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Geologic factors controlling patterns of small-volume basaltic 

volcanism: Application to a volcanic hazards assessment 

at Yucca Mountain, Nevada 

Charles B. Connor, • John A. Stamatakos, • David A. Ferrill, • Brittain E. Hill, • 

Goodluck I. Ofoegbu, • F. Michael Conway, 2 Budhi Sagar, • and John Trapp 3 

Abstract. The proposed high-level radioactive waste repository at Yucca Mountain, 
Nevada, is located within an active volcanic field. Probabilistic volcanic hazard models for 

future eruptions through the proposed repository depend heavily on our understanding of 
the spatial controls on volcano distribution at a variety of scales. On regional scales, 
Pliocene-Quaternary volcano clusters are located east of the Bare Mountain fault. 
Extension has resulted in large-scale crustal density contrast across the fault, and vents are 
restricted to low-density areas of the hanging wall. Finite element modeling indicates that 
this crustal density contrast can result in transient pressure changes of up to 7 MPa at 40 
km depth, providing a mechanism to generate partial melts in areas where mantle rocks 
are already close to their solidus. On subregional scales, vent alignments, including one 
alignment newly recognized by ground magnetic mapping, parallel the trends of 
high-dilation tendency faults in the Yucca Mountain region (YMR). Forty percent of 
vents in the YMR are part of vent alignments that vary in length from 2 to 16 km. 
Locally, new geological and geophysical data show that individual vents and short vent 
alignments occur along and adjacent to faults, particularly at fault intersections, and left- 
stepping en echelon fault segments adjacent to Yucca Mountain. Conditions which formed 
these structures persist in the YMR today, indicating that volcanism will likely continue in 
the region and that the proposed repository site is within an area where future volcanism 
may occur. On the basis of these data the probability of volcanic disruptions of the 
proposed repository is estimated between 10-8/yr and 10-7/yr. 

1. Introduction 

Volcanic hazard analyses are often required for facilities, 

such as nuclear power plants and high-level radioactive waste 

repositories, that must be constructed in areas of low geologic 

risk [International Atomic Energy Agency, 1997]. The proposed 
high-level radioactive waste repository at Yucca Mountain, 

Nevada, is one such facility. Plans call for this repository to 

isolate high-level radioactive waste for a time period of the 

order of 104-105 years [e.g., Krauskopf, 1988; U.S. Nuclear 
Waste Technical Review Board, 1994; U.S. National Research 

Council, 1995]. Volcanic hazards associated with the repository 

stem from its location within a geologically active basaltic vol- 
canic field that includes --•40 basaltic vents formed since 10.5 

Ma and, notably, six cinder cones formed since 1 Ma that are 

located within 20 km of the site (Figures la and lb) [Crowe et 
al., 1983; Connor and Hill, 1995; Fleck et al., 1996]. This Qua- 

ternary basaltic volcanism is deleterious because of the poten- 

tial for small-volume basaltic eruptions through the repository 

that are capable of transporting waste into the environment. In 

order to effectively evaluate this hazard in light of the pro- 
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posed longevity of the repository, an understanding of geologic 

factors that control volcanism on timescales of 104-10 7 years is 
needed. 

This paper describes the current geological and geophysical 
evidence for the role that crustal extension and crustal struc- 

tures play in the development of basaltic volcanism in the 

Yucca Mountain region (YMR). General questions about the 

role of the crust in development of basaltic volcanic fields 

include the following: How does brittle deformation in the 

lithosphere influence the generation of small-volume basaltic 

magmas in the mantle? What role can specific geologic struc- 

tures such as faults or shear zones play in the ascent and 

eruption of basalts? Therefore, what can be learned about 

likely locations of future eruptions based on the distribution of 

these structures? How does the interplay between local fault 

geometry and regional state of stress influence the location of 

individual volcanoes or the development and longevity of 

alignments of basaltic vents? In the YMR, basaltic volcanism, 

the structural geology, and geophysics of the region have been 

the topic of considerable study. Thus the YMR provides an 

excellent opportunity to investigate these general questions 

about development of basaltic volcanic fields in detail. 

Previous investigations demonstrated that the recurrence 

rate of basaltic volcanism in the YMR is relatively low, on the 

order of 2-12 volcanic events per million years [Ho et al., 1991; 

Crowe, 1990; Crowe et al., 1992], that the most recent YMR 

eruptions occurred at Lathrop Wells volcano, at --•0.08 Ma 

[Heizler et al., 1999], and that YMR volcanic activity is spatially 

and temporally clustered [Connor and Hill, 1993, 1995]. As in 

417 
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Figure la. Location and geologic setting of the proposed Yucca Mountain high-level radioactive waste 
repository. Geology is from Frizzell and Schuhers [1990] and Day et al. [1997]. Locations of ground magnetic 
maps shown in Plate 3a-3d are indicated by labels A-C and AAA, respectively. 

other basaltic volcanic fields, structure may influence the dis- 

tribution of volcanism on several scales, from the alignment of 
volcanoes along faults to the localization of volcano clusters in 

structural basins. Furthermore, rates of basaltic magmatism 

may be related to changes in rates of extension [e.g., Bacon, 
1982; Parsons and Thompson, 1991; Luhr et al., 1997; Wernicke 

et al., 1998]. In the YMR, tectonic controls on volcanism have 

been used to support both comparatively high and low esti- 

mates of the probability of basaltic eruptions at the proposed 

repository site [Crowe and Perry, 1989; Smith et al., 1990] rel- 
ative to estimates that do not explicitly consider structure 

[Connor and Hill, 1995]. 
The influence of crustal structure on volcanism, therefore, is 

identified and investigated on three separate scales. First, on a 

regional scale, balanced geologic cross sections and gravity 
data are used to investigate and model the regional relation- 
ship between the distribution of basaltic volcanism and crustal 

extension. At this scale it appears that shifts in the locus of 
volcanism through time and the concentration of volcanic ac- 

tivity within specific areas of the YMR result predominantly 
from lithospheric melting in response to extension. This exten- 

sion is also manifest in slip on major crustal faults during the 
Pliocene and Quaternary. The resulting pattern in vent distri- 

bution and relationship to major crustal structures provides a 
basis for the volcanic hazard assessment. Second, on a subre- 

gional scale, geologic field and ground magnetic data are used 
to identify and map alignments of basaltic volcanoes, one of 

which has been entirely buried by alluvium. These alignments 
all parallel mapped normal faults, especially those with orien- 

tations that tend to cause them to dilate in response to exten- 

sion. Factors controlling alignment development, length, and 
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Figure 2. Balanced cross section across Bare Mountain, Crater Flat, and Yucca Mountain [Ofoegbu and 
Fenill, 1998]. High-angle normal faults at Yucca Mountain intersect a detachment at depths between 5 and 
10 km. Such high-dilation tendency faults may serve as pathways for ascending magmas. This profile is used 
to estimate density differences between Crater Flat (CF) and Bare Mountain (BM) using density values for 
major units from McKague [1980] and Howard [1985]. 

orientation are similarly important to the volcanic hazard mod- 

els [Smith et al., 1990; Connor et al., 1997]. Third, on a local 

scale the relationship between individual basaltic vents and 

faults is delineated, once again on the basis of detailed geologic 

field and magnetic data. Cumulatively, these data and the 

resulting models are the geologic basis for our estimate of the 

probability of volcanic eruptions through the proposed Yucca 

Mountain repository. 

