V,T - -. 

dZ 

Following Ho-Liu, Hager & Raefsky (1987), for each 
element, we calculate q at the 2 x 2 Gaussian quadrature 
points and average the four values to determine an average 
flux for the element. The volume-averaged flux, q ,  is 
determined by integrating over all elements. For steady 
convection with temperature boundary conditions, is equal 
to the Nusselt number, Nu. 

The surface heat flow anomaly is calculated by taking q(r )  

along the surface and removing the average q in order to 
determine the anomalous heat flow. The surface heat flow 
anomaly is converted to dimensional form by multiplying by 
k A T l d ,  where k is the thermal conductivity. 

Grid resolution requirements 

It is important to demonstrate that the numerical grids used 
have fine-enough spacing to resolve the non-linear physics. 
We have made an extensive series of resolution checks on 
our plume models using two different grid types. In one, the 
nodes are uniformly spaced in both the radial and vertical 
directions. In the second, nodes in the upper boundary layer 
are four times closer together than for a uniform grid with 
the same number of nodes. On a 33 X 33 node grid, there 
are eight rows of elements between non-dimensional heights 
0.9375 and 1.0, with each row separated by 0.0078. The 
remaining 24 rows of elements are uniformly distributed 
vertically throughout the remainder of the cylinder, with a 
vertical spacing of 0.0391. The nodes are uniformly spaced 
at 0.03125 in the radial direction. We have also used 
non-uniform grids with 1 7 ~  17 and 65 ~ 6 5  nodes. The 
spacing between nodes on these grids are multiples of two of 
the 33 x 33 node non-uniform grid described here. 

A representative set of results are shown in Fig. 1, which 
examines the effect of varying grid resolution for a constant 
viscosity, Ra = los cylinder. This figure presents the geoid 
anomaly and topographic uplift at the centre of the 
upwelling and the Nusselt number calculated on grids with 
17 x 17, 33 x 33, and 65 X 65 nodes. These quantities are 
shown as a percentage deviation from the results for the 
65 x 65 uniform grid model. The symbols represent 
calculated values, which are connected with line segments to 
illustrate the trends in the data. The triangles and solid lines 
represent results for the uniform grid models. The squares 
and dashed lines represent results for the non-uniform grid 
models. For Nu (Fig. lc), the two grid types give results that 
differ negligibly. Based on the behaviour of the curves in 
Fig. 1, the model results would change by only a small 
amount if carried out on grids larger than 65 x 65 nodes. 
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Geoid anomalies and dynamic topography 203 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
calculations, our resolution tests suggest that our highest 
resolution results may be as much as 5 to 10 per cent higher 
than their true values at infinite grid resolution. 

The other area of problematic resolution is the heat flow 
anomaly in models with constant viscosity. Because the 
thermal boundary layer is thinnest along the axis of the 
upwelling, resolution of the boundary layer structure is 
poorest there. For constant viscosity models, even our 
highest resolution grids do not accurately determine the heat 
flow anomaly near the plume axis, so we do not show heat 
flow anomaly results for this case. However, because the 
Nusselt number is defined in terms of a volume-averaged 
heat flux, we are able zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto determine Nu accurately in these 
models, as shown in Fig. l(c). In most of the models 
described in this paper, we use a high-viscosity near-surface 
layer to mimic to some extent the effects of temperature- 
dependent viscosity. The inclusion of such a layer thickens 
the thermal boundary layer, so that our heat flow anomaly 
results are well-resolved in these cases. 

I 

Number of Nodes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

20 30 40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 60 70 

Number of Nodes 

10 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

1 1 . 1 . 1 1 1 . 1 . 1  

Number of Nodes 

20 30 40 50 60 70 

Figure 1. Convergence behaviour versus grid size for models 1-6. 
Triangles are calculated results for uniform grid, squares are 
calculated results for non-uniform grid. Results are expressed as 
percentage differences relative to highest resolution uniform grid 
case. (a) Peak geoid anomaly. (b) Peak topographic uplift. 
(c) Nusselt number. 

Somewhat surprisingly, geoid and topography convergence 
as a function of grid size is more rapid on the uniform grid 
than on the non-uniform grid, but both grids converge to the 
same value. In spite of the more rapid convergence of the 
uniform grid, in this study we have generally made use of 
the non-uniform grid described above because as discussed 
later, the high vertical resolution (11-22 km) in the upper 
boundary layer of the non-uniform grid enables us to mimic 
the variation of viscosity with depth expected in a thermal 
boundary layer. 

In the results that follow, our calculations are carried out 
on 33 x 33 and 65 X 65 grids. All models with Ra > lo5 were 
calculated using both grids to check convergence. Models 
with lower Rayleigh numbers were calculated on the 33 x 33 
grid, with a selected set of these models checked for 
convergence using the 65 x 65 grid. Based on the resolution 
tests in Fig. 1 and our other resolution tests, we believe that 
the calculations reported here are typically within f2 to 3 
per cent of their converged values. Exceptions to this are 
the geoid anomalies calculated for models which include an 
asthenosphere (Viscosity Model 3 of Fig. 8). For these zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

BASAL VERSUS INTERNAL HEATING 

In terrestrial planets, mantle convection is driven by a 
combination of basal heating, due to heat flowing from the 
core into the mantle, and internal heating, due to 
radioactive decay and secular cooling of the mantle. In most 
of the models presented in this paper, we assume an internal 
heating parameter of p = 0, and as noted earlier, we scale 
our models with a value of d appropriate for whole mantle 
convection. We recognize that for whole mantle convection 
models of the Earth, p must be closer to 1 than to 0. 
Nevertheless, we believe that our models provide a 
reasonable model for the thermal structure of mantle 
plumes. There are two key questions that must be 
considered. Do plumes form if p is close to unity? If plumes 
do form, what is the temperature contrast between a plume 
and the surrounding mantle? We address these issues in 
turn. 

