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Geoid Anomalies in a Dynamic Earth 

MARK A. RICHARDS AND ]]RADFORD H. HAGER 

Seismological Laboratory, California Institute of Technology, Pasadena 

In order to obtain a dynamically consistent relationship between the geoid and the earth's response to 
internal buoyancy forces, we have calculated potential and surface deformation Love numbers for inter- 
nal loading. These quantities depend on the depth and harmonic degree of loading. They can be 
integrated as Green functions to obtain the dynamic response due to an arbitrary distribution of internal 
density contrasts. Spherically symmetric, self-gravitating flow models are constructed for a variety of 
radial Newtonian viscosity variations and flow configurations including both whole mantle and layered 
convection. We demonstrate that boundary deformation due to internal loading reaches its equilibrium 
value on the same time scale as postglacial rebound, much less than the time scale for significant change 
in the convective flow pattern, by calculating relaxation times for a series of spherically symmetric 
viscous earth models. For uniform mantle viscosity the geoid signature due to boundary deformations is 
larger than that due to internal loads, resulting in net negative geoid anomalies for positive density 
contrasts. Geoid anomalies from intermediate-wavelength density contrasts are amplified by up to an 
order of magnitude. Geoid anomalies are primarily the result of density contrasts in the interior of 
convecting layers; density contrasts near layer boundaries are almost completely compensated. Layered 
mantle convection results in smaller geoid anomalies than mantle-wide flow for a given density contrast. 
Viscosity stratification leads to more complicated spectral signatures. Because of the sensitivity of the 
dynamic response functions to model parameters, forward models for the geoid can be used to combine 
several sources of geophysical data (e.g., subducted slab locations, seismic velocity anomalies, surface 
topography) to constrain better the structure and viscosity of the mantle. 

INTRODUCTION 

The relationship between large-scale geoid anomalies and 

thermally driven flow in the earth's mantle was discussed 

almost 50 years ago by Pekeris [1935]. He showed that the 

gravitatio•nal effect of the surface deformation caused by the 
flow is opposite in sign and comparable in magnitude to that 
of the driving density contrast. Consequently, in a viscous 

earth the net gravity or geoid anomaly is also dependent in 

both sign and magnitude upon the dynamics of the mantle. 
This represents a complete departure from the result for a 

rigid or elastic earth in which positive internal density con- 

trasts are always associated with positive gravitational anom- 
alies. 

Studies of postglacial rebound [e.g., Haskell, 1935; Cathles, 

1975] as well as the very existence of plate motions show that 

the mantle responds to stresses applied over geologic time 
scales by slow creeping flow. Therefore any interpretation of 

long-wavelength geoid anomalies should include the dynam- 
ical effects first described by Pekeris [i935]. These effects, par- 
ticularly boundary deformation caused by flow, have been in- 
vestigated by Morgan [1965], McKenzie [1977], and Parsons 

and Daly [1983] for intermediate-wavelength features using 

two-dimensional models with uniform mantle viscosity. Run- 
corn [1964, 1967] addressed the relationship between long- 
wavelength gravity anomalies and the flow field in a self- 
gravitating, uniform viscous sphere. Each of these studies 

showed that the deformation of boundaries, especially the 
upper surface, has a major effect upon the net gravity or geoid 
anomaly arising from a density contrast at depth. Moreover, 
the effects of viscosity stratification and layered convection in 

the mantle Can significantly alter the calculated relationship 
between geoid elevations and driving density contrasts [Rich- 

ards and Hager, I98 I; Ricard et al., 1983]. 
in this PaPer, we develop and discuss several dynamical 
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models and their implications for geoid interpretation. The 
aim is to provide qua•ntitative relationships between density 
contrasts within the earth and other geophysical observables, 
including boundary topography, as well as the geoid. At the 

present time we cannot solve the full proble m of thermal con- 
vection for a given model to determine these dynamical re- 
lationships for the Whole syste• (see McKenzie [1977] for 
tWo-dimensional numerical exampleS). Since both the temper- 
ature structure of the mantle and the temperature dependence 

of the density and viscosity of mantle minerals are unknown, 

and since even the geometry of the convective circulation is 

not known (i.e., whole mantle versus layered convection), a 
simpler and more direct approach is desirable. If the thermal 

density anomaly is treated simply as a "load," the resulting 
surface deformati øn and geoid anomaly can b e determined by 
solving only the equilibrium equations for a viscous earth. 

The standard characterization of the earth's response to 
tidal loading in terms of Love numbers [Love, 1911' Munk 

and MacDonald, 1960] suggests a useful way to characterize 
dynamic response functions. Love numbers for internal load- 

ing of the earth are obtained by normalizing residual geoid 
anomalies and boundary deformations by the gravitational 

potential of the driving load. We obtain these quantities as 

functions of the depth and harmonic degree of the load, thus 
yielding Love numbers that are equivalent to Green functions. 

A major question currently is whether chemical stratifi- 
cation of the mantle, associated with the 670-km seismic dis- 

continuity, presents a barrier to vertical flow and divides the 

mantle into separately convecting layers. In order to address 

this issue our flow models include not only radial viscosity 
variations but also the possibility of either mantle-wide or 

chemically stratified flow in the mantle as illustrated in Figure 
1. Both the geoid and boundary deformation response fUnc- 

tions (Love numbers) show a strong model dependence. For 

example, for mantle-wide flow, positive driving density con- 
trasts cause net negative geoid anomalies for uniform mantle 

viscosity, since the negative anomaly caused by upper surface 

deformation overwhelms the geoid anomaly due to the density 
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Fig. 1. Illustrations of flow models for spherical earth calcula- 
tions (l = 3). (a) Whole mantle flow. (b) Flow with a chemical barrier 
at the 670-km discontinuity. Plus and minus signs indicate positive 
and negative density contrasts. The dashed lines are reference bound- 
aries, and the solid lines represent the displaced boundaries. Stream- 
lines indicate the sense of flow. 

contrast itselfi However, net positive geoid anomalies are ob- 

tained for a channel of sufficiently low viscosity in the upper 
mantle. This occurs because low upper mantle viscosity re- 

duces the deformation of the upper surface. The core-mantle 

boundary deformation increases but has less effect upon the 

geoid because of its great depth. As shown in Figure lb, the 

layered flow case introduces much more complicated behav- 

ior. It is precisely this strong model dependence that makes 

these models useful in geodynamics. The observed spectral 

and loading-depth dependence of these response functions can 

be used to discriminate among various proposed models for 

mantle structure and rheology. 

Although observations of satellite orbits provided the 

means for determining the lower-order harmonics of the geo- 

potential over two decades ago [Kaula, 1963a; Guier, 1963], 

subsequent efforts tdibterpret the long-wavelength geoid have 
been largely unsucc6ssful. Some correlations with tectonic fea- 
tures have been suggested [e.g., Kaula, 1972], notably a gener- 

al correspondence between subduction zones and geoid highs. 
Chase [1979] and Crough and Jurdy [1980] demonstrated a 

remarkable correlation between the spatial distribution of hot 

spots and the nonhydrostatic second harmonic geoid. Hager 

[this issue] has shown that the fourth through ninth geoid 
harmonics are strongly correlated with the seismicity-inferred 

presence of subducting slabs, thus yielding quantitative esti- 

mates over a definite spectral range for the dynamic response 

functions which are the subject of this paper. Additionally, 
recent seismological determinations of lateral variations in 

seismic velocities [e.g., Nakanishi and Anderson, 1982; Dzie- 

wonski, this issue; Clayton and Comer, 1983] provide another 

powerful constraint on geoid interpretation, and a large 

amount of information on crustal thickness, topography, and 
density have yet to be considered in relation to the geoid. It is 

therefore resonable to expect increasingly accurate and useful 

observations of the earth's density anomalies and effective 
boundary deformations. Cast in the form of dynamic response 

functions as discussed in this paper, these data provide means 

for discriminating among various dynamic models for the 
mantle. 

MODELING CONSIDERATIONS 

Quantitative models for the geoid derive from constitutive 

laws, equations of motion and material continuity, and 

boundary conditions. It is impossible at the present time to 

specify fully the earth's theology or to solve all these equations 

exactly. We must make various approximations and assump- 
tions in developing mathematical models; in doing so we try 

to include the important physical effects while avoiding unnec- 

essary complication in the method of solution. In this section 

we discuss our assumptions concerning mantle rheology and 

flow, boundary conditions, and the thermal driving forces in- 

volved. Boundary deformation is afforded a detailed treatment 

in a separate section. 

Rheology and Flow 

The selection of appropriate models for the mechanical be- 

havior of the lithosphere, mantle, and core depends upon both 

the time and length scales involved. Here we are interested in 

length scales for which lithospheric strength is negligible, 

roughly defining what is meant by "long-wavelength" geoid 
anomalies, and time scales of the order of those required for 

substantial changes in the convective flow pattern in the 

mantle. As we show below, this implies harmonic degrees I less 

than 40 (wavelengths greater than 1000 km). If mantle flow is 

reflected in plate motions, the mantle flow pattern is stable for 

times far in excess of 1 m.y., which we take as a characteristic 
time scale. The core is inviscid for the time scales of interest 

here; it may also be assumed to be in a state of hydrostatic 

equilibrium. 