2. Regional-Scale Structure: 
Crustal Structure and Its Influence on 

Magmatism 

Yucca Mountain is part of the western Great Basin, a region 
characterized by east-west extension and northwest trending 

dextral strike-slip or oblique strike-slip faults. Coupled with 

this overall pattern of crustal extension and transtension are 

numerous small-volume volcanic fields [Faulds and l/arga, 

1998]. 
Yucca Mountain lies within the eastern half of the Crater 

Flat basin, a half graben bounded on the west by the east 

dipping Bare Mountain fault (BMF) and by a series of west 

dipping antithetic faults that lie east of Yucca Mountain (Fig- 

ure 1). The easternmost of these antithetic faults may be the 

Paintbrush-Stage Coach Road fault or, more likely, a buried 

fault defined by large gravity anomaly and referred to as the 

Gravity Fault [Winograd and Thordarson, 1975]. Yucca Moun- 

tain itself is a block of Miocene ignimbrite deposited uncon- 

formably on Paleozoic and Precambrian sedimentary and 

metasedimentary rocks. Faults within Yucca Mountain are 

predominantly north or northeast trending normal faults and 

northwest trending dextrai oblique strike-slip faults that col- 
lectively compose a left-stepping en echelon fault array [Ferrill 

et al., 1999]. 

Interpretations of the tectonic setting of Yucca Mountain 

and Crater Flat have been controversial and varied [e.g., Mal- 
donado, 1985; Hamilton, 1988; Cart, 1990; Scott, 1990; Snow 

and Prave, 1994; Faulds et al., 1994; Fenill et al., 1996; Schwe- 

ickert and Lahren, 1997; Fridrich, 1999; Fridrich et al., 1999]. 

One interpretation is that the BMF shallows with depth and 
forms a master detachment under the Crater Flat-Yucca 

Mountain half graben [Hamilton, 1988]. The west facing anti- 

thetic faults at and east of Yucca Mountain sole to a common 

detachment that intersects the BMF between 6 and 15 km 

depth (Figure 2). These antithetic faults accommodate rollover 

of the Crater Flat basin into the BMF. In this interpretation, 
Crater Flat formed either in response to simple east-west ex- 

tension across the region or as a pull-apart in the releasing 

bend of a larger Walker Lane-style strike-slip system. Both of 

these interpretations are supported by, among other things, 

detailed balanced cross sections drawn across Crater Flat [Fer- 

rill et al., 1996; Ofoegbu and Ferrill, 1998], evaluation of the 

paleomagnetic data from the basin [e.g., Rosenbaum et al., 

1991; Hudson et al., 1994; Stamatakos and Ferrill, 1998] and 

nearby Bare Mountain [Stamatakos et al., 1998], Quaternary 

sedimentation patterns in Crater Flat basin [Stamatakos et al., 

1997a], and a series of analog models designed to elucidate the 

evolution of extensional basins in pull-apart systems [Stamata- 

kos and Fen'ill, 1998; Rahe et al., 1997]. 

Extension across the basin since the Miocene produced a 

large-scale density contrast in the upper 5-6 km of the crust, 
with dense Precambrian and Paleozoic rocks of the BMF foot- 

wall juxtaposed with less dense tuffs and alluvium of the hang- 

ing wall (Figure 2). This fault delineates the west boundary of 

a north-south trending area of largely negative gravity anom- 

alies (Plate la) that extend from Crater Flat south through the 

Amargosa Desert [e.g., Ponce and Oliver, 1995; Langenheim 

and Ponce, 1995] that are collectively termed the Amargosa 

Trough [O'Leary, 1996]. 

Regional geophysical data reveal that Pliocene-Quaternary 

volcanoes in the YMR are largely restricted to the Amargosa 

Trough (Plate la). Lathrop Wells cinder cone lies outside 

Crater Flat topographic basin but, on the basis of gravity data, 

is located within the larger north trending structural basin and 

at the margin of the prominent basement low in southernmost 

Crater Flat. Aeromagnetic anomalies [Langenheim, 1995; Lan- 

genheim et al., 1993] in the Amargosa Valley produced by 

buried Pliocene(?) basalts also lie within or at the margins of 
the southern extension of this basin. The most voluminous of 

these buried basalts lies close to a north trending gravity anom- 

aly marking the eastern edge of Amargosa Valley alluvial basin 

in this area. Only Miocene basalt is mapped outside of the 

trough in the YMR (Plate la). One magnetic anomaly that is 

interpreted to be caused by buried basalt (anomaly B, Figure 
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lb) may be the exception. This magnetic anomaly, discussed in 
more detail in section 3, occurs --•2 km west of the BMF. 

An explanation for occurrence of Pliocene-Quaternary ba- 

salt in the Amargosa Trough is that the broad crustal density 

contrast created by the BMF is sufficient to initiate small- 

volume decompression melting. Such decompression melting 

is favored in zones of enriched mantle lithosphere [Farmer et 

al., 1989; Leemah and Fitton, 1989; Lachenbruch and Morgan, 

1990; Pedersen and Ro, 1992; Bergantz and Dawes, 1994; 

Hawkesworth et al., 1995], like the YMR, that have previously 

been enriched in incompatible elements, enabling melt forma- 

tion at lower temperatures than is possible in normal or de- 

pleted mantle [McKenzie and Bickle, 1988; Yogodzinski and 

Smith, 1995]. Based on mineralogical phase relationships and 

geochemical studies, decompression-induced partial melting of 

enriched lithospheric mantle likely occurs at depths between 

40 and 80 km in the western Great Basin [Takahashi and 

Kushiro, 1983; Rogers et al., 1995]. In stark contrast to the depth 

of melt generation, crustal extension most strongly influences 

the upper brittle crust (<15 km depth) by producing large 
density variations across faults. Thus the direct link between 

crustal extension and magmatism relies on the possibility that 

density variations in the crust produced during extension are 

sufficient to initiate decompression melting at much greater 

depths within the mantle. 

