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Supplementary Discussion 

 

I. Geological and biological discussion of the mountain regions surveyed 

 

Below we provide a brief characterisation of the mountain regions surveyed for this study, 

further discuss biodiversity patterns and relate our results to previous studies. We cover all 

regions included in the regional analyses and three additional regions that contributed to the 

global analyses. The length of these descriptions varies due to differences in the available 

literature and our research foci.  

 

A) Regions included in the regional analyses (Fig. 3b) 

 

Western North America 

Mountain ranges in North America show a strong longitudinal gradient in relief, with a 

mountainous western region (North American Cordillera; the focus of our analysis) that has 

been tectonically active since the Cretaceous, mainly through strike slip on the San Andreas 

fault and extension in the Basin and Range province, with major changes to the landscape 

over the last 40 Myr1. The extensive eastern region (Appalachians; not included in the 

regional analysis) comprises the craton and the eroded remnants of Palaeozoic orogenies. The 

Rockies and Front Range in Colorado are currently inactive. The Rockies in Canada show 

some convergence2. Steep bioclimatic gradients between desert basins and rugged mountain 

ranges characterise the montane and intermontane regions. Coastal ranges along the Pacific 

capture high levels of precipitation year-round and support some of the highest-biomass 

forests in the world3.  

 

Current mountain vertebrate richness (Fig. 1) peaks in the Rocky Mountains, the western edge 

of the Colorado Plateau, and the southern Sierra Nevada of California. Among the climatic 

variables, mean annual temperature has the strongest effect on mountain richness (Figs. 3b, 

S5) and also has a strong relationship with lowland richness.  This relationship is positive and 

linear, in contrast with the asymptotic relationship with annual precipitation. The positive 

relationship between annual precipitation and richness peaks at c. 600–800 mm/year (Fig. 

S5a) and may reflect the opposing trends of high amphibian richness in areas of higher 

rainfall versus high mammal and bird richness in areas of high precipitation seasonality and 

lower rainfall5,4,6. Relief is the strongest geological predictor variable, supplemented by soil 

heterogeneity, possibly as a result of glaciations in western North America and highly 

weathered landscapes.  

 

Andes  

The Andes reached about half of their current elevation in the middle to late Miocene7. This 

uplift resulted in an orographic barrier that greatly modified South American climate8,9,10. The 

temperature gradient is strongly influenced by the latitudinal south-north orientation of the 

mountain range and by different climate modes originating in the Pacific and the Atlantic11. In 
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the north, this barrier, enhanced by its concave shape, captures the humid air masses of the 

Intertropical Convergence Zone and funnels them back into the Amazon basin as 

precipitation12,13, which is further driven and maintained by forest cover14,15or reroutes air 

masses to the higher latitudes. The three Andean subregions (northern, central and southern) 

differ in their genesis16 and the way in which they interact with atmospheric circulation, 

resulting in a wide range of environmental conditions. Uplift of the Northern Andes peaked in 

the late Neogene c. 12–4 Ma and is linked to the Neogene collision of the South American 

and Caribbean plates with the Panama Arch17,18, which resulted in their characteristic 

trifurcate pattern. Neogene sedimentary records provide evidence of a change from high 

precipitation to arid conditions around 9 Ma, which is linked to the changing pattern of the 

South American low-level jet8,19,20,21,22. This process redefined landscape and biodiversity 

patterns in the Andes and Amazonia and shaped the basic geographic conditions of today23. A 

large portion of the Central Andes, in particular its extensive high-elevation Plateau (the 

Altiplano), uplifted rapidly and extensively during two distinct phases, between 30-25 Ma 

and, more notably, between 10-5 Ma7. The orographic history of the Southern Andes has been 

relatively less studied, but is summarised by refs 24,25,26, among others.  

 

Vertebrate species richness is highest across the relatively young Northern Andes (Fig. 1). 

High species richness is strongly correlated with high annual rainfall, but temperature also 

plays an important role, as well as temperature range and precipitation seasonality (Figs. 3b, 

S6). Among geological variables, topographic relief and soil heterogeneity dominate (Figs. 