The lithosphere presents several problems, including those 

of finite elastic strength and of lateral variations in theological 

properties, density, and thickness. For loads of wavelength 

greater than about 1000 km the elastic strength of the litho- 

sphere is negligible [McKenzie and Bowin, 1976; Watts, 1978] 

so that surface loads are supported by buoyancy and the re- 

sulting flow in the mantle. The lithosphere is essentially trans- 

parent to long-wavelength normal tractions from flow in the 
mantle. 

Lateral variations in theological properties of the litho- 

sphere are responsible for the plate tectonic style of convection 

in the earth's mantle. The plates move as distinct units with 

respect to each other and effectively form a rigid lid for any 

sublithospheric small-scale convection which may exist. Plate 

boundaries, on the other hand, are relatively weak, allowing 

the plates themselves to participate in mantle convection 

[Hager and O'Connell, 1981]. This lateral heterogeneity of the 

effective viscosity of the lithosphere allows density contrasts in 

the interior to excite significant toroidal flow [Hager and 

O'Connell, 1978] not just the poloidal tT0•v which would result 

from a mantle with spherically symmetric viscosity structure. 

The choice of boundary conditions at the surface is not 

obvious, and the analytical technique we use here does not 
account for lateral viscosity variations. We argue that the me- 

chanical effect of the lithosphere on small-scale flow beneath 
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plate interiors can be represented by a no-slip boundary con- 

dition at the earth's surface. Flow involving the plates them- 

selves is probably best approximated by a free-slip boundary 

condition. We present calculations for both cases and find that 

the results are similar. This suggests that a more complicated 

boundary condition that would better represent the effects of 

lithospheric plates would also be similar. 

The effect on the geoid of lateral variations in lithospheric 

thickness and density has been discussed by Chase and 

McNutt [1982] and Hager [1983]. These variations are pri- 

marily the result of variations in crustal thickness and in the 

age of the lithosphere. Since they are close to the surface, they 

are generally well compensated, and their effect on the geoid is 
small (less than 20 m out of a total geoid variation of greater 

than 200 m). However, their effect on topography is large. If 

surface deformation and the geoid are to be used concurrently 

to obtain sublithospheric density contrasts as discussed below, 

corrections must be made to compensate for the topographic 

effects of large density contrasts within the lithosphere. 

The appropriate constitutive law (or laws) for modeling flow 
in the mantle cannot be determined with certainty at the pres- 

ent time. Possible creep mechanisms for deformation of 

mantle minerals include dislocation climb [Weertman, 1968], 

which implies a nonlinear rheology, and grain boundary diffu- 

sion or superplasticity [Twiss, 1976; Ashby and Verrall, 1977; 

Berckhemer et al., 1979], which at low stress levels might result 

in a linear relationship between shear stress and strain rate. 

Mathematical tractability has led most researchers to employ 

linear rheology, either Maxwellian or Newtonian, in modeling 
flow in the mantle. Furthermore, for some surface loading 

problems in which the magnitude of shear stress decays with 

depth, nonlinear rheology might not be distinguishable from 

layered linear rheology; the lower stress levels found at depth 

would correspond to higher apparent viscosity. Estimates for 

effective mantle viscosity have been obtained for a variety of 

loading problems. Values given for average mantle viscosity 

have generally been of the order of 1021 Pa s (1022 P) [O'Con- 
nell, 1971; Cathies, 1975; Peltier, 1976; Yuen et al., 1982], 

although estimates as small as 10 •8 Pa s have been obtained 
for the upper mantle or asthenosphere for loads of smaller 
scale [Passey, 1981]. Although viscoelastic models have found 

application to shorter-term problems such as glacial loading 
and unloading [Clark et al., 1978; Wu and Peltier, 1982], the 

time scales of 1 m.y. or greater of interest here are in excess of 

Maxwell times for the mantle so we ignore elastic effects. For 

the purpose of exploring the basic physics of internal loading 

Chemical stratification and multilayer convection have been 

suggested [e.g., Anderson, 1979] to explain the major seismic 

discontinuity at 670 km. Geochemical budget models as well 

as the lack of seismicity below 670 km are thought by some to 

suggest that upper mantle flow does not penetrate this level 

[Jacobsen and Wasserburg, 1980; Richter and McKenzie, 

1981]. We include the effect of such a boundary in our investi- 

gation in order to understand how geoid and geodetic data 

might be used to test the chemical layer hypothesis. A chemi- 

cal discontinuity is modeled by setting the (steady state) verti- 

cal velocity to zero at the boundary; horizontal velocities and 
normal and shear tractions are continuous. This results in a 

two-layer, shear-coupled, antisymmetric flow system, as illus- 

trated in Figure lb. Another possibility associated with both 

the 400- and 670-km discontinuities is that of an abrupt phase 

change within the mantle, which in the simplest case might be 

modeled as a spike in the compressibility curve for the mantle 

assuming that the transition is adiabatic and ignoring thermal 

effects. We have not treated this case since compressibility 

introduces nonlinearity into the field equations and makes 
solutions much more difficult to obtain. 

Driving Forces and Loads 

The relationships among loading, gravity, and deformation 

can be obtained without solving for the thermodynamics. This 

is accomplished by calculating the flow driven by arbitrary 

density contrasts at any given depth. Kernels (Love numbers) 

representing the viscous response functions so obtained can 

then be integrated over depth in accordance with any pre- 

scribed distribution of thermal density anomalies;the linearity 

of the problem (with the caveat of linear, spherically sym- 

metric viscosity) allows for superposition of solutions. Our 

method is to solve for loading due to a surface density con- 

trast at a given depth and spherical harmonic degree, thereby 

characterizing the response as a function of spatial wavelength 

and depth in the mantle. In this way we can isolate the re- 

lationships desired for geophysical observables from the ther- 

mal part of the convection problem. 

The Field Equations 

With the above qualifications and simplifications we can 

specify tractable field equations to investigate the loading 
problem for a variety of rheological and structural configura- 
tions in the mantle. The mantle will be assumed to behave as a 

self-gravitating, spherically symmetric, incompressible, New- 

tonian viscous fluid. Since the Reynold's number is very large 

problems and for mathematical simplicity, we employ New-' owing to the mantle's high viscosity, inertial or time- 
tonian models in which viscosity is dependent upon depth 

only, although when this theory is applied to actual data, the 

results suggest that lateral variations in effective viscosity may 

be important. 

Boundary Conditions 

Three possible boundaries are considered in our spherically 

symmetric, layered earth models: (1) the core-mantle bound- 

ary, (2) the upper surface, and (3) a change in composition 

and/or viscosity across the 670-km seismic discontinuity. 

We model the core-mantle boundary as one at which there 

is no shear traction and no steady state vertical transport. As 

discussed above, the mantle-lithosphere boundary is more 

complicated. We have investigated both no-slip and free-slip 
conditions and have included both types in the results present- 

ed here, although, as we noted above, the difference between 

the two is not profound. 

dependent terms are omitted from the equations of motion. 

The only time dependence is introduced by changes in posi- 

tion with time of the driving density contrasts and relaxation 

of the boundaries to a steady state condition of deformation. 

We address the relaxation problem in detail in Appendix 2, 

the result being that boundary deformations decay rapidly 

compared to the time scale of flow in the interior. 

The equations of motion can be written 

V. '• + pg = 0 (1) 

where x is the stress tensor, p the density, and g the gravi- 
tational acceleration. The mantle will be assumed to be in- 

compressible throughout; although radial density layering can 

be arbitrarily imposed in our method of solution, allowance 

for finite fluid compressibility is mathematically difficult and is 

generally ignored by most authors [Cathies, 1975; Peltier, 
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Fig. 2. Illustration of the geometry for the analytical treatment of 
deformation of the boundary between two fluid half spaces with den- 
sities p• and P2- The actual boundary (solid line) is displaced an 
amount &(x) from the reference boundary (dashed line). 

1981] since the dynamic effect is probably small [Jarvis and 

McKenzie, 1980]. Ricard et al. [1983] have shown that the 

effect of compression from lateral gravity variations is negligi- 
ble. The incompressible continuity equation is 

v. v = 0 (2) 

where v is the velocity vector. The Newtonian constitutive 
relation is 

x = - pl + 2r/e (3) 

where p is the pressure, I the identity matrix, r/the viscosity, 
and e the strain rate tensor. 

For global scale-loading problems, self-gravitation effects 

cannot be ignored [Love, 1911; Clark et al., 1978]. The gravi- 
tational effects of deformed boundaries must be included in 

any self-consistent model. The gravitational potential V must 
satisfy 

V2V = 4r•Gp (4) 

where we have chosen the sign convention such that g = 
- V V. These equations are linear in all the variables and can 

be straightforwardly solved by either propagator matrix 
[Hager and O'Connell, 1981] or numerical techniques. Before 

proceeding to a fully three-dimensional (spherical) solution, we 
present some useful results from the simple two-dimensional 

half-space problem. Results from the viscous relaxation prob- 
lem that justify the hypothesis of steady state flow are given in 
Appendix 2. 