Do plumes form in a mostly internally heated mantle? 

The value of p is important because it determines whether 
or not plumes can form. As shown by Parmentier, Turcotte 
& Torrance (1975), if p = 1, no  bottom boundary layer 
forms and consequently no plume can form. This is true 
whether or not viscosity is assumed to be temperature- 
dependent. However, if there is some basal heating ( p  < l), 
then a bottom boundary layer and rising plume can form. 
An example is shown in Fig. 2, where we show a calculation 
at p = 0.8 and Ra, = lo6. A rising plume is clearly visible in 
this model. For comparison, Fig. 3 shows a model with 
p =o. 

In spherical geometry, the heat flow out of the core is 
concentrated into an area that is only about 25 per cent of 
the area of the Earth's surface. Thus, for a given p, a model 
calculated in spherical geometry will have a basal heat flux 
per unit area which is nearly 4 times that of our cylindrical 
models. Thus, plumes at large p in spherical geometry will 
be even more pronounced than indicated in Fig. 2. We 
therefore believe that our assumption of p = 0 does not 
significantly affect our results for the near-surface structure 
of plumes. 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATemperature contours for an internally heated model at 
Ra, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= lo6 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0.8. The central axis of the cylinder is at the left, 
and the contour interval is 0.1 of the temperature variation in the 
cylinder. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 3. Isotherms for bottom-headed convection at Ra = 10' 
(model number 21). AT is the temperature contrast across the 
depth of the cylinder. 6T is the temperature contrast across the 
lower thermal boundary layer and the rising plume. The contour 
interval is 0.1. 

The temperature contrast between plumes and the 
surrounding mantle 

The second key issue is the magnitude of the temperature 
contrast, 8 T ,  that exists between the plume and the 
surrounding mantle. (Note that 6T is different from AT, 
which is the variation of temperature with depth. See Fig. 
3.) The value of 6T is important because the geoid anomaly, 
topographic uplift, and heat flow anomaly all scale linearly 
with the size of this temperature contrast. 

For AT = 1000 "C, Fig. 3 shows that 6 T  is about 300 "C. 
Several lines of evidence suggest that this is a reasonable 
estimate of the temperature contrast between plumes and 
normal mantle. Wyllie (1988) showed that 6 T  of up to 
300 "C is consistent with the petrology of Hawaiian basalts. 
McKenzie & Bickle (1988) estimated that an average 
temperature contrast of about 200 "C is necessary to produce 
the excess crustal thickness observed at hotspots such as 
Iceland; the peak contrast is presumably somewhat larger. 

Richards et al. (1988) developed a kinematic model of the 
interaction between the radial outflow of material away 
from a plume and the flow driven by plate motions. They 
concluded that the stagnation line between the two flow 
regimes is consistent with the observed shape of the 

southeastern end of the Hawaiian swell, provided that 6T is 
around 300°C. Sleep (1990) has recently favoured a similar 
value. In principle, observations of heat flow anomalies can 
also help constrain 8 T .  Our choice of thermal scaling 
predicts heat flow anomalies that are consistent with 
observations, although as discussed in greater detail later, 
our heat flow results do not tightly constrain the allowed 
value of 6 T. 

For Venus, the lack of a magnetic field has been 
interpreted as indicating that F for Venus might be a only 50 
to 80 per cent of the heat flux from Earth's core (Stevenson, 
Spohn & Schubert 1983). Jeanloz & Richter (1979) used a 
boundary layer analysis and showed that the temperature 
contrast across a boundary layer should be proportional to 
p7'. As Fig. 3 shows, 6T is essentially the same as the 
vertical temperature contrast across the lower thermal 
boundary layer. As a result, 6 T  for Venus should be similar 
to, but somewhat less than, its value on Earth. Given the 
uncertainties in the precise value of 6 T ,  we use the same 
thermal scaling for both planets. 

CYLINDRICAL VERSUS CARTESIAN 
GEOMETRY 

Figure 4 illustrates the differences between the thermal 
structures for Cartesian convection (Fig. 4a) and cylindrical 
axisymmetric convection (Fig. 4b). Both models are 
isoviscous, heated from below, and have Ra = 16. In the 
Cartesian model, the upwellings and downwellings exhibit a 
180" rotation symmetry. In the cylindrical model, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 Distance I 
a 

1 

4 
.c 
9 
2 

0 

h 

Figure 4. Isotherms for isoviscous, bottom-heated convection at 
Ra = lo5. The contour interval is 0.1 (a) Cartesian geometry. 
(b) Cylindrical axisymmetric geometry (model 3). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
0
8
/1

/1
9
8
/6

6
1
7
0
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Geoid anomalies and dynamic topography zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA205 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
properties of the two geometries are quite similar. For 
isoviscous cylindrical models, we find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 10.42 at 
Ra = lo5 (Table 2, Model 6) and Nu = 21.73 at Ra = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo6 
(Table 2, Model 10). Blankenbach et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf. (1989) recently 
published a benchmark comparison of 10 different Cartesian 
convection codes. They gave consensus estimates of 
Nu = 10.53 and 21.97 for the cases Ra = lo5 and lo6 in 
Cartesian geometry. These results differ from our cylindrical 
results by only about 1 per cent. Nusselt numbers for 
axisymmetric, isoviscous convection were previously pub- 
lished by Jones, Moore & Weiss (1976). They reported 
Nu = 8.96 at Ra = 6.57 x lo4, while we find Nu = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8.94 at 
Ra = 6 x lo4 (Model 8). 

temperature contrast across the upwelling plume is much 
larger than the temperature contrast across the downwell- 
ing. Because of the cylindrical geometry, the upwelling flow 
along the axis of the cylinder is confined to a narrow area, 
whereas the downwelling return flow on the outer rim 
occurs in a larger total area. The upwelling must therefore 
be more vigorous than the downwelling, producing an 
asymmetric thermal structure. 