3b, S6). In the relatively young northern Andes, high diversity may be related to surface 

uplift27, which allowed the establishment and subsequent local diversification of cool-adapted 

lineages of animals28 and plants29,30, although a connection between diversification and 

orogeny is not always evident31. This area is also characterised by many recent species 

radiations, commonly linked to the influence of glacial-interglacial cycles32,33,34,35. In the 

older central Andes, the orographic barrier is particularly strong, with a warm, wet 

northeastern side supporting high diversity, and a colder and drier southwestern side with low 

diversity. In the southern Andes, precipitation patterns are opposite to those in the central and 

Northern Andes11. Predominant advection of moisture there comes from the Pacific and 

creates orographic rainfall in the west (where diversity is highest) and a prominent rain 

shadow, and fewer species of both plants and animals in Patagonia in the east. 

 

Europe 

High topographic heterogeneity characterises much of central Europe and adjacent Anatolia, 

as well as western Scandinavia. The major mountain belt—including the Alps, Carpathians, 

Pyrenees and associated ranges north of the Mediterranean Sea— resulted from orogenies in 

the late Mesozoic and middle to late Cenozoic36 and run east-west, serving as orographic and 

dispersal barriers. Our regional analysis was performed on the Alps, Carpathians and 

Pyrenees. 
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Mountain vertebrate richness (Fig. 1) peaks in the Pyrenees, the western Alps, and the 

Balkans, and is lowest in Scandinavia. Central Europe is the only region where the absolute 

values of precipitation and temperature are not significant for predicting species richness, 

being replaced by the range of temperature and seasonality of precipitation (Figs. 3b, S7). A 

possible explanation for the differences with western North America, a region at similar 

latitude, includes the latitudinal (Europe) versus longitudinal (North America) topographic 

gradients and the differences in timing of the wet season between Europe and western North 

America. Europe also stands out as the only region where the number of soil types is a better 

predictor of mountain biodiversity than any other geological variable (Fig. 3b). This effect is 

positive and linear (Fig. S7). Erosion potential shows a negative effect, which may indicate 

the inhibiting effect of erosion on the carrying capacity of the landscape for species rich 

populations.  

 

High Asia 

The Central Asian Highlands (hereafter 'High Asia') extend over 4000 km and comprise the 

Qinghai-Tibetan Plateau and the Tianshan, Hindu-Kush, Himalayan and Hengduan Shan 

mountain regions. Climate in this region has been mainly driven by the interactions among 

mountain and plateau formation and atmospheric circulation patterns. The topographic history 

of High Asia has been intensely studied37,38,39,40, key geological events being the Indo-

Eurasian collision (ca. 55–40 Ma) and uplift of the Himalayas (ca. 20–15 Ma)41,42. Hengduan 

Shan might have a younger uplift history, mainly in the Pliocene43. Surface uplift events 

contributed to strengthen the Asian monsoon system (distinct wet/dry seasonality) in the 

Miocene44,45, although a resilient system of monsoonal circulations existed at least since the 

Eocene. The onset of the monsoons was modulated by a combination of various factors, 

including Tibetan and Himalayan surface uplift, and possibly also the retreat of the Tarim 

Sea46, changes in global atmospheric pCO2
47 and global climate shifts including the Eocene-

Oligocene transition48 or general global cooling49. Further evidence for these events derive 

from fossil flora50,51,52, windblown dust provenance, oxygen isotope-based palaeoclimate 

records, and climatic simulations47,53,54. The Qinghai-Tibetan Plateau forms a barrier to 

subtropical tropospheric airflow and pulls the Intertropical Convergence Zone seasonally far 

north of the equator55, affecting the global distribution of heat and moisture50,55, yet it seems 

to have limited influence on central Asian moisture transport through westerly winds56.  

 

High Asia harbours a high diversity of vertebrates (Fig. 1) as well as vascular plants57. 

Vertebrate diversity is highest in the southern and southeastern parts of the region, reflecting a 

strong positive effect of precipitation and temperature on species richness (Figs. 3b, S8). This 

region is under strong influence of both the South Asian and East Asian monsoons, which are 

captured in a similar way50 as the humid atmospheric currents that reach the Northern and 

Central Andes. The environment is dominated by a warm, humid climate and subtropical-

tropical vegetation58, which co-occurs with high vertebrate diversity. In contrast, the 

temperature extremes on the plateau, which are reflected in high temperature seasonality, 
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coincide with low species diversity and explain the negative relationship between vertebrate 

diversity and temperature annual range (Fig. S8c). Among geological variables, erosion 

potential and soil types are the strongest predictors of vertebrate diversity (Fig. 3b). The 

highest erosion potential is found where climate and topographic gradients are strongest 

(Himalayan and Hengduan Shan mountain regions; Fig. S4), reflecting the strong interactions 

between climate and topography over different time scales. Biodiversity in this region stems 

from deep-time as well as recent speciation, accompanied by mountain uplift and related 

climate changes59,60,61,,62, 63,64,65.   