ANALYTICAL TREATMENT OF BOUNDARY DEFORMATION 

Loading of the earth by gravitational potential (e.g., tidal 
loading), by external loads (e.g., glacial loading), or internal 

density contrasts (e.g., thermal convection) will produce defor- 
mations of both the surface and any internal boundaries. In 

this section we analytically treat boundary deformation to 
first-order accuracy and derive some useful results for the two- 

dimensional problem. Figure 2 illustrates the warping of a 
material boundary relative to its deformed or reference state, 
with densities Pl and p•_ above and below the boundary, re- 
spectively. The velocity and stress fields must be continuous at 

the deformed boundary. However, our solution technique re- 
quires that we propagate solution vectors from one horizontal 

boundary to the next, so we require expressions for the veloci- 
ty and stress fields at the reference (undeformed) boundaries. If 
the magnitude of deformation, gz, is sufficiently small com- 

pared to the thickness of either of the adjacent layers and the 

spatial wavelength, •t, of interest (as in this study), any vari- 
able, u i in medium i, may be continued, to first-order accuracy, 
from the deformed boundary to the reference level by 

Since, flow-induced stresses are always much smaller (first 

order) than the lithostatic stress level in the mantle (zeroth 
order), flow and stress variables are first order also; their de- 

rivatives behave like the product of first-order terms and the 

approximate spatial wave number. The only first-order correc- 
tion due to deformation is the hydrostatic correction to the 
normal stress' 

i i 

'• .... f = Zzzde, - Pig cSz (6) 

In passing from the reference boundary as seen in medium 2 

to that seen in medium 1, we get an apparent jump in normal 
stress' 

ATzz f12 1 2__ Ap12 Q c•z (7) re : '•ZZdef • '•ZZdef 

where Apl 2 = pl - Pa. By continuity of stress at the deformed 

boundary, 

Azzz f12= _Apa2g cSz (8) re 

(A similar argument will imply an effective jump in the gravi- 

tational acceleration at the reference boundary in the fully 
self-gravitating spherical case.) 

This result can be readily applied to a simple half-space 
problem. Figure 3 illustrates a surface density contrast (i.e., a 

thermal density anomaly), ad(k) cos (kx), at depth d, exciting 

flow in a viscous half space of viscosity r/and density p, with a 
traction free surface at the top. For simplicity we will first 
assume that the density contrast is not advected with the re- 

sulting flow so that it remains fixed in space (this could be 

done experimentally using a heat pump, for example). We will 
then show that the density contrast would not be advected a 

significant distance in the time it takes for the boundary defor- 

mation to reach equilibrium. Solving (1)-(3) using the two- 
dimensional propagator [ttager and O'Connell, 1981], we find 

that the boundary displacement 3z evolves from its initial un- 

deformed position as 

ad(k ) COS 
cSz = - (1 + kd) exp ( - kd)(1 - e-'/•) (9) 

P 

The boundary relaxes with time exponentially toward a steady 
state of deformation with time constant 

z = 2rlk/pg (1 O) 

This is the same time as that derived for the surface loading or 
unloading problem (e.g., postglacial rebound [Haskell, 1935; 

Cathles, 1975]). For example, with r/= 10:• Pa s, 
2 = 2r•/k _> 1000 km, p = 3.5 Mg/m 3, g = 9.8 m/s:, we obtain 
z < 11,000 years. Assuming velocities in the mantle of the 

order of 100 mm/yr or less, we see that mantle transport of at 

-•x 
z 

/--Deformed free •-•},:2 

z--0 .... ...... 

%(K)• ,• '• ,•• 

Fig. 3. Illustration of the Fourier flow analysis in a two- 
dimensional half space. The surface density contrast ad(k ) cos (kx) at 
depth d excites flow, resulting in deformation of the free surface. We 
assume here that the advection of the density contrast by the flow is 
negligible on the time scale for establishing the boundary defor- 
mation. 
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most a few kilometers (much less than the depth scale of 

mantle convection) occurs before the free surface is completely 
relaxed. 

Alternatively, we can assume that boundary deformation is 
rapid and calculate flow velocities under the assumption that 
vertical flow at the deformed surface vanishes (i.e., boundary 

deformation is complete). In this case, 

v=(d) = - ad(k) cos (kx) gd exp (-2kd) (11) 
4r/ 

Comparing this to the characteristic surface velocity obtained 

by differentiating (9), we find that 

5:• 2(1 + kd) exp (kd) 
- e (12) 

vx(d ) kd 

Once again, we see that long-wavelength boundary defor- 

mation is rapid compared to changes in the convective flow 

pattern independent of aa(k). Note that this result holds even 

for "thin" layers which are normally associated with long 

relaxation times. In Appendix 2 we show that viscous relax- 
ation occurs on a time scale much shorter than that for mantle 

convection by calculating relaxation times for several spheri- 
cal earth models. 

The long time limit of (9) shows that the effective mass 

deficit associated with the surface deformation, •eff = pSZ, is 

of opposite sign and of the same order of magnitude as •a. It is 

now evident for at least two reasons that the assumption that 

gz is sufficiently small for the application of a linear continu- 

ation of the boundary condition is probably justified' (1) Ther- 

mal density contrasts in the earth, with the possible exception 

of subducted slabs, are probably not large enough to cause 

gross deformation of either internal or external boundaries, 

and (2) the earth's topography a priori precludes lithospheric 

deformations greater than 10 km, while seismic data do not 

suggest large deformations of the core-mantle boundary [Dzie- 
wonski and Haddon, 1974] or the 670-km discontinuity, al- 

though coverage is limited, especially in subduction zones 

where deformation is expected to be the largest [Hager, this 

issue]. 

From (9) we can obtain the relationship between the ob- 

served gravitational potential and the load as well as the re- 

lationship between topography and geoid due to %(k). The 

residual potential calculated at the reference surface contains 

contributions from both % and 

•vres(z = 0) = •V eff + (•V a'• 

2r•G cos (kx) 
= [-(1 + kd) + 1] exp (-kd)ad(k) 

k 

or 

5 vres(0) 
- kd (13) 

This means that for a uniform half space a positive density 

contrast at depth results in a negative geoid anomaly. The 

geoid anomaly goes to zero as the density contrast approaches 

the surface. Furthermore, for depths greater than the wave- 

length the geoid can be much larger in magnitude than that 

obtained for a rigid half space for which there would be no 

boundary deformation. This occurs because the stress that 

causes boundary deformation falls off less rapidly with the 

depth of loading than the potential from the load itself. 

For spherical models in general the normalized potential 

•l res 
Kt(r) - (14) 

is the Green function for the earth's surface potential per unit 

loading at radius r and spherical harmoinic degree I. This 

quantity is a function of the earth model in general and is 
related to Kaula's [1963b] elastic internal loading potential 

Love number, kt", by 

g,(r) = + 

This response function is measurable if the driving density 

contrasts within the earth are known a priori. Hager [this 

issue] has used this in his discussion of geoid anomalies from 

subducted slabs, where density contrasts can be estimated. 

Another application is in comparing seismic velocity heteroge- 

neities to the geoid (B. H. Hager et al., unpublished manu- 

script, 1984). By assuming a relation between seismic velocity 

and density the long-wavelength geoid coefficients are ob- 
tained from the integral 

r=a i•v/geoid __ 4toGa Kt(r)(r/a) •+ 25pt(r ) dr (16) 
2/+1 or=o 

where a is the radius of the earth, cSpt(r ) is the /th harmonic 

density contrast at radius r, and G is the gravitational con- 
stant. 

The other observable we can calculate is a dimensionless 

"impedance," defined as the ratio of geoid elevation to bound- 

ary deformation: 

Zl(r ) = 5•/geoid/•] CJrl (17) 

where •r• is the lth harmonic deformation of the surface, and • 

is the gravitational acceleration. (Note that this is not a true 

impedance since it involves the observed potential •geoid in- 
stead of the driving potential •[,'•'.) Defining a surface defor- 

mation Love number h•" [e.g., Munk and MacDonald, 1960], 
we have 

kl" 
Zl(r ) = 1 + • 

hi" 

This quantity could be estimated for the surface by taking the 

ratio of harmonic geoid coefficients to topographic coefficients 
with the effects of crustal thickness variations removed. To 

estimate Zl(r) for a given density distribution and earth model, 
the numerator and denominator of (17) must be integrated 

separately. 

We have now defined two observables relating the geoid 

directly to internal loading and earth structure for a density 

contrast at a given depth. Also, (16) shows how to interpret 

these quantities for models with distributed density contrasts. 

We have not yet introduced the gravitational interaction be- 

tween the load and the mass anomalies due to boundary de- 
formation. 

SPHERICAL EARTH MODELS 

Formal Solution 

Analytical solutions to field equations (1)-(4) with radial 

variations in viscosity and density and for arbitrary, laterally 

varying internal loading are given by Hager and O'Connell 

[1981]. Internal density contrasts drive poloidal flow fields for 

which the relevant stress, flow, and gravitational potential 
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Fig. 4. Mass displacement at the boundaries as a function of 
loading depth for harmonic degrees 2, 7, and 20 (whole mantle flow). 
Plots are normalized to a unit density contrast load. The "S" curve is 
for the upper surface, "C" is for the core-mantle boundary, and "T" is 
the total mass displaced. Figures 4d and 4e show the effect of low 
viscosity in the upper mantle for harmonic degree 7. Figures 4a-4e 
are for FF boundary conditions and Figures 4f-4h are for NF con- 
ditions. 

variables can be propagated from one radial layer to another 

according to 

u(r) = P(r, ro)u(ro) + P(r, •)b{•) d• (18) 
o 

where u is the six vector given by 

u(r) = vr, Vo, rrr•/rio, rZ•o/rio, porSV/qo, pør2 rio t3r j (19) 
with radial and tangential velocities v, and Vo, normal radial 

and shear deviatoric stresses z, and Z,o, perturbed potential 

5V, and reference density and viscosity Po and rio. In these 

expressions and for the remainder of this paper all dynamical 

variables contain an implicit spherical harmonic dependence 

which has been suppressed for simplicity. The 6 x 6 matrix 

P(r, ro) can be expressed analytically [Gantmacher, 1960] as a 

function of r/r o, normalized layer density p* = P/Po, normal- 
ized layer viscosity ri* = ri/rio, and harmonic order I. The driv- 

ing term for this system is the integral on the right in (18) in 

which the density contrasts are introduced by 

b(r) = [0, O, rg(r)Sp(r)/rio, O, O, -4•r2GpoSp(r)/rio] t (20) 

where g(r) is the unperturbed (hydrostatic) gravitational accel- 

eration and 5p(r) is the density contrast at radius r. 