In Fig. 5, we compare the geoid anomalies and 
topography as a function of distance from the upwelling for 
the two thermal models of Fig. 4. The Cartesian results 
(dashed lines) are calculated in a manner analogous to that 
for the cylindrical models, except that the wavenumber 
expansion is in terms of cos(k,n) rather than Bessel 
functions. The Cartesian results are approximately sym- 
metric about the centre plane of the convection cell, with 
the lows over the downwellings having 10 to 20 per cent 
larger amplitudes than the highs over the upwellings. The 
symmetry about the mid-plane is not exact because the 
thermal anomalies have a rotation symmetry rather than a 
reflection symmetry. In contrast, the results for the 
cylindrical model (solid lines) are noticeably asymmetric, 
with the amplitudes of the highs being 2.5 to 3 times the 
amplitudes of the lows, reflecting the asymmetry in the 
underlying thermal structure. The amplitudes of the geoid 
and topography highs in the cylindrical case are about twice 
as large as in the Cartesian case, reflecting the more 
concentrated upwelling flow in the cylindrical case. Fig. 5 
shows the importance of choosing the correct geometry 
when modelling the geoid and topography of mantle 
plumes. Given the evidence cited above for quasi-cylindrical 
upwellings under hotspots such as Hawaii, we believe that 
our models are more realistic than Cartesian geometry 
plume models. 

Although the geoid and topography are distinctly different 
for cylindrical and Cartesian geometries, the heat transport zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n 
I 1 I I I I I I 8 1 .  

500 1000 1500 2000 2500 

Distance (km) 

Distance (km) 

Figure 5. Profiles of geophysical observables versus distance from 
plume centre for cylindrical geometry (solid lines, model 3) and 
Cartesian geometry (dashed lines). (a) Geoid anomaly. 
(b) Topographic uplift. 

PARAMETRIZATION OF VISCOSITY IN  
THE UPPER THERMAL BOUNDARY 
LAYER 

Because viscosity is a strong function of temperature, it 
varies by many orders of magnitude between the surface of 
a planet and the convecting interior. Although our models 
do not include temperature-dependent rheology, we have 
attempted to mimic the effect of temperature on boundary 
layer rheology by imposing a vertical variation of the form 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ S Y ,  (14) r l (z)  = f O u - z l Y )  

defining a viscosity profile normalized relative to a mantle 
viscosity of 1. The viscosity is loL at the surface (z = 0) and 
decreases exponentially with depth, reaching 77 = 1 at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = y ,  
the base of the high-viscosity zone. Our parametrization of 
q(z)  within the mantle ( z  5 y )  is discussed in the next 
section. In practice, equation (14) is approximated by a 
sequence of 3 to 7 step function changes in q,  depending on 
the choice of y .  For our usual choices of L = 3  and 
y = 0.0469, six steps are used, with the viscosity changing by 
a factor of fi at each step. 

We investigate the effects of various values of L and y via 
two sets of model calculations. In the first, illustrated in Fig. 
6, we vary L and hold y fixed at a non-dimensional value of 
0.0469, corresponding to a dimensional depth of 130 km. In 
these calculations, the viscosity within the mantle (below the 
upper boundary layer) is independent of depth and the 
Rayleigh number is lo5. We vary L between 0, 
corresponding to a constant viscosity model, and 5, 
corresponding to a surface viscosity that is lo5 times the 
interior viscosity. 

The effects that variations in L have on the geoid 
anomaly, topography, and Nusselt number are shown in 
Figs 6(a), (b), and (c). The geoid anomaly and topography 
are evaluated at the plume axis. Each of the curves in Fig. 6 
drops sharply as the surface viscosity increases from 1 to lo3 
and changes much more gradually with further increases in 
surface viscosity. The sharp drop in Nu with increasing L is 
easy to understand, because increasing the surface viscosity 
forces a thickening of the upper boundary layer and a 
decrease in surface velocity and leads to smaller heat flows. 
The decrease in geoid and topography with increasing L 
may seem more surprising, because a high-viscosity surface 
layer enhances the coupling between the convecting layer 
and the surface, which would lead to larger topographic 
uplifts and geoid anomalies. A no-slip top boundary 
condition would have a similar effect (Richards & Hager 
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Figure 6. Effects of varying surface viscosity, shown normalized 
relative to the mantle viscosity. Lid thickness is 130 km 
(y=0.0469). Models 5 and 11-15. (a) Peak geoid anomaly. 
(b) Peak topographic uplift. (c) Nusselt number. 