The average density difference between a 5.6 km column of 
rock beneath Crater Flat and one beneath Bare Mountain is 

280 kg/m 3, calculated from the cross section using average rock 
densities for the region (Figure 2) [McKague, 1980; Howard, 
1985]. Beneath 5.6 km, large density differences are not ex- 

pected because faulting at those levels juxtaposes rocks of 

similar densities. Given that the lithostatic pressure at a geo- 

graphic location x, y and depth Z is 

•0 Z PL(x, y, Z) = p(z)# dz, 

p = 2800 kg/m 3 I P = 2550 kg/m 3 v = 0.25 v = 0.25 

p = 2850 kg/m 3 
v = 0.25 

Ductile - Brittle Transition 

p = 2900 kg/m • 
v = 0.25 - 0.45 

Moho 

p = 3300 kg/m 3 
v = 0.45 

(a) 

5.6 km 

15 km 

30 km 

100 km 
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Figure 3. (a) A simple finite element model of pressure vari- 
ation in the lithosphere was constructed using the generalized 
cross section from Wernicke [1992] and including a large den- 
sity variation in the upper 5.6 km of the crust. The bulk den- 
sities 9 and values of Poisson's ratio •, are indicated. (b) Pres- 
sure changes of 7 MPa and 2 MPa are expected at 40 and 80 
km depth, respectively, on the basis of this model. 

where is g is gravity (9.8 m/s 2) and p(z) is rock density at depth 
z (estimated from the cross section), the lateral change in 

lithostatic pressure across the BMF at Z = 5.6 km is --•15 
MPa. 

Following the methods of Gupta and Grant [1984], the Bou- 

guer gravity data were used to infer lateral changes in apparent 

density, Zip(x, y), in the shallow crust across the entire YMR 

(Plate lb), assuming that zip(z) is constant between the sur- 
face and Z. The change in lithostatic pressure below depth Z 

of the map region is 

y, z) = p(x, y)z, (2) 

for Z = 5-6 km and zip(x, y) = 230-280 kg/m -• across the 
BMF in southern Crater Flat, yielding ZIP•.(x, y, Z) = 11-16 

MPa, in good agreement with density contrasts obtained from 

the balanced cross section. The apparent density map (Plate 

lb) also reveals that this density contrast persists north and 

south of Bare Mountain, making it a regional (i.e., long- 

wavelength) feature. Apparent density values remain low east 
of the BMF for at least 50 km and remain high west of the 

BMF to the edge of the gravity map, 20 km from the fault 

(Plate lb). 

Recognition of long-wavelength density variation is impor- 

tant because only long-wavelength crustal density variations 

can produce meaningful pressure variations in the mantle [e.g., 

Anderson, 1989]. In contrast, the affects of local density varia- 

tions, such as those produced by topography, attenuate rapidly 

with depth. An estimate of ziPz.(x, y, Z) at Z -- 40-100 km, 
given the density contrast across the BMF, was made using a 

linear-elastic finite element model and simplified geometry. 

Key elements of the model include the following: a vertical 

step producing the density contrast from Z = 0-5.6 km; 

increase in density and Poisson's ratio with depth; zero- 

displacement conditions at the west, east, and basal boundaries 

of the model space; and a free surface (zero stress) at the top 

of the model space (Figure 3a). In addition to the lateral 
density contrast at <5.6 km, vertical layering in the model 

includes the brittle-ductile transition at 15 km and a flat-lying 

Moho discontinuity at 30 km [Wernicke, 1992]. Under gravita- 

tional loading, this model produces lateral pressure variations 

of the order of 7 MPa at 40 km depth (Figure 3b), which 
further attenuate to 2 MPa at 80 km and <1 MPa at 100 km. 

Changing the Poisson's ratio between 0.25 and 0.45 for the 

depth interval 15-30 km did not significantly change these 

pressures (<1 MPa). 
Mantle rocks at depths of 40-100 km are under average 

lithostatic pressures of 1-3 GPa. A change of 2-7 MPa across 

the density discontinuity thus represents a very small fraction 

of the total pressure at likely depths of mantle partial melting. 

Solidi for anhydrous peridotites appear relatively isothermal at 
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Plate 1. (a) Approximately 8400 gravity stations are used to create this complete Bouguer anomaly map of 
the YMR. Contour interval is 2 mGal. Miocene basalt (orange) and Pliocene-Quaternary basalt (red) are from 
Frizzell and Schulters [1990]. Magnetic anomalies (red) are from Langenheirn et al. [1993] and this study. Data 
were compiled from numerous sources and obtained from the Geophysics Data Repository at Lawrence- 
Berkeley Laboratory. See Ponce and Oliver [1995]. (b) Change in mean apparent density (kg/m 3) derived from 
gravity data is shown. 
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Plate 2. The spatial recurrence rate (volcanic events/km 2) contoured for the YMR, based on the distribution 
of Quaternary volcanism and its relationship to the BMF (see appendix). The contour interval is 2 x 10 -4 
volcanic events/km 2. 

1-3 GPa pressures [e.g., Jaques and Green, 1980]. Small pres- 

sure changes of 2-7 MPa would be unlikely to induce partial 

melting unless these peridotites were at the solidus. In con- 

trast, solidi for volatile-bearing peridotites appear relatively 

more sensitive to small variations in pressure than anhydrous 

peridotites [Mysen and Boettcher, 1975; Egglet, 1978; Green et 

al., 1987; Haro' and Leemah, 1995]. Some <5 Ma basalts of the 

YMR contain phenocrysts of pargasitic amphibole, and most 

have geochemical characteristics consistent with phlogopite or 

amphibole as a residual or fractionating mineral phase 

man et al., 1982]. These features indicate partial melting that 

occurred under hydrous conditions. Isotopic data also are con- 
sistent with a source for YMR basalt in metasomatized litho- 

spheric mantle [Farmer et al., 1989; Yogodzinski and Smith, 

1995]. Provided the metasomatized peridotites are very near 

the solidus, 2-7 MPa variations in pressure may be sufficient to 

induce small-volume partial melts by isothermal decompression. 

Basaltic volcanism within the Amargosa Trough thus can be 

explained by the juxtaposition of crustal extension associated 

with the BMF onto a more regionally extensive zone of meta- 

somatized mantle lithosphere. Although this zone of metaso- 

matized mantle may extend for at least 50 km away from the 

Amargosa Trough [e.g., Yogodzinski and Smith, 1995], compo- 

sitionally similar basalt is concentrated in areas of relatively 

large-scale crustal cxtcnsion, such as the Funeral Formation of 

the Greenwater range [Asmerom et al., 1994]. With these ob- 

servations (Figure 2 and Plate l a) and model in mind, the 

apparent density map was normalized to be a probability den- 

sity function that effectively weights the expected distribution 

of future volcanic eruptions in favor of areas east of the BMF. 

