GEOLOGY AND GROUND-WATER RESOURCES OF CAMDEN COUNTY, NEW JERSEY

By George M. Farlekas, Bronius Nemickas, and Harold E. Gill

U.S. GEOLOGICAL SURVEY Water-Resources Investigations 83-4029

Prepared in cooperation with NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION, DIVISION OF WATER RESOURCES

June 1976

UNITED STATES DEPARTMENT OF THE INTERIOR

Thomas S. Kleppe, Secretary

GEOLOGICAL SURVEY

•

.

Vincent E. McKelvey, Director

For additional information write to: U.S. Geological Survey Rm. 420 Federal Bldg. P.O. Box 1238 Trenton, N.J. 08607

•

CONTENTS

-	age
Glossary	XI
Conversion factors	XIV
Abstract	1
Introduction	3
Purpose and scope	3
Location and extent	3
Personnel and supervision	3
Previous investigations	5
Well-numbering and location system	6
	6
Acknowledgments	6
Geography	6
Topography and drainage	-
Climate	6
Population and economy	9
Geology	9
Stratigraphy and structure	9
Geologic history	11
Ground-water quality	12
Geologic formations and their hydrologic characteristics	13
Pre-Cretaceous crystalline rocks	13
Geology	13
Hydrology	14
Mesozoic Erathem	14
Cretaceous System	16
Potomac Group and the Raritan and Magothy	
Formations	16
Regional setting and stratigraphic framework	16
Depositional environment	20
Hydrology	22
Patterns of ground-water movement	26
Pattern before development	26
Pattern after development	26
Recharge and movement of ground water	36
Aquifer characteristics	38
-	39
Quality of water	
	46
Salt-water encroachment	51
Merchantville Formation and Woodbury Clay	53
Geology	53
Hydrology	53
Quality of water	59
Englishtown Formation	59
Geology	59
Hydrology	61
Quality of water	63

,

-

CONTENTS--Continued

Geologic Formations and their hydrologic characteristics	
continued	
Mesozoic Erathemcontinued	
Cretaceous Systemcontinued	
Marshalltown Formation	65
Geology	65
Hydrology	65
Wenonah Formation and Mount Laurel Sand	65
Geology	65
Hydrology	66
Quality of water	72
Navesink Formation	75
Geology	75
Hydrology	75
Cenozoic Erathem	76
Tertiary System, Paleocene-Eocene Series	76
Hornerstown Sand	76
Geology	76
Hydrology	78
Vincentown and Manasquan Formations	78
Vincentown Formation	78
Geology	78
Manasquan Formation	80
Geology	80
Vincentown and Manasquan Formations	
undifferentiated	81
Hydrology	81
Piney Point(?) Formation	81
Tertiary System, Miocene Series	82
Kirkwood Formation	82
Geology	82
Hydrology	84
Quality of water	87
Tertiary System, Miocene(?) and Pliocene(?) Series	87
Cohansey Sand and younger sediments	87
Geology	87
Hydrology	88
Quality of water	93
Quaternary System, Pleistocene Series	93
Bridgeton Formation	94
Pensauken Formation	94
Cape May Formation	94
Quaternary System, Holocene Series	95
Eolian deposits	95
Alluvium	95
Summary and conclusions	95
selected references	97

.

ILLUSTRATIONS

_

Page

Figure 1.	Map of New Jersey showing location of Camden County	4
2.	Location of wells in Camden County and vicinityin poc	ket
3.	Generalized topographic and drainage basin map of Camden County	8
4.	Pre-Quaternary geologic map of Camden County	10
5.	Geologic sections A-A', B-B', and C-C' of the Coastal Plain in Camden Countyin poc	ket
6.	Geologic section D-D' and E-E' of the Coastal Plain in Camden County	ket
7.	Configuration of the bedrock surface beneath the Coastal Plain in Camden County	15
8.	Structure contour map of the top of the Magothy Formation in Camden County	17
9.	Thickness map of the Potomac Group and the Raritan and Magothy Formations in Camden County	18
10.	Idealized sand-dispersal system in various depositional systems, Wilcox Group, Texas	21
11.	Thickness map of the upper aquifer in the Potomac-Raritan-Magothy aquifer system in Camden County	23
12.	Thickness map of the middle aquifer in the Potomac-Raritan-Magothy aquifer system in Camden County	24
13.	Thickness map of the lower aquifer in the Potomac-Raritan-Magothy aquifer system in Camden County	25
14.	Potentiometric map for the Potomac-Raritan- Magothy aquifer system in Camden County, 1900.	27

ILLUSTRATIONS--Continued

Figure	15.	Pumpage from the Potomac-Raritan-Magothy aquifer system in Camden County, 1897-1967	28
	16.	Map showing the distribution of public and industrial pumpage in Camden County, 1966	30
	17.	Potentiometric map for the Potomac-Raritan- Magothy aquifer system in Camden County, 1956.	31
	18.	Potentiometric map for the Potomac-Raritan- Magothy aquifer system in Camden County, October 17-19, 1968	32
	19.	Potentiometric decline map for the Potomac- Raritan-Magothy aquifer system in Camden County, 1900-56	33
	20.	Potentiometric decline map for the Potomac- Raritan-Magothy aquifer system in Camden County, 1956-68	34
	21.	Potentiometric decline map for the Potomac- Raritan-Magothy aquifer system in Camden County, 1900-68	35
	22.	Distribution of specific capacities of large diameter wells (12 inches or greater) tapping the Potomac-Raritan-Magothy aquifer system in Camden County	40
	23.	Map showing generalized total iron concentra- tions in water of the Potomac-Raritan-Magothy aquifer system in Camden County, 1965	44
	24.	Map showing generalized ferrous iron concentra- tions in water of the Potomac-Raritan-Magothy aquifer system in Camden County, 1965	45
	25.	Map showing configuration of the bedrock surface beneath the Coastal Plain sediments in Philadelphia, Pain pock	et
	26.	Geologic cross section, Philadelphia, Pa Westville, N. J	47

ILLUSTRATIONS--Continued

Figure 27.	Map of the Philadelphia, Pa. and nearby New Jersey area showing sulfate concentrations in the lower aquifer in the Potomac-Raritan- Magothy aquifer system, 1966-71in poc	ket
28.	Potentiometric map for the middle and lower aquifers in the Potomac-Raritan-Magothy aquifer system in Philadelphia, Pa. and nearby New Jersey, October 17-19, 1968in poc	ket
29.	Thickness map of the sand unit in the Merchantville Formation in Camden County	54
30.	Structure contour map of the top of the sand unit in the Merchantville Formation in Camden County	55
31.	Geologic sections of the Coastal Plain in the northeastern part of Camden County	56
32.	Structure contour map of the top of the Woodbury Clay in Camden County	57
33.	Thickness map of the Merchantville Formation- Woodbury Clay in Camden County	58
34.	Structure contour map of the top of the Englishtown Formation in Camden County	60
35.	Map showing aggregate thickness of the sand facies of the Englishtown Formation in Camden County	62
36.	Generalized potentiometric map of the English- town Formation in Camden County	64
37.	Structure contour map of the top of the Mount Laurel Sand in Camden County	67
38.	Thickness map of the Wenonah Formation and Mount Laurel Sand in Camden County	68
39.	Map showing aggregate thickness of the sand facies of the Wenonah Formation and Mount Laurel Sand in Camden County	69

.

ILLUSTRATIONS--Continued

.

Figure	40.	Generalized potentiometric map of the Wenonah Formation and Mount Laurel Sand, based upon earliest record for each control point	71
	41.	Potentiometric map of the Wenonah Formation and Mount Laurel Sand, November 1968 - May 1970	73
	42.	Hydrograph of the lowest monthly water level in the observation well tapping the Wenonah- Mount Laurel aquifer at New Brooklyn Park, Winslow Township, January 1963 - December 1970.	74
	43.	Thickness map of the Navesink Formation and Hornerstown Sand in Camden County	77
	44.	Thickness map of the Vincentown and Manasquan Formations in Camden County	79
	45.	Effects of pumping on water-level fluctuations in the Ancora State Hospital wells tapping the Vincentown and Manasquan Formations undifferentiated, 1953-70	tet
	46.	Thickness map of the Kirkwood Formation in Camden County	83
	47.	Structure contour map of the base of the Kirkwood Formation in Camden County	85
	48.	Structure contour map of the top of the Kirkwood Formation in Camden County	86
	49.	Saturated thickness of the Cohansey Sand and overlying younger sediments in Camden County	8 9
	50.	Generalized water-table surface of the Cohansey Sand and overlying younger sediments in Camden County	91

.

.

TABLES

.

Page

•

Т	able	1.	Records of selected wells in Camden County and vicinity106
		2.	Geologic formations and their water-bearing properties in Camden County
		3.	Source and significance of dissolved mineral constituents and physical properties of ground water in Camden County124
		4.	Chemical analysis of water samples from wells tapping the various aquifers of the Camden County area
		5.	Laboratory determinations of particle size, porosity, and hydraulic conductivity of core samples from New Brooklyn Park test wells in Winslow Township, Camden County
		6.	Pumpage for selected wells in Camden County for 1966
		7.	Analyses of water from wells 1 and 4 at the Puchack Run station of the Camden Water Department, 1924-69136
		8.	Summary of chemical analyses of water from the Potomac-Raritan-Magothy aquifer system in Camden County
		9.	Chemical analyses of water samples from selected wells tapping the Potomac-Raritan-Magothy aquifer system in Camden City
]	LO.	Spectrographic analyses of water samples from selected wells tapping the Potomac-Raritan- Magothy aquifer system in Camden County and vicinity
	נ	L 1.	Specific capacity and estimated transmissivity for selected industrial and large capacity wells tapping the Wenonah-Mount Laurel aquifer in Camden County

TABLES--Continued

Table 1	. 2.	Summary of chemical analyses of water from the Wenonah-Mount Laurel aquifer in Camden County	144
1	.3.	Laboratory determinations of particle size and hydraulic conductivity of core samples from Atsion well 1 in Shamong Township, Burlington County	145
. 1	.4.	Summary of chemical analyses of water from the Cohansey Sand and Pleistocene sediments in Camden County	146

.

.

.

•

.

GLOSSARY

- <u>Aquifer</u>. A formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.
- Artesian aquifer. An aquifer containing water under sufficient pressure to rise above the top of the aquifer when penetrated by a well.
- Coefficient of permeability (field). See hydraulic conductivity.

Coefficient of storage. See storage coefficient.

- <u>Confining bed</u>. A body of relatively impermeable material stratigraphically adjacent to one or more aquifers. The hydraulic conductivity may range from nearly zero to some value distinctly lower than that of the aquifer.
- Drawdown. The lowering of the water table or artesian water level caused by pumping.
- Head, static. The height above a standard datum of the surface of a column of water (or other liquid) that can be supported by the static pressure at a given point. Head, when used alone, is understood to mean static head.
- Hydraulic conductivity. A measure of the ability of material to transmit water. If the porous medium is isotropic and the fluid is homogeneous, the medium has a hydraulic conductivity of unit length per unit time if it will transmit in unit time a unit volume of water at the prevailing kinematic viscosity through a cross section of unit area, measured at right angles to the direction of flow, under a hydraulic gradient of unit change in head over unit length of flow path. The Geological Survey measures length in feet or meters and time in To convert from field coefficient of permeability days. measured in gallons per day per square foot to hydraulic conductivity measured in feet per day multiply the field coefficient by 0.134. To convert from field coefficient of permeability measured in gallons per day per square foot to hydraulic conductivity measured in meters per day multiply the field coefficient by 0.041.

- <u>Permeability</u>. The ability of a rock or earth material to transmit water in response to head differences.
- <u>Porosity</u>. The porosity of a rock or soil is its property of containing interstices or voids and may be expressed quantitatively as the ratio of the volume of its interstices to its total volume. It may be expressed as a decimal fraction or as a percentage.
- Potentiometric surface. A surface which represents the static head in an aquifer. The potentiometric surface is defined by the levels to which water will rise in tightly cased wells. See head, static.
- Recharge. The process by which water is added to an aquifer.
- <u>Runoff (average annual, in inches)</u>. The depth to which the drainage area would be covered if all the runoff for an average year were uniformly distributed on it.
- Specific capacity (of a well). The rate of discharge of water from the well divided by the drawdown in the well. A properly constructed well can be used as a measure of the aquifer's transmissivity; a high specific capacity suggests a high transmissivity while a low specific capacity suggests a low transmissivity. The specific capacity of a well is a function of well construction and development, the aquifer's storage coefficient, and the portion of the aquifer in which the well is screened.
- Specific yield. In general terms, the specific yield is the water yielded from a water-bearing material by gravity drainage, as occurs when the water table declines. More exactly the specific yield of a rock or soil is the ratio of 1) the volume of water which, after being saturated, the rock or soil will yield by gravity to 2) the volume of the rock or soil.
- Storage coefficient. The volume of water a porous medium releases from or takes into storage per unit surface area of the aquifer per unit change in head.

In a confined water body the water derived from storage with head decline comes from expansion of the water and compression of the aquifer; similarly, water added to storage with a rise in head is accommodated partly by compression of the water and partly by expansion of the aquifer. In an unconfined water body the amount of water derived from or added to the aquifer generally is negligible compared to that involved in gravity drainage or filling of pores; hence, in an unconfined water body the storage coefficient is virtually equal to the specific yield.

<u>Water table</u>. That surface in an unconfined water body at which the pressure is atmospheric.

CONVERSION FACTORS

Cubic feet		
x 0.02832	=	cubic meters
x 7.48052	=	gallons
x 28.32	=	liters
Cubic feet per s	econd	
x 0.646317	=	million gallons per day
x 448.831	=	gallons per minute
Cubic meters		
x 10 ⁶	=	cubic centimeters
x 35.31	=	cubic feet
x 264.2	=	gallons
x 10 ³	=	liters
Feet		
x 30.48	=	centimeters
x 0.3048	=	meters
Gallons		
$x 3.785 \times 10^{-3}$	=	cubic meters
x 3.785	=	liters
Gallons per minu	te	
$x 2.228 \times 10^{-3}$	-	cubic feet per second
x 0.06308	=	liters per second

CONVERSION FACTORS--Continued

Kilometer		
x 10 ⁵	=	centimeters
x 3281	=	feet
x 10 ³	=	meters
x 0.6214	=	miles
Liters		
x 0.0353	=	cubic feet
x 10 ³	=	cubic meters
x 0.2642	=	gallons
Liters per second		
$x 5.886 \times 10^{-4}$	=	cubic feet per second
$x 4.403 \times 10^{-3}$	=	gallons per second
Meters		
x 100	=	centimeters
x 3.281	=	feet
x 39.37	=	inches
$\times 10^{-3}$	=	kilometers
$ x 10^{-3} $	=	millimeters
Miles (statute, U.	s.)	
$x 1.609 \times 10^5$	=	centimeters
x 5,280	=	feet
x 1.609	=	kilometers

CONVERSION FACTORS--Continued

Milligrams per lit	er	
x 1	=	parts per million
Millimeter		
x 0.1	=	centimeter
x 0.03937	=	inches
Square kilometers		
x 0.3061	=	square miles
x 0.3061	=	square miles
x 0.3061 Square meters	=	square miles
	=	square miles square feet
Square meters		-
Square meters x 10.76	=	square feet
Square meters x 10.76	=	square feet

•

.

£

Relation of Units of Hydraulic Conductivity and Transmissivity

[Equivalent values shown in same horizontal lines. *indicates abandoned term]

Hydraulic c	onductivity (K)	*Field coefficient of permeability (P _f)
Feet per day	Meters per day	*Gallons per day per square foot
(ft day ^{-1})	$(m day^{-1})$	$*(gal day^{-1} ft^{-2})$
One	0.305	7.48
3.28 .134	One .041	24.5 One

A. Hydraulic conductivity

B. Transmissivity (T)

Square feet per day (ft ² day ⁻¹)	Square meters per day (m ² day ⁻¹)	*Gallons per day per foot *(gal day ⁻¹ ft ⁻¹)
10.76 .134	0ne .0124	80.5 One

ABSTRACT

Jersey, Camden New is located in the County, Philadelphia-Camden metropolitan area. The western edge of the county is urban and industrial in character. The central part is less industrial and more suburban in character, and the is sparsely populated eastern part and predominantly agricultural, although urbanization is advancing eastward quite rapidly.

Camden County is in the Atlantic Coastal Plain province. Underlying the physiographic county are unconsolidated sediments of Quaternary, Tertiary, and Cretaceous age, consisting of mostly alternating sands, silts, sediments dip gently to the southeast and and clays. The thicken from 40 feet at the Delaware River to 2,900 feet at the Below the unconsolidated County line. Camden-Atlantic sediments is the pre-Cretaceous crystalline bedrock.

The major fresh-water aquifers in Camden County are sands and gravels of Cretaceous and Tertiary age in the Potomac Group and the Raritan and Magothy Formations; the Cohansey the Wenonah Formation-Mount Sand: Laurel Sand; and the Englishtown Formation. Minor aquifers are found in parts of the Merchantville Formation, the undifferentiated Vincentown Kirkwood Formation. Formations, and and Manasquan the Saturated sands and gravels in the surficial deposits of Quaternary age where direct in contact are commonly hydraulically connected to the underlying aquifers.

The rate of ground-water withdrawal for Camden County was 68 mgd (million gallons per day) in 1966. This was the largest average annual county pumpage in the State in 1966. Eighty-five percent (56 mgd) was pumped from the aquifer system in the Potomac Group and the Raritan and Magothy Formations.