1984). However, this coupling effect is more than offset by 
changes in the thermal structure that are induced by changes 
in L.  The horizontal variations in temperature within the 
mantle are much larger in isoviscous models (Fig. 4b) than 
in models that include a high-viscosity surface layer (Fig. 3). 
The larger temperature contrasts in the isoviscous case lead 
to the larger geoid and topography shown in Figs 6(a) and 

In a second series of model calculations, we hold the 
surface viscosity fixed using L = 3 and vary y over the range 
0.0234 to 0.0547, corresponding to dimensional lid 
thicknesses of 65 to 150 km. The effects of varying zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy over 
this range are shown in Fig. 7, which shows how geoid 
anomaly, topography, and Nusselt number vary with y .  
Over the range of lid thicknesses investigated, geoid and 
topography vary by only 5 to 10 per cent; Nu varies by 15 
per cent. 

In the work that follows, we adopt L = 3  (surface 
viscosity = lo3) and y = 0.0469 (lid thickness = 130 km) as 
the parameters that define the lid viscosity in our models. 
Although the viscosity in the boundary layer of real planets 
clearly vanes by much more than the 3 orders of magnitude 
assumed here, the results of Fig. 6 suggest that results 
obtained using a viscosity contrast of lo3 will not differ 
significantly from models with much larger viscosity 

(b). 

Lid Thickness (km) 

Lid Thickness (krn) 

8.5 I 

80 80 100 120 140 180 

Lid Thickness (km) 

Figure 7. Effects of varying high-viscosity lid thickness. Surface 
viscosity = lo3 ( L  = 3). Models 13 and 16-19. Triangles are model 
results, solid lines are least-squares best fit lines. (a) Peak geoid 
anomaly. (b) Peak topographic uplift. (c) Nusselt number. 

contrasts. Our nominal lid thickness of 130 km is 
comparable to the lithospheric thickness in the old parts of 
oceanic plates. Several of the hotspots of greatest interest, 
such as Hawaii, Cape Verde, and Bermuda, are located on 
oceanic lithosphere of age 90Myr or greater. Of course, 
some other hotspots, such as Iceland and the Azores, are 
located on spreading centres, where the lithosphere is thin. 
On Venus, the high surface temperature implies that the 
boundary layer thickness should be somewhat less than on 
Earth. Kaula & Phillips (1981) estimated a thermal 
boundary layer thickness of slightly less than 100 km for 
Venus. Fig. 7 shows that the difference between lid 
thicknesses of 100 and 130 km is slight for both the geoid 
and the topography. In recent years, a number of numerical 
models have used a conductive lid, in which both the 
vertical and horizontal velocity components are set to zero, 
as a means of simulating the thermal boundary layer 
structure (Courtney & White 1986; Detrick et al. 1986; 
Robinson et al. 1987; Ceuleneer et al. 1988). Our models, in 
which the viscosity varies continuously with depth, should 
be somewhat more realistic than models in which there is a 
discrete change between conduction and convection, but the 
difference between the two approaches is likely to be small. 
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the lower mantle. Model 3 is similar to the preferred Earth 
model of Hager zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Richards (1989) and Hager & Clayton 
(1989), although Hager and colleagues prefer an astheno- 
sphere viscosity that is a factor of 3 less than in model 3. 

In models in which viscosity vanes with depth, one must 
define a viscosity for determining the Rayleigh number. We 
use the lower mantle viscosity to parametrize Ra because 
the lower mantle layer always occupies at least zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA75 per cent 
of our model cylinder. Robinson et al. (1987) and Ceuleneer 
et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnl. (1988) used a similar procedure in their calculations. 
An alternative parametrization would be to vertically 
average the viscosity in some way. 

Figure 9 shows profiles of geoid anomaly and topography 
for our three viscosity models at Ra = lo6. The results for 
viscosity model 1 are shown in solid lines, viscosity model 2 
results are in dashed lines, and viscosity model 3 results are 
in dot-dashed lines. These models correspond to models 23, 
26, and 29 of Table 2. The presence of a low-viscosity 
asthenosphere reduces the efficiency with which deep 
convective stresses are able to couple with the surface. 
Thus, viscosity model 3 produces a weaker topographic 
uplift than is produced by the other models. As shown in 
Fig. 9(b), the peak topography is 7.4 km for viscosity model 
1 and 3.6 km for viscosity model 3. 

The geoid anomaly depends on contributions both from 
the mass anomalies at the uplifted surface and on thermally 
induced density anomalies within the convecting mantle. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs 
Fig. 10 shows, changing the viscosity model at fixed Ra has 
some effect on the thermal structure. The most pronounced 
effect is in the region of the asthenosphere. In this region, 
the plume is significantly narrower than in models without a 
low-viscosity zone. As noted by Richards et al. (1988), when 
a hot parcel of material enters the low-viscosity zone, its 
velocity increases, so conservation of energy requires that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

EFFECTS OF VARIATION IN MANTLE 
VISCOSITY WITH DEPTH 

The effects of depth variations of viscosity on convective 
geoid anomalies and topography have been widely recognized 
(Morgan 1965; Richards & Hager 1984; Ricard, Fleitout & 
Froidevaux 1984; Kiefer et al. 1986; Robinson et al. 1987; 
Richards et al. 1988; Robinson & Parsons 1988; Ceuleneer et 
al. 1988; Hager & Clayton 1989; Hager & Richards 1989). 
Within the mantles of silicate planets, the viscosity may vary 
continuously with depth due to the effects of pressure on 
rheology. The viscosity may also undergo discrete jumps at 
phase changes. In this paper, we consider the effects of 
three layers of constznt viscosity. The transition depths 
between the layers are at non-dimensional depths of 
z = 0.141 and z = 0.258, corresponding to dimensional 
depths of 400 and 700 km. This choice of parametrization 
was made both because it provides a convenient way of 
parsimoniously parametrizing q ( z )  and also because it 
enables a straightforward comparison with results obtained 
by Hager & Clayton (1989) and Hager & Richards (1989) on 
the depth variation of mantle viscosity on Earth. In the 
following discussion, we refer to the layer between 130 and 
400km as the asthenosphere, the layer between 400 and 
700 km as the transition zone, and the layer below zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA700 km as 
the lower mantle. 