This information, together with vent cluster models [Connor 

and Hill, 1995; Condit and Connor, 1996; Conway et al., 1998] 

(see appendix, equations (A7)-(A9)), is used to estimate the 
expected location of basaltic vents and vent alignments in the 

YMR (Plate 2). 

3. Subregional Scale: 
Volcano Alignments and Faults 

Within the Amargosa Trough, stress orientation, strain rate, 

and fault distribution influence the development of vent align- 

ments. Issues related to vent alignments that arise in hazard 

assessment include their likelihood to develop, orientation, 

length [Nakamura, 1977; Zoback, 1989; Connor, 1990; Smith et 

al., 1990], and potential to reactivate after comparatively long 

periods of quiescence [Conway et al., 1997]. 
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Plate 3. Ground magnetic anomaly maps of (a) southern Crater Flat, including the Little Cones (labeled A 
in Figure 1), (b) Carrara fault area, south of Crater Flat and labeled B on Figure 1), (c) southwest of Northern 
Cone (labeled C on Figure 1), and (d) a buried vent alignment (labelled AAA in Figure 1). All map 
coordinates are universal transverse Mercator (UTM) (North American Datum (NAD) 83), and contour 
interval (CI) varies as indicated. 

The most prominent vent alignment in the YMR is the 

arcuate NE trending Quaternary Crater Flat alignment, con- 

sisting of five cinder cones aligned southwest of Northern Cone 

(Figure lb) [Champion, 1991; Faulds et al., 1994; Bradshaw and 

Smith, 1994]. Three magnetic anomalies are mapped along the 

alignment that reveal the presence of older, buried basaltic 

lavas (A, B, and C in Figure lb). A normal magnetic anomaly 

-2 km south of the Little Cones (labeled A in Figure lb), the 

southernmost cones in the Quaternary Crater Flat alignment, 

has a peak-to-peak amplitude of 1100 nT and separation of 

750 m (Plate 3a) [Langenheim, 1995; Connor et al., 1997; Sta- 

matakos et al., 1997a]. This anomaly was successfully modeled 

as a thin, roughly circular lava flow buried at a depth of -150 m. 

A second magnetic anomaly on the trend of the Quaternary 

Crater Flat alignment (labeled B in Figure lb), termed the 

Carrara fault basalt [Stamatakos et al., 1997b], consists of re- 

versely magnetized rocks with very high remanent magnetiza- 

tions. This anomaly is located at the intersection of the Carrara 

fault and north trending faults (Plate 3b), placing the Carrara 

basalt -2 km west of the BMF, just outside the Amargosa 

Trough. The excursion of basalt west of the BMF may be 

related to distributed faulting near the intersection of the Car- 
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rara fault and BMF. Alternatively, the Carrara fault basalt may 

be Miocene in age and less affected during its ascent and 

eruption by the BMF than younger basalts. 

A third prominent magnetic anomaly is 2.5 km southwest of 

Northern Cone [Magsino et al., 1998] (labeled C in Figure lb). 
This is the lowest amplitude of the three magnetic anomalies 

mapped on the Quaternary Crater Flat alignment. A striking 

feature of this anomaly is that it appears to be rotated clock- 

wise, based on the relationship between its positive and nega- 

tive peaks (Plate 3c). This rotation of the anomaly is consistent 
with tectonic rotations in the area and suggests that this basalt 

is likely older than basalts that crop out along the alignment. 

Cumulatively, the geology and geophysical mapping indicate 

that the Quaternary Crater Flat alignment is up to 16 km in 

length and may have been reactivated through time. 

Our magnetic surveys of anomaly AAA (Figure lb) provide 

further evidence of NE trending alignments. This map delin- 

eates three separate anomalies associated with shallowly bur- 

ied, reversely magnetized rock (Plate 3d). These anomalies are 
distributed over 4.5 km on a NE trend. Each anomaly has a 

70-150 nT amplitude and a shape typical for basaltic vents. On 

the basis of these data, we interpret anomaly AAA as three 

basalt vents that form a short alignment. 

Other vent alignments in the region include the ---0.3 Ma 

Sleeping Buttes alignment, consisting of two cinder cones 

aligned on a NE trend, 40 km northwest of Yucca Mountain, 

and the Pliocene Crater Flat vents (Figure lb), which form a 

north trending alignment of 6-8 vents, erupted ---3.8 Ma 

[Fleck et al., 1996]. In sum, five vent alignments, comprising a 
total of 18 vents, have formed or reactivated in the Pliocene- 

Quaternary. The remaining six Pliocene-Quaternary vents are 

not members of alignments. Of these six, four are known only 

from magnetic mapping and, in one case (anomaly AAB), 

drilling. There may be multiple vents associated with some of 

these anomalies that have not been resolved by aeromagnetic 

surveys. 

Future volcanic activity may produce similar alignments. 

Given the vent alignment data, a probability density function 

for the length of new alignments is 

1/2 l = 0 fz•(l) = U[l ..... l ..... ] l>0' (3) 
2 

where /min and l ..... are the minimum and maximum half- 

length of an alignment centered at a geographic location x, y 

and U is the uniform random probability distribution, bounded 

by/min and l .... . By this definition, 50% of future YMR basal- 

tic eruptions will not create alignments and will only disrupt 

the repository if they fall within the site boundary. The remain- 

ing 50% form alignments that affect areas up to a distance/max 

from the point x, y. The value of/max can be chosen as 5.5-8 

km, taking the Quaternary Crater Flat alignment as the max- 

imum alignment half-length. Given observations in other vol- 

canic fields [Connor, 1990; Lutz and Gutmann, 1995; Connor et 

al., 1992],/max may be 10 km or more. 

A distribution function for alignment azimuth, f.(92), is 
better constrained by the data on vent alignments, regional 

stress distribution and the orientations of high-dilation ten- 

dency faults. The three youngest YMR alignments trend 20 ø- 

30 ø , parallel to the maximum principle horizontal compres- 

sional stress in the region, ---28 ø [e.g., Morris et al., 1996]. 
Under these circumstances, 

f.(92) = U[20 ø, 35ø]. (4) 

The probability distributions fz• (l) and f. (92) are included in 

the estimate of volcanic disruption of the repository (see ap- 

pendix). 

4. Local Scale: 

Positions of Individual Vents 

Faults may also control the locations of vents on local scales 

regardless of whether vent alignments develop or not (Figures 

4a-4c) [Settle, 1979]. For example, a normal fault crossed by a 
strike-slip fault will tend to dilate more at the fault intersec- 

tion, creating additional space for the intrusion of ascending 

magma (Figure 4a). There is ample evidence of such localiza- 

tion of cinder cones along faults in the YMR. Langenheim et al. 