The problem is greatly simplified mathematically by casting 

the driving density structure not only as a sum over spherical 

harmonics but also as a sum over radial surface density con- 

trasts, that is, 

ap(r) = •, a(r- bi)o- i (21) 
b• 

where 5(r) is the Dirac delta function and the ai are the surface 

density contrasts. Equation (18) becomes 

u(r) = P(r, ro)u(ro) + • P(r, bi) bi (22) 
b, 

where 

bi = [0, 0, big(bi)ci/rio, O, 0, -4•bi2Gpoo'i/rio] r (23) 

Now, as was indicated previously in (14)-(17), we can 
characterize all solutions in terms of harmonic order I and 

radial level or depth of the driving density contrasts since, 

owing to the linearity of the field equations, these solutions or 

kernels can be superposed to represent any arbitrary density 
contrast in the mantle. 

A familiar and useful property of the propagator matrix 

formulation is that solution vectors can be propagated 

through a series of different material layers by simply forming 

the product of the individual layer matrices: 

P(r, ro)= P(r, r•)P(r•, r,o) (24) 

Therefore changes in viscosity (and density) with depth are 

easily incorporated into this formalism. 

Boundary Conditions 

We have discussed two types of boundary conditions: (1) A 

free-slip (denoted "F") boundary condition requires zero 

radial velocity (v•) and zero shear stress (z•0), a condition which 

applies at the core-mantle boundary, and (2) a no-slip (denot- 

ed "N") boundary condition requires zero radial and tangen- 

tial velocities (v• and Vo). Good arguments can be made for 

applying either of these boundary conditions at the surface. 

For completeness and to gain insight into the physics of the 

problem we have modeled both combinations. For example, 

for no slip at the deformed surface (r = a + t•ra) and free slip 

at the core-mantle boundary (r = c + 5rc), we have, to first 
order, 

uN(a + t•ra): [0, 0, 0, a•rrOa/rio, poaSV•/rio,- I po a2 •_•_V.] r 
rio t3r J 

(25) 

poC_ ] ur(c + 5r•)= O, •o•, c•:m/rio, O, poSV•/rio, rio r3r 
where we have also set the normal stress to zero at the surface. 

These boundary conditions apply at the actual deformed 

boundaries (see Figure 1); however, (22) shows only how to 

propagate from one spherical reference boundary to another. 
Therefore (25) must be analytically continued to the reference 

boundaries via (5)-(8) cast in spherical coordinates. This is a 

tedious operation which involves finding expressions for • .... 
l•rrc, 5Va, 5V c in terms of the resulting harmonic surface defor- 

mations (t•ra, 5rc) and the details as well as the resulting system 

of equations are included in Appendix 1. This procedure in- 

TABLE 1. Model Parameters for Basic Models for Spherical Earth 
Calculations 

Model* Pt 6Pt.. p. tit, Pas •/., Pas d, km 

Whole Mantle Flow 

A 4.43 0.0 4.43 1021 1021 '" 

B 4.43 0.0 4.43 1021 1019 or 10 20 200 

C 4.43 0.0 4.43 l021 1019 or 10 20 670 

Layered Flow 
D 4.92 0.5 3.50 1021 1021 670 

E 4.92 0.5 3.50 l021 1019 or 10 20 670 

Parameters include earth and core radii, c and a; core, upper, and 
lower mantle densities, Pc, P,, and Pt (in Mg/m3); upper and lower 
mantle viscosities, •/, and •/t' effective density jumps at the core-mantle 
boundary and the 670-km discontinuity, 6pc m and t•pt u' and the depth 
of the upper flow or viscosity layer, d. 

*For all models c = 3480 km, a - 6371 km, p• - 11.0, and 6Pcm = 
4.5. 
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valves two physical effects: (1) When solution vectors are ref- 

erenced to the underformed boundaries, there is an apparent 

jump in normal stress at each boundary given by an ex- 
pression similar to (8): 

•'r,.,. = --•3pg(r)•3r (26) 

and (2) there is a similar jump in gravity at each boundary (see 
Appendix 1). Accordingly, each boundary deformation makes 

a first-order contribution to the perturbed potential. This 
occurs because, as demonstrated above, the mass displaced is 

of the same order of magnitude as the driving density contrast. 
The important thing to note is that we can cast the problem in 

a form whose solution gives the deformation of boundaries as 

well as the gravitational potential at those boundaries as func- 

tions of the harmonic order and depth of loading. From these 

solutions we can generate the desired quantities (Love num- 

bers and impedances) defined by (14)-(17). 

Equation (24) shows how to treat layering effects in material 

properties, but a layered flow system (Figure lb) requires a 

separate boundary condition at the flow barrier. We model 

this boundary as a compositional change accompanied by a 

density jump which results in a simple flow barrier with shear 

coupling between the two layers. Mathematically, this can be 

expressed as 

u(r + •r) = [0. vo. rz./rlo. rz•o/rlo. poT•V/rlo. • • ß 
r/o Or j 

(27) 

in which the radial velocity is set to zero at the boundary. This 
also represents another boundary which will deform under 

loading and an additional apparent jump in normal stress and 
gravity will occur when (27) is analytically continued to its 

reference surface (e.g., 670 km depth). For this two-layer flow 

problem we have two systems of equations (22) that are cou- 

pled at an internal boundary whose field variables are given 
by (27). We have not included the details here, but solution of 

these propagator equations proceeds straightforwardly, as in 

Appendix 1, where details are given for the case of whole 
mantle flow. 

RESPONSE FUNCTIONS 

The mathematical formalism we have developed for solving 

the internal loading problem yields solutions in the form of 

boundary vectors that give the fluid velocities and stresses as 

Mode excitation 
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Fig. 5. Viscous normal mode excitation as a function of loading 
depth for whole mantle models. The "C"(core) and "M0" (mantle) 
modes are unit normalized, and their excitation amplitudes are plot- 
ted for harmonic degrees 2, 7, and 20. Figures 5d and 5e illustrate the 
effect of low viscosity in the upper mantle. 

Normalized potential contribution 
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Fig. 6. Relative values of gravitational potential contributions 
from the density contrast at the indicated depth ("a"), the defor- 
mation of the core-mantle boundary ("c"), and the upper surface 
deformation ("a") for harmonic degrees 2, 7, and 20. (The %" and "c" 
curves actually have opposite sign from the "a" curve). Values plotted 
are normalized by the maximum value of curve "a" for convenience in 
comparison. Figure 6d shows the upper surface deformation not cor- 
rected for self-gravitation (curve "a'"). Figures 6a-6c are for FF 
boundary conditions and Figures 6d-6f are for NF conditions, all for 
uniform mantle viscosity. 

well as the gravitational potential and its radial derivative at 

spherical reference boundaries corresponding to the unper- 
turbed layer boundaries. These reference boundary vectors 

can be propagated (see equation (18)) to any radial level in the 

earth, so each solution implicitly contains the stress-flow field 

and gravitational field throughout the mantle. For any specific 
model, solutions vary with the depth of loading and harmonic 
degree so that even for the limited variety of models we have 

considered here a very large amount of information is gener- 
ated. The spherical earth results presented in this section are 

restricted to those involving either the geoid or boundary de- 

formations. The results that follow involve only the approxi- 
mations discussed above and are analytic, although the re- 
sulting algebraic expressions are evaluated on a computer. 

Whole Mantle Flow 

The simplest model is that for mantle-wide flow and most of 

the physical ideas from spherical modeling can be demon- 

strated with this model. Figures 4a-4c show for model A (see 

Table 1) the amount of mass per unit area, normalized by the 
amplitude of the load, that is displaced by deformation of the 

core-mantle boundary and the upper surface as a function of 

the depth of loading for representative harmonic degrees 2, 7, 

and 20. The displaced mass is opposite in sign to that of the 
driving mass anomaly so its negative is plotted for ease in 

comparison. Figures 4a-4c are for free-slip at both the core- 

mantle interface and the upper surface ("FF" case) while Fig- 
ures 4f-4h are for no slip at the upper surface ("NF" case). The 

closer the load is to a boundary the larger are the resulting 
mass displacement and deformation at that boundary. Also 
plotted is the total amount of mass displaced at both bound- 

aries. By analogy to the Airy or Pratt principles of isostatic 

compensation in the lithosphere, these curves represent dy- 
namic isostasy for mantle loads in a spherical earth. The total 

mass displaced is opposite in sign and comparable, but not 

identical, in magnitude to that of the load (dashed line) for 
long wavelengths. For the uniform viscosity model, 

--O'disp (total)/ab is of order unity for 1= 2 and 1= 7, but for 
higher values of I this ratio becomes much smaller if the load 

is not close to a boundary: this means that the load is almost 

entirely dynamically supported by flow in the interior. Figures 
4d and 4e show the effects of one and two orders of magnitude 
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Fig. 7. Surface potential response K as a function of loading 
depth for harmonic degrees 2, 7, and 20. Illustrated are the four 
possible combinations of free-slip (F) and no-slip (N) boundary con- 
ditions, all calculated for a uniform visocisty mantle. The light, 
straight lines in Figures 7a and 7b show the two-dimensional half- 
space result, K = -kd. The dashed line at K = 1 gives the rigid earth 
result for comparison. 

viscosity contrast above 670 km depth (model C) for 1 = 7 for 

the "FF" case. The lower viscosity in the upper mantle lessens 

the coupling between the flow and the upper surface, thereby 

decreasing the deformation of the upper surface and increas- 

ing that of the core-mantle boundary. In Figure 4e the cou- 

pling is so weak that self-gravitation actually causes the defor- 

mation to reverse, resulting in the slightly negative excursion 
of its mass displacement curve. This effect will be addressed 

more fully below. 