 

Australia 

Australia as a low-lying continent has three key regions of elevated topography: the 

Carnarvon Range in the northwest, the Macdonnell ranges in the centre of the continent, and 

the Great Dividing Range, or Eastern Highlands, paralleling the eastern coast. Although 

Australian mountains are not high (the highest peak is Mt Kosciuszko at 2230 m), they range 

into alpine habitats, and at least in Queensland, have a marked impact on the local climate. 

Mountain precipitation exhibits large variation: the central and western mountains are very 

dry, compared to the mesic climate of the Great Dividing Range in the east. The southern 

portion of the Great Dividing Range was locally glaciated during the colder phases of the 

Pleistocene, and the region is still associated with periglacial environments and high lake 

stands66 and has frosty winters. Highest vertebrate diversity in Australian mountains occurs in 

the Great Dividing Range.  

 

The patterns of vertebrate species richness (Fig. 1) broadly mirror those of plants67, with the 

highest species richness associated with the central portion of the Great Dividing Range near 

New England. Significant predictors of vertebrate diversity across Australian mountain ranges 

are temperature, precipitation and precipitation seasonality (Figs. 3b, S9). The negative 

correlation between vertebrate diversity and long-term erosion rate, not detected for any other 

mountain region, might reflect the Neogene uplift in the southern part of the Great Dividing 

Range, which may be associated with local aridification, and long term erosion flattening out 

the heterogeneity of the landscape, although the variation and scarcity in data points preclude 

definite conclusions.  

 

B) Additional regions only included in the global analyses 

 

Eastern South America 

The mountains of eastern South America are generally older and lower than the Andes, 

ending their orogeny around 18–15 Ma68 and reaching today less than half the elevation of the 

highest Andean mountains (ca. 2,900 m vs. ca. 7,000 m). There is a precipitation gradient 

from the coast to inland reflected by a transition in ecosystems, from the Atlantic rain forest 

with dense tropical vegetation on the eastern mountain slopes, replaced by open savanna 

vegetation (the Cerrado) on the Brazilian plateau (ca. 600–800 m), and shrublands in the 
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semi-arid Caatinga of northeastern Brazil. The Caatinga, Cerrado, Chaco and Pantanal form 

together a diagonal belt of seasonally dry vegetation that act as a biogeographical barrier for 

mountain and rain forest organisms. Vertebrate diversity has not only been linked to current 

climate but also to the effect of vegetation stability, in particular refugia, through Quaternary 

climatic cycles69. Mountain vertebrate diversity peaks in southeastern Brazil, following a 

reverse latitudinal diversity gradient previously reported for birds70.  

 

Eastern Africa 

The geological and climatic history of eastern Africa is in stark contrast to that in southern 

Africa. In eastern Africa, much of the topography and mountain building reflects the 

development of the East African Rift system (Western and Eastern Rift) during the 

Miocene71. The mountains in this region are consequently much younger than the southern 

African mountains, and major mountain ranges, such as the Rwenzori, date only from the 

Pliocene72.  

 

Southern Africa 

Southern Africa is dominated by a central plateau (1000–2000 m), with the highest peaks 

reaching 3000 m. The plateau is separated by an abrupt escarpment from a narrow coastal 

plain, which both have been in place throughout the Cenozoic and probably since the 

continental breakup in the Jurassic73. At the break-up of Pangea in the late Jurassic, the 

escarpment was on the continental margins, and rapid erosion during the Cretaceous resulted 

in the retreat of the escarpment to its present position, with apparently little further retreat 

during the Cenozoic74. During this process, the Cape Fold Mountains were exhumed. These 

are composed of a resistant quartzitic sandstone, and have probably retained their steep slopes 

and craggy peaks throughout the Cenozoic75. The eastern half of the subcontinent, centred 