[1993] noted that anomaly AAB occurs at the intersection of 

the north trending gravity fault and the Rock Valley Fault in 

the Amargosa Desert. Lathrop Wells volcano is located along 

the trend of the Stage Coach fault, south of Yucca Mountain at 

the intersection with several north trending faults (Figure la). 

The Carrara fault basalt (Plate 3d) is located at the intersec- 
tion of north trending normal and NW trending strike-slip 
faults. 

Ascending a steeply dipping fault, magmas may be laterally 

diverted by as much as 5 km, depending on the depth of dike 

capture by the fault and the dip of the fault plane [McDuffie et 

al., 1994] (Figures 4c and 5a-5f). Dikes will also have a ten- 

dency to break out of the fault system and propagate vertically 

at shallow depth because of rapid variations in the magnitude 

and orientation of the stress field (free surface effects). Given 
these free surface effects, it is not surprising that cinder cones 

are often located adjacent to faults in the hanging wall. Con- 

sequently, the total amount of lateral diversion will depend on 

the depth at which the dike begins following the fault and the 

dip of the fault. In part, the arcuate map pattern of the Oua- 

ternary Crater Flat alignment (Figure 1 a) may owe its origin to 
such a mechanism. The dip of the BMF shallows progressively 

northward [Ferrill et al., 1996], and cinder cones along the 

alignment are displaced progressively eastward, consistent with 

the geometry illustrated in Figures 4b and 5d. 

Basin and Range normal faults commonly grow by forma- 

tion, propagation, and amalgamation of smaller normal faults 

[Ferrill et al., 1999]. Such progressive fault growth commonly 

involves development of en echelon fault systems with individ- 

ual normal fault segments separated by relay ramps. Ferrill et 

al. [1999] identified the Solitario Canyon fault and related west 

dipping faults on the western edge of Yucca Mountain as one 

such set of left-stepping en echelon faults produced by pro- 

gressive deformation. The Pliocene vents immediately south 

and west of these fault segments mimic this trend, forming a 

left-stepping array of vent alignments. Thus en echelon fault 

geometries may provide preferential pathways to the surface 

for ascending magmas along individual fault segments (Figure 

4b). Linear, north trending magnetic anomalies intersect 
Northern Cone, located in Crater Flat •--8 km from the repos- 

itory site [Connor et al., 1997]. These anomalies result from 

vertical offsets in ignimbrite across faults that are arguably part 

of the same array of left-stepping normal faults. Bounding the 

western edge of the proposed repository, a 11.7 _+ 0.3 Ma dike 

[Smith et al., 1997] intruded a north trending segment of the 

Solitario Canyon fault. Such relationships indicate that the en 

echelon array of faults has hosted dikes at least three times in 

the Miocene-Quaternary. 
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Figure 4. Control of vent distributions on local scales by faults, due to variation in fault geometries. (a) 
Vents may be preferentially emplaced at the intersections of faults. (b) Increasing displacement of normal 
faults in the Basin and Range can produce en echelon fault segments. Vents tend to form along these fault 
segments. (c) Faults may capture and redirect ascending dikes if fault planes are low-energy pathways to the 
surface, resulting in lateral diversion of dikes and cinder cones from the position of the dike at depth. Dikes 
will break out of the fault plane near the surface and be displaced from the fault trace as a function of fault dip. 

5. Probability Estimates 

Probability models rely on estimates of the expected re- 

gional recurrence rate of volcanism in order to calculate the 

probability of future volcanic activity. These estimates vary 

between 2 and 12 volcanic events per million years (v/Myr) 
[e.g., Ho, 1991, 1992; Ho et al., 1991; Crowe et al., 1992; Connor 

and Hill, 1993], with various definitions of a volcanic event 

accounting for at least part of this range. In addition to this 

regional recurrence rate, the probability model accounts for 

the expected spatial distribution of future basaltic volcanism. 

Estimate of this spatial distribution can integrate independent 

geologic data to varying degrees. This, in turn, changes the 

probability estimate for volcanic disruption of the proposed 

repository. In the following, progressively more geologic infor- 

mation is incorporated into the analysis to demonstrate the 

sensitivity of probability estimates to these data and models. 

In the simplest model the future distribution of volcanoes 

depends solely on where volcanoes have erupted in the past. 

Treating all Pliocene-Quaternary vents as individual volcanic 

events, the mean distance to nearest-neighbor volcanic event is 
3.8 km with a standard deviation of 5.8 km. Some vents such as 

SW and NE Little Cones are quite closely spaced and have 

been treated as single volcanic events in some hazard analyses 

[Crowe et al., 1992; Connor and Hill, 1995]. Treating vents 

spaced more closely than 1 km as single volcanic events, the 

mean distance to nearest-neighbor volcanic event increases to 

5.0 km, and the standard deviation increases to 5.9 km. Alter- 

natively, defining volcanic events as vents and vent alignments 

gives a mean distance to nearest-neighbor volcanic event in- 

crease to 7.0 km, with a standard deviation of 6.4 km. Distance 

to nearest-neighbor volcanic event is shown cumulatively for 

each of these three definitions in Figure 6. The observed cu- 

mulative nearest-neighbor distance distribution functions are 

compared to expected distribution of vents calculated with a 

Gaussian kernel (see appendix) and smoothing parameter h = 
3-9 km. 

Comparison of expected and observed distribution leads to a 

natural definition of conservatism for a site-specific hazard 

analysis. For example, the distance between the proposed re- 

pository and its nearest-neighbor Quaternary volcano is 8.2 

km. Gaussian kernel functions for the expected distribution of 

vents with h = 7-9 km are conservative because a greater 

fraction of volcanic events occur at nearest-neighbor distances 

<8.2 km than predicted by the model, whereas a Gaussian 

kernel function with h = 3 km is not conservative (Figure 6). 

In other words, probability models using h = 7-9 km are not 

likely to underestimate hazard for the YMR vent distribution. 