Comparison of Figures 4a and 4f shows that the main effect 

of the no-slip condition, as opposed to the free-slip condition, 

at the upper surface is to restrict the flow near that boundary, 

resulting in more deformation and mass displacement at the 

upper boundary. This effect diminishes with increasing 1 as 

seen by comparison of Figures 4b and 4g as well as Figures 4c 
and 4h. Notice that for NF conditions the maximum mass 

displacement at the upper surface occurs with the load at 

depth rather than when it is nearest to the surface. A similar 

effect can be derived analytically for the two-dimensional case 

and is the result of flow restriction in a channel due to long- 

wavelength loading. In the three-dimensional (spherical) case 
this subsurface maximum in deformation is also enhanced 

considerably by the self-gravitation of the boundary. In addi- 

tion to the stresses generated by the load "sinking" in the 

ambient (zeroth order) potential field there is a first-order per- 
turbation in the ambient field due to both the load and the 

mass displacements at the boundaries. Although this idea is 

no more complicated than that of a self-consistent gravity 
field, the effect is physically subtle and warrants some dis- 
cussion. 

The basic propagator equations (18) are written for field 

variable six vectors, the last two terms of which are the per- 

turbed geopotential field and its radial derivative (gravi- 
tational acceleration). These two variables must satisfy Pois- 

son's equation independently, and it has recently been shown 

by R. J. O'Connell et al. (unpublished manuscript, 1984) that 

the 6 x 6 set of equations can be reduced to coupled 4 x 4 

and 2 x 2 systems in which the 2 x 2 system involves only the 

potential variables and Poisson's equation. The 4 x 4 system 

is obtained by substitution of u3 + p'u5 for u 3 in the six 

vector. This results in a decoupled four-vector system where 

u(6 x 6)-• u'(4 x 4) = Evr, vo, rr,/rlo + pr•iV/rlo, rr,o/rlo] r 

Physically, the normal stress term has been augmented by a 

"gravitational pressure" term, prSV/rlo, to form a system of 

equations that is otherwise similar to the 4 x 4 propagator 

system used in two-dimensional problems [e.g., Cathles, 1975]. 

This formulation then shows explicitly how self-gravitation 

enters into the dynamics of the loading problem. Upon exam- 

ination of the excitation vector (23) we notice that there are 

two driving terms: (1) The third term of the vector corre- 

sponds to the stress due to the density contrast being acted 

upon by the zeroth-order field, and (2) the sixth term repre- 
sents the driving force due to the first-order field perturbation 

from the density contrast, that is, a gravitational pressure 

term. These extra pressure terms do not drive flow in steady 

state, but they do affect boundary deformations. 

In Appendix 2 we discuss the problem of viscous relaxation 

to steady state in terms of the largest decay time associated 

with a given earth model. However, this approach constitutes 

a worst case analysis since all of the relaxation modes are, in 

general, excited by loading. Although we were able to justify 
the steady state assumption for our models even for these 

worst cases, it is possible with the analytical tools here to 

solve for mode excitation as a function of the depth of loading 

and harmonic degree. An eigenmode for the simple two-layer 

case can be represented by a unit normalized two vector 

giving the relative amount of mass displaced at the upper 

surface and the core-mantle boundary. For models A and C 

there is a mantle model (MO) and a core mode (C). For MO, 
both boundaries flex in the same sense; for the C mode their 

flexure is oppositely directed. The relative amounts of mode 

excitation are determined by finding the appropriate linear 

combination of MO and C required to give the boundary 

mass displacements in Figure 4. Note that this matching also 

solves the unloading problem, that is, excitation of modes due 

to the sudden release of an internal load of long duration; the 

loading and unloading problems are equivalent in terms of 

relative mode excitation. Figures 5a-5c show the results of the 

calculations for the FF models of Figure 4. 

Figure 4 shows that at least for long-wavelength loads, the 

amount of mass displaced at the boundaries is comparable to 

the mass of the load itself, so the total geoid anomaly at the 

surface involves significant contributions from these sources. 
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Fig. 8. Surface potential response K as a function of loading 
depth for viscosity contrasts of 0.1 and 0.01 in the upper mantle. 
Figures 8a and 8b are for FF boundary conditions and Figures 8c 
and 8d are for NF conditions. 
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Figure 6 shows the relative contribution from each of the 

three sources 6Va, 6 V,•, and 6V,, as functions of the depth of the 
load. The 6V,, ("c") curve has a simple (a/r) t+2 dependence 
derived solely from potential theory (see equation (A7)) and 

the 6Va ("a") and 6• ("c") curves are proportional to the 

product of the mass displacement curves of Figure 4 and the 

(air)t+ 2 factor. Potentials 6V a and 6V• are of opposite sign than 
6V,,. Their absolute values are plotted normalized by the maxi- 
mum value of 6Va to facilitate direct comparison. Figures 
6a-6c are for FF conditions and Figures 6d-6f are for NF 

conditions. In most of the figures to follow we refer to poten- 

tial anomalies since they are related to geoid anomalies simply 
through 6N = 6V/g, where 6N is the geoid height due to 6V 

and g is the gravitational acceleration at the surface. As was 

the case for the two-dimensional half space, the geoid contri- 
bution due to the deformation of the upper surface is generally 
larger than that due to the load. The contribution from the 

core-mantle boundary is generally small except for loads at 

great depth. Again, comparing Figures 6a-6c with Figures 

6d-6f, the effect of stronger upper surface coupling due to the 
no-slip condition is evident. Notice that for l= 2 and l-7 

with NF conditions, the maximum 6Va contribution occurs at 

depth. In Figure 6d we have plotted (see curve "a'") the result 

obtained ignoring self-gravitation in order to demonstrate its 

importance for lower-degree harmonics. This was accom- 

plished by ignoring the self-gravitation terms described above 

(at the expense of a self-consistent field). Since the difference 

between curve 6V,, and the sum of 6Va and 6 V• determines the 

surface potential anomaly, this effect cannot be ignored for the 

lowest harmonic degrees. 

The total surface potential •Vto t normalized by the load 
potential 6V,, results in the response function K, the modified 

Love number defined in (14). Figure 7 shows K as a function 

of loading depth and harmonic degree for the four possible 

combinations of boundary conditions. The differences among 
these results are not great although the relative coupling ef- 
fects due to N or F conditions can be seen, especially for 

low-order harmonics. The cases with no slip at the core- 
mantle boundary are included because they simulate high vis- 

cosity in the lowermost mantle. In the more pertinent FF and 

NF cases, K is invariably negative for model A (no viscosity 
contrast). As predicted by (13), the magnitude of K can be 

much greater than unity; consequently, the geoid signature of 
a density contrast at depth is amplified. The straight light lines 
in Figures 7a and 7b show the two-dimensional half-space 

values for K. Note that with the load at either boundary, 
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Fig. 9. Surface deformation impedance Z as a function of loading 
depth illustrating the effect of low viscosity in the upper mantle for 
harmonic degrees 2, 7, and 20. Figures 9a-9c are for FF boundary 
conditions and Figures 9d-9f are for NF conditions. The dashed line 

at Z = 0 gives the "perfect" compensation result for comparison. 
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Fig. 10. Mass displacement at the boundaries as a function of 

loading depth for two-layer flow models with uniform viscosity (same 
as Figure 4 with additional displacement curve "M" for the 670-km 
discontinuity). 

compensation of the geoid is complete to first order since all 

the loading stress is absorbed by deflection of the boundary. 
The geoid is much more sensitive to density contrasts in the 

middle regions of the mantle than to comparable density con- 
trasts near boundaries. 

The dominating influence of the upper surface deformation 

is diminished by the effect of low viscosity in the upper mantle 
resulting in less negative or even positive values of K. This is 
shown in Figure 8 for both FF and NF conditions. In this 

case the different boundary conditions result in more mark- 

edly different geoid signatures. The effect of the low-viscosity 

channel in the upper mantle is strongest for shorter wave- 

lengths (larger/), whereas the channel is almost transparent to 

l-2 loading. We have not presented many of the other 

models of viscosity stratification which are also plausible, but 
their effect can be roughly extrapolated from these figures. For 
example, a thinner channel, say 200 km thick, remains trans- 

parent to much shorter wavelengths than for the 670-km case. 

The ratio of geoid anomaly to surface deformation, the im- 

pedance function Z (equation (17)), is shown in Figure 9 for 
models A and C for both FF and NF conditions. For uniform 

viscosity, Z is positive since the sign of the geoid is determined 

by the upper surface deformation. With a viscosity contrast 

the functions become more complicated and larger due to a 

reduced surface topographic signature. Note that singularities 
in Z can occur since the surface deformation can change sign 

(go through a zero) as seen for l = 7 in Figure 9f In practical 

applications these singularities will be smoothed by integra- 
tion over a depth distribution o.f density contrasts. 