around the Drakensberg, was however uplifted by up to 900 m during the Pliocene, increasing 

its topography73. The eastern escarpment and coastal plain are today much wetter than the 

western escarpment and coastal plain, and an east-west aridity gradient extends across the 

central plateau76. The gradual aridification of the western half of the subcontinent since the 

middle Miocene77,78 has led to the establishment of a summer-dry and winter-wet climate at 

the southwestern tip of the continent79. The huge plant diversity of southern Africa80, 

especially the Cape flora which contains an extreme level of endemism, has been linked to 

this Mediterranean-type climate, topographic barriers (resistant sandstones), and long-term 

geological and climatic stability81,82. The low vertebrate diversity in the southwestern part of 

the subcontinent, from southern Namibia to Port Elizabeth (the winter-rainfall region), could 

be caused by the dominant sclerophyllous vegetation. 
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II. Supplementary tables and figures  

 

Supplementary Table S1: Predictor variables used for analysing vertebrate species richness 

across the world’s mountains and their main biological importance.  

Abbreviation Description Unit Source [resolution] Biological importance 

PREC Annual precipitation  mm yr-1
 CHELSA (version 1.2)83 

[30 arc sec] 

Sustaining vegetation and 

associated biota 

TEMP Mean annual temperature °C × 10 CHELSA (version 1.2)83 

[30 arc sec] 

Influences biomass 

productivity and reflects 

energy availability 

TEMP 

RANGE 

Temperature annual range 

(maximum temperature of 

warmest month minus minimum 

temperature of coldest month) 

°C × 10 CHELSA (version 1.2)83 

[30 arc sec] 

Selective filter for species, 

e.g. frost tolerance. Drives 

physiological adaptations and 

behavioural strategies 

PREC 

SEASON 

Precipitation seasonality 

(coefficient of variation of 

monthly values) 

mm CHELSA (version 1.2)83 

[30 arc sec] 

Selective filter for species, 

e.g. drought tolerance. Drives 

physiological adaptations and 

life cycle strategies 

RELIEF Topographic relief measured as 

mean of elevation range values 

(max-min) within 2.5 km radii for 

each 90 m resolution pixel 

m Calculated using 

EarthEnv-DEM90 84 [90 

m] 

Determines microclimate and 

fine-scale biotic composition 

across elevational zones 

affecting alpha and beta 

diversity 

LONG 

EROSION 

Long-term erosion calculated 

using low temperature 

thermochronology (fission-track 

and (U-Th)/He for apatite and 

zircon) 

km Myr-1
 Calculated using the 

dataset by ref. 85.  

Interacts with rock uplift in 

regulating the dynamics of 

landscape changes and new 

opportunities (habitats, 

ecological niches) for 

speciation 

EROSION 

POTENTIAL 

Unit stream power (USP) index 

weighted with precipitation data, 

i.e. rate of energy loss to channel 

bed per unit length (energy per 

unit time), calculated as   

𝑈𝑆𝑃 =%(𝐴(𝑃)*/,𝑆 

where AP is upstream drainage area 

(used as a proxy of discharge) for 

each pixel, P is the average 

precipitation from 1998–2007 and 

S is local slope. The formula sums 

the flow-lines to calculate the flow 

accumulation 

Wm-1
 Calculated	using	the	

SRTM	90	m	database	

v.4.186.	Precipitation	

data	for period 1998–

200787,88 

Influences vegetation 

dynamics, e.g. through 

ecological successions in 

connection with landslides. 

Also related to critical zone 

properties (soil thickness, soil 

properties, and soil and rock 

weathering state), which in 

turn filter the taxonomic 

composition of the 

aboveground vegetation and 

associated fauna 

SOIL Number of soil types count SoilGrids1km89 [1 km] Influences habitat 

heterogeneity, filtering for 

vegetation types and 

associated biotas 
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Supplementary Table S2: Characteristics of the global mountain dataset in relation to 

variation in vertebrate species richness, climate, and geology. The dataset covered a total of 

585 grid cells with global extent (Fig. 3a in main text) and a spatial resolution of 1º × 1º.  For 

abbreviation and units of predictor variables see Table S1. 