An h = 5 km smoothing parameter is conservative for prob- 

ability models based on individual vent distributions, but not 

for a model based on vent alignment distributions. Only con- 

sidering the distribution of past (Pliocene-Quaternary) volca- 

nism, the annual probability of volcanic eruptions within the 
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Figure 5. Schematic models of fault dike interaction. Ascending magma is shown by stippled pattern, and 
fault is shown by thick solid lines. (a) There are sevcral possible modes of interaction bctwccn a vertically 
propagating dike and a planar weakness, such as a fi•ult. (b) The dike may propagate vertically through the 
fault plane if less energy is required to fracture rock vertically than dilate the dipping fault plane. (c) The dike 
will intrude the fault plane and use it as a conduit if thc fault plane represents the 1ow-cncrgy pathway to the 
surface. (d) Near the ground surface, stress changes rapidly due to free surface affects causing the dike to 
break out of the fault zone. The lateral offset between the original position of the dike and the position of the 
cinder cone d depends on the dip of the fault a and depth of dike-fault intersection relative to the depth of 
breakout h. Dikes may also (e) bifurcate upon intersecting the fault or (f) terminate at the fault, accommo- 
dating strain by dike widening below the fault and fault slip above. 

repository boundary is between 0.5 x 10 -8 and 3.5 x 10 -8 
(Figure 7). 

Additional geologic information is included in the analysis 

through the probability density functions of alignment length, 

fL (l), and orientation, f,v ( ½)- Annual probabilities of volcanic 

eruptions within the repository boundary were calculated using 

/min = 100 m, 5200 m _</max --< 10,200 m, 20 ø < ½ < 35 ø, and 

5 km -< h -< 7 km. In this case, the locations (geographic 

centers) of only three Quaternary volcanic events, Lathrop 

Wells, Quaternary Crater Flat, and the Sleeping Butte align- 

ment, were used to calculate the expected vent distribution 

using a Gaussian kernel. Assuming a regional recurrence rate 
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Figure 6. Comparison of observed fraction of Pliocene- 
Quaternary volcanoes within a given distance of their nearest- 
neighbor volcano with Gaussian kernel and smoothing param- 
eter h = 3, 5, and 7 km. Observed curves include all vents 

(open squares), all vents or vent pairs more closely spaced then 
1 km (solid circles), and vents and vent alignments (open 
circles). Buckboard Mesa (BB) is an outlier in the distribution 
as it is -25 km from its nearest neighbor. The center of the 
repository site is located 8.2 km from Northern Cone, the 
nearest Quaternary volcano (see Figure lb for vent locations). 

of 3 v/Myr yields annual probabilities of volcanic eruptions 

within the repository boundary between 1 x 10 -8 and 3 x 
10 -8 . Thus accounting for the increased area potentially af- 
fected by the formation of vent alignments is more or less 

offset by the decrease in total number of expected events, 
reflected in the lower recurrence rate. 

Annual probability of volcanic eruptions within the reposi- 

tory boundary are next calculated weighting the expected vent 

distribution using the apparent crustal density map. This 

greatly reduces the probability of future basaltic eruptions west 

of the BMF and increases probability east of the BMF. Using 

the same parameters as previously, probabilities of volcanic 

eruptions within the repository boundary are 3-5.5 x 10 -8, 

3.5• ' ' ' ' t ' ' ' ' I ' ' ' ' 
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Figure 7. Annual probability of volcanic eruptions within the 
repository boundary. A Gaussian kernel is used with smooth- 
ing parameter h, varying from 0 to 20 km (see appendix). 
Curves are shown for various regional recurrence rates of 
volcanic vent formation (2 x 10 -6 v/yr, 8 x 10 -6 v/yr, and 12 x 
10 -6 v/yr, where v is volcanic events), based on the distribution 
of Quaternary volcanoes (thick curves) and Pliocene- 
Quaternary volcanoes (thin curves). 

Figure 8. Annual probability of volcanic eruptions within the 
repository boundary as a function of maximum vent alignment 
half-length /max' Probabilities are calculated using a regional 
recurrence rate of 3 x 10-6/yr. The three separate curves show 
probability estimates that do not incorporate regional structure 
(standard Gaussian kernel) and that do incorporate regional 
structure (modified Gaussian kernel), based on the distribution 
of Quaternary volcanism and Pliocene-Quaternary volcanism. 

assuming a regional recurrence rate of 3 v/Myr (Figure 8). This 
range of probability estimates is roughly double those that do 

not consider crustal structure. Including Pliocene volcanoes in 

the estimate of the kernel function decreases the annual prob- 

ability to 1.5-3 x 10 -8, because many Pliocene volcanoes are 
comparatively far from the repository. Varying regional recur- 

rence rate of volcanic events (including alignment formation) 

between 1 and 5 v/Myr, annual probability of volcanic erup- 

tions within the repository is between 1 x 10 -8 and 9 x 10 -8 
(Figure 9). 

6. Discussion 

The geological and geophysical evidence suggests that neo- 

tectonic setting influences patterns of basaltic volcanic activity 

on a number of scales. In their analysis of vent distribution in 

the YMR, Connor and Hill [1995] identified three major fea- 

tures that affect probabilistic volcanic hazard estimates: shifts 

in the locus of basaltic volcanism over long time periods, vent 
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Figure 9. Annual probability of volcanic eruptions within the 
repository boundary using regional recurrence rates of 1 x 
10-6/yr to 5 x 10-6/yr. 
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clustering, and vent alignment formation. Each of these fea- 

tures of vent distribution can be revisited in light of the struc- 

tural and neotectonic setting of the volcanic field outlined in 
sections 2-4. 

6.1. Shifts in the Location of Basaltic Volcanism 

Crowe and Perry [1989] suggested that volcanism has shifted 

from east to west over time in the YMR. An important aspect 

of this shift of the locus of magmatism is that it was accompa- 

nied by a change in the petrogenesis of YMR basalts. Miocene 

Basin and Range basalts generally were produced by higher 

degrees of partial melting and have a greater asthenospheric 

component than Plio-Quaternary basalts [Farmer et al., 1989]. 

Pliocene-Quaternary basalts tend to be lithophile-enriched 

and are more clearly related to decompression melting in the 

lithosphere. Furthermore, voluminous Miocene basalts are 

present in all areas in the YMR where Plio-Quaternary basalts 

erupted. Thus, rather than a large-scale regional shift in vol- 

canic activity of the type identified in other volcanic fields [e.g., 

Foland and Bergman, 1992; Tanaka et al., 1986; Condit and 

Connor, 1996], the focusing of basaltic magmatism in Crater 

Flat and the Amargosa Desert since the Pliocene may simply 

reflect a transition to dominantly decompression melting of 

enriched lithosphere [Yogodzinski and Smith, 1995]. 

6.2. Vent Clustering 

Crowe et al. [1992] and Sheridan [1992] noted that basaltic 

vents appear to cluster in the YMR. Connor and Hill [1995] 

analyzed volcano clustering in the region and reached three 

conclusions. First, vents form statistically significant clusters in 

the YMR. Spatially, volcanoes <5 Ma form four clusters. The 

Crater Flat and Amargosa Valley clusters overlap somewhat 

because of the position of Lathrop Wells volcano and the three 

anomaly AAA vents. The Sleeping Butte Quaternary volca- 

noes and the Thirsty Mesa basalts form a third cluster; the 

Buckboard Mesa vents form the fourth cluster. Second, a vol- 

canic event located at the repository would be spatially part of, 

albeit near the edge of, the Crater Flat cluster, rather than 

forming between or far from clusters in the YMR. Third, three 

of the four clusters contain Miocene-Quaternary basalt, indi- 

cating that these clusters are long-lived and provide some in- 

dication of the likely areas of future volcanism. 