Figure 8 shows the three standard viscosity models used in 
this study. The viscosity profiles are all normalized relative 
to the lower mantle viscosity. All three models have a 
high-viscosity lid defined by the parameters y = 0.0469 and 
L = 3, as described in the previous section. Viscosity model 
1 (Fig. 8a) has a high-viscosity lid and an isoviscous mantle. 
In viscosity model 2 (Fig. 8b), the asthenosphere and 
transition zone layers have a viscosity that is 0.1 times the 
lower mantle viscosity. In viscosity model 3 (Fig. 8c), the 
asthenosphere viscosity is 0.01 times that of the lower 
mantle and the transition zone viscosity is 0.1 times that of 

Viscosity Models 

400 

1U21cr1 loo 101 102 103 

Log Viscosity 

Figure 8. Viscosity versus depth profiles for the three standard 
viscosity models used in this study. Viscosity profiles are normalized 
relative to the lower mantle viscosity. All three models have 
high-viscosity lids defined by L = 3  and y=O.O469. (a) Viscosity 
model 1 has an isoviscous mantle. (b) Viscosity model 2 has an 
upper mantle viscosity 0.1 times the lower mantle viscosity. 
(c) Viscosity model 3 includes an asthenosphere with viscosity 0.01 
times the lower mantle viscosity. 

-:-- - - - -. - -- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 500 1000 1500 2000 2500 

Distance (krn) 

Distance (km) 

Figure 9. Profiles versus distance from plume centre for viscosity 
model 1 (solid lines, model 23). viscosity model 2 (dashed lines, 
model 26), and viscosity model 3 (dot-dashed lines, model 29). 
Ra = lo6. (a) Geoid anomaly. (b) Topographic uplift. 
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Distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(km) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 

Fire zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10. Isotherms as a function of viscosity model at Ra = lo6. 
The contour interval is 0.1. (a) Viscosity model 1 (model 23). 
(b) Viscosity model 3 (model 29). 

the plume become narrower. Also, in models with a 
low-viscosity zone (Fig. lob), the near-surface outflow of 
material away from the plume is confined to the 
low-viscosity layer, whereas in models without an 
asthenosphere (Fig. lOa), the outflow occurs over a broader 
depth range. The decreased positive mass anomaly at the 
uplifted surface in models with an asthenosphere is more 
important than the decreased negative mass anomalies 
within the mantle, so that inclusion of a low-viscosity zone 
leads to significant decreases in the geoid anomaly. As 
shown in Fig. 9(a), the peak geoid anomaly decreases from 
165 m for viscosity model 1 to only 25 m for viscosity model 
3. If the asthenosphere viscosity were decreased below 0.01, 
the additional decrease in topographic uplift could lead to a 
negative geoid over the upwelling. In the Equatorial 
Highlands of Venus, the large amplitudes of the geoid 
anomalies (70 to 90m, Bills et al. 1987) and topography (4 
to 5 km, US Geological Survey 1984) suggest the lack of a 
low-viscosity asthenosphere (Kiefer & Hager 1991), a result 
that is consistent with earlier admittance spectrum modelling 
(Kiefer et al. 1986). 

EFFECTS OF VARIATION IN RAYLEIGH 
NUMBER 

In Figs 11 and 12, we examine how varying the Rayleigh 
numbers affects the geoid, topographic uplift, and heat flow 
associated with a mantle plume. Based on estimates of the 
Earth’s lower mantle viscosity of 6 X 10’’ to Poise 

F 0 500 1000 1500 2000 2500 

Distance (km) 

Figure 11. Profiles versus distance from plume centre for Ra = 16 
(solid lines, model 27), Ra = 3 x 10’ (dashed lines, model 28), and 
Ra = lo6 (dot-dash lines, model 29). Viscosity model 3. (a) Geoid 
anomaly. (b) Topographic uplift. 

(Nakada & Lambeck 1989; Hager 1991) and the other 
parameters of Table 1, the Earth’s Rayleigh number should 
be about 2-3 X lo6. We have only calculated models up tQ 
Ra = lo6, but the power-law relationships derived below can 
be used to estimate geoid and topography amplitudes at 
higher Ra. 

Figure 11 shows profiles of geoid and topography for 
Ra = lo5 (solid line), Ra = 3 x lo5 (dashed line), and 
Ra = lo6 (dot-dashed line). The results are for viscosity 
model 3 (Models 27,28, and 29 of Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2). Both the geoid 
anomaly and the topographic uplift are decreasing functions 
of Ra. Using the scale parameters of Table 1, the peak 
geoid anomaly over the upwelling decreases from 30m at 
Ra = lo5 to 25 m at Ra = lo6. As shown in Fig. 12(a), the 
geoid anomalies of other viscosity models are much more 
sensitive to variations in Ra. The peak topographic uplift 
over the upwelling also decreases in amplitude, from 5.6 km 
at Ra = lo5 to 3.6 km at Ra = lo6. 