Variable Minimum Median Mean Maximum 

Vertebrate species 

richness 

25 241 290 1135 

PREC 0.20 926 1098 5921 

TEMP -88 103 112 175 

TEMP RANGE 47 227 223 504 

PREC SEASON 5 48 56 332 

RELIEF 60 902 1387 5076 

LONG EROSION 0.01 0.13 0.16 0.94 

EROSION POT 0.19 46 104 1586 

SOIL 2 12 12 22 
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Supplementary Table S3:  Results from global multi-predictor regression models to 

explain vertebrate species richness across the world's mountains (n = 585 grid cells with a 

spatial resolution of 1º × 1º). Two types of models are compared, a non-spatial ordinary least 

square (OLS) regression and a spatial simultaneous autoregressive (SAR) model. The 

response variable (vertebrate species richness) as well as long-term erosion, current erosion 

potential and relief variables were log-transformed. Using the full OLS multi-predictor model 

(i.e. including all eight predictor variables), a model selection was performed with the Akaike 

Information Criterion (AIC) to derive a minimum adequate model. All variables were scaled 

to a mean of zero and variance of 1 before the analysis to make model coefficients 

comparable. Predictor variables that were removed by AIC model selection are indicated with 

‘–’. Standardised coefficients, the explained variance of the environmental components 

(R2
PRED), the explained variance of the full SAR model including both environment and space 

(R2
FULL), the Moran’s I, and the p-value of Moran’s I are given. Significance of Moran’s I was 

determined by permutation tests (n = 999 permutations). Significance levels: ***p < 0.001; 

**p < 0.01; *p < 0.05. n.s., not significant. Abbreviations and explanations of predictor 

variables are found in Table 1 and Table S1. 

 
      

 OLS   SAR 

      

      

 Coefficient p  Coefficient p 

      

      

Intercept 5.461 ***  5.451 *** 

PREC 0.330 ***  0.245 *** 

TEMP 0.390 ***  0.169 *** 

TEMP RANGE 0.102 ***  0.003 n.s. 

PREC SEASON –   –  

RELIEF 0.429 ***  0.146 *** 

LONG EROSION -0.083 ***  0.014 n.s. 

EROSION POT –   –  

SOIL 0.158 ***  0.081 *** 

      

R2
PRED 0.54   0.43  

R2
FULL –   0.92  

Moran’s I 0.760 ***  -0.015 n.s. 
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Supplementary Table S4:  Results from regional multi-predictor regression models to 

explain vertebrate species richness in the mountains of western North America, the Andes, 

central Europe, High Asia, and eastern Australia. Two types of models are compared, a non-

spatial ordinary least square (OLS) regression and a spatial simultaneous autoregressive 

(SAR) model. Using the full OLS multi-predictor model (i.e. including all eight predictor 

variables), a model selection was performed with the Akaike Information Criterion (AIC) to 

derive a minimum adequate model. The response variable (vertebrate species richness) as well 

as long-term erosion, current erosion potential and relief variables were log-transformed. All 

variables were scaled to a mean of zero and variance of 1 before the analysis to make model 

coefficients comparable. Predictor variables that were removed by AIC model selection are 

indicated with ‘–’. Standardised coefficients, the explained variance of the environmental 

components (R2
PRED), the explained variance of the full SAR model including both 

environment and space (R2
FULL), the Moran’s I, and the p-value of Moran’s I are given. 

Significance of Moran’s I was determined by permutation tests (n = 999 permutations). 

Significance levels: ***p < 0.001; **p < 0.01; *p < 0.05. n.s., not significant. Abbreviations 

and explanations of predictor variables are found in Table 1 and Table S1. 

 
       

 North America The Andes Central Europe 
       

       

 OLS SAR OLS SAR OLS SAR 
       

       

Intercept 0 n.s. -0.058 n.s. 0 n.s. 0.015 n.s. 0 n.s. -0.024 n.s. 

PREC 0.377*** 0.187 n.s. 0.717*** 0.669*** – – 

TEMP 0.959*** 0.651*** 0.546*** 0.499*** – – 

TEMP RANGE –  -0.188*** -0.244*** 0.819*** 0.889*** 

PREC SEASON –  0.121 n.s. 0.165* -0.361*** -0.133 n.s. 

RELIEF 0.910*** 0.646*** 0.561*** 0.501*** – – 

LONG EROSION – – – – – – 

EROSION POT – – – – -0.154 n.s. -0.125 n.s. 