The potentiometric surfaces of all the major artesian Camden County declined from 1900 to 1970 as aquifers in а result of pumping. The largest decline occurred in the aquifer system in the Potomac Group and the Raritan and Magothy Formations. At Haddon Heights, in the western part of the county, the potentiometric surface declined about 110 feet from 1900 to 1968. The potentiometric surface of the aquifer in the Wenonah Formation-Mount Laurel Sand declined 43 feet in about 60 years in the vicinity of Berlin Borough.

The chemical quality of ground water in Camden County

is generally satisfactory for most uses. Concentrations of iron greater than the State's potable-water standard of 0.3 milligrams per liter are found in some areas of the Potomac-Raritan-Magothy aquifer system, in scattered locations in the Wenonah Formation-Mount Laurel Sand, and in the Cohansey In general, higher values of dissolved solids, sulfate, Sand. and chloride occur in water in and near the outcrop of the Potomac-Raritan-Magothy aquifer system than downdip in the aquifer. In the southeastern part of the county chloride concentrations in excess of 250 milligrams per liter can be found in the same aquifer system. The high chloride water has remained in the aquifer system from the time of deposition or has re-entered the system from the ocean after changes in sea level since Pleistocene time.

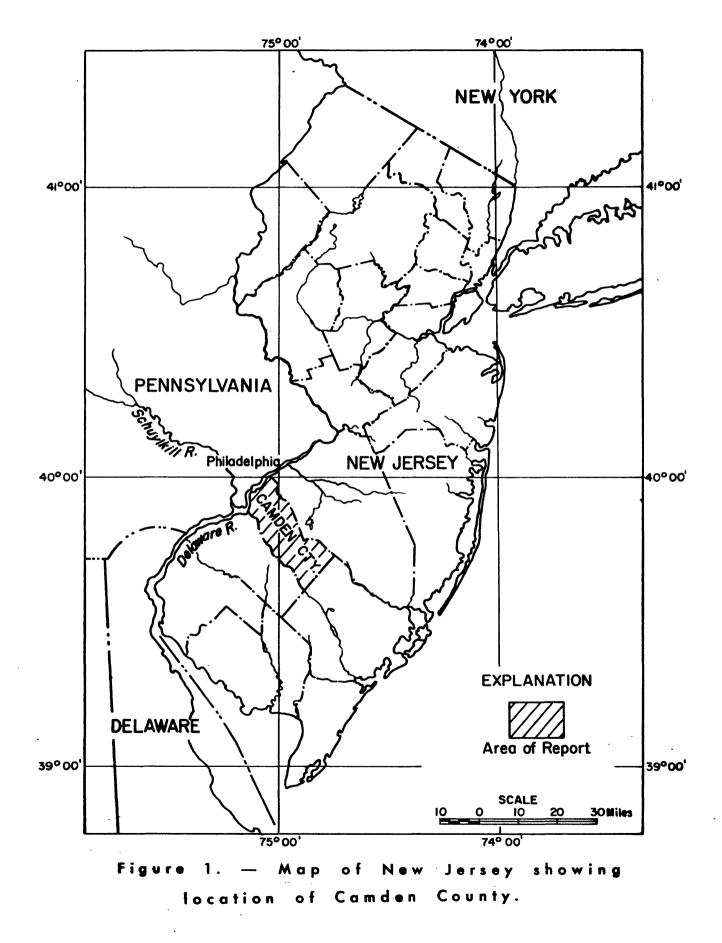
Contamination of water in the Potomac-Raritan-Magothy aquifer system in the Philadelphia area has created a potential water-quality problem for the Camden area near the Delaware River. Contaminated ground water in Philadelphia, with high concentrations of sulfate and dissolved solids, is moving under the Delaware River toward Eagle Point in Gloucester County near the Camden County line. Decrease of pumping in Philadelphia and simultaneous increase of pumping in Camden and Gloucester Counties tends to draw ground water from Philadelphia toward New Jersey.

The greatest potential for additional ground-water development in the county is from the Cohansey Sand which is generally an unconfined aquifer. The Cohansey also has the greatest possibility of ground-water contamination because of the local effect of wastes from suburban and industrial development and the shallow depth of the Cohansey aquifer.

INTRODUCTION

PURPOSE AND SCOPE

This investigation of the ground-water resources and geology of Camden County is part of a statewide program of studies of the water resources of New Jersey. It was conducted by the U. S. Geological Survey in cooperation with the New Jersey State Department of Environmental Protection, Division of Water Resources.


Almost all public, industrial, and irrigation water supplies in Camden County are obtained from ground-water sources. The ground-water environment and its hydrologic and chemical characteristics must be understood in order to facilitate an orderly and safe development of this natural The purpose of this investigation is to collect and resource. interpret the basic hydrologic and geologic data and to appraise and report on the ground-water resources of Camden County. The objectives were to define the thickness and areal hydrologic units, evaluate the hydraulic extent of the characteristics of the aquifers, determine the effect pumpage on the water levels of the area, define the source effect of of recharge of the aquifers, and to evaluate the chemical quality of the ground water.

LOCATION AND EXTENT

Camden County is in the southwestern part of New Jersey (fig. 1). It is bounded by Burlington County on the northeast, Atlantic County on the southeast, Gloucester County on the southwest, and by the Delaware River on the northwest. The county is part of the Philadelphia standard metropolitan statistical area and occupies an area of 222.2 square miles. The City of Philadelphia, fourth largest city in the United States, is located across the Delaware River from Camden County.

PERSONNEL AND SUPERVISION

The investigation was made by the U.S. Geological Survey in cooperation with the State Department of Environmental Protection, Division of Water Resources. The

work was performed under the general supervision of John E. McCall, District Chief, and under direct supervision of William Kam, Supervisory Hydrologist. The authors were assigned to the 1969. project in June Most of the material the on Potomac-Raritan-Magothy aquifer system in this report is f an unpublished study on the aquifer system from Trenton from to New Jersey, by Gill and Farlekas. George M. Salem, Farlekas collected, compiled, and interpreted the data for the geologic units younger than the Magothy Formation up to and including the Mount Laurel Sand. Bronius Nemickas was responsible for the work on the geologic units younger than the Mount Laurel Data for wells tapping units younger than the Magothy Sand. field work in were obtained from 1) the summer and fall of selected data from E. 1969. 2) Donsky (1963).and 3) unpublished data from the Great Egg Harbor River basin compiled by P. R. Seaber in 1958. Data collection and analysis for the project was essentially completed in July 1970.

PREVIOUS INVESTIGATIONS

The geology and ground-water resources of the Camden been studied intermittently during the past 100 area have Almost all of the early information published in the vears. annual reports of the State Geologist is limited to general descriptions of the water-bearing formations, with lists of tapping principal aquifers. Further information on wells the geology and hydrology of the Camden area was published Ъу and Bascom and others (1909). Bascom (1904) The U. S. Geological Survey began ground-water investigations in New Jersey in 1923 in cooperation with the State. In 1932 a report on the ground-water supplies of the Camden area was published 1932). (Thompson, A progress report on the ground-water resources of the Lower Delaware Valley study was released in (Barksdale and Graham). The results of 1952 this tri-state which included Camden County, were reported study, later by (1958). A report on the ground-water Barksdale and others resources of the nearby Philadelphia Navy Base was prepared by and Kammerer (1954). Greenman and others Graham (1961)prepared a report on the ground-water resources of the Coastal Plain of southeastern Pennsylvania, which included the City of Philadelphia. A basic-data report on wells in Camden County was written by Donsky (1963).

Completed investigations of the geology and groundwater resources of neighboring counties include Burlington County (Rush, 1968), Gloucester County (Hardt and Hilton, 1969), and Atlantic County (Clark and others, 1968).

5

Iron in water of the aquifer system in the Potomac Group and Raritan and Magothy Formations has been investigated by Langmuir (1969a and 1969b). Regional geology, hydrology, and geochemistry of the aquifer system in the Potomac Group and Raritan and Magothy Formations from Salem County north to Trenton has been investigated by Gill and Farlekas (written commun., 1969).

Detailed geologic field work has been made in a number of 7-1/2 minute quadrangle areas in Burlington County (Minard, Owens, and Nichols, 1964, Owens and Minard, 1962 and 1964a), and one quadrangle in Salem County (Minard, 1965). A geologic map of part of the Coastal Plain at a scale of 1:250,000 was compiled by J. P. Owens in U. S. Geological Survey (1967).

WELL-NUMBERING AND LOCATION SYSTEM

Wells discussed in the report have been located on U. S. Geological Survey 7-1/2 minute quadrangle maps and are shown in figure 2. The municipality and the latitude and longitude in degrees, minutes, and seconds for each well were determined from the 7-1/2 minute quadrangles. Each well (table 1) has a unique number. The first six numbers and the letter N (for North) are the latitude for the well. The fifteenth number is the sequential number, usually "1". If more than one well is located at the same site, the second well will have а sequential number of 2 and the third well a sequential number of 3; with as many sequential numbers as there are wells at The wells (table 1) are listed by that latitude and longitude. municipality and numbered serially in order of decreasing latitude. Decreasing longitude is used to determine the order of the wells if two or more wells have the same latitudes.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the assistance of officials and private individuals of the Camden area who furnished information on their wells and permitted access to the wells for the collection of water samples and geophysical and hydrologic data. The staff of the New Jersey Division of Water Resources was helpful in furnishing data from their files. Special thanks are extended to the many well drillers, particularly A. C. Schultes and Sons, Layne-New York Inc., and A. A. and M., for their time and assistance in furnishing well data and geophysical logs.

GEOGRAPHY

TOPOGRAPHY AND DRAINAGE

Camden County lies entirely within the Atlantic Coastal Plain physiographic province, which extends from Massachusetts to Florida. The county is characterized as a low lying, gently rolling plain that ranges in altitude from sea level to about 220 feet. The maximum altitude of about 220 feet is located in the southeastern part of Voorhees Township.

A generalized topographic map of Camden County outlining the major drainage basins is shown in figure 3. In the northeastern part of the county the major streams, the Rancocas, Pennsauken, Newton, and Big Timber Creeks and the Cooper River, flow northeast and north into the Delaware River. In the southeastern part of the county the Mullica and Great Egg Harbor Rivers flow southeast towards the Atlantic Ocean.

Topographic highs in the central part of the county form the drainage divides between the basins. Topographic lows are in the southeastern part of the county and in the northern part of the county along the Delaware River and along streams flowing into the Delaware River.

CLIMATE

The climate of Camden County is continental, generally moderate, with mild winters, warm summers, and generally evenly distributed rainfall. The prevailing direction of air movement is from west to east. During the summer months the prevailing wind direction is from the southwest.

The average annual temperature of the Philadelphia Weather Bureau station for the period 1931-60 was 53.3°F (degrees Fahrenheit). Normal daily maximum and minimum are 40.3°F and 24.3°F for January, and 85.9°F and 65.2°F for July.

Average annual precipitation at the Philadelphia Weather Bureau station for 1931-60 was 42.48 inches. Precipitation is generally distributed evenly throughout the year, with the summer precipitation characterized by localized thundershowers. The winter precipitation is usually more widespread and less intense. Precipitation data for the same

7

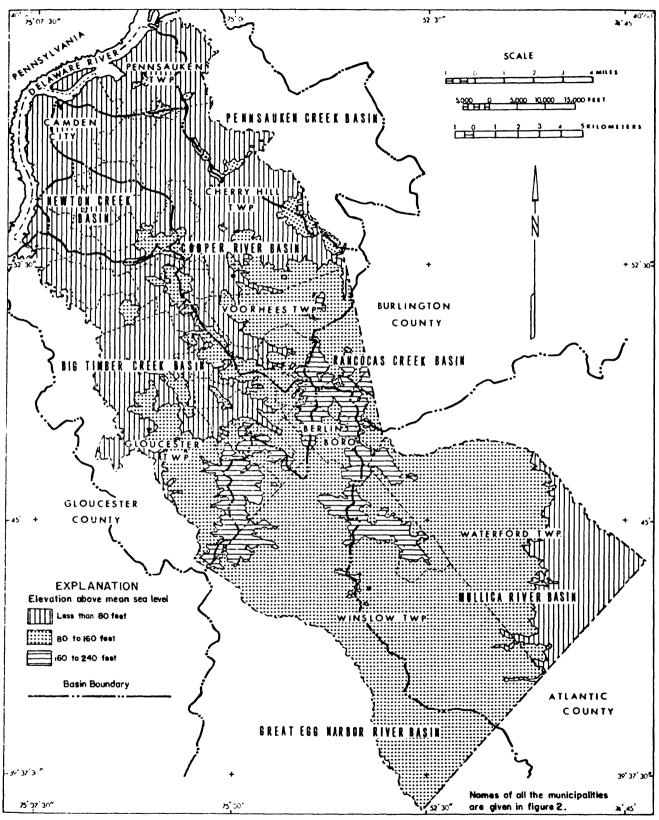


Figure 3. — Generalized topographic and drainage basin map of Camden County.

period indicate that the average of the wettest month of each year is 4.63 inches, while the average of the driest month of each year is 2.78 inches.

POPULATION AND ECONOMY

Camden County had a population of 456,291 in 1970, 392.035 in 1960, and 300.743 in 1950 (U. S. Bureau of Census). The increase from 1960 to 1970 was 16.4 percent and the increase from 1950 to 1960 was more than 30 percent. The most densely populated area is in the northern part of the county. In 1960 the municipalities north of Gloucester Township, Somerdale Borough, and Voorhees Township contained 82 percent of the total population, whereas the land area is only 31 percent. In 1970 the same municipalities contained 77 percent of the county's total population indicating a shift in population toward the southeast.

Camden County is in the Philadelphia metropolitan area and many of the county's residents work in the city or nearby counties. A large work force is employed by manufacturing companies located along the western edge of the county in the area near the Delaware River. The cities of Camden and Gloucester, as well as Pennsauken Township, have much of the manufacturing of the county, although a number of new manufacturing centers are being developed east of New the Jersey Turnpike. Three municipalities, Waterford and Winslow Townships and Chesilhurst Borough, have the largest proportion of land in the county used for agriculture. The percentage of land area used for farms in Camden County has been decreasing The U. S. Department of Commerce, Bureau of in recent years. Census reports indicate that the land area used for farms in Camden County was 8.6 percent in 1969, 10.2 percent in 1964, and 13.7 percent in 1959.

GEOLOGY

STRATIGRAPHY AND STRUCTURE

All exposed geologic units in Camden County are sedimentary and for the most part unconsolidated. They are part of the Atlantic Coastal Plain and range in age from Early Cretaceous to Quaternary. Figure 4 is a geologic map of Camden County delineating the outcrop area of the Cretaceous and Tertiary age sediments. Figures 5 and 6 show two geologic

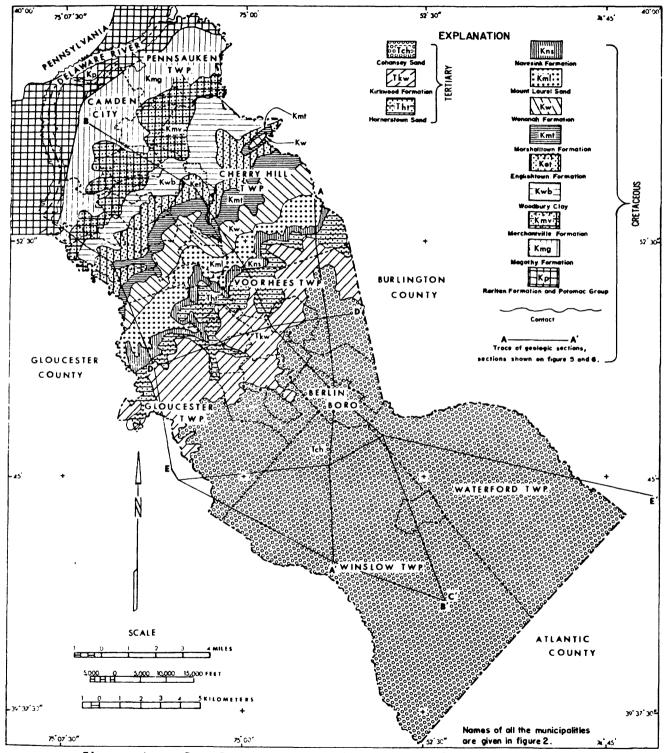


Figure 4. — Pre-Quaternary geologic map of Camden County.

sections of the Coastal Plain sediments in Camden County. The Cretaceous and Tertiary sediments dip gently to the southeast with the oldest sediments cropping out at the Delaware River. In general, the older the sediments are, the greater the dip. The Quaternary formations are essentially flat-lying beds that overlie the Cretaceous and Tertiary sediments.

Underlying the sediments of the Coastal Plain in Camden County are crystalline rocks of pre-Cretaceous age. The surface of the crystalline rocks slopes towards the southeast. The altitude of the crystalline rock surface is about 40 feet below mean sea level at the Delaware River in the vicinity of the Benjamin Franklin Bridge and about 2,800 feet below mean sea level at the Camden-Atlantic County line.

The formations present in Camden County and their water-bearing properties are described in table 2. Also given is the general lithology and range in thickness of the formations.