Layered Flow 

The flow model representing a chemical discontinuity at 670 

km depth is illustrated in Figure lb corresponding to models 
D and E. Mass displacements at the boundaries are shown in 

Figure 10, comparable to Figure 4 for a uniform composition 
mantle. In these cases there is deformation and effective mass 

displacement at the layer boundary as shown by the "M" 
curves. For loads near the 670-km discontinuity the stress is 

taken up principally by the deformation of that boundary. The 

curves for total mass displacement in Figure 10, computed for 

NF boundary conditions, again represent dynamic compensa- 
tion, as discussed for the case of whole mantle flow. The sense 

of flow in both the upper and lower mantle is reversed for 

loading in the upper mantle from that resulting from loading 
in the lower mantle. Consequently, the sign of both the core- 
mantle boundary and upper surface deformation depends 
upon whether the load is above or below the 670-km disconti- 

nuity; singularities occur in the corresponding impedance 

functions, and the behavior of K becomes more complicated. 
Figure 11 shows the relative excitation of viscous relaxation 

normal modes for these layered models where we now have an 
additional mode, M1, associated with deformation of the 
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Fig. 11. Viscous normal mode excitation as a fu•ctio• of loading 
depth for two-layer flow models with unifo• viscosity (same as 
Figure 5 with the additional M1 mode due to deformation of the 
6?O-kin discontinuity). 

670-km discontinuity. The depth dependence for the MO and 

C mode is strikingly similar to that for the whole mantle case. 

The M1 mode is, as expected, dominant near the 670-km 

discontinuity. 

The chemical layer response functions K and Z for models 

D and E are shown in Figures 12 and 13. The potential func- 
tion K exhibits a more complicated depth dependence than 

for the whole mantle case. In particular, for no viscosity con- 
trast the sign of the geoid anomaly reverses as we cross the 

670-km discontinuity due to the dominance and reversal of 

the upper surface deformation; geoid anomalies due to corre- 

lated upper and lower mantle density contrasts are anti- 
correlated. Also, all functions K have an additional zero at 

670 km depth. For a viscosity contrast at 670 km the coupling 

at the upper surface is reduced sufficiently so that the defor- 

mation of the 670-km discontinuity dominates the surface po- 
tentiM resulting again in negative values for K. Therefore a 

wide variety of behavior is possible for a relatively small range 

of viscosity contrasts (less than one order of magnitude). 

Note that the maximum values of K for density contrasts in 

the upper mantle are small compared to those for the whole 

mantle flow model (Figure 7) and those for density contrasts 
in the lower mantle for the stratified models. The physical 

interpretation of this behavior is useful in developing intuition 

about dynamic geoid anomalies. As a first approximation, dy- 

namic isostasy results in the conservation of mass in any 
column, at least at long wavelengths (see Figures 4 and 10). 

The total geoid anomaly results from a mass quadrupole con- 

sisting of a driving mass anomaly at depth and compensating 

mass anomalies at the deformed boundaries. The magnitude 

of the anomaly depends upon the separation of the bound- 

aries: the "arm length" of the quadrupole. For a given mass 

anomaly the deeper the convecting layer, the larger the arm 

length and the greater the geoid anomaly. In the limit of zero 

thickness the geoid anomaly in a convecting layer goes to 
zero. 

Upper surface impedance values, plotted in Figure 13, exhi- 

bit a singularity at 670 km and become very large for loads 
below this boundary with two orders of magnitude viscosity 

contrast. The sign and magnitude of Z for the chemical layer 
case is consequently a strongly varying function of depth, har- 

monic degree, and viscosity stratification; like K, it exhibits 
distinct (although not unique) characteristics that are highly 
model dependent. 

INTERPRETATION 

The range of solutions for K and Z obtained for the simple 
models we have described are illustrated in Figure 14. Instead 

of plotting K and Z as functions of depth and harmonic 
degree, we have now plotted them as functions of harmonic 

degree and earth model for representative depths of 300, 1400, 

and 2600 km in order to emphasize the most important con- 
clusion resulting from this study: The relationship that exists 

among internal loading, surface deformation, and the geoid is 

a strong function not only of the depth and harmonic degree 

of loading but also the mechanical structure of the mantle. 

The dashed reference lines in Figures 14a-14c represent the 

value of K that would be observed for a rigid earth, that is, if 

we ignore the dynamic response. The impedance plots, Figures 

14d-14e, have a Z = 0 reference line ("perfect" compensation) 
since Z becomes infinite for a rigid earth. Even the limited 

range of models we have explored exhibit a wide range of 

values for K and Z that indicate the sensitivity of the observ- 
ables to structure. Interpretation of the earth's geoid in terms 

of internal processes demands careful consideration of a vari- 

ety of physical effects, but much of the nonuniqueness inherent 

in surface gravity problems is removed because of the distinct 

signature of different models. 

Figures 7-9 and 12-14 consititute "maps" that show how to 

relate geoid anomalies and surface deformations to the depth 
and harmonic degree of driving density contrasts. In most of 

the models there is roughly an order of magnitude amplifi- 
cation of the higher harmonic geoid anomalies for loads at 

great depth. For example, K attains its largest value of - 12 in 
model A for l = 20 with the load several hundred kilometers 

above the core-mantle boundary. This requires modification 

of simple state-of-stress type arguments concerning the maxi- 

mum geoid anomalies which can be generated by loads sup- 

ported at great depth [Kaula, 1963b]. Required deviatoric 

stresses up to an order of magnitude smaller can support den- 

sity contrasts generating a given geoid anomaly in dynamic 

earth models as opposed to an elastic model. Of course, these 

modified Love numbers must still be multiplied by (r/a) •+2 to 
give the total potential (see Hager, this issue, Figure 4). Also 

from the figures showing K as a function of depth we see that 

to first order, K is zero at the boundaries, which implies that 
compensation of loads near boundaries is essentially complete. 
This means that bumps due to a variable thermal boundary 
layer in a convecting mantle are essentially masked out of the 

geoid signature. Since these density contrasts are likely to be 
among the largest associated with convection, this becomes a 

serious constraint on the resolvability of these features in the 

geoid. A good example of this is the observation that mid- 

oceanic ridges have very little long-wavelength geoid signa- 

ture. Also in reference to the upper boundary layer, crustal 

and lithospheric thickness and density are not in general very 

well known for the earth. Application of the impedance re- 

sponse functions requires a more complete synthesis of infor- 

mation on lithospheric thickness and surface topography than 
is currently available, and this problem is currently under 

study. In addition to these complications it should be remem- 

bered that for a given density anomaly "map" for the mantle, 

say from seismic heterogeneity data or from a three- 

dimensional convection model, one must integrate K(r, l) and 

Z(r, l) over depth, as in (16) (the numerator •V and the de- 

Fig. 12. Surface potential response K as a function of loading 
depth for two-layer models illustrating the effect of low viscosity in 
the upper mantle. Boundary conditions are no slip (N) at the surface 
and free slip (F) at the core-mantle boundary. 
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nominator g •ir of Z must be integrated separately). This will 

tend to smooth the respective models summarized in Figure 

14. Another important point illustrated by these figures is that 

long-wavelength geoid anomalies are influenced more by den- 

sity contrasts in the middle mantle than in the uppermost or 

lowermost mantle. Also, for a given range of density anoma- 

lies, whole mantle convection results in larger geoid anomalies 

than layered convection. 

An example of the process of interpretation using dynamic 

response functions is found in Hager's [this issue] analysis of 

the correlation between the geoid and subducted slabs as evi- 

denced by deep focus earthquakes. Seismically active slabs 

represent known positive density contrasts that correlate spa- 

tially at better than the 99% confidence level in a positive 

sense with the degree 4-9 geoid. The positive correlation in 

this wavelength band requires an increase in viscosity with 

depth of two orders of magnitude between the upper and 

lower mantle in regions of active subduction. The amplitude 

of the observed geoid anomalies in the context of dynamic 

earth models requires much more excess mass than can be 

provided by subducted slabs alone in the upper mantle. A 

straightforward explanation is that the positive density con- 
trasts associated with subduction extend into the lower 

mantle. 

Seismology is now reaching the point where it is possible to 

map lateral velocity variations in the mantle. Examples in- 
clude the determination of degree two lateral heterogeneity in 
the upper mantle by Masters et al. [1982], more detailed sur- 

face wave studies including odd and higher-order harmonics 
[Nakanishi and Anderson, 1982; Woodhouse and Dziewonski, 

this issue], and body wave studies of lateral velocity variations 
in the lower mantle [Dziewonski et al., 1977; Dziewonski, this 

issue; Clayton and Comer, 1983]. When the velocity anomalies 

determined by these studies are compared to the observed 

geoid by assigning reasonable density contrasts to the velocity 

anomalies (neglecting the dynamical effects we have discussed), 

the geoids predicted are several times larger than those ob- 

served and are of opposite sign. 