In dimensionalking the calculations shown in Fig. 11, we 
have held the quantity pga h T d 3 / ~  fixed, so that increasing 
Ra is equivalent to decreasing 9 .  The topographic uplift 
then is a decreasing function of Ra. The causes of the 
decrease in topographic uplift with increasing Ra are readily 
understood. The surface topography produced by mantle 
convection receives contributions both from thermal 
anomalies in the near-surface thermal boundary layer and 
from thermal anomalies in the upwelling and downwelling 
limbs of the convection cell. With increasing Ra, the 
upwellings, downwellings, and thermal boundary layers all 
become narrower. (Compare Figs 3 and 10a.) Density 
anomalies within the thermal boundary layer produce 
topography in a manner that is essentially equivalent to 
Pratt compensation, so that as the boundary layer is 
thinned, the amount of topographic uplift that it can support 
is decreased. The narrowing of the upwellings and 
downwellings with increasing Ra implies that in the spectral 
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E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Log Rayleigh Number 
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Log Rayleigh Number 
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I L 1 0' 
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Log Rayleigh Number 

-re U. The lines are power-law fits to model results as discussed in the text. Triangles denote constant viscosity models (models 6-10), 
squares are viscosity model 1 (models 20-23), pentagons are viscosity model 2 (models 24-26), and stars are viscosity model 3 (models 27-29). 
(a) Log Rayleigh number versus log geoid. (b) Log Ra versus log topography. (c) Log Ra versus log Nusselt number. (d) Log Ra versus log 
heat flow anomaly. 

domain, there is a decrease in power at long wavelengths, 
accompanied by an increase in power at short wavelengths. 
Short wavelengths do not couple as efficiently to the surface 
as longer wavelengths do, and hence they produce less 
topographic uplift. Together, these two effects produce the 
observed decrease in topographic uplift with increasing Ra.  
The decreasing topography and narrower boundary layers 
also imply a decreasing geoid with increasing Ra.  

In contrast, Davies (1986) increased Ra by increasing AT, 
which implies that the topographic uplift increases with 
increasing Ra. Although controlling the value of Ra by 
varying the value of AT is a fluid dynamically acceptable 
choice, it produces misleading results when applied to real 
planets. Because viscosity is a strong function of 
temperature, small increases in AT will lead to large 

decreases in r]. Thus, we prefer to hold AT constant and 
vary Ra by varying 9 .  

In Cartesian geometry, it is well known that if the 
Rayleigh number is high enough that well developed 
boundary layers form, then the Nusselt number can be 
written as a power-law function of Ra.  A similar 
relationship between Ra and Nu also exists in cylindrical 
geometry, and relationships also exist between Ra and the 
geoid, the topography, and the peak heat flow. In Fig. 12, 
we show the relationships between Ra and the other 
quantities, plotted as log-log figures, so that a power-law 
relationship follows a straight line. The triangles are results 
for constant viscosity, the squares are for viscosity model 1, 
the pentagons for viscosity model 2, and the stars for 
viscosity model 3. In each case, the lines represent 
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Table 3. Power-law parameters. 

Gwid Topography 
a b a b  

Constant Viscosity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8.7.103 -0.269 66 -0.121 

Viscosity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAModel 1 9.1.103 -0.290 72 -0.164 

Viscosity Model 2 3.?103 -0.273 62 -0.182 

Viscosity Model 3 8.1.101 -0.084 51 -0.192 

Nusselt Number Heat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFlow 

a b a b  

Constant Viscosity 0.27 0.319 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--- --- 

Viscosity Model 1 0.51 0.203 0.22 0.258 

Viscosity Model 2 0.86 0.176 1.06 0.147 

Viscosity Model 3 1.01 0.174 4.13 0.050 

least-squares best fitting lines, calculated using only points 
with Ra zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 lo5. For the constant viscosity model, the derived 
power laws also provide a good fit to model results with Ra 
as low as Ra = 3 X lo4. For viscosity model 1, the results for 
Ra = lo4 begin to deviate from the power-law relationship, 
reflecting the absence of well-developed boundary layers at 
this relatively low Ra. Table 3 shows the derived power-law 
parameters, expressed in terms of f(Ra) = a(Ra)b, where a 
and b are constants. The geoid, topography, and heat flow 
results refer to the peak values along the axis of the 
upwelling, dimensionalized (Table 1) in units of metres 
(geoid), kilometres (topographic uplift), and mW m-2 (heat 
flow). 

Figure 12(a) shows that the geoid anomalies for viscosity 
model 3 are a much weaker function of Ra than is observed 
for the other viscosity models. We find a power-law 
exponent of only b = - 0.084 for viscosity model 3, whereas 
the other viscosity models have exponents in the range 
-0.27 to -0.29. There is also some suggestion of curvature 
in the Ra-geoid relationship for viscosity model 3, but we 
cannot fully define this on the basis of only 3 model points. 
In the Cartesian geometry results of Robinson & Parsons 
(1988, Fig. lo), the geoid anomaly also appears to be a 
weaker function of Ra in models with a low-viscosity layer 
than in models without a low-viscosity layer. However, this 
flattening of the Ra-geoid relationship does not appear to 
be as strong in their work as it is in our results. A 
quantitative comparison cannot be made because they did 
not tabulate power-law parameters for their results. 

We noted earlier that for our constant viscosity models, 
our values for Nu agree closely with those observed in 
Cartesian geometry. Consequently, the power-law para- 
meters for the two geometries are also quite similar. For 
example, Ho-Liu et al. (1987) gave b =0.326 for the 
isoviscous Cartesian case. Using the same volume averaging 
technique, we find b = 0.319 for our isoviscous cylindrical 
models. 