GEOLOGIC HISTORY

During the Precambrian a great thickness of sediments was deposited in the area. The sediments included sands. silts, clays, and carbonates. The sediments were buried by additional sediments, metamorphosed, and subsequently uplifted of time. Part the sediments during Paleozoic were metamorphic rocks known as into reconstituted the the Wissahickon Formation. In the Camden County area a period of erosion occurred in the Paleozoic Era and continued into the Mesozoic Era, extending through Triassic and Jurassic time. The next sequence of sediments found are the Cretaceous units above the metamorphic rocks. During Cretaceous time sands, clays, and silts were deposited in a deltaic complex somewhat similar to modern deltas. The streams supplying sediment to deltaic complex flowed from the west-northwest to the the They provided the fluvial sediments that make east-southeast. the Potomac Group and the Raritan and Magothy Formations. up In Late Cretaceous time marine seas inundated the area. The marine invasions were cyclic in nature rather than continuous, The and periods of complete withdrawal of the sea occurred. During Late Cretaceous time deposits in the Camden area were mainly of deltaic, beach, and marine origin.

The marine environment persisted into Tertiary time, but the marine inundations were not as extensive as those in the Cretaceous. Early Tertiary deposits (Paleocene to Middle Eocene) are marine in origin; whereas, middle and late Tertiary deposits (Miocene and Pliocene) are either beach or deltaic deposits.

Sands and gravels of fluvial origin were deposited early Pleistocene time of the Quaternary Period during in extensive areas of Camden County. These deposits, known as the Bridgeton and Pennsauken Formations, may be the result of several early glacial or interglacial stages. In middle Pleistocene time sea level rose during interglacial stage. This resulted in a marine invasion of the area along the Delaware River in Camden. Clays and silts were deposited in the low-lying areas while fluvial material such as sands and gravels were deposited in the higher areas.

As the Wisconsin ice sheet advanced into the northern parts of Pennsylvania and New Jersey, sea level declined and the sea withdrew from the Camden area. Glacial meltwaters deposited sands, silts, and clays. In addition, eolian materials were deposited. Sea level rose to its present level with the withdrawal of the Wisconsin glacier. Recent measurements of sea level suggest that it is still rising.

GROUND-WATER QUALITY

Ground water contains dissolved mineral matter as the result of leaching of soluble material, primarily from the sediments, or rocks through which the water soils, moves. Thus, the natural chemical characteristics of ground water are a function of time, pressure, temperature, composition, and solubility of the minerals with which the water is in contact. Consequently, the quality of ground water may very greatly from one place to another and from one aquifer to another. Superimposed on the natural chemical characteristics of ground water is deterioration of the quality of water caused by human activities, the utilization of such as unlined industrial-retention ponds, waste-disposal wells. and improperly located or constructed sanitary landfills and septic tanks.

Pumping also can have an effect on the local quality of ground water. Changes in the potentiometric surface caused by pumping may change the direction of movement of water or greatly accelerate the movement. Thus, ground water of poor quality may move into centers of pumping. Salt water also may move from adjacent aquifers or from tidal streams into the pumped aquifer.

Water-quality standards vary widely depending on the

intended use of the water. A particular industry may have requirements for water within a narrow range of a minor constituent. If the concentration is beyond this range the water may not be suitable for the particular use without treatment. The same water, however, may be acceptable for public-water supply. The Potable Water Standards of the New Jersey Department of Environmental Protection (1970) for some chemical constituents are as follows:

Chemical constituents Maximum concentrations (mg/1) Chloride (Cl) 250 Fluoride (F) 1.5 Hardness (as CaCO₃) 150 .3 Iron (Fe) Manganese (Mn) .05 Nitrate (NO₃-N) 30 Sodium (Na) 50 Sulfate (SO₄) 250 Dissolved solids 500

The source and significance of dissolved-mineral constituents and physical properties of ground water in Camden County are given in table 3.

Regional water-quality studies have been made for several aquifers in Camden County and vicinity. The aquifers are 1) Potomac-Raritan-Magothy aquifer system (Langmuir, 1969a and 1969b, and Gill and Farlekas, written commun., 1969); 2) the Englishtown aquifer (Seaber, 1965); and 3) the Cohansey 1966). Water-quality Sand (Rhodehamel. data for the neighboring counties are given in ground-water reports for Burlington (Rush, 1962 and 1968), Gloucester (Hardt and Hilton, 1969), and Atlantic Counties (Clark and others, 1968). The quality of water data for Camden County are given in table 4. The quality of water data for each aquifer is discussed under the appropriate sections of the individual formations.

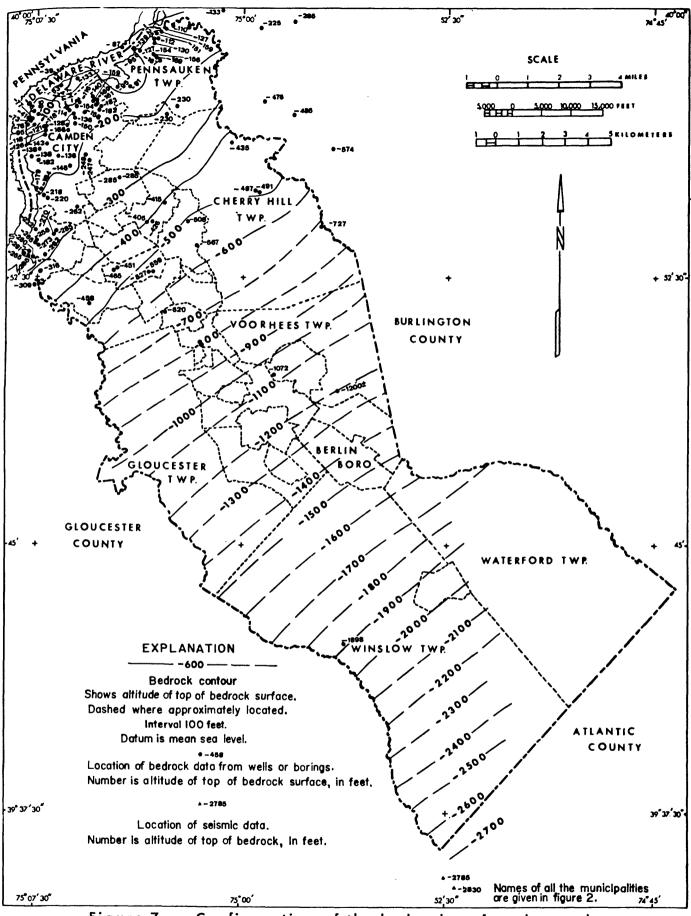
GEOLOGIC FORMATIONS AND THEIR HYDROLOGIC CHARACTERISTICS

PRE-CRETACEOUS CRYSTALLINE ROCKS

Geology

Crystalline rocks of pre-Cretaceous age underlie the Coastal Plain sediments in Camden County. The crystalline rocks at or near the surface Camden are part of the near Wissahickon Formation. Much of the data available on the lithology and age of the rocks are from areas where the rocks are at or near the surface. Information about these rocks at depth is from drillers' logs and seismic studies.

The Wissahickon Formation medium to is а coarse-grained foliated crystalline rock that varies in composition and texture from schist to gneiss. The lithology of the formation varies greatly in both vertical and horizontal directions. The formation was probably a sedimentary series of and shale that have been deformed sandstone, siltstone, and re-crystallized by metamorphism.


The outcrop area of the Wissahickon Formation near the project area is in Pennsylvania a few miles of the west Delaware River. The formation is near the surface in the Camden City area near the Delaware River. The depth to the Wissahickon Formation at the Delaware River in the vicinity of Franklin Bridge is about 60 The the Benjamin feet. configuration of the crystalline rocks is shown in figure 7.

Hydrology

Few wells have been drilled for water supply in the crystalline rocks below the Coastal Plain of New Jersey. Two wells were drilled 600 feet into the Wissahickon Formation in Burlington County near the Delaware River. Neither well produced sufficient water to be useful to their owners. The data from these and other wells drilled into the crystalline rocks indicate that development of these rocks as a source of a large ground-water supply is unlikely.

Although the crystalline rocks do not produce a large quantity of water, they are hydrologically important. The basement rocks form a basal confining unit for the overlying unconsolidated aquifers. In addition, the configuration of the bedrock surface is hydrologically important. During Cretaceous and pre-Cretaceous time streams incised major river channels in the bedrock surface. These west to east-trending channels are filled with highly permeable Coastal Plain sediments (Gill and Farlekas, written commun., 1969).

MESOZOIC ERATHEM

Cretaceous_System

Potomac Group and the Raritan and Magothy Formations

Regional Setting and Stratigraphic Framework

The Potomac Group and the and Magothy Raritan are fluvial-marginal marine sediments of Formations Early to Late Cretaceous age and overlie the pre-Cretaceous crystalline These sediments make up an extensive part of rocks. the in New Jersey and in Coastal Plain sediments the adjacent Major structures which contain the greatest thickness states. of sediments are the Salisbury embayment (Richards, 1945) in Delaware and the Raritan embayment in the vicinity of Raritan and eastern Long Island. Bav The area between these two which includes Camden County, embayments, contains smaller arches and troughs. The outcrop area of the Potomac Group and Raritan and Magothy Formations in Camden County (21 square miles in area) is in the northwestern part of the county near The units are extensively overlain by the Delaware River. permeable Pleistocene deposits in the outcrop area.

The Potomac Group and the Raritan and Magothy Formations form a wedge-shaped body that thickens in a downdip direction and is underlain by the crystalline basement. The configuration of the crystalline rocks is shown in figure 7. The upper limit of the wedge-shaped body is the contact between Merchantville Formation and the top of the the Magothy The difference between the basement and Formation (fig. 8). the top of the Magothy is the total thickness of Potomac Group and the Raritan and Magothy Formations (fig. 9).

In Camden County the thickness of the Potomac Group and Raritan and Magothy Formations ranges from approximately 260 feet at the Collingswood well 7 (CO 7), located near the outcrop area, to approximately 1,210 feet at the New Brooklyn Park test well (WI 27). This is shown on the thickness map in figure 9. The distance between the two wells is 13 miles.

Correlation of part of the Cretaceous stratigraphic section in northern New Jersey and Maryland as determined by Wolfe and Pakiser (1971) is given below.

16

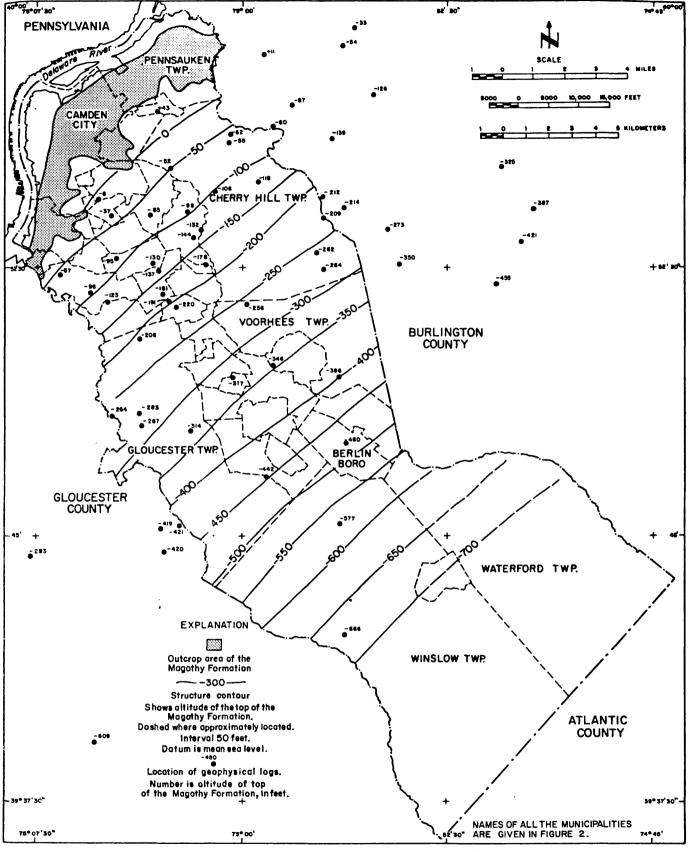


Figure 8. — Structure contour map of the top of the Magothy Formation in Camden County.

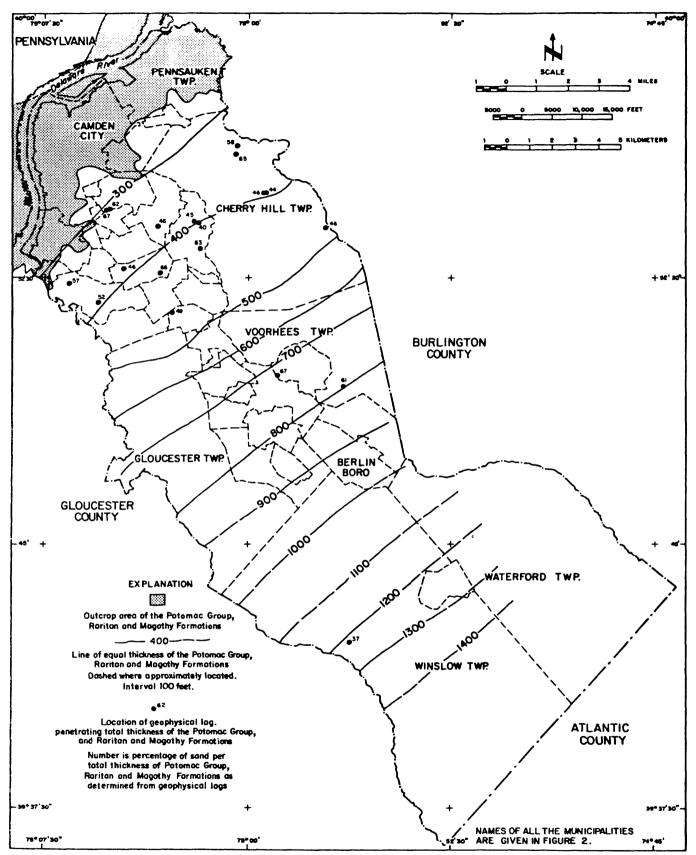
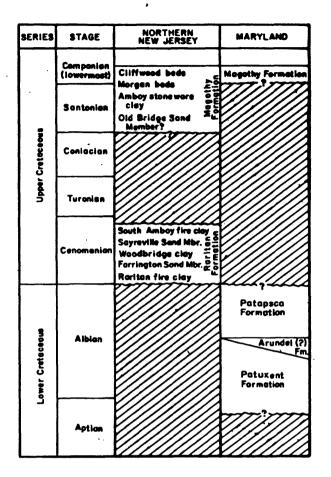
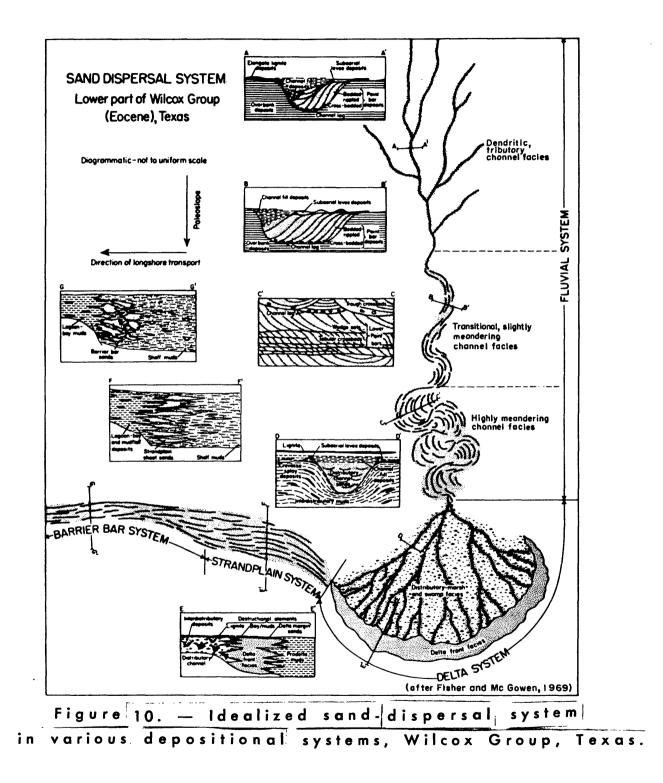



Figure 9. Thickness map of the Potomac Group and the Raritan and Magothy Formations in Camden County.

The lowermost part of the stratigraphic section, the Potomac Group, consists of the Patuxent, Arundel, and Patapsco Formations at the type locality in Maryland. Palynological studies of samples from three sites from the Camden County area by Wolfe and Pakiser (1971) and L. A. Sirkin (written commun., 1971) indicate that only the Upper Patapsco was found at two of the three sites. Berry (1911), from a study of megafossil flora, determined that the sample from a site in the outcrop Upper Raritan. However, Wolfe and Pakiser near Camden is indicate an (1971) who examined a sample from the same site uppermost Patapsco age based on palynologic data. According to Sirkin (written commun., 1971) the uppermost Patapsco can be found at Medford test well (ME 1), but not at the New Brooklyn Park test well (WI 27).

19


The Raritan Formation at the type locality at Raritan Bay, Middlesex County, was divided into seven units by Ries, Kümmel, and Knapp (1904) and later modified by Berry (1906). Barksdale and others (1943) assigned names to the three sand members. Recent palynological work by Wolfe and Pakiser (1971) and Doyle (1969) indicate that the upper two units, the Amboy stoneware clay and the Old Bridge Sand, are of Magothy age. Wolfe and Pakiser (1971) reassigned the Old Bridge Sand as the basal member of the Magothy Formation. However, the members of the Raritan Formation of the type area in Raritan Bay cannot be traced to the Delaware Valley as distinct lithologic units. Palynologic analysis of core samples from the New Brooklyn test well (WI 27) and the Medford test well (ME 1) indicate the Raritan Formation is present at the two sites (Sirkin, written commun., 1971).