SOIL 0.333*** 0.258*** 0.083 n.s. 0.111** 0.262** 0.106 n.s. 

       

R2
PRED 0.73 0.72 0.91 0.90 0.70  

R2
FULL – 0.82 – 0.93 –  

Moran’s I 0.295*** -0.032 n.s. 0.326*** -0.012 n.s. 0.233**  
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 High Asia Australia 
     

     

 OLS SAR OLS SAR 
     

     

Intercept 0 n.s. -0.078 n.s. 0 n.s. 0.087 n.s. 

PREC 0.312*** 0.201** 0.973*** -0.164 n.s. 

TEMP 0.213** 0.095* 1.092*** -0.114 n.s. 

TEMP RANGE -0.363*** -0.372*** – – 

PREC SEASON -0.091 n.s. -0.096 n.s. -0.366* 0.111 n.s. 

RELIEF – – 0.425* -0.062 n.s. 

LONG EROSION – – -0.290* -0.016 n.s. 

EROSION POT 0.202*** 0.021 n.s. – – 

SOIL 0.111* 0.050 n.s. 0.349 n.s. 0.013 n.s. 

     

R2
PRED 0.79 0.76 0.59 0.19 

R2
FULL – 0.94 – 0.93 

Moran’s I 0.495*** 0.030 n.s. 0.297** -0.025 n.s. 
     

     

  



(Supplementary Information)  Antonelli et al: Mountain biodiversity 

 

 12 (31) 

Supplementary Table S5: Correlation matrix showing Spearman rank correlations between 

species richness (SR) and all eight predictor variables (see Table S1 for abbreviations). 

 

Variable SR TEMP TEMP 

RANGE 

PREC PREC 

SEASON 

RELIEF LONG 

EROSION 

EROSION 

POT 

SOIL 

          

          

SR 1 0.37 -0.16 0.30 0.16 0.19 0.06 0.25 0.17 

TEMP  1 -0.49 0.22 0.12 -0.42 -0.24 -0.25 -0.01 

TEMP RANGE   1 -0.59 0.16 0.39 0.05 0.04 -0.29 

PREC    1 -0.35 -0.38 0.13 0.16 0.37 

PREC SEASON     1 0.49 0.03 0.13 -0.33 

RELIEF      1 0.38 0.48 -0.30 

LONG 

EROSION 

      1 0.50 -0.02 

EROSION POT        1 0.09 

SOIL         1 
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Supplementary Figure S1 | Climate space and the location of mountain regions. For 

the global dataset covering 585 grid cells at 1° resolution, a Principal Component Analysis 

(PCA) was run with the four climatic predictor variables (PREC, TEMP, TEMP RANGE 

and PREC SEASON, see Table S3). The first two axes (PC1 and PC2) were retained 

(explaining together 78% of climate variation) and the five mountain regions of the regional 

analyses were plotted within this climate space. Coloring corresponds to the regions in Fig. 

3. ALPS_PYREN_CARP = central Europe including the European Alps, Pyrenees and 

Carpathians; ANDES = the Andes including the northern, central and southern subregions; 

AUS = Australia including the Carnarvon Range, Macdonnell ranges and the Great 

Dividing Range; NAM = western North America including the North American Cordillera; 

TIBET_HIM = High Asia including the Qinghai-Tibetan Plateau, Tianshan, Hindu-Kush, 

Himalayan and Hengduan Shan mountains; OTHER = all other mountain regions not 

analyzed separately (due to low regional sample sizes). 
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Supplementary Figure S2 | Geological space and the location of mountain 

regions. For the global dataset covering 585 grid cells at 1° resolution, a Principal 