Although all of the models reported in this paper use a 
free-slip top boundary, the models with a high-viscosity lid 
have very low flow velocities at the top surface and behave 
as if the top surface were nearly rigid. In Cartesian 
geometry, both analytic and numerical studies of convection 

with rigid boundaries show that the power-law exponent in 
the Ra-Nu relationship is about 0.2 (Roberts 1979; 
Mitrovica & Jarvis 1987). Our high-viscosity lid models 
produce similar results, with b in the range 0.17 to 0.20. For 
a given lower mantle viscosity, viscosity model 3 has a 
smaller vertically averaged viscosity than the other two 
viscosity models. Consequently, at a given Ra, viscosity 
model 3 has a higher Nu than the other two viscosity models 
(Fig. 12c). 

The heat flow anomaly results for the three models with 
high-viscosity lids show vastly different slopes as a function 
of Ra. The three viscosity models give virtually the same 
heat flow at Ra = lo6. If projected to higher Ra,  viscosity 
model 1 would predict a larger peak heat flow than the other 
models. Given that the overall heat flow is highest for 
viscosity model 3, it is surprising that viscosity model 1 could 
ever have a higher peak heat flow than viscosity model 3. 
Our models use an imposed high-viscosity lid of fixed 
thickness, whereas in the temperature-dependent viscosity 
case, the high-viscosity layer would be thinner near the 
plume axis than elsewhere. This should lead to an increased 
heat flow anomaly near the plume axis in the temperature- 
dependent viscosity case. The flat slope of the heat flow-Ra 
relationship for viscosity model 3 may be related to our use 
of the same fixed lid thickness at varying Ra. If this 
explanation is correct, then the curves for viscosity models 1 
and 2 are also likely to flatten out with further increases in 
Ra. Although the results shown in Fig. 12(d) for Ra = lo6 
are consistent with at least some observations of hotspot 
heat flow anomalies (e.g., Von Herzen et al. 1982; Detrick 
er al. 1986), because of the difficulties outlined above, we do 
not attempt a detailed comparison between our heat flow 
results and observations. 

EFFECTS OF VARIATION IN ASPECT 
RATIO 

Until now, we have assumed an aspect ratio of 1, consistent 
with the experimental results of Nataf & Richter (1982). On 
the other hand, Christensen & Yuen (1988) numerically 
studied a 2-D Cartesian box of aspect ratio 12. The 
individual convection cells that developed within the larger 
box typically had an aspect ratio of about 1.5, with some 
variation about the mean. Judging from the spacing between 
hotspots, an average aspect ratio for terrestrial mantle 
plumes is about 0.5, although there is likely to be some 
variation about this value. For example, relatively isolated 
and vigorous plumes such as Hawaii may have ‘feeding 
zones’ in the lower thermal boundary layer that are larger 
than normal, implying aspect ratios that are also larger than 
average. Assuming whole mantle convection, our aspect 
ratio 1 models predict swell widths that are consistent with 
the observed widths of Beta Regio and other highland 
regions on Venus (Kiefer & Hager 1991). It is not clear 
what causes plume swells to be nearly twice as broad on 
Venus as they are on Earth. In this section, we examine how 
varying the aspect ratio over the range 0.5 to 1.4 affects a 
plume’s structure. 

Figure 13 illustrates how varying the aspect ratio affects 
the thermal structure of a plume. Fig. 13(a) shows a 
cylindrical model with a high-viscosity lid (viscosity model 
l) ,  Ra = lo5, and an aspect ratio of 1.4. In comparison with 
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

b o  Distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.4 

FEyre 13. Isotherms for bottom heated convection at Ra zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAId and 
aspect ratio 1.4. The contour interval is 0.1. (a) Cylindrical 
geometry (model 34). (b) Cartesian geometry. 

a similar model of aspect ratio 1.0 (Fig. 3), the upwelling 
plume in Fig. 13(a) is significantly broadened. This 
broadening is necessary to transport the additional heat 
introduced at the base of the cylinder when the aspect ratio 
is increased. A similar broadening is also observed with 
increasing aspect ratio for isoviscous cylindrical models. Fig. 
13(b) shows an isoviscous Cartesian model with Ra = lo5 
and aspect ratio 1.4. Figs 4(a) and 13(b) show that very little 
broadening of the upwellings and downwellings occurs in the 
large aspect ratio Cartesian case. In cylindrical geometry, 
the basal area and the amount of heat a plume must 
transport increases as the square of the aspect ratio, whereas 
in Cartesian geometry, the basal area is only a linear 
function of the aspect ratio. This difference qualitatively 
accounts for the greater plume broadening in the cylindrical 
case. 

Figure 14 shows how varying the aspect ratio affects the 
geoid anomaly, topographic uplift, and Nusselt number for 
cylindrical geometry plumes. The models shown in Fig. 14 
have Ra = lo5, use viscosity model 1, and vary the aspect 
ratio. The geoid anomaly and topographic uplifts refer to 
the peak values on the axis of the cylinder, while the Nusselt 
number is a volume-average. As shown in Figs 14(a) and 
(b), both the geoid and the topography are approximately 
linear functions of the aspect ratio. The solid lines are 
least-squares best fits and the triangles are model results. 

v 

W 
0 100 

0.4 0.6 0.8 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.2 1.4 

Aspect Ratio 

E= 0.4 0.6 0.8 1 1.2 1.4 

Aspect Ratio 
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5.5 - = 
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c, 
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5 
0.4 0.6 0.8 1 1.2 1.4 

Aspect Ratio 

Figure 14. Effects of varying aspect ratio. Triangles are results for 
models 13 and 30-34. The lines in panels (a) and (b) are 
least-squares best fit straight lines to the model results, as discussed 
in the text. (a) Geoid anomaly at plume centre. (b) Topographic 
uplift at plume centre. (c) Volume-averaged Nusselt number. 