The Magothy Formation in the Raritan Bay area has been re-examined by Owens, Minard, and Sohl (1968). Based on the then unpublished work of Wolfe and Pakiser (1971), Owens, Minard, and Sohl (1968) defined the Magothy as consisting of four units. The total thickness of the Magothy is more than 200 feet in the Raritan Bay area. Members of the Magothy Formation of the Raritan Bay area are not recognizable in the Delaware Valley. Palynological studies by Sirkin (written commun., 1971) indicate that there is about 300 feet of Magothy age sediments at New Brooklyn Park test well (WI 27) and about 100 feet at the Medford test well (ME 1).

Depositional Environment

and the Raritan and The Potomac Group Magothy were deposited in a complex fluvial-deltaic Formations environment (Owens and others, 1968). Figure 10 illustrates idealized sand-dispersal system showing the the various depositional environments for the Eocene deltas of Texas and McGowen, 1969). The authors believed that (Fisher the fluvial-deltaic sediments of the Potomac Group and the Raritan and Magothy Formations have a similar complex depositional history.

In the Camden area the sediments were deposited as part of the ancestral Schuylkill fluvial-deltaic system (Gill and Farlekas, written commun., 1969). Troughs in the bedrock surface represent erosional features that are of Late Cretaceous age or older. These troughs, filled mainly with coarse sands and gravels, have been delineated in Philadelphia by Greenman and others (1961). The sediments were deposited during Cretaceous time in the fluvial part of the system, which

probably extended from Philadelphia to the area updip from New Brooklyn Park.

A thickness map of the Potomac Group and the Raritan and Magothy Formations is given in figure 9. Also shown is the sand as estimated from geophysical logs from percentage of wells that penetrate the section from the top of the Magothy to the crystalline rocks. The thickness lines show the thickening The percentage of sand indicates of the sediments downdip. greater values in the updip area and lower values in the downdip area. The estimated percentage of sand the at New Brooklyn Park well (WI 27) is Based on the depositional 37. concept developed by Fisher and McGowen (1969) the New Brooklyn distributary Park well is interpreted as being in the The sediments found in the channel-marsh and swamp facies. Haddonfield area are interpreted as including the transitional, slightly meandering channel facies of Fisher and McGowen The dendritic tributary channel facies is interpreted (1969). as occurring in the area from Philadelphia to the northern part Camden County. channe1 of The highly meandering facies probably occurs in the area downdip from Elm Tree Farms well (VO 12). Lack of data prevents the delineation of the extent of this facies downdip of the Elm Tree Farms area.

Particle-size analysis is available for samples from the New Brooklyn Park test well (WI 27) in Winslow Township (table 5). The particle-size analysis shows the predominant silt and clay values.

Hydrology

The most productive source of ground water in Camden the Potomac-Raritan-Magothy aquifer system. County is The aquifer system is made up of aquifers consisting of sand with some gravel and confining units consisting of silts and clays in the outcrop area by highly permeable overlain and is Pleistocene and gravel. The sands are separated into sand three hydrologic units, an upper, middle, and lower aquifer. The upper unit consists mainly of the sands of the Magothy Formation. The middle and lower units consist mainly of sands of the Raritan Formation and the Potomac Group. The thickness of the three hydrologic units are shown in figures 11, 12, and 13. The lower aquifer in the outcrop area is overlain by and hydraulically connected to the Pleistocene deposits and is a water-table aquifer in Philadelphia. The upper aquifer in the outcrop area is overlain by and hydraulically connected to the Pleistocene deposits in Camden County and is under water-table conditions.

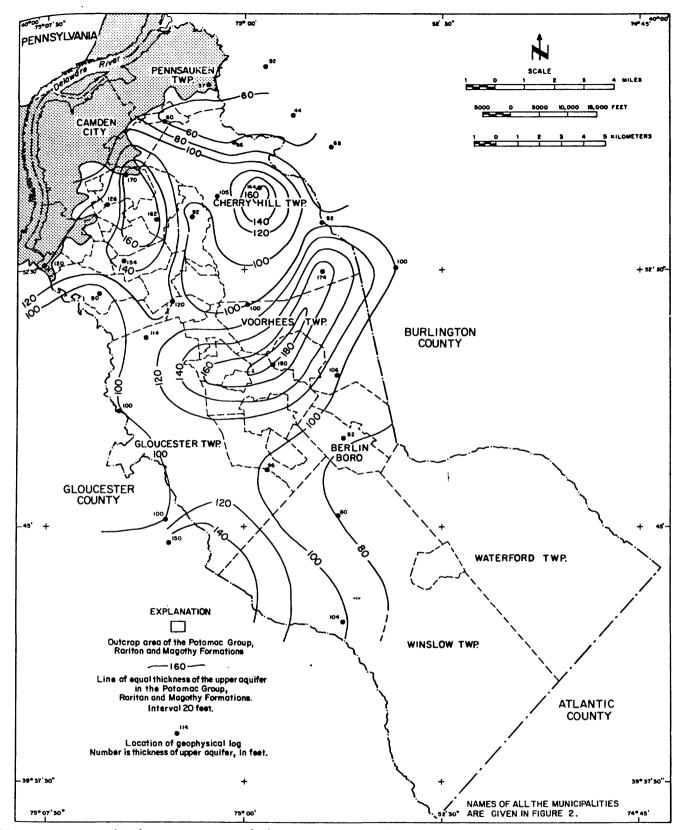


Figure 11. — Thickness map of the upper aquifer in the Potomac-Raritan-Magothy aquifer system in Camden County.

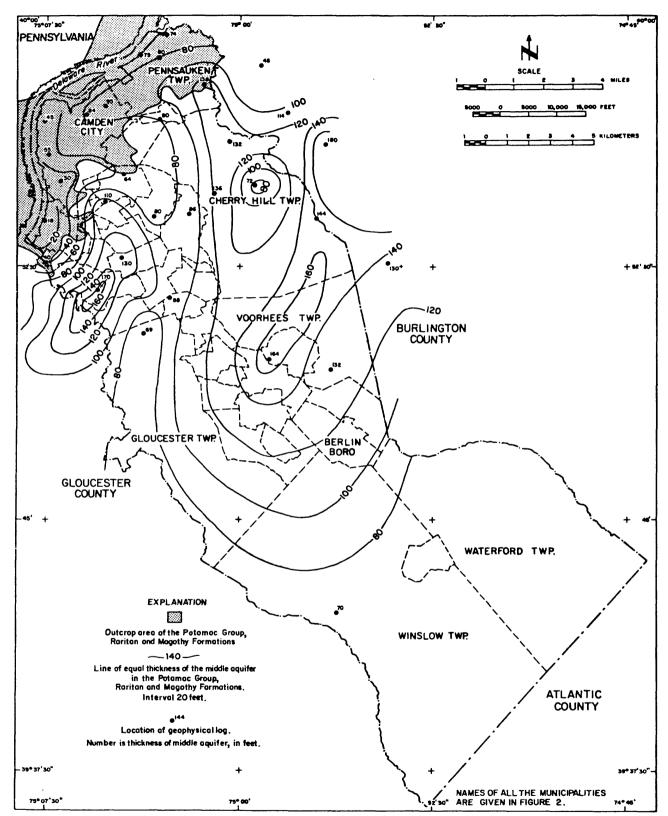


Figure 12. — Thickness map of the middle aquifer in the Potomac-Raritan-Magothy aquifer system in Camden County.

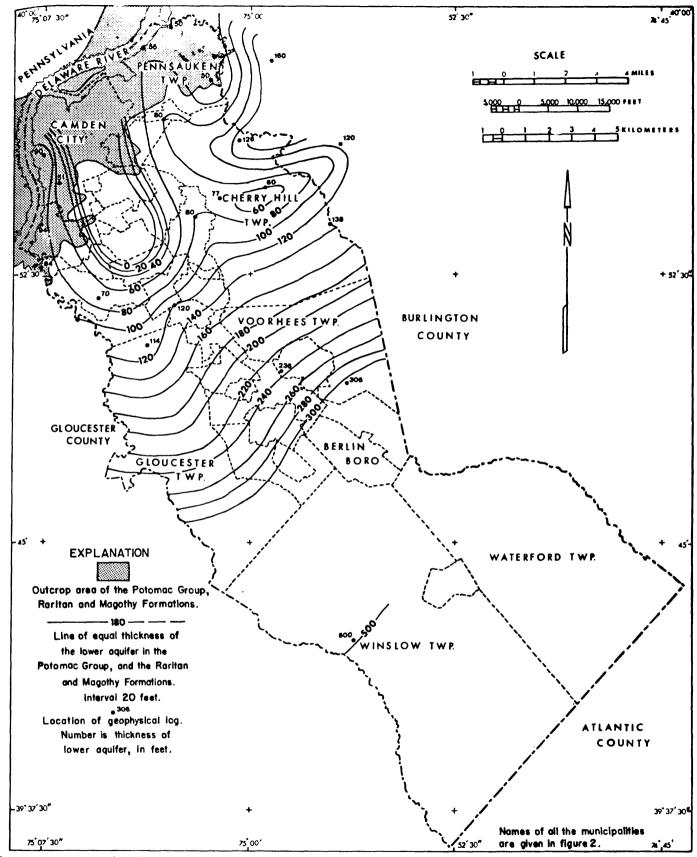


Figure 13. — Thickness map of the lower aquifer in the Potomac-Raritan-Magothy aquifer system in Camden County.

Patterns of Ground-water Movement

Pattern before development. -- The natural ground-water flow regimen for the aquifer system prior to development was influenced by topography. The topographically high areas are the natural recharge zones for much of the ground-water system the Coastal Plain. In areas of topographic highs the in prepumping potentiometric surface of each aquifer was greater than that of the aquifer below. This indicates that vertical movement of ground water was downward through the semipervious confining units into the Potomac-Raritan-Magothy aquifer system. The discharge areas were the Delaware River, and to some extent, the topographic lows or stream valleys which cut across the outcrop areas.

The potentiometric map (fig. 14) represents the average natural conditions prior to 1900 for the Potomac-Raritan-Magothy aquifer system in Camden County. Most of the data for the map are from the annual reports of the State Geologist for the period 1888-1909. Water-level data for years after 1900 were used when there was reasonable certainty that the levels were indicative of natural or prepumpage conditions. In Camden County the topographically high recharge area occurs in northern Voorhees Township and southern Cherry Hill Township (fig. 14).

Pattern after development.--The first public-water supply obtained from the Potomac-Raritan-Magothy aquifer system and the hydraulically connected Pleistocene sediments in Camden County was from the Morris well field of the City of Camden in As the Camden City area's population and industry grew 1898. its need for ground water increased. Thompson (1932) describes in detail the ground-water development of the Camden area for 1898-1927. His data for Camden County were used to determine the annual pumpage from the Potomac-Raritan-Magothy aquifer system and the hydraulically connected Pleistocene sediments for 1917-27 shown in figure 15. Withdrawals by industrial wells were estimated by the present authors to be 4 mgd for 1917-27.

The early development of water in the Potomac-Raritan-Magothy aquifer system in Camden County was centered in the vicinity of Camden City, the area containing greatest concentration of population and industry. In later years suburban development had moved southeastward. During the 1950's and 1960's many new public-supply wells were drilled in

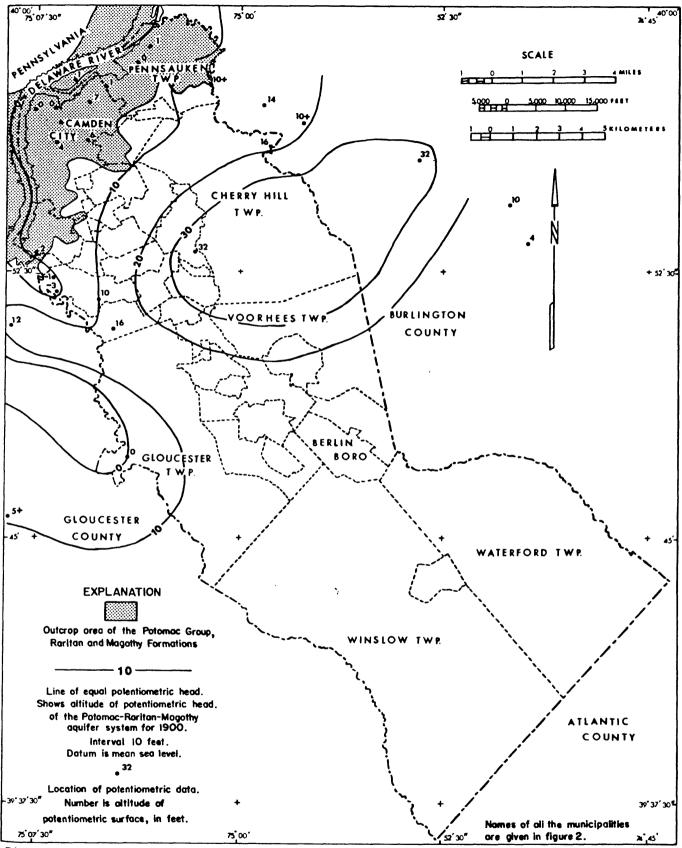
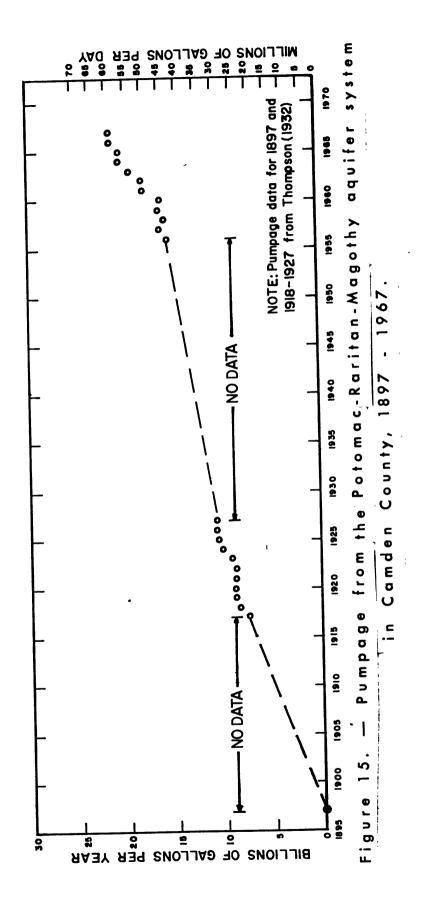



Figure 14. — Potentiometric map for the Potomac-Raritan-Magothy aquifer system in Camden County, 1900.

€°.

÷.

areas where little or no water had been withdrawn from the Figure 16 shows the Potomac-Raritan-Magothy aquifer system. geographic distribution of the ground-water pumpage in 1966 for Camden County. Data used in figure 16 is tabulated in table 6. The effect of the increasing southeastward movement of demand on the aquifer system can be seen by comparing potentiometric Figure 17 shows the 1956 potentiometric surface maps. surface for the Potomac-Raritan-Magothy aquifer' system. The map was developed from data from observation wells and reported data drilled wells from mid-1955 to mid-1957. Figure 18 from newly shows potentiometric surface for 1968. This map was the from water-level measurements made developed mainly over а three-day period from October 17 to October 19, 1968. A significant change in potentiometric surface occurred in the southeastern part of Camden County between 1956 and 1968. Prior to 1956 there was little ground-water diversion in the southeastern part of Camden County. New pumpage in this area after 1956, primarily from the upper and middle aquifer, is the probable cause for the change in potentiometric surface in the southeastern part of Camden County. Consequently, 1968 a by significant head difference existed between the upper and lower aquifer in southeastern Camden County and adjacent Gloucester County. The potentiometric heads for the upper and lower aquifers in the southeastern part of Camden County is shown in figure 18.

Three potentiometric decline maps were constructed potentiometric surface maps of the from the Potomac-1) 1900 to 1956 Raritan-Magothy aquifer system. They are for (fig. 19), 2) 1956 to 1968 (fig. 20), and 3) 1900 to 1968 (fig. Almost all of the decline from 1900 to 1956 occurred in 21). the northern part of the county. The decline the in potentiometric surface during 1956 to 1968 (fig. 20) occurred throughout the county with the greatest declines in the Cherry Hill Township-Voorhees Township area and Berlin Borough area. From 1900 to 1968 the greatest potentiometric declines (more than 100 feet) occurred in the northcentral part of the county (fig. 21). Withdrawals from the Potomac-Raritan-Magothy aquifer system responsible for the decline in head are shown in 15. Pumpage was estimated for periods for which figure data were available. Total pumpage from not the Potomac-Raritan-Magothy aquifer system in Camden County from 1968 based on figure 15 800 billion gallons. 1898 to is One-third of that pumpage was withdrawn in 13 years (1956 to 1968), which is 19 percent of the total period of pumpage.