Based on a model of magma generation in response to 

extension, recurring Quaternary volcanism within YMR vent 
clusters occurs because of the combination of two conditions 

that together give rise to small-volume melts: (1) mantle rocks 

beneath these regions are very near their solidus, perhaps over 

large regions compared to the area of vent clusters, and (2) 

mantle rocks in these areas experience a small volumetric 

strain in response to extension of the crust across the BMF, 

sufficient to produce melts. A given rate of extension will 

produce the greatest volumetric strain rate directly beneath the 

lateral change in density in the crust, such as at the BMF. Thus, 

with continuing extension, mantle in the region of this inflec- 

tion has the greatest opportunity of producing partial melts 

from a given amount of crustal extension. Therefore episodes 

of extension and basaltic volcanism may correlate temporally 

as well, because pressure variations in the mantle will likely 

equilibrate because of ductile flow over time. In other words, 

pressure changes in the mantle which result from crustal ex- 

tension will be transitory. 

6.3. Development of Vent Alignments 

Change in lithostatic pressure also affects magmatism be- 

cause magmas ascend by buoyant rise. The buoyancy forces 

acting on the magma are equivalent to the hydrostatic pressure 

gradient, given by Lister and Kerr [1991] as 

f0 Z Ph = [10rock(Z) -- iOmagma]g dz, 

where iOrock and iOmagma are density of rock and magma, respec- 
tively, # is gravitational acceleration, and Z is the depth of 

magma generation. Rock density varies as a function of depth, 
most dramatically at the Moho discontinuity. Because the den- 

sity of magma is typically less than that of mantle but greater 

than that of most crustal rocks, a level of neutral magma 

buoyancy can exist in the crust. An isolated pod of magma 

above the level of neutral buoyancy will sink, and a pod below 
the level of neutral buoyancy will rise. Magmas fed by conduits 

respond to the integrated hydrostatic pressure along the con- 

duit but tend to have flow characteristics responding to the 

local hydrostatic pressure. Thus dikes will tend to propagate 
laterally above the level of neutral buoyancy [Lister and Kerr, 
1991], a phenomenon observed in eroded volcanic fields where 

dike systems are exposed [Delaney and Gartner, 1997]. The 
level of neutral buoyancy will be deeper in the crust in basins 
than beneath mountains because of the different densities of 

these areas. On the basis of this model, longer dikes, dike 

swarms, and vent alignments are expected to form in these 
alluvial basins than elsewhere. Pliocene and Quaternary Crater 

Flat alignments, the longest vent alignments in the region, 

formed in the deepest part of Crater Flat. Lathrop Wells, an 

isolated vent, and anomaly AAA, a comparatively short align- 

ment of three vents, formed in a comparatively shallow part of 

the basin. Thus, from the perspective of volcanic hazards anal- 

ysis, understanding of the change in lithostatic pressure across 

the region can help constrain areas of likely dike propagation 
and alignment development. 

Virtually all cones in the YMR that have clearly defined 
relationships to faults lie on faults that have high dilation 

tendencies in the current stress orientation. This suggests that 
the distribution of high-dilation tendency faults may indicate 

where new volcanoes are able to erupt. Steeply dipping high- 

dilation tendency faults in the YMR include many faults that 
bound the Yucca Mountain block. These faults include the 

Solitario Canyon fault, which hosted basaltic dike injection 
-11.7 _+ 0.3 Ma [Smith et al., 1997], the Ghost Dance Fault, 

which bisects the repository from north to south, and the Bow 

Ridge fault, located east of the repository site (Figure 1). Some 
of these faults, particularly the Solitario Canyon fault, likely 
extend to the detachment at 5-10 km depth [Young et al., 1992; 

Ferrill et al., 1996; Ofoegbu and Ferrill, 1998]. Therefore these 

faults have the potential as serving as low-energy pathways for 

magma transport to the surface (Figures 5a-5f). 

6.4. Impact on Probability Estimates 

The overall range of probability values, 1 x 10 -8 to 1 x 
10 -7, arises from the application of a variety of models and a 
range of parameter distributions. Incorporation of structural 

data into the hazards analysis changes our estimate of the 

expected distribution of future volcanic vents and increases our 

estimate of the probability of volcanism at the repository. New 

information can change these estimates. For example, Wet- 
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nicke et al. [1998] speculated that regional recurrence rate h,t 

may be 1 order of magnitude greater than previously thought, 

on the basis of anomalous Global Positioning System (GPS)- 

derived crustal strain rates they observed in the YMR. If true, 

this change in regional recurrence rate would increase the 

upper bound of the hazard estimate to --• 10-r'/yr. Although the 
magnitude of these GPS strain rates [Savage, 1998] and their 

interpretation in terms of hazard rates are debated [Connor et 

al., 1998], such data illustrate how hazard rates can be affected by 

improved understanding of the geology of the volcanic systems. 

It is worthwhile to assess this 10-s-10-7/yr range in light of 
regional patterns of volcanism. The western Great Basin, 

which includes the YMR, comprises at least 211 basaltic vol- 

canoes <2 Ma within an 82,000 km 2 region [Luedke and Smith, 
1981]. Simply averaging activity across the western Great Basin 

during the last 2 Ma yields a recurrence rate of 1.3 x 10-9/yr/ 
km 2. On average, the annual probability of volcanism within 
any 5 km 2 area (i.e., the effective area of the repository) is 6 x 
10 -9 . However, volcanism strongly clusters in the western 
Great Basin, and Yucca Mountain is part of one of the young- 

est of these volcano clusters. Reasonably conservative esti- 

mates for the probability of volcanic eruptions at the proposed 

Yucca Mountain site should exceed this average regional esti- 

mate. In this respect, probability estimates of <10-S/yr [Crowe 
et al., 1983, 1992; Geomatrix Consultants, 1996; U.S. Depart- 

merit of Energy, 1998] are unrealistic. 