Component Analysis (PCA) was run with the four geological predictor variables 

(LONG EROSION and EROSION POT, which are fully overlain, and RELIEF and 

SOIL; see Table S3). The first two axes (PC1 and PC2) were retained (explaining 

together 70% of geological variation) and the five mountain regions of the regional 

analyses were plotted within this geological space. Coloring corresponds to the 

regions in Figure 3. ALPS_PYREN_CARP = central Europe including the European 

Alps, Pyrenees and Carpathians; ANDES = the Andes including the northern, central 

and southern subregions; AUS = Australia including the Carnarvon Range, 

Macdonnell ranges and the Great Dividing Range; NAM = western North America 

including the North American Cordillera; TIBET_HIM = High Asia including the 

Qinghai-Tibetan Plateau, Tianshan, Hindu-Kush, Himalayan and Hengduan Shan 

mountains; OTHER = all other mountain regions not analyzed separately (due to low 

regional sample sizes). 
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Supplementary Figure S3 | Climatic predictor variables and their global variation 

across all included 1º grid cells (n = 585). Maps are plotted with quantile 

classification and a World Geodetic System projection (WGS 1984). See Table S1 for 

details on predictor variables. 
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Supplementary Figure S4. Geological predictor variables and their global variation 

across all included 1º grid cells (n = 585). Maps are plotted with quantile 

classification and a World Geodetic System projection (WGS 1984). See Table S1 for 

details on predictor variables. 
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Supplementary Figure S5 | Determinants of vertebrate species richness for 

western North America. Partial residual plots of predictor variables (a–d) from 

regional multi-predictor model across 1° grid cells (see Table S4), relating species 

richness of vertebrates to climatic (blue) and geological (green) predictor variables. 

Partial residuals represent the relationship between a response and a predictor variable 

when all other predictor variables in the model are statistically controlled. Predictor 

variables are explained in Table S1. 
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Supplementary Figure S6 | Determinants of vertebrate species richness for the 

Andes. Partial residual plots of predictor variables (a–f) from regional multi-predictor 

model across 1° grid cells (see Table S4), relating species richness of vertebrates to 

climatic (blue) and geological (green) predictor variables. Partial residuals represent 

the relationship between a response and a predictor variable when all other predictor 

variables in the model are statistically controlled. Predictor variables are explained in 

Table S1. 
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Supplementary Figure S7 | Determinants of vertebrate species richness for 

central Europe. Partial residual plots of predictor variables (a–d) from regional 

multi-predictor model across 1° grid cells (see Table S4), relating species richness of 

vertebrates to climatic (blue) and geological (green) predictor variables. Partial 

residuals represent the relationship between a response and a predictor variable when 

all other predictor variables in the model are statistically controlled. Predictor 

variables are explained in Table S1. 
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Supplementary Figure S8 | Determinants of vertebrate species richness for High 

Asia. Partial residual plots of predictor variables (a–f) from regional multi-predictor 

model across 1° grid cells (see Table S4), relating species richness of vertebrates to 

climatic (blue) and geological (green) predictor variables. Partial residuals represent 

the relationship between a response and a predictor variable when all other predictor 

variables in the model are statistically controlled. Predictor variables are explained in 

Table S1. 
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Supplementary Figure S9 | Determinants of vertebrate species richness for 

Australia. Partial residual plots of predictor variables (a–f) from regional multi-

predictor model across 1° grid cells (see Table S4), relating species richness of 

vertebrates to climatic (blue) and geological (green) predictor variables. Partial 

residuals represent the relationship between a response and a predictor variable when 

all other predictor variables in the model are statistically controlled. Predictor 

variables are explained in Table S1. 
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Supplementary Figure S10 | Data compilation from different mountain ranges 

around the world. The figure shows the number of grid cells for which we were able 

to obtain all geological, climatic and biological variables included in this study. See 

colour legend for each mountain range or region. The blue dots represent those cells 

for which cosmogenic isotope-derived millennial-scale erosion data ref. 90 were also 

available. Although this erosion variable would have been suitable for our analyses, 

the relatively small overlap with the rest of our dataset led us to calculate alternative 

erosion metrics.  
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Supplementary Figure S11 | Hypothetical west-to-east cross section of a 

mountain range with an indication of where climatic, geological and biological 

processes take place in mountains. As mountains develop, lowland organisms may 

become isolated and speciate due to the lack of genetic interchange. Some species 

colonise new mountains through long-distance dispersal and local recruitment from 

lowlands. Plants and the ecosystems they define adapt to different soil types and 

nutrient levels. Surface uplift leads to the formation of new habitats that trigger rapid 

speciation and the accumulation of local endemics. High-elevation species that cannot 

adapt to warmer climates either move elsewhere or go extinct; others are relicts from 

glacial periods. High species richness generally coincides with warm and humid 

conditions, in regions of high relief and soil heterogeneity and low levels of erosion.  
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