Withdrawals in Philadelphia from the lower aquifer in the Potomac-Raritan-Magothy aquifer system has a direct effect on the potentiometric surface and ground-water flow in the Camden area. Greenman and others (1961) describe the history

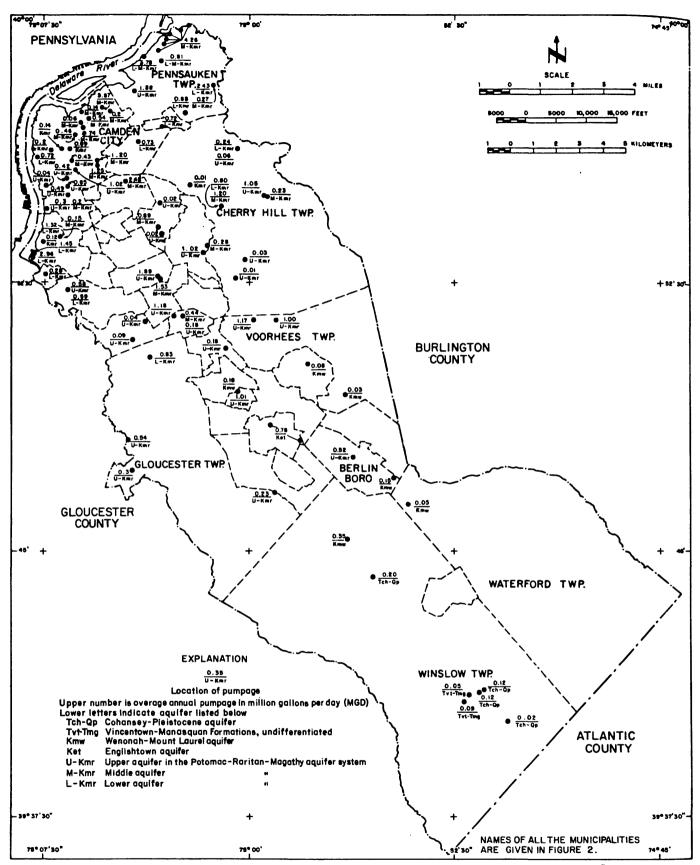


Figure 16. — Map showing the distribution of public and industrial pumpage in Camden County, 1966.

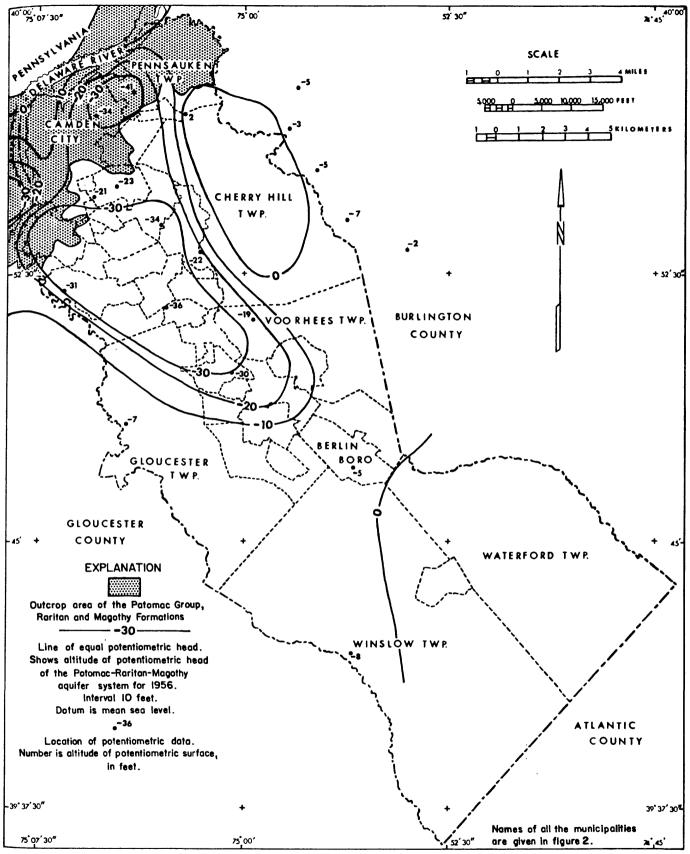


Figure 17. — Potentiometric map for the Potomac-Raritan-Magothy aquifer system in Camden County, 1956.

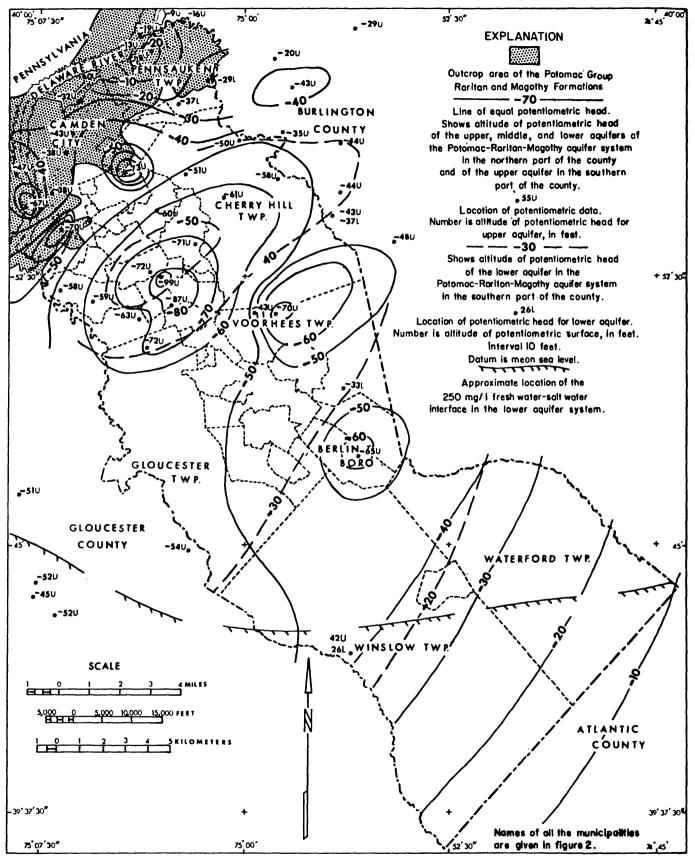


Figure 18. — Potentiometric map for the Potomac-Raritan-Magothy aquifer system in Camden County, October 17-19, 1968.

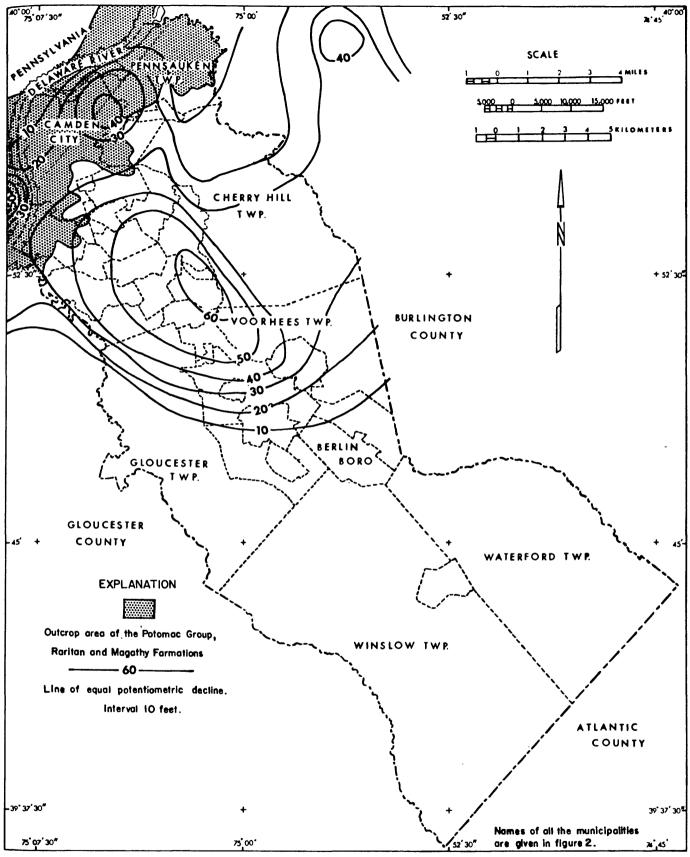


Figure 19. — Potentiometric decline map for the Potomac-Raritan-Magothy aquifer system in Camden County, 1900-56.

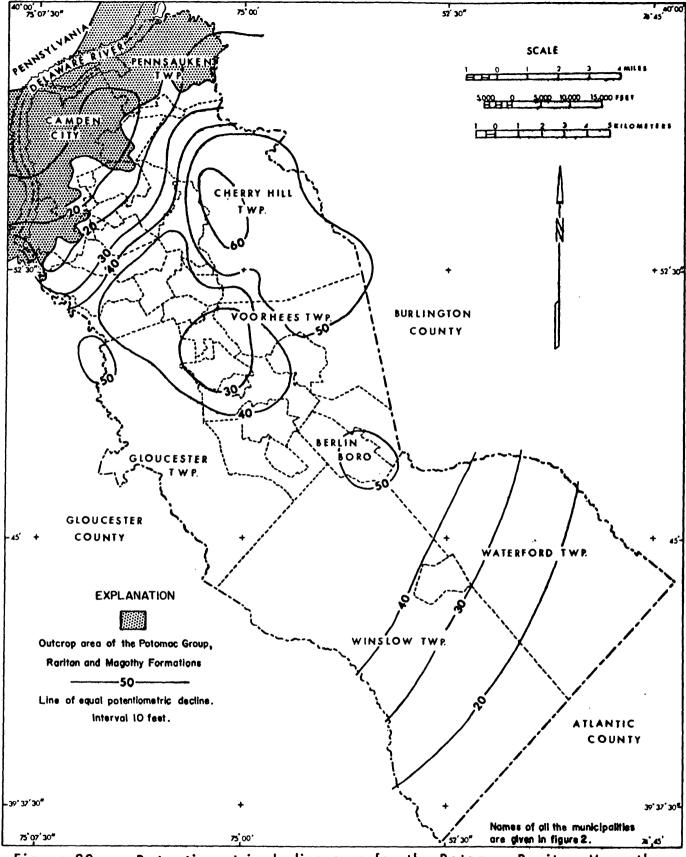


Figure 20. — Potentiometric decline map for the Potomac-Raritan-Magothy aquifer system in Camden County, 1956-68.

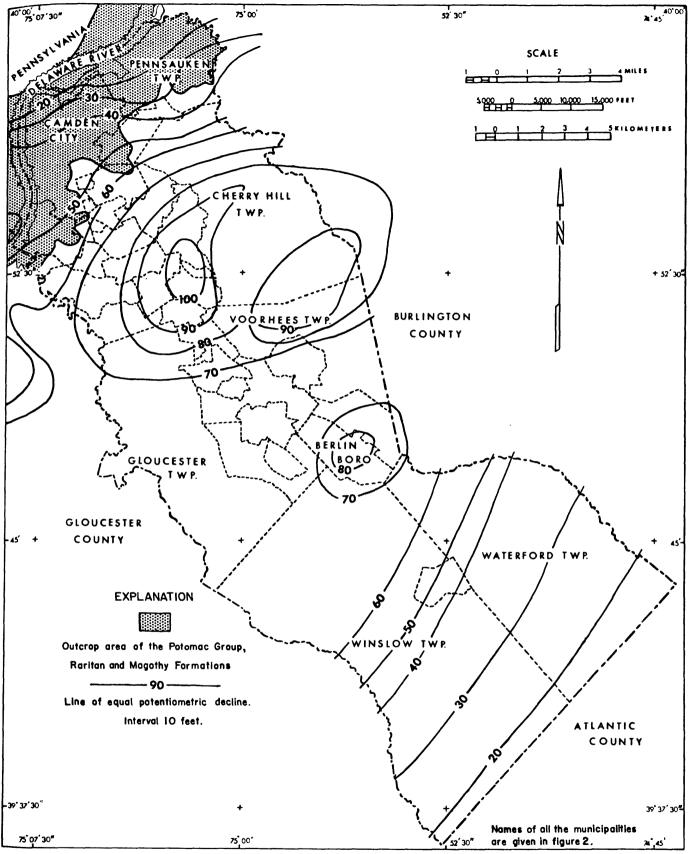


Figure 21. — Potentiometric decline map for the Potomac-Raritan-Magothy aquifer system in Camden County, 1900-68.

of development from the lower aquifer in Philadelphia and present maps of the potentiometric surface for the early 1920's, 1940, 1945, and 1954. The pumpage was approximately 5 mgd in 1920, 15 mgd in 1940, and 23 mgd in 1945. Withdrawals from the lower aguifer in Philadelphia decreased in 1946 and 1947. but again increased to 23 mgd in 1951. The rate of withdrawals declined after 1953 and pumpage South in Philadelphia in 1956 was 18 mgd. No recent complete inventory of withdrawal from the lower aquifer in Philadelphia has been However, spot inventories at the U.S. Navy Base and made. in Philadelphia head measurements in 1968 in a few wells indicate a much lower pumpage. Many wells pumped in 1956 were no longer in use in 1968.

Recharge and Movement of Ground Water

As presented in the section on patterns of groundwater movement the movement of water in the Potomac-Raritan-Magothy aquifer system prior to pumpage was influenced by recharge in topographically high areas while the discharge areas were the Delaware River, and to some extent, the topographic lows or stream valleys which cut across the outcrop areas.

Recharge and movement of water in the Potomac-Raritan-Magothy aquifer system was altered by the large amount of withdrawals, especially in the area near the Delaware River. As pumping increased the gradients were reversed in the water table and artesian aquifers near and under the Delaware River. Greenman and others (1961) suggest that induced recharge occurs Delaware River into the aquifers in Philadelphia. from the They compared the specific conductance of the water from a well located near the Delaware River and the specific conductance of the Delaware River. Fluctuations in specific conductance were similar except that there was a five-month time lag. Barksdale (1958) give substantial evidence to show others that and induced recharge from the Delaware River occurs in the heavily pumped parts of the aquifer near the river. They cite three evidence; aquifer test types of results, temperature fluctuations, and changes in chemical quality. An aquifer test at the Morro Phillips tract in Camden City near the Delaware River indicated a recharge boundary under the river and suggested that after two years of operation a well near the river would obtain 90 percent of its water from the river. Temperatures of water in a well near the river (at Beverly, Burlington County) change seasonally as does the temperature of water in the Delaware River. On the other hand the temperature of the water in a well several miles away from the river (at

Haddon Heights) remains essentially constant (Barksdale and others, 1958, p. 106-108). Changes in chemical quality of water from wells near the river were cited by Barksdale and others (1958) as evidence of induced recharge. Table 7 gives the chemical quality data of two wells, located in Pennsauken Township, used by Barksdale and others (1958, p. 121-123) and also includes more recent data. The water-quality analyses 1924 (table 7) were for samples collected just after dated wells. pointed out by Barksdale and completion of the As others (1958) the dissolved-solids content of the water from well 1 (PE 18). located near the river. more than doubled between 1924 and 1953 while the quality of water from well 4 (PE 21), located one mile from the river, remained the same. Much of the water obtained from well 1 is induced river water; whereas, well 4 receives a much greater part of its water from the aquifer and a lesser amount of water from the Delaware Data from samples taken after 1953 from well 1 indicate River. improved quality for a period of approximately 13 years. This was followed by a decline in quality as evidenced by increasing chlorides, sulfates, and specific conductance. Chlorides were 27 mg/l (milligrams per liter) in 1969, an increase from 8.0 in 1963. Changes in the quality the river water mg/1of probably caused the variation in quality of water in the wells.

aquifer system downdip Recharge of the from the area is mainly from vertical leakage through outcrop the overlying confining unit. In the area downdip of the outcrop there have been significant declines in the potentiometric surface--declines in excess of 100 feet at some locations. The heads between those difference in the in Potomac-Raritan-Magothy aquifer system and the overlying aquifers provides the driving mechanism for downward vertical leakage. The rate of vertical leakage is, with all other factors being equal, probably greater in the downdip area where large head differences occur. In the area near the outcrop the head difference is not as large, and thus the rate of vertical leakage is probably smaller. This area is also closer to the Delaware River, which is a recharge boundary. In addition to recharge of water through the confining units, significant released to amounts of water are the aquifer system from storage within the confining silts and clays in the Potomac Group and the Raritan and Magothy Formations and the overlying confining units.

An additional source of water lies outside of the political boundaries of Camden County. Water moves toward Camden from the adjacent areas outside the county line as the pumping cone of depression expands. Description of the regional pattern of ground-water flow for this aquifer system for the hydrologic unit in southern New Jersey has been studied

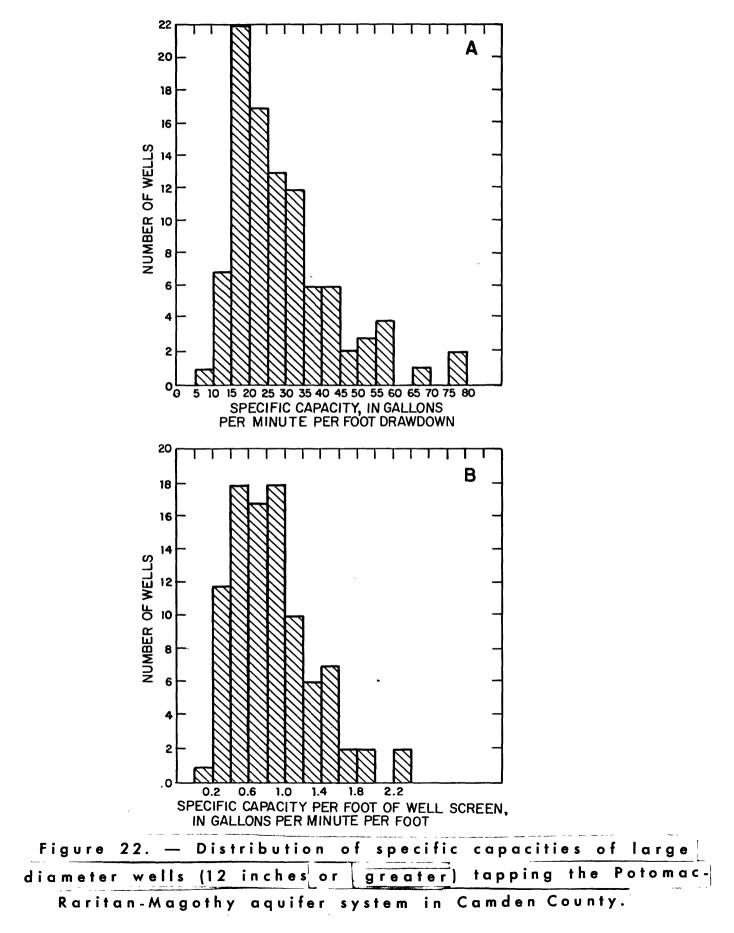
in detail by Gill and Farlekas (written commun., 1969).