Similarly, the probability of volcanism at the Yucca Moun- 

tain site can be compared to the most active basaltic volcanic 

fields in the continental United States. For example, recur- 

rence rates in the Cima volcanic field, California, are on the 

order of 30 v/Myr [Turrin et al., 1985]. On the Colorado Plateau 

some volcanic fields experience similar recurrence rates [Con- 

way et al., 1998; Condit and Connor, 1996]. The probability of 
a volcanic event centered within a 5 km 2 area in one of these 

areas is on the order of 10-6-10-5/yr. Comparable rates of 
basaltic volcanism have not occurred during the Pliocene- 

Quaternary in the YMR, with the possible exception of rates 

during the Pliocene in the Greenwater Range, in the southern 

YMR. It is reasonable that the probability estimates we calculate 

for volcanic eruptions at Yucca Mountain be substantially less 

than those estimated for these larger, more active volcanic fields. 

Finally, it should be noted that the very small annual prob- 

ability of volcanic eruptions at the Yucca Mountain site, 10-7/ 
yr, must be viewed in light of the very long performance period 

of the proposed repository. Although remanded, the 1994 

Code of Federal Regulations Title 10, Part 60.122 (available 

from the Office of the Federal Register, National Archives and 

Records Administration, Washington, D.C.) for siting a high- 

level radioactive waste repository indicates that the effects of 

disruptive scenarios must be considered if their probability 

exceeds 10 -4 in 10 4 years. Thus the probability of 10-4-10 -3 
for the planned 10 4 year performance period of the repository 
is a significant deficiency of the site geology. The ultimate 

assessment of suitability of the Yucca Mountain site will be 

risk-based, calculated using the potential radiological dose to a 

hypothetical group of individuals, located 20 km from the site 

during the next 10 4 years [U.S. National Research Council, 
1995]. The effects of a volcanic eruption on repository perfor- 

mance and the risks associated with volcanism to this group 

need to be considered explicitly in evaluating suitability and 

expected performance of the Yucca Mountain site. 

7. Conclusions 

Geologic structure controls the distribution of basaltic vol- 

canism in the YMR on three scales. Regionally, Pliocene- 

Quaternary volcanism is limited to the Amargosa Trough, pos- 

sibly as a result of partial melting of the lithosphere in response 

to extension across the BMF and Crater Flat basin. Subregion- 

ally, magnetic surveys show that NE trending vent alignments, 

4-16 km in length, are prevalent in the YMR and that some 

reactivated through time. Locally, high-dilation tendency nor- 

mal faults that bound and penetrate Yucca Mountain are typ- 
ical of those that have hosted basaltic dike intrusions in the 

past. Based on these observations, probability estimates of 

volcanic disruption of the proposed repository are 10-s-10-7/yr. 

Appendix 
In an area of distributed volcanism, like the YMR, a volcanic 

hazard analysis starts with the null hypothesis that a volcanic 

event, such as the formation of a new basaltic volcano or vent 

alignment, will occur within some time interval At and within 

the area of interestA. One goal of volcanic hazards assessment 

is to quantify the confidence with which this null hypothesis 

may be rejected in favor of an alternate hypothesis that such a 

volcanic event will not occur [McBirney, 1992]. For volcanic 

events that may be individual vents or vent alignments, 

PL[L -• l•((I)), (4pl • (I) • (4P2] --- fr(l) f,(•) d• dl, 

) 

P•c,v = 1 - exp (-2•,2•,vAxAyAt), (A2) 

P[volcanic eruptions within (A, 

x Y 

= Z Z Px,y(Xt, Yj)PL(Xt, Yj), (m3) 
t=l i=1 

and ht, hx,y, fL(l), and f.(½) are estimated from past pat- 
terns of volcanism. Estimation of Xx,x is accomplished using a 
Gaussian kernel 

K(x'y)=exp{-•[( h h }' (A4) 
which here, for simplicity, integrates to 2•h 2 but strictly is 
normalized to integrate to unity. The smoothing parameter h is 

equivalent to the standard deviation of the distribution. If x 

and y locations are on a rectangular grid, the probability den- 

sity function based on the distribution of N volcanoes is 

AxAy 
•(x, y) = 2•rh2N • K(x, y) (A5) 

t:l 

The effectiveness of the kernel model and optimal values of h 

can be deduced from the distribution of nearest-neighbor dis- 

tances between existing volcanoes. The cumulative probability 

density function is 

•o 2• •o • 2 P(R) = h(2vr)3/2 exp 
1 

and this function, calculated with various values of h, is com- 

pared to the observed vent or vent alignment distribution. 
Then 
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2rrh2N• exp -• h + h 
(A7) 

Additional factors which affect the distribution of basaltic vol- 

canism may be easily incorporated into the analysis. Such fac- 

tors may include variations in crustal density (this paper) or 
lava geochemistry [Condit and Connor, 1996]. A probability 

density function fr(x, y) is defined on the basis of this infor- 
mation. For example, in our application, fr(x, y) was esti- 
mated on the basis of the average crustal density near the 

locations of existing basaltic vents. The Gaussian kernel is then 
modified to estimate the recurrence rate of volcanism: 

x Y 

t=l j=l 

Qv: , (A8) 
x Y 

fCx,, y)K(x,, 
t=l j=l 

N 

Xx,y = 2 •rh2N • Q •fT(X, y) K(x, y). (A9) 
p=l 

Introduction of the integrated weighting factor Q v assures that 

the integral of the modified Gaussian kernel for a single vol- 

cano over a large map extent X, Y relative to the smoothing 

parameter h will be unity and that probability will be redistrib- 

uted on the basis of fT(X, y) in the vicinity of the volcano. 

Notation 

A area for which hazard is estimated. 

X, Y geographic coordinate system, here used as 

distance east and north, respectively. 

x, y geographic coordinates. 

x v, y• geographic coordinates of the center of a 

volcanic event (volcanic vent or alignment). 
Ax, Ay small change in the X, Y directions, within which 

Xx.x is considered constant. 
Xt annual recurrence rate of volcanic event in the 

entire magmatic system. 

Xx, x spatial recurrence of volcanic event within a 
small region Ax, Ay, given a volcanic event in 

the magmatic system. 

Px,y probability that an alignment will form, within an 
area Ax, Ay. 

P L probability that a vent alignment centered within 
Ax, Ay will intersect the area of interest,4. 

fL(l) probability density function of vent alignment 
half-length. 

f,(½) probability density function of vent alignment 
azimuth. 

½•, ½2 range of vent alignment azimuths that would 
result in intersection of ,4. 

ß azimuth of the vent alignment. 

lr(•) distance of vent alignment center from the 

boundary of,4 along (b. 

K(x, y) Gaussian kernel function. 

h smoothing coefficient in the Gaussian kernel. 

N total number of volcanic events (volcanic vents or 

vent alignments) in the magmatic system. 

r distance from volcanic event (volcanic vent or 

geographic center of vent alignment). 
0 azimuth to volcanic event. 

fr(x, y) probability density function to weight Xx,y using 
additional information. 

Q• integrated weighting factor. 
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