These fits can be expressed as 

1.3A - 0.3 
6N 

dN1 
-= 

and 

- 0.89 A + 0.07. 
ah 

ah 1 

_- 

In equation (15a), 6 N  is the geoid anomaly, SN, is the geoid 
anomaly at aspect ratio 1.0, and A is the aspect ratio. 
Similarly, in equation (15b), 6h is the topographic uplift and 
ah, is the topographic uplift at aspect ratio 1.0. There is 
some concave downward curvature in the results shown in 
Fig. 14(b), although the linear correlation is good 
(rZ=0.99). The broadening of the plume with increasing 
aspect ratio implies an increased amount of long-wavelength 
loading. Because long wavelengths couple more efficiently 
to the surface than short wavelengths, this implies an 
increasing topographic uplift with increasing aspect ratio. 
The increased mass anomalies due to the higher topography 
leads to a larger geoid. On Mars, the Tharsis and Elysium 
swells have different horizontal scales, suggesting that their 
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underlying convective upwellings have different aspect 
ratios. An effect similar to that shown in Figs 14(a) and (b) 
may contribute to the different geoid anomalies and 
topographic elevations in these regions (Kiefer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Hager 
1989). 

Figure 14(c) shows that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANu has a maximum value between 
aspect ratios 0.8 and 1.0, The total variation in Nu is less 
than 7 per cent over the range of aspect ratios studied. In 
Cartesian geometry, both Hansen & Ebel (1984) and Olson 
(1987) found Nu maxima at aspect ratios slightly less than 
1.0. 

TIME-DEPENDENT CONVECTION 

Our finite element calculations use an implicit time-stepping 
routine, which allows us to use time-steps that are 
significantly larger than allowed by the Courant condition in 
explicit time-stepping routines. As a result, we can obtain 
steady-state solutions efficiently whenever such solutions 
exist. We have found steady solutions for all of the models 
listed in Table 2, where steady-state is defined as no change 
in either the heat flux or kinetic energy of the flow at the 
level of 1 part in lo5 for 100 or more time steps. However, 
use of large time-steps with an implicit technique may 
produce an apparently steady solution that would actually 
be time-dependent if calculated using the Courant condition 
time-step. We have therefore examined several of our 
models using the Courant time-step and running the 
calculation for several over-turn times to determine if the 
solutions are truly steady-state. 

Several parameters are believed to affect the development 
of time-dependent convection. Jarvis (1984) suggested that 
high Rayleigh numbers favour time-dependent convection. 
Ceuleneer et al. (1988) found that pronounced contrasts 
between upper and lower mantle viscosities also favours the 
development of time-dependence. Based on these con- 
siderations, we tested Model 29 for possible time- 
dependence. This model uses Ra = lo6 and viscosity model 3 
(asthenosphere viscosity = 0.01 X lower mantle viscosity). 
When calculated on a 65 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ 6 5  grid using a Courant 
time-step, this model is weakly time-dependent. Specifically, 
we observe the formation of instabilities in the upper 
thermal boundary layer that detach from the top boundary 
and descend along the outer side wall as discrete blobs. The 
upwelling plume, in contrast, appears to be steady. Over the 
course of several over-turn times, we observed variations in 
the peak geoid and peak topographic uplift of 3 to 4 per cent 
and variations of 2 per cent in the volume-averaged Nusselt 
number. Because of the relatively weak time-dependence 
observed for this model, we have not tested our other 
Ra = lo6 models for time-dependence. At higher values of 
Ra, however, it seems possible that all three of our standard 
viscosity models will become time-dependent. Inclusion of 
temperature-dependent rheology might also enhance the 
development of time-dependent flow. 

Several recent studies have shown that large aspect ratios 
can lead to time-dependent convective flow (Christensen 
1987; Hansen & Ebel 1988; Weinstein, Olson & Yuen 
1989). We tested our model 34 for possible time- 
dependence. This model was calculated on a 33 X 33 grid. It 
has Ra = lo5 and an aspect ratio of 1.4 and uses viscosity 
model 1. When calculated for 1000 Courant time-steps, we 

find no evidence for time-dependent behaviour in this 
model. 

CONCLUSIONS 

Observations of geoid anomalies, topographic uplift, and 
the distribution of volcanism suggest that at least some 
terrestrial hotspots, including several of the most prominent 
ones, and some highland features on Venus are due to 
convective upwellings that extend from deep in the mantle 
to the surface and have an approximately cylindrical 
geometry. We have modelled mantle plumes using 
cylindrical, axisymmetric geometry and depth-dependent 
viscosity. Our models do not include the effects of spherical 
geometry or temperature-dependent viscosity, although 
both effects deserve consideration in future studies. Most 
previous numerical models of mantle plumes have used a 
sheet-like, 2-D Cartesian upwelling. We find, however, that 
sheet-like and cylindrical upwellings produce significantly 
different geoid and topography signatures. The geoid 
anomaly and topography uplift are relatively insensitive to 
the details of the rheology of thermal lithosphere, provided 
that the surface layer has a viscosity that is at least loo0 
times the interior viscosity. Increasing the Rayleigh number 
or including a low-viscosity asthenosphere decreases the 
geoid anomaly and topographic uplift associated with 
plumes, while increasing the aspect ratio increases both the 
geoid and topography. Detailed applications of our model 
results to observations of highland swells on Venus are 
presented by Kiefer & Hager (1991). 
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