The source of water in the Potomac-Raritan-Magothy aquifer system in Camden County is therefore 1) precipitation on the outcrop area and induced recharge from streams located in the outcrop area, for example, the Delaware River, 2) recharge through the confining units, 3) water released from storage from the silts and clays of the Potomac Group and Raritan and Magothy Formations and overlying units, and 4) water from the adjacent areas as the cone of depression expands.

Aquifer Characteristics

A number of aquifer tests in the Camden County area for wells tapping the Potomac-Raritan-Magothy aquifer system have been evaluated in the past using the Theis nonequilibrium method (Ferris and others, 1962, p. 92), which assumes that the are impermeable. Results were reported confining lavers in and others (1958, p. 96-98) and Rush (1968, Barksdale p. 32-33). Four of these aquifer tests have been re-evaluated (Harold Meisler, written commun., 1973) to include leaky artesian aquifer conditions proposed by Hantush (1960). Two of the four re-evaluated aquifer tests are for wells located in Camden County near the Delaware River and tap the middle aquifer of the Potomac-Raritan-Magothy aquifer system. The results of the test at the site of the Camden Water Department well 14 (CA 18) indicate that the transmissivity ranges from 2,300 to 6,700 ft²/day (17,000-50,000 gpd/ft) with an average. of 4,300 ft²/day $(32,000 \text{ gpd/ft}^2)$. (32,000 gpd/ft²). The storage coefficient $x \ 10^{-4}$ to 3.5 $x \ 10^{-4}$ with an average of 1.8 xranges from 1.0 10^{-4} . The re-evaluated results of the aquifer test at the Stockton pumping station (Camden Division) of the New Jersey Water Company indicate that the transmissivity ranges from 3,200 to 3,700 ft²/day (24,000-28,000 gpd/ft) and the storage coefficient ranges from 3.3 x 10^{-5} to 1.5 x 10^{-3} .

Many large diameter high-yielding wells tap the Potomac-Raritan-Magothy aquifer system. The yields of 106 wells in Camden County (diameter 12 inches or greater) range from 455 to 1,900 gpm (gallons per minute) (table 1). The average yield for 106 wells is 1,085 gpm. The specific capacities of these wells are high, indicating a high aquifer transmissivity. The range of specific capacity of 96 wells (diameter 12 inches or greater) tapping the Potomac-Raritan-Magothy aquifer system in Camden County is 6.1 to 80 gpm/ft (gallons per minute per foot of drawdown) (table 1). The average specific capacity of these wells is 29.3


gpm/ft. Two-thirds of the specific capacities range between 15 to 35 gpm/ft. Figure 22A shows the distribution of the specific capacities of the 96 large diameter wells.

the ^ Another method determining hydraulic for specific capacity properties of aquifers is the of a well divided by the length of well screen. The specific capacity of the well per foot of well screen may be more meaningful than specific capacity where the length of well screens differ The distribution of values of specific capacity considerably. per foot of well screen for 95 wells (diameter 12 inches or greater) tapping the Potomac-Raritan-Magothy aquifer system in Camden County is shown in figure 22B. These values range from 0.12 to 2.29 gpm per foot of screen. About 56 percent of the values range between 0.6 and 1.0 gpm per foot of screen. The average specific capacity per foot of well screen is 0.83 gpm ot of screen. Values of specific capacity per foot of screen for wells tapping the Potomac-Raritan-Magothy per foot of screen. well aquifer system located in the outcrop area are generally higher downdip from the outcrop. The average than those located per foot of well screen for 60 wells located specific capacity 0.95 gpm per foot of screen and the in the outcrop area is range is from 0.35 to 2.29 gpm per foot of screen. The average specific capacity per foot of well screen for 35 wells located downdip from the outcrop is 0.52 gpm per foot of screen and the range is from 0.22 to 1.7 gpm per foot of screen. The higher values for wells located in the outcrop area are attributed to hydraulic properties of the aquifer and proximity to better source of recharge, primarily from the Delaware River. This is in agreement with the evidence cited by Barksdale and others (1958) and Greenman and others (1961) indicating recharge from the Delaware River.

Quality of Water

Detailed analysis of water-quality data for the Potomac-Raritan-Magothy aquifer system has been presented in recent publications by Langmuir (1969a and 1969b) and Gill and Farlekas (written commun., 1969). Camden County was one of the counties included in these recent studies. Some of the data used in the recent studies are given in table 4.

Water from the Potomac-Raritan-Magothy aquifer system in a large part of Camden County, with the exception of iron content, meets the State's standards for potable water (New Jersey State Department of Environmental Protection, 1970) with little or no treatment and is suitable for most industrial and agricultural needs. Recent analyses of water from two wells in Camden City suggest that chromium values are equal to or above

the State's standards. This and additional water-quality problems are described below.

A summary of chemical analyses of water from wells tapping the Potomac-Raritan-Magothy aquifer system in Camden County is shown in table 8. This table gives maximum, average, and minimum parameters for samples from wells located in the outcrop area of the Potomac-Raritan-Magothy aquifer system and from samples from wells located downdip from the same outcrop area. Only the most recent analyses (table 4) were used to determine values shown in table 8.

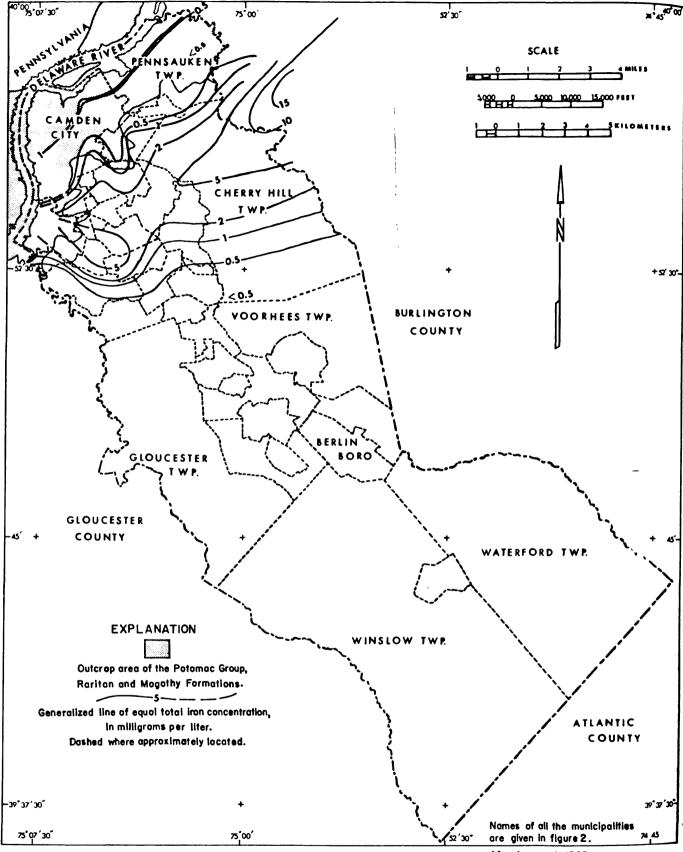
The quality of water from wells located in the outcrop area of the Potomac-Raritan-Magothy aquifer system in Camden County varies from well to well. The variation is partly dependent on the depth of the well, the nature of the overlying sediments, and on the distance from the Delaware River. Chemical analyses (table 8) indicate that dissolved solids range from 39-445 mg/l; sulfates, 0.8-178 mg/l; and chlorides, 5.5-59 mg/l for samples from wells located in the outcrop area. Hardness ranges from soft to very hard (14-274 mg/l).

The quality of water of the Potomac-Raritan-Magothy aquifer system is, with the exception of iron content, within the State's standards for potable water in the area from the southeast limit of the outcrop area downdip to the vicinity of the New Brooklyn Park observation wells in Winslow Township. Water obtained from wells tapping the aquifer in the area that is overlain by the Merchantville-Woodbury confining unit, excluding the New Brooklyn Park area, is low in dissolved solids (48-150 mg/l), sulfates (2.6-34 mg/l), and chlorides (1.4-18 mg/l). Hardness ranges from soft to moderately hard (14-114 mg/l).

Samples collected in 1961 from the New Brooklyn Park well (WI 27) tapping the upper aquifer indicate chloride concentrations of approximately 4.0 mg/l; whereas, water from well (WI 28) tapping the lower aquifer in 1960 had a chloride concentration of approximately 300 mg/1 (Donsky, 1963). Analyses of samples collected in 1972 for these two wells have similar values (table 4). The difference in chloride data from New Brooklyn Park wells and other wells tapping the the Potomac-Raritan-Magothy aquifer system in Ocean and Gloucester Counties (Gill and Farlekas, written commun., 1969) suggests lateral as well as vertical differences in chloride content in the aquifer system. This difference in chloride content as well as other water-quality parameters suggest that an interface exists between the salt water to the southeast and fresh water to the northwest and is represented by a broad zone of diffusion in the aquifer system. The 250 mg/l chloride line for the upper aquifer is located several miles southeastward of the 250 mg/l chloride line for the lower aquifer (fig. 19). The 250 mg/l chloride line may be considered the limit of sea-water encroachment, inasmuch as the interface of salt and fresh water probably is not far seaward from this line (Parker, 1964). The high-chloride water in the southeastern part of the Potomac-Raritan-Magothy aquifer system is probably due to brackish-marine water entering the aquifer system during deposition of the sediments or the re-entering of ocean water after changes in sea level.

Water-quality analyses for wells tapping the Potomac-Raritan-Magothy aquifer system in Camden County indicate change in quality of water in the aquifers with time. In some cases decreases in chloride and nitrate the analyses show concentrations over a period of time; whereas, in other cases analyses show increases in chloride, sulfate, and dissolved solids. A summary of chemical analyses for selected wells tapping the Potomac-Raritan-Magothy aquifer system in Camden City for 1923-70 is shown in table 9. Data used in table 9 is from Thompson (1932), Donsky (1963), and table 4.

Chlorides, as reported (Thompson, 1932) for wells at different sites tapping the upper aquifer in Camden City, two were higher than those reported for the same or comparable well in 1966-67. The chloride content at one of the sites samples (Camden City Water Department wells 3-3A) decreased from 51 to 28 mg/1 in 1949 (Donsky, 1932) mg/l in 1928 (Thompson, 1963). The chloride content for the same site was 41 mg/l in 1969 (table 4). At the second site (Camden City Water Department wells 6-6N) the chloride content decreased from 72 mg/l in 1932 (Donsky, 1963) to 32 mg/l in 1969 (table 4).


Wells tapping the middle or lower aquifer near the Delaware River generally have shown a deterioration in water quality over a period of time, as indicated by an increase in sulfate concentrations. Camden City chloride and Water Department wells at four sites (1A, 5-5N, 7, and 11) indicate a in chloride concentration over a period of years rise (table 4). also corresponding rise in sulfate There is а concentration in Camden City Water Department wells 1, 3, 4, 5, 6, and 10 (table 4). Water-quality analyses from Camden City wells 13 and 17, which tap the middle or lower aquifer, indicate that there has not been a change in quality at the two sites during the period samples. These two wells are located farther east than the other Camden City wells cited above. suggesting no change in water quality of the middle and lower aquifer in this area.

It can be assumed that water from wells in the Camden City area prior to 1920 probably was of slightly better quality than that reported by Thompson (1932). The change in the quality of water in the shallow and deeper aquifer between 1900 and 1967 as noted above may have been due to contamination from disposal ponds, waste-injection wells, and improperly sealed abandoned wells. The contamination may be similar to that documented by Greenman and others (1961) in adjacent areas of Philadelphia, but on a smaller scale.

Iron in the water of the Potomac-Raritan-Magothy aquifer system is the most troublesome water-quality parameter for many users. New Jersey's Potable Water Standards (1970) recommends a maximum iron concentration of less than 0.3 mg/lfor potable supplies; however, most of the water analyses for the aquifer system indicate concentrations greater than 0.3treatment for iron removal is required for most mg/1. Thus, users. The iron is present in the water as dissolved Fe^{+2} and FeOH⁺¹, and as suspended ferric oxyhydroxides, probably caused the oxidation of ferrous species already in solution bv Langmuir (1969b) suggests that (Langmuir, 1969Ъ). the oxyhydroxides are mixtures of goethite and amorphous materials with small amounts of hematite.

Samples from wells in the Camden County area were collected and analyzed separately for total iron and ferrous iron, with the difference assumed to be the concentration of particulate ferric hydroxide (Langmuir, 1969a, p. 19). Total iron, therefore, represents the sum of dissolved ferrous iron and colloidal ferric hydroxide. The distribution of total iron and ferrous concentrations iron in water of the the vicinity Potomac-Raritan-Magothy aquifer system in of Camden County as determined by Langmuir (1969b) is shown in figures 23 and 24. In the outcrop area dissolved ferrous or suspended ferric species are generally less than 0.5 mg/l in unpolluted waters. High concentrations in the outcrop area are interpreted by Langmuir (1969b) as the result of local ground-water contamination.

Immediately downdip of the outcrop area the ferrous ferric iron species increase abruptly to about 7.0 mg/1. and high build-up of ferrous iron species in this area is The due to the reaction with the ferrous iron minerals, such as pyrite and siderite, in the Merchantville-Woodbury confining bed. Langmuir (1969b) concluded that the parallel increase in ferric species to 6.0-11 mg/1 may be caused by partial oxidation of Fe^{+2} and $FeOH^{+1}$. Total iron concentrations in the water of the Potomac-Raritan-Magothy aquifer system are highest in areas adjacent to the outcrop area. Seaber (1965) in his geochemical analysis of the Englishtown Formation also noted that the

After Longmuir 1969a.

Figure 23. — Map showing generalized total iron concentrations in water of the Potomac-Raritan-Magothy aquifer system in Camden County, 1965.

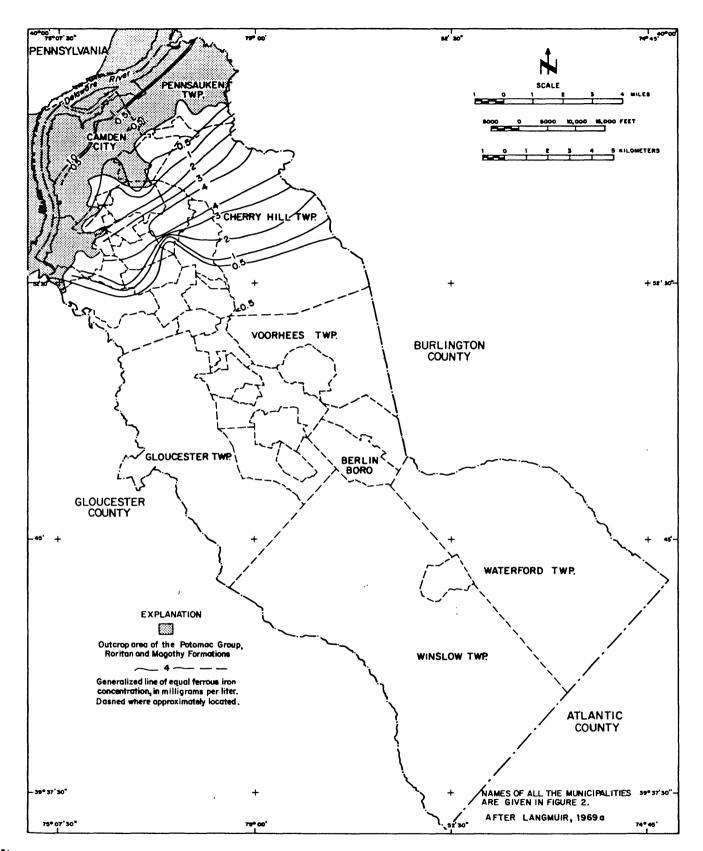
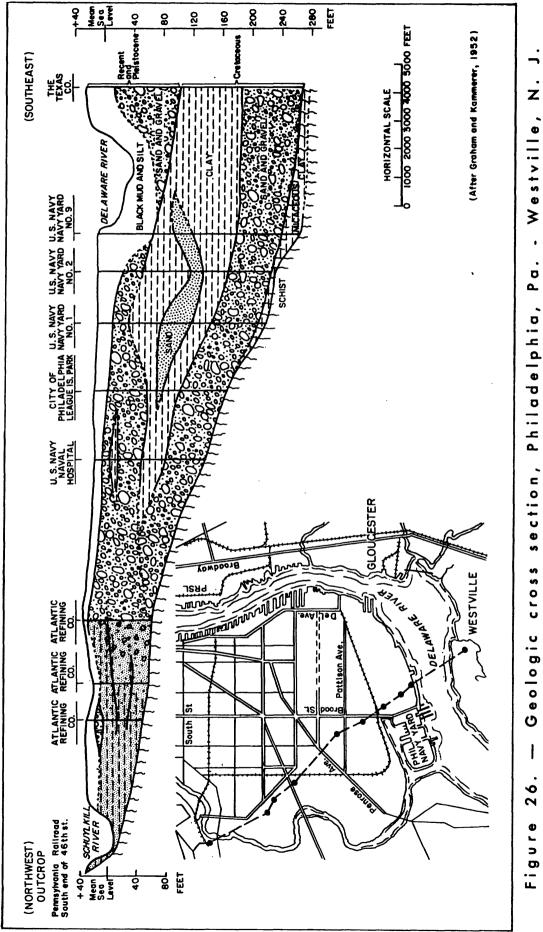


Figure 24. — Map showing generalized ferrous iron concentrations in water of the Potomac-Raritan-Magothy aquifer system in Camden County, 1965.

highest total iron concentrations occurred adjacent to the outcrop area.


dissolved ferrous Farther downdip both the and suspended ferric iron species decrease gradually to less than 0.5 mg/1.Langmuir (1969b) attributed the gradual decline in ferrous species to an increase in the stability of the suspended amorphous material due to coupled with aging, adsorption of ferrous iron by the oxyhydroxides and partial conversion of the amorphous phase to goethite. The decrease in suspended ferric species is interpreted by Langmuir as being caused by cation adsorption, aging, coagulation, and settling.