As we have shown in this paper, the dynamics of flow in the 

mantle can reduce the long-wavelength geoid anomalies from 

those resulting from the driving density contrasts alone and 

can even lead to a reversal in sign. Thus the seismological 

results are not qualitatively surprising. They are useful, when 

combined with the theory described here, in placing meaning- 

ful constraints on mantle dynamics. By combining observa- 

tional seismology and the quantitative theory of dynamic 

geoid anomalies we can learn far more than we could by 
either technique alone. For example, B. H. Hager et al. (un- 

published manuscript, 1984) have shown that 70% of the vari- 

ance of the degree 2-3 geoid can be accounted for by seismi- 

cally inferred density contrasts in the lower mantle, using the 

kernels of Figure 8c, for a model with uniform composition 
and an increase in viscosity of a factor of 10 across the 670-km 
discontinuity. 
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Fig. 13. Surface deformation impedance Z as a function of load- 
ing depth for two-layer models illustrating the effect of low viscosity 
in the upper mantle. (Dashed curves indicate singularities in Z.) 
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Fig. 14. Harmonic dependence of response functions K and Z for 

representative loading depths of 300, 1400, and 2600 km for a variety 
of models. Curves "a," "b," and "c" are for whole mantle flow with FF 

boundary conditions and upper mantle viscosity contrasts of 1.0, 0.1, 
and 0.01, respectively. Curves "d," "e," and "f" are for two-layer flow 
with NF boundary conditions and upper mantle viscosity contrasts of 
1.0, 0.1, and 0.01. 

The other geophysical observable we have discussed is sur- 

face deformation, which is expected to show a correlation with 

the long-wavelength geoid. Before this signature of mantle dy- 

namics can be measured, however, the large effects of crustal 

thickness variations on topography must be removed. A 

simple, preliminary result is obtainable if we limit our com- 

parison to old shield areas. For these areas, erosion can be 
assumed to have established a constant continental freeboard 

over geologic time. Also limiting our comparison to regions 
removed from collision zones, we find that the African shield, 

in a major geoid high, is high standing, while the Siberian and 

the Canadian shields, in major geoid lows, are relatively low 
standing [NOAA, 1980]. Similar conclusions can be reached 

from the hypsographic curves of Harrison et al. [1981]. From 

these observations we estimate that the impedance Z at long 
wavelengths is of order +0.1. This is consistent with the re- 

sults for the long-wavelength correlation between seismic ve- 

locity heterogeneity in the lower mantle and the geoid. More 

detailed analysis using crustal thickness and density data 
should yield more accurate quantitative results over a broader 

spectral range. 

Within the framework of a spherically symmetric model we 

are unable to reconcile the evidence from geoid anomalies 

over subduction zones that the effective viscosity increases by 
two orders of magnitude with the preliminary evidence from 
seismic studies and elevation of shield areas that the viscosity 

increases by only one order of magnitude. Perhaps not sur- 

prisingly, lateral variations in effective viscosity are suggested. 

Further theoretical improvements in our understanding of 
geoid anomalies in a dynamic earth are clearly desirable. 

Modeling of the effects of lateral viscosity variations and non- 

linear rheology would be particularly useful in understanding 
the geoid signature of subducted slabs since they exist in zones 

characterized by large deviatoric stresses and temperature 
gradients. We would also like to model the effects of adiabatic 
__ 
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compressibility and adiabatic phase changes in the mantle. 

These improvements will require numerical modeling and 

would therefore imply a major departure from the analytical 
methods we have described. 

SUMMARY 

We have used spherical Newtonian earth models to investi- 

gate the relationship between driving loads and their geoid 

and surface topographic signatures. Normalized surface po- 

tential K and deformation impedance Z have been calculated 

for representative cases of viscous and chemical stratification 

in the mantle. The following dynamical effects are found to be 

important for geoid interpretation: 

1. The response of the upper surface to loading has a large 
effect upon the behavior of the geoid signature, with negative 

geoid anomalies correlated with positive driving density con- 

trasts for the simplest models without viscosity contrasts. 

2. Considerable amplification of deep, higher harmonic 

loads is reflected in the geoid due to the manner in which flow 

stresses drive boundary deformation. 

3. The choice of the upper surface boundary condition 

(free slip versus no slip) does not strongly effect the basic 

behavior of the response functions. 

4. Lower viscosity in the upper mantle tends to drive K 

positive and Z toward larger values. For a very large viscosity 

contrast the upper surface deformation may reverse sign due 

to gravitational pressure resulting in a singularity in Z. 

5. The introduction of a flow barrier corresponding to a 

chemical boundary has a pronounced effect on the magnitude 

of the response functions K and Z. In particular, density con- 

trasts in the upper mantle have a much smaller geoid signa- 

ture; this might help distinguish the two basic flow models 
when loads within the upper mantle can be estimated. 

6. Near-boundary density contrasts are masked by the de- 

formation of the boundary. 

7. Self-gravitation is important for low harmonic degree 

loading. 
8. Viscous relaxation of boundaries occurs on a much 

shorter time scale than convective flow so that boundary de- 

formation due to internal loading can be considered steady 
state. 

9. Applications of this theory to global data from geodesy 

and seismology show that the dynamical effects we have pre- 

dicted can be observed for the earth. Improved analysis 
should yield a better understanding of mantle dynamics. 

APPENDIX 1' ANALYTICAL DETAILS 

FOR THE WHOLE MANTLE PROBLEM 

In order to solve equations (22) the boundary conditions 

(25) must be analytically continued to their respective spheri- 
cal reference surfaces which are the mean earth radius a and 

the mean core radius c. The field variables are continued 

within the medium through which they are propagated in 

equations (22), in this case the mantle. To first order, the only 
terms in vectors (25) affected are the radial normal deviatoric 

stres, s and the gravitational acceleration. Since the stress above 

the earth's surface is zero, the normal deviatoric stress at the 

reference boundary is just the apparent jump described by 
equation (8), so 

uS(a) 

= [0, O, --pmg(a)aeSr/rlo, arrow/rio, poaeSV•/rlo, po a2 &SV] r 

(Ala) 

or 

ur(a) = I0, Vo,•, --pmg(a)cSr/rlo, O, poacSV,•/rlo, pøa2 c3c5V'•] T 
(Alb) 

At the core, using equation (6) and the perturbed hydrostatic 

stress, -p•g•, at the reference level as seen in the mantle we 
obtain 

ur(c) = [0, Voc, gPcmg(C)Cgrc/qO -- pcgVcc/qo, O, 
PoC• /qO, pøc2 •0 7[ J (A2) 

Note that the normal stress term in this vector contains not 

only the effective stress discontinuity (proportional to •rc) but 

also a gravitational pressure term (proportional to •)' this 

respresents the pressure field within the inviscid core. 
The deformations •r• and •rc cause first-order perturbations 

in the potential •V in addition to that due to the driving 

density contrast a at depth b. These perturbations are appro- 

priately treated as effective surface masses at the reference 

boundary levels, as discussed above in our analytical treat- 

ment of boundary deformation. We now calculate the poten- 

tial at r = a (lithosphere) due to a surface mass distribution 

a = Zl al at r = b. The perturbed potentials just above and 
below the surface are 

a l 

+ = r I 

F l 

ov- = a l 

since V2•V = 0 away from the surface density contrast. 
At the surface V2•V = 4•Gp so, integrating over a volume 

• enclosed by a surface S, 

by Green's theorem. Integrating over a "pill box" containing a 
piece of the surface density contrast and shrinking the radial 

thickness of the box to zero, p• a dr, n• F, V(•V)• a(•V)/ar 
and (A4) becomes 

For our perturbed boundary conditions we impose an ef- 

fective surface mass ffeff soch that the apparent jump in 

normal stress at the reference boundary is given by &• = 
g(a)%ff. Expanding 

where we have made the /th harmonic dependence explicit, 

and using the above expansions for •V to calculate 

[0(• V)/Or]_ + we obtain the desired result' 

•V•-=-4•Ga •r•l (r/a)l• (A6) 21 + 
Similarly, at r = c (core-mantle boundary) we obtain 

• + 4•Gc • •r• t (c/r) t+ • • (A7) 
a 

g(c) 21 + 1 
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Again, for the density contrast at b, 

t• at (b/r) t+ ' Yt ,:5 V• + = 4 r• G b 21 + 1 
(A8) 

_ at (r/b)tyt ,5 V• = 4 r• G b •t 21+ 1 
The total potentials at a and at c are given by 

{•Va tøt -- ({•Va- -it- {•Vc + -it- {•Vb +)r=a 
(A9) 

•Vc to' = (•v•- + •v• + + •v•-),=c 

These expressions contain explicitly the perturbed potentials 

due to boundary deformation that are required for a self- 

gravitating model. Writing the &rr t in terms of the 6r, we 
obtain the following expressions for the potentials in terms of 
the stress variables and at: 

5 V• - 21 + 1 pmg(a)5% 

06 V a 4r•G 

Or 21 + 1 l 

4r•G 

6Vc-21+ 1 

Pmg(a) 6r a 

5Pcmg(C)Sr c -- (1 + 1) o 't 
gc 

(A10) 

pmg(a)6r a +- 6pcr•g(c)6r c + b 
g½ 

Or - 21 + 1 • Pmg(a)•ra 

(l + 1) 6Pcmg(C)grc + I a t 
gc 

Combining the first four of equations (21) with reference 
boundary expressions (Ala) and (A2) and potentials (A10), we 

obtain the following equations for 6r a and 6r c as well as Voc 

and Z,oa: 

Pcai2t;Oc + {Pcai3(1 -- Pc*CC/rlo) 

ized by setting a to unity. Exact values of the propagator 

elements Pca u, Pba q can be calculated according to the pro- 
cedures of Hager and O'Connell [1981] and (All) can be 

solved in a straightforward manner. With these solutions for 

the boundary deformations and the potentials via (A10) we 

can calculate the kernels defined by (14)-(17). 