Ground-Water Contamination

Contamination of the water in the Potomac-Raritan-Magothy aquifer system is presently limited to the area at or near the outcrop. Contamination of the water-table and the artesian aquifer underlying Philadelphia has been thoroughly documented for the period prior to 1956 by Greenman and others (1961). They cite many instances of contamination, with the largest known area of contamination from industrial wastes located in the League Island Trough.

League Island Trough is shown on the bedrock The surface map of the Philadelphia area (fig. 25). The trough, filled with highly permeable sediments, has a northwest trend. geologic section showing the distribution of Α the water-bearing sands and gravels from the Schuylkill River in Philadelphia through the Philadelphia Navy Base to the Texas Company's Eagle Point works near Westville, New Jersey, just south of the Camden County line, is shown in figure 26. The lower artesian aquifer (Farrington Sand of Greenman and others, 1961), consisting of sands and gravel immediately above the bedrock, has a direct hydraulic connection with the lower aquifer being tapped by the Texas Company wells in West Deptford Township, Gloucester County.

Barksdale and others (1958, p. 121) stated that, "Originally, the wells at the Navy Base yielded waters that were similar in chemical characteristics to that from the wells of The Texas Co." Greenman and others (1961, plates 21 and 22) indicate high concentrations of sulfates and dissolved solids in the water of the lower artesian aquifer in the League Island Trough in 1956. A sample from one well had more than 1,300 mg/l of sulfate. The movement of ground water with high

concentration of sulfates and dissolved solids was documented (Greenman and others, 1961) as moving downdip along the trough. The location of the 200 mg/l sulfate line in 1956 (Greenman and others, 1961) is shown in figure 27.

Withdrawal of water at the Philadelphia Navy Base from the lower aquifer had a regional effect on the potentiometric surface. As documented by Greenman and others (1961), heavy the Philadelphia Navy Base provided the hydraulic pumping at caused the movement of poor quality water from gradient that of League Island Trough downdip toward the Navy Base. the head Barksdale and others (1958, p. 121) stated that if pumping were greatly curtailed at the Navy Base the contaminated water would move beneath the river into New Jersey. In 1966 withdrawals at the Navy Base were substantially curtailed, while other wells in the area had been shut down. The Navy Base wells no longer shield for the New Jersey wells and pumping at the act as а Texas Company wells and other wells in New Jersey provided a new hydraulic gradient. A map of the potentiometric surface for the artesian aquifer in the Philadelphia area in October 1968 is shown on figure 28. The area with the lowest potentiometric surface is the area of the Texas Company well The nearest pumping to Navy Base wells the field. is Texas well field. Pumpage for 1968 for this well field was an average of 5.5 mgd. This was the largest total daily pumpage from the lower aquifer in the vicinity. In 1968 water samples of wells tapping the lower aquifer in Philadelphia, Camden Company well field were collected area, and the Texas and Figure 27 shows the change in the 200 mg/l sulfate analyzed. 1968. line from 1956 to The high sulfate, high dissolved-solids water will probably continue to move towards the Texas Company well field if present or increased pumpage rates are maintained.

Additional water samples were collected in 1971 from wells tapping the lower artesian aquifer for chemical (table 4) and trace-element analyses (table 10). The sulfate concentrations are shown in figure 27. Results indicate а decrease in concentrations of sulfate and dissolved solids from 1968 to 1971 in Navy Base wells 4 (PH 11) and 11 (PH 16), but an increase in Navy Base well 9 (PH 13). Navy Base wells 4 and located downdip from 11 are an area that had lower concentrations of sulfate in (Greenman and others, 1961, 1956 of ground water plate 22). If movement did occur downdip, there would be first an increase and then a decrease of sulfate Analyses for 1968 and 1971 indicate the decrease in content. sulfate concentration suggesting movement of ground water The sulfate concentration updip from Navy Base well 9 downdip. in 1956, as given in Greenman and others (1961, plate 22), indicates progressively higher sulfate concentrations.

Analysis of samples taken from Navy Base well 9 in 1967 and 1971 indicates progressively higher sulfate also suggesting movement of ground water downdip toward the Texas Oil Company well field.

The concentration of 24 trace elements in the water samples were obtained from wells tapping the lower aquifer. Results of the analysis (table 10) indicate that only iron and manganese exceed the limits suggested by the U. S. Public Health Service for drinking water. High concentrations of both these elements are not uncommon in the Potomac-Raritan-Magothy aquifer system and have been found in areas of no known contamination resulting from man's activities.

Another area of ground-water contamination, documented by Greenman and others (1961), is the artesian aquifer in the area north of the Philadelphia Navy Base, northwest of the Walt Whitman Bridge. Water from the well (PH 6) at the center of this area had a sulfate concentration of 231 mg/1in 1956 (Greenman and others, 1961, plate 22). Recent analyses of water from wells in this same area (table 4) show а lower sulfate concentration at the center of the area. Water from the same well (PH 6) at the center of the area had a sulfate concentration of 162 mg/l in July 1967 (table 4), a decrease in sulfate concentration of over 30 percent. However, sulfate and dissolved solids in water from PH 7, a well downdip from well PH 6, increased substantially. Sulfate concentration of water February 1956 was 18 mg/1 (Greenman and from well PH 7 in others, 1961). In July 1967 the sulfate concentration was 22 mg/l and in May 1971, 131 mg/l (table 4), a 600 percent increase. The increase in sulfate concentration may be due to movement of water from well PH 6 toward well PH 7. Figure 28 shows the area at well PH 7 to be a center of a regional cone a possibility that the contaminated of depression. There is water in the Navy Base area may also move northward due to the much greater gradient in that direction since 1966. Continued surveillance of the quality of ground water would be a method that could be used to determine the change in quality and its possible effect on the ground-water supplies of New Jersey.

Another area of possible water-quality problems in the Potomac-Raritan-Magothy aquifer system in Camden County is located approximately one mile south of the Benjamin Franklin Bridge. Water samples from wells in Philadelphia (one mile south of the Benjamin Franklin Bridge) indicate that water in the lower aquifer contained high sulfates (as much as 284 mg/l) and dissolved solids (as much as 646 mg/l) in 1956 (Greenman others, 1961, plates 21 and 33). Recent potentiometric and measurements in the area show a gradient to the east and to the south; thus, it is possible for this poor quality water to move to New Jersey. No water samples have been collected from wellsin immediately adjacent areas of Camden County. Analyses of water from wells inland show that the quality in the lower aquifer has improved since 1927 (Thompson, 1932) to 1967 (table 4).

in of the State's Chromium equal to or excess for potable water has been found in water standards from two in Camden City. Routine sampling of the Camden City wells Water Department's distribution system by the State in December 1972 showed a high chromium content in the water delivered to a Analyses for chromium from samples residence. obtained from Camden City Water Department public-supply wells in the same area indicated that well 4 (CA 42) had chromium values in Sampling of additional excess of the State's standards. wells located nearby showed even higher chromium values for the West Jersey Hospital well. (CA 47). Re-sampling of water from five wells in November 1973 confirmed the high chromium values for two of the five wells. The results of the analysis are given in table 10. The chromium values are 200 μ g/l (micrograms per liter) for the West Jersey Hospital well and 50 μ g/l for Camden City Water Department well 4. The State's standard for potable water is 50 μ g/l for hexavalent chromium. It can be assumed that most of the chromium reported in table 10 is hexavalent Both wells tap the same sand unit in the chromium. aquifer The well yielding water with the lower chromium values system. is located 600 feet east of the West Jersey Hospital well. The potentiometric head measurements made in November and December 1973 show water levels were lower east of the two wells. ground-water indicating an easterly hydraulic gradient with movement in that direction. Water-level measurements made in October 1968 indicated the same gradient direction. This would suggest the chromium content in the ground water in this sand unit would be higher in the area west of the West Jersey Hospital well.

The source of the chromium is not known. However, at least three metal plating companies are located within a radius of 1,600 feet. Analyses of waste water to sewer lines from three metal plating companies for samples collected in February and March 1973 show high chromium values in excess of 9 mg/1 (written commun., New' Jersey Department of Environmental Protection, 1973).

Barksdale and others (1953) and Greenman and others (1961) have shown that induced recharge from the Delaware River does occur. Deterioration of the quality of the river by man's activities may, in turn, cause water-quality problems in that part of the aquifer being recharged by the river. A "polluted" Delaware River is a possible source of water contamination in the Potomac-Raritan-Magothy aquifer system in the northeastern part of Camden County.

Salt-Water Encroachment

There are two areas of potential salt-water encroachment in the Potomac-Raritan-Magothy aquifer system in Camden County. One area is along the Delaware River and the second is near the fresh water-salt water interface in Winslow Township.

The Delaware River in the vicinity of Camden County is tidal. Normally salt water from the ocean does not reach the vicinity of Camden. In extended drought, such as that between 1961 and 1966, a decrease in fresh-water inflow to the estuary permits salt water to move farther upstream. For example, in 1965 and 1966 the salt front advanced farther upstream in the previously recorded. Delaware estuary than had been On September 1966 the 250 mg/l chloride line reached the vicinity of the Benjamin Franklin Bridge (Keighton, 1969). At the same chloride concentration of the Delaware River time the at Delaware Memorial Bridge was 4,340 mg/1. Aquifer test and water-quality data given in another section of this report have indicated hydraulic connection between the river water and nearby wells. Ιf the river's chloride content in the Philadelphia-Camden area were to remain at relatively high levels for a long period of time, there could be movement of this water from the river into the aquifer system, especially the middle and upper aquifers.

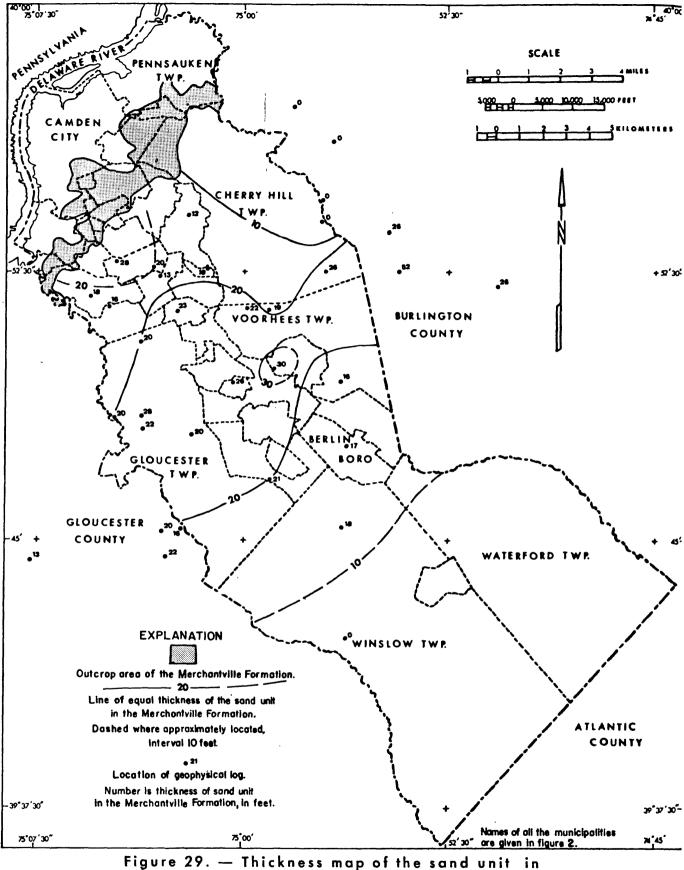
The second area of potential salt-water encroachment aquifer system is in the vicinity of the salt waterin the fresh water interface. The interface in the aquifer system is An approximate location in actually a broad zone. Camden County based primarily on the chloride concentration of the water from the New Brooklyn Park well 1 (WI 27) is shown on figure 18. The chloride concentration of water from this well in 1960 (Donsky, 1961) was 310 mg/1. In 1967 and in 1972 the chloride concentration (table 4) was approximately the same suggesting no change in the lower aquifer for the 12-year period. The chloride concentration of a water sample from the upper aquifer (New Brooklyn Park 2, WI 28) was 4.2 mg/l in 1961 (Donsky, 1961) and 2.5 mg/l in 1972 (table 4).

The ground-water system is a dynamic one. Changes in the hydraulic gradients due to pumping may cause the movement of higher chloride water towards centers of pumpage. Withdrawals from the Potomac-Raritan-Magothy aquifer system in the central part of the county is almost all from the upper aquifer (fig. 16). In addition pumping withdrawals from the upper aquifer at Bell's Lake, Pitman, Glassboro, and Clayton in Gloucester County to the south has further enlarged the cone of depression over a sizable area (fig. 18). Increased pumping in this area of Gloucester County and additional pumping downdip of areas of existing pumping in Camden County may move water of high chloride content toward the centers of pumping. Water-level measurements made in October 1968 indicate that the potentiometric surface in the upper aquifer is lower in the area of pumping than the downdip area (fig. The in 18). direction of the hydraulic gradient is from the interface toward the center of pumping. It is, therefore, possible for the high-chloride water to migrate toward the centers of pumping.

An extensive aquifer test at Courses Landing in Salem shown that the most immediate danger of salt-water County has contamination of middle and upper aquifers is probably by vertical coning of the salt water from the lower aquifer (Gill and Farlekas, written commun., 1969). For example, heads in upper aquifer at Courses Landing the were lowered by withdrawals causing a head difference to develop between the upper and lower aquifer. This change in the hydraulic gradient caused the higher chloride water to move upward from the lower aquifer. A similar situation may exist in southeastern Camden County and adjacent Gloucester County. Head measurements made in October 1968 at the New Brooklyn Park observation wells (WI 27 and WI 28) indicate that a 16-foot head differential exists between the upper aquifer and the lower aquifer. The well tapping the upper aquifer had the lower head. The head in the upper aquifer was at an altitude of 42 feet below mean sea level. The nearest withdrawal point from the Potomac-Raritan-Magothy aquifer system is 6 miles from the New Brooklyn Park wells. In Glassboro, Gloucester County head measurements of approximately 50 feet below mean sea level were observed in October 1968 during non-pumping conditions in three wells tapping the upper aquifer. Under pumping conditions the water levels would be at least 20 feet lower near the pumping wells. The potentiometric surface for the lower aquifer is not known for the Glassboro area, but in all probability it is higher than the potentiometric surface in the upper aquifer. If the head in the lower aquifer is significantly higher than the head upper aquifer, the head differential would cause water in the to move upward into the upper aquifer. High-chloride water (chloride content greater than 250 mg/l) underlies the water in upper aquifer in the southeastern part of the Camden and adjacent Gloucester County (fig. 18). Hence, vertical coning of high-chloride water is a possibility in this area.

Geology

The Merchantville Formation and Woodbury Clay crop out in an irregular-shaped belt in the northwestern part of Camden County (fig. 4). Together they have an outcrop area of 18.7 square miles.


The Merchantville Formation is the oldest major marine glauconitic unit in the New Jersey Coastal Plain. The contact between the Merchantville Formation and the underlying Magothy always sharp and disconformable (Owens and Sohl, Formation is 1969). The thickness of the Merchantville Formation is consistently 50 feet in outcrop but the lithology varies along The formation is essentially strike. а dark gray to grayish-black micaceous clay to clayey silt with beds and lenses of glauconite sand, especially near the top of the A sand unit which ranges from 0-30 feet thick in formation. Camden County has been mapped from geophysical logs. The thickness is shown on figure 29. The structure contour map of the top of the sand unit is given in figure 30. Three cross sections (fig. 31) based on geophysical logs suggest that this unit is near the top of the Merchantville Formation.

The Woodbury Clay which overlies the Merchantville Formation is a grayish-black massive micaceous clayey silt. The thickness of the Woodbury in the outcrop area is reported to be 50 feet (Owens and Sohl, 1969). Calcareous fossils found at Haddonfield indicate a marine origin for the unit (Owens and Sohl, 1969). The top of the Woodbury Clay is delineated in figure 32. The thickness of the Merchantville Formation and Woodbury Clay ranges from 106 to 165 feet in Camden County and thickens downdip as shown on figure 33.

Particle-size analyses of samples of the Merchantville Formation and Woodbury Clay from the New Brooklyn Park well (WI 27) in Winslow Township are given in table 5. The analyses of the Woodbury Clay indicate a range of 70 to 98 percent clay and silt. The analyses of the Merchantville Formation indicate a range of 42 to 56 percent of clay and silt.