APPENDIX 2: VISCOUS RELAXATION TIMES 

FOR SPHERICAL EARTH MODELS 

We need to demonstrate that the boundaries relax with time 

constants much smaller than the time scales for convective 

flow. These time constants can be obtained from consideraton 

of the normal mode problem for relaxation in a radially strati- 

fied viscous earth model. Viscoelastic solutions have been pre- 

sented by Wu and Peltier [1982-1, but since convective time 
scales are far in excess of Maxwell times in the earth, the effect 

of elasticity can be ignored. The purely viscous normal mode 

problem is much less complicated and was first investigated 

by Parsons [1972]. Using propagator matrix methods which 

are described in detail by R. J. O'Connell et al. (unpublished 

manuscript, 1984), we have solved for the relaxation spectra of 

the self-gravitating spherical models used in the geoid calcula- 

tions that follow. By setting all the stress-flow variables and 

boundary deformations proportional to exp (-t/z•) and solv- 

ing the resulting system of homogeneous equations [see Ha#er 

and O'Connell, 1979] the eigenvalues zi as well as the eigen- 
modes for flow, stress, and deformation are obtained. Each 

flow boundary introduces an additional relaxation time con- 

stant and eigenmode. For example, for a simple model with an 

inviscid core overlain by a uniform mantle we obtain a mantle 

and a core mode. These modes are symmetric and anti- 

symmetric respectively, with respect to the sense of boundary 

relaxation, and the time constant for the antisymmetric mode 

grows rapidly as the thickness of the flow layer decreases [Sol- 

omon et al., 1982]. 

In Table 1 we have listed the parameters used for the 

models presented in this paper. Density values have been 

chosen to match the total mass of each layer (as well as the 

earth) and the gravity at each boundary [Dziewonski et al., 

1975], although with such a layering scheme it is impossible to 

match simultaneously other earth parameters, such as 

moment of inertia, which are not important to this study. 

where 

ee©e e 

+ [Pca i5 --(1 + 1)Pcai6]c}C•Pcmg(C)C•rc • ':: ...... MO '•" ' : 
k? W' = 0'0• .... ' .¾.0 above 670 km + [(Pca i5 + lPcai6) A --•i3- Pcai3pc*aA/•o] • above 2•km 
e )/ 

pmg(a)•ra--6maz,o•/•o 12 • I0 14 I• I • lb Ih I• I • I0 14 
2 • e ß 

= + o'o4aOo/o ... -c ......... o • -C ..... C '''''' 

+ l'o]o .. ß . . ' " ' " , 
Pt, a-- P(a, b) 

4r•Gpø (g-•a)a))(•)t+l 2/+ 1 

2/+ 1 

2/+ 1 

Pca = P(a, c) 

B • 

C I 

and where the driving terms on the right are usually normal- 

Harmonic degree 

Fig. A1. Relaxation times and relative boundary discplacement 
amplitudes for viscous normal modes as functions of harmonic degree 
for whole mantle flow. M0 refers to the symmetric mantle mode and 
C refers to the asymmetric core mode. The notation "-C" in Figures 
Alb, Ald, and All emphasizes that the boundary deformations are of 
opposite sign for the core mode. The models represented include 
uniform mantle viscosity and low viscosity channels above 200 and 
670 km depth. Figure Ala also shows the relatively minor effect of a 
high-viscosity "lithosphere" layer. 
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Fig. A2. Relaxation times and relative boundary amplitudes for 
viscous normal modes as functions of harmonic degree for two-layer 
flow. The M 1 mode is generated by deformation of the flow barrier at 
670 km depth, and the right-hand column of figures are for a low- 
viscosity upper mantle. Plus and minus signs on the amplitude curves 
indicate sign reversals in the sense of deformation relative to that of 

the surface. Figure A2a also shows the effect of using a density jump 
of 0.3 instead of 0.5 Mg/m 3 at the 670-km discontinuity. 

Also, for the viscous relaxation problem we use smaller, more 

realistic density contrasts across internal boundaries (adia- 
batic compression in the mantle being ignored) since these 
values strongly affect the time constants obtained. 

The two basic models used are those of whole mantle and 

layered mantle flow, both with an inviscid core. Arbitrary vis- 
cosity and density layering can be treated, so the models pre- 
sented here are chosen to be illustrative rather than exhaus- 

tive. In Figures A1 and A2 we plot the relaxation time con- 
stants (eigenvalues) and the associated boundary deformations 
associated with each eigenmode. An individual eigenmode 
consists of a flow field throughout the mantle and could be 

represented as such. However, for our purposes the boundary 
deformations serve to identify both the appropriate branch 
(mode) and the relative excitation of each mode as we demon- 

strate later. Figures A la and A lb show the results which are 

obtained for the uniform mantle model (model A). For each 
harmonic number l, following the nomenclature of Peltier 

[1976], there is a core mode (C) and a mantle mode (MO). 
For I < 20 the largest relaxation time obtained is less than 10 ½ 

years and is associated with the C mode. Note that for high 
harmonic order the relaxation time increases with increasing 
wavenumber as in equation (10). In Figure Alb we plot the 
core deformation amplitude normalized by the surface defor- 
mation amplitude for each mode. As we would expect, the 
modes are strongly coupled at low harmonic order and rela- 

tively decoupled at higher values of l, thus distinguishing the 
C and MO mode branches. Also shown in Figure Ala is the 
very slight change in relaxation times caused by modeling the 

upper 100 km of mantle ("lithosphere") with two orders of 
magnitude higher viscosity than the mantle (r/- 1023 Pa s, or 
r/* = r//r/o = 100 with % - 102• Pa s denoting the reference or 
lower mantle viscosity). For the wavelengths of interest here 
such a layer is essentially transparent. In Figures Alc and Ald 
and Ale and A lf we illustrate the effect of low viscosity 
(r/* = 0.01) in the upper mantle above 200 and 670 km, respec- 
tively. There are three principal effects to be noted: (1) From 
the amplitude plots we see that the two modes tend to be 

decoupled by the low viscosity channel, (2) the C mode relax- 
ation times are essentially unaffected while the mantle mode 
times are decreased by one to two orders of magnitude, and 
(3) the strength of these effects increases with the thickness of 

the low-viscosity channel. From these simple cases illustrating 
the effects of viscosity layering we conclude that for a broad 

class of whole mantle flow models, no relaxation times greater 
than 10 ½ years are obtained for a lower mantle viscosity of 
102• Pa s. 

We now consider models for two-layer, shear coupled flow 
in the mantle (models D and E) in which the depth of the top 
layer corresponds to the 670-km discontinuity. Since upper 
and lower mantle material do not mix across the 670-km 

discontinuity in these models we have introduced an internal 

boundary whose deformation contributes another mantle 

mode (M1). This boundary could be a chemical discontinuity 
or a phase boundary with sluggish kinetics. Figures A2a-A2c 
show the relaxation times, the relative deformation of the 

core-mantle boundary, and the relative deformation of the 

670-km discontinuity for each of the modes C, M0, and M1, 
respectively. The relaxation times for the C and M0 modes are 

essentially the same as those obtained for the whole mantle 

case. However, the M1 mode has a much longer relaxation 
time (about 105 years). The boundary deformation amplitudes 
exhibit a much more complicated dependence upon l than for 
previous models, and the meaning of these eigenmodes will 
become more apparent when we address the problem of mode 
excitation; for now we will concentrate on the relaxation 

times. In particular, when the density contrast across the 
670-km discontinuity is decreased from 0.5 to 0.3 Mg/m 3 a 
significant increase in the M1 time occurs (Figure A2a). This 
can be easily understood physically since the buoyancy force 
that tends to restore a boundary to its reference configuration 
is proportional to the density jump, 6p, at that boundary. 
Therefore as 6p is made smaller, the associated relaxation time 

increases accordingly. Since the actual density contrasts within 
the earth are not exactly known, it is important to remember 
this effect when modeling relaxation times. In Figures A2d- 
A2f we illustrate the effects of low viscosity in the upper 
mantle for two-layer flow. Both the M0 and M1 modes ac- 

cordingly exhibit smaller relaxation times, the effect on M1 

being one half to one order of magnitude. We conclude that 
for the two-layer flow model the longest relaxation time ex- 
pected is about 105 years. An upper mantle flow layer involv- 
ing chemical boundaries at say 400 or 220 km [Anderson, 
1979] would result in longer relaxation times, but we have not 

included these more complicated cases in our geoid models. 
None of the relaxation times calculated so far have been in 

excess of 105 years, which for reasonable mantle flow veloci- 

ties would allow for about 10 km transport in the mantle. This 
is indeed small compared to the flow dimensions, so for lower 

mantle viscosities of 1021 Pa s, the assumption of steady state 
flow is verified. Recent studies by Peltier [1981] and Yuen et 
al. [1982] indicate that the viscosity of the lower mantle is less 

than 1022 Pa s. Since the relaxation problem scales linearly 
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with reference viscosity (which we always take to be that of 
the lower mantle), it is not likely that the steady state hypoth- 

esis for boundary deformation is seriously violated for the 
overall convective circulation in the mantle. Alternatively, 

computing the ratio of flow velocity to the velocity of relax- 
ation of the boundary as in equation (12), the viscosity cancels, 

indicating that boundaries relax rapidly relative to changes in 
the flow regime whatever the mantle viscosity. 
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