Hydrology

The Merchantville Formation and Woodbury Clay function

the Merchantville Formation in Camden County.

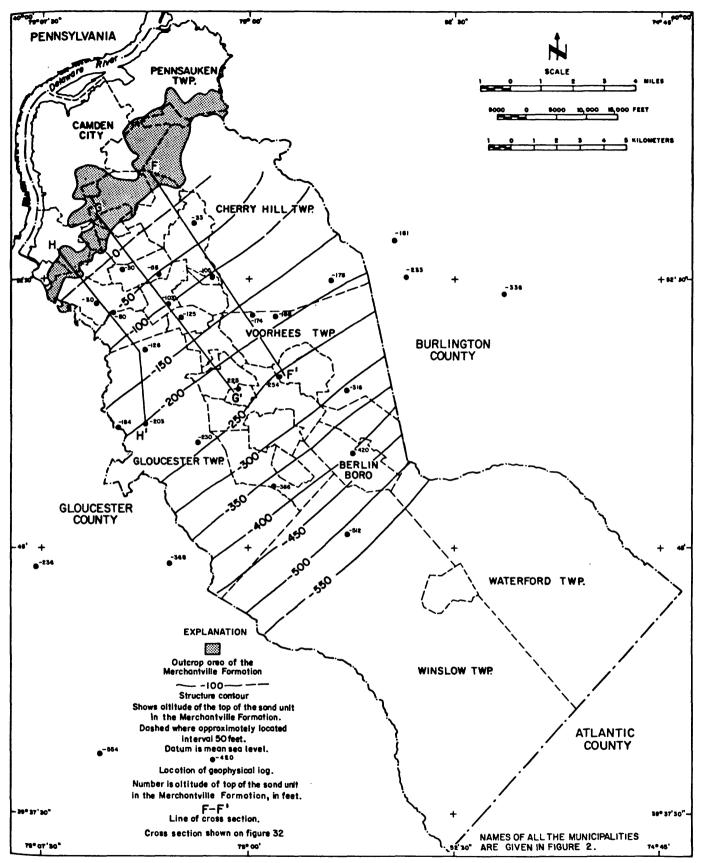


Figure 30. — Structure contour map of the top of the sand unit in the Merchantville Formation in Camden County.

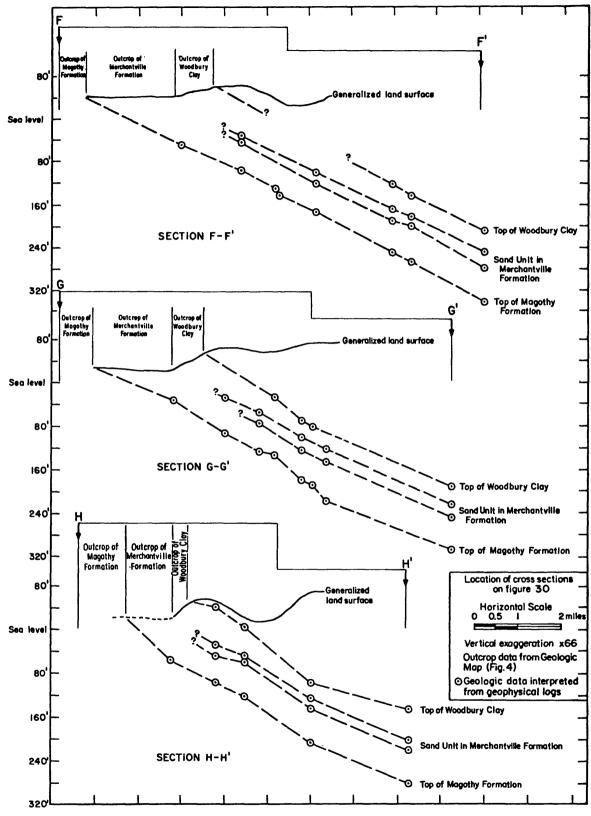


Figure 31. — Geologic sections of the Coastal Plain in the northeastern part of Camden County.

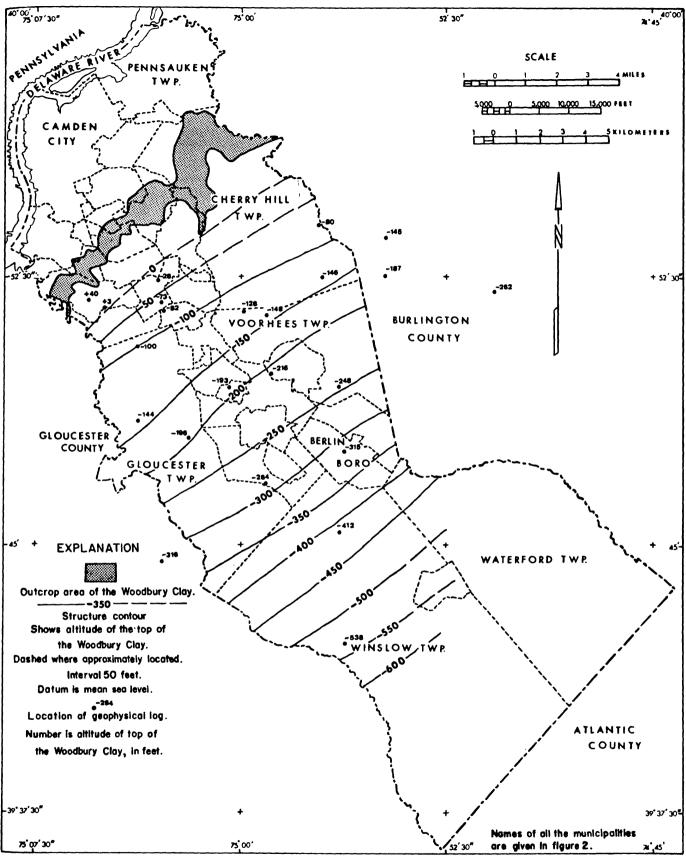


Figure 32. — Structure contour map of the top of the Woodbury Clay in Camden County.

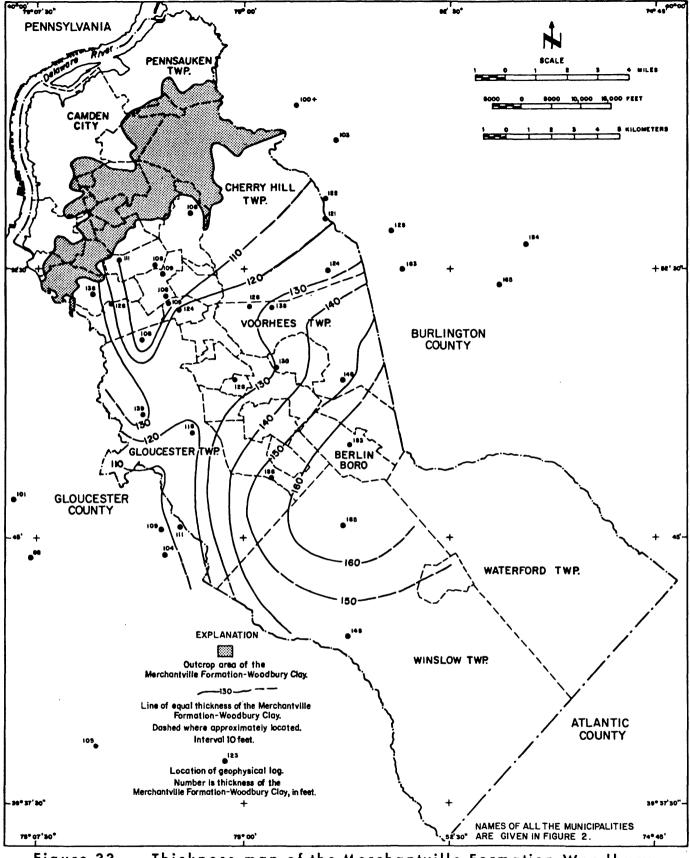


Figure 33. — Thickness map of the Merchantville Formation-Woodbury Clay in Camden County.

as semipervious confining units. However, the lensing sand unit near the top of the Merchantville Formation is tapped for domestic water supplies. Yields range from 15 to 50 gpm for the wells given in table 1. Wells that tap this sand unit are located near the outcrop area. The prepumpage potentiometric surface in this unit in Camden County was at a higher level potentiometric than the prepumpage surface of the Potomac-Raritan-Magothy aquifer system and at a lower level than the prepumpage potentiometric surface in the overlying Englishtown Formation, for the same area. Sparse water-level data from drillers' records of wells drilled in the early to mid-1950's suggest a decline in potentiometric surface from 1900 to the 1950's.

Quality of Water

Only one sample (GT 4) was obtained from a well tapping the sand unit in the Merchantville Formation. The sample (table 4) had a high pH (8.3), low chloride content (0.8 mg/l), low sulfate content (3.9 mg/l), and low dissolved solids (107 mg/l).

Englishtown Formation

Geology

The Englishtown Formation crops out in the northwestern part of the county in an area of approximately 7.7 square miles (fig. 4). It lies conformably above the Woodbury Clay. The transition from the Woodbury Clay to the Englishtown Formation is marked by a gradual increase of quartz sand and a decrease in silt and clay.

The lithology of the Englishtown Formation in New Jersey varies along strike and downdip. Several lithofacies have been recognized. In the southern part of the coastal plain the Englishtown is a massive dark-colored silty sand that the non-glauconitic beds of the resembles Merchantville Formation (Owens and Sohl, 1969). It is 40 feet thick in outcrop. Rush (1968, fig. 22) has shown that the aggregate thickness of sand in the Englishtown decreases downdip toward the south in Burlington County.

The structure contours (fig. 34) on the top of the Englishtown Formation in Camden County indicate that the

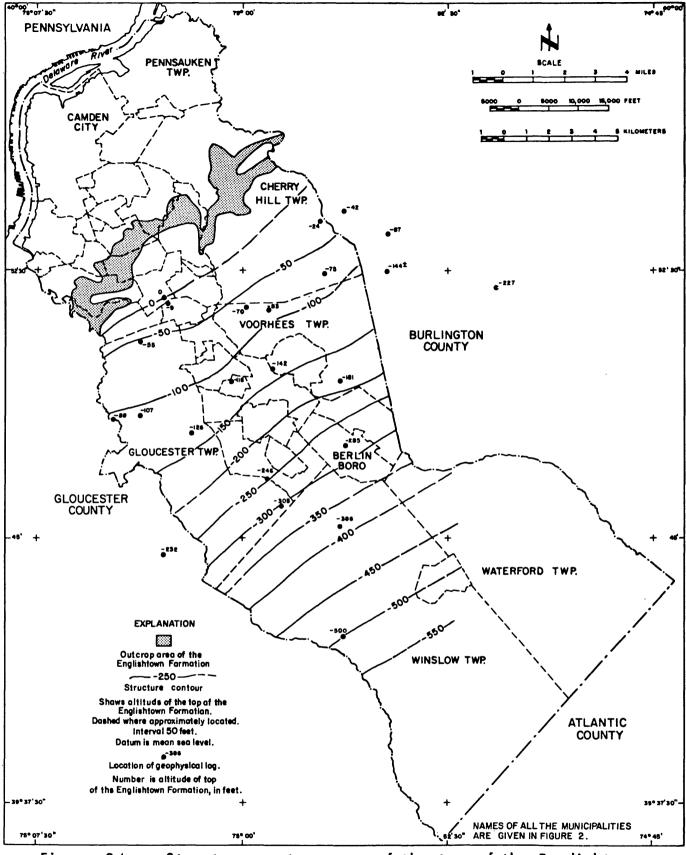


Figure 34. — Structure contour map of the top of the Englishtown Formation in Camden County.

Englishtown strikes in a northeasterly direction and has a dip of approximately 40 feet per mile toward the southeast.

Figure 35 is a lithologic map of the sand facies of the Englishtown Formation in Camden County. The aggregate thickness of the sand ranges from 5 to 30 feet with the of the sand in the central part greatest thickness of the The farthest downdip data available for the county. Englishtown in Camden County is from the New Brooklyn Park well 1 (WI 27). Particle-size analyses of samples from this test well (table 5) indicate a range of 67 to 87 percent of clay and silt.

Hydrology

Few wells tap the Englishtown Formation in Camden County (table 1). Domestic wells tapping the unit are located near the outcrop area. The only known public-supply or industrial wells tapping the formation in Camden County belong to the Clementon Water Department. All but one of their wells the tap Englishtown aquifer. The Clementon Water Department wells are located in the central part of the county, the area of greatest sand thickness. Yields of three wells in the Englishtown (Clementon Water Department wells 6, 8 and 9) are 250, 510, and 503 gpm, respectively. The specific capacities for wells 8 and 9 are 9.8 and 5.3 gpm, respectively.

Analysis of data from an aquifer test conducted in 1959 in Lakewood, Ocean County, (Seaber, 1965, p. B16) indicated a transmissivity of 1,340 ft²/day (10,000 gpd/ft) and a coefficient of storage of 2.7 x 10^{-4} for the pumping phase of the test. For the recovery phase of this test the transmissivity is 2,144 ft²/day (16,000 gpd/ft) and storage coefficient is 2.0 x 10^{-4} . The computed average hydraulic conductivity is about 40 ft/day (300 gpd/ft²).

The transmissivity of the aquifer near the Clementon Water Department wells 8 and 9 was calculated using the method devised by Hurr (1966) which is based on the analysis of a single observation of drawdown at one well. This method is useful although it provides only an estimate. The computed transmissivity of the aquifer using data from the Clementon Water Department well 8 (CL 3) is 2,150 ft²/day (16,050 gpd/ft); whereas, well 9 (CL 5) is 1,290 ft²/day (9,630 gpd/ft). An assumed coefficient of storage of 2.7 x 10^{-4} was used in the calculations.

Porosity and hydraulic conductivity values obtained

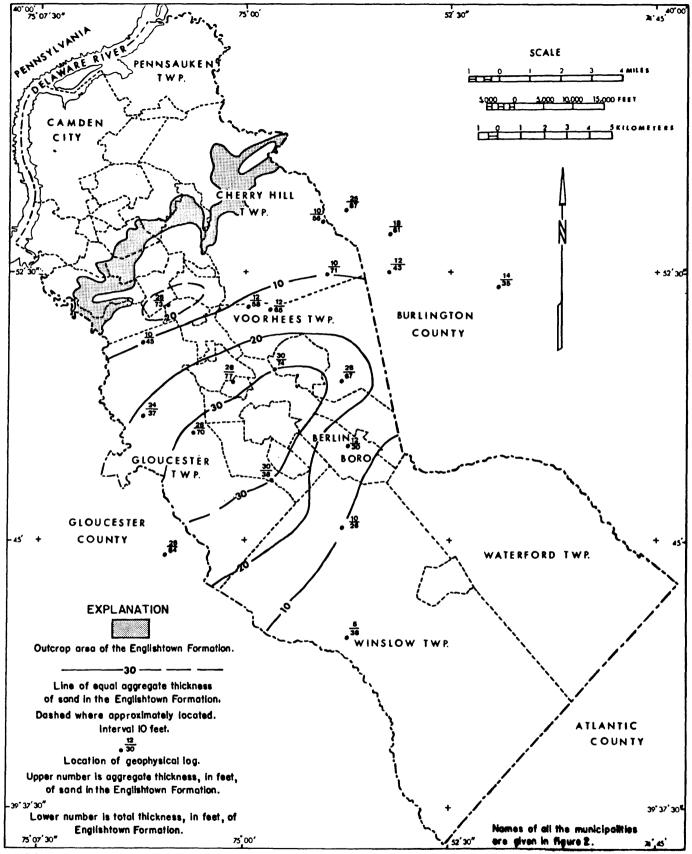


Figure 35. — Map showing aggregate thickness of the sand facies of the Englishtown Formation in Camden County.

from laboratory analyses of samples from the New Brooklyn Park well (WI 27) in Winslow Township are listed in table 5. The hydraulic conductivity values are very low indicating that the Englishtown Formation in the New Brooklyn Park area is not suitable for development as a source of water.

Seaber (1965, p. 16) indicates that the Englishtown Formation does not receive its major recharge from the outcrop area but rather from vertical leakage. The recharge is obtained from the overlying Wenonah-Mount Laurel aquifer Marshalltown Formation in areas of through the topographic highs. Figure 36 shows the potentiometric surface for the Englishtown Formation based on limited available data. The data suggest that a potentiometric high occurs in the Marlton area of Burlington County just east of Cherry Hill Township.

Pumpage from the Englishtown Formation in Camden County during 1966 amounted to 0.76 mgd. Peak use occurred in July with an average of 1.02 mgd. Additional amounts of water can be derived from the Englishtown Formation, especially in the central part of the county where the sand is thickest. However, greatly increased withdrawals from the aquifer in the county may accelerate the rate of water-level decline.

Quality of Water

Only one analysis of a well sample from the Englishtown Formation in Camden County is given in table 4. Seaber (1965, p. 6) in his study on the variations in chemical from the Englishtown Formation character of water lists additional water analyses of six wells in Camden County. The quality of the water from the Englishtown Formation in Camden County, as reported by Seaber (1965), is within the State's standards for potable water. Chloride concentration of water from the six wells ranges from 1.9-10 mg/1; sulfate from 6.9-25mg/1; dissolved solids from 35-105 mg/1; and iron from 0.26-7.8 mg/1.

An analysis in September 1969 of a sample from the Clementon Water Department well 8 (CL 3) (table 4) is similar to a 1957 analysis of the Water Department's well 9 (CL 5). This suggests that very little change has occurred in the quality of water of the Englishtown Formation in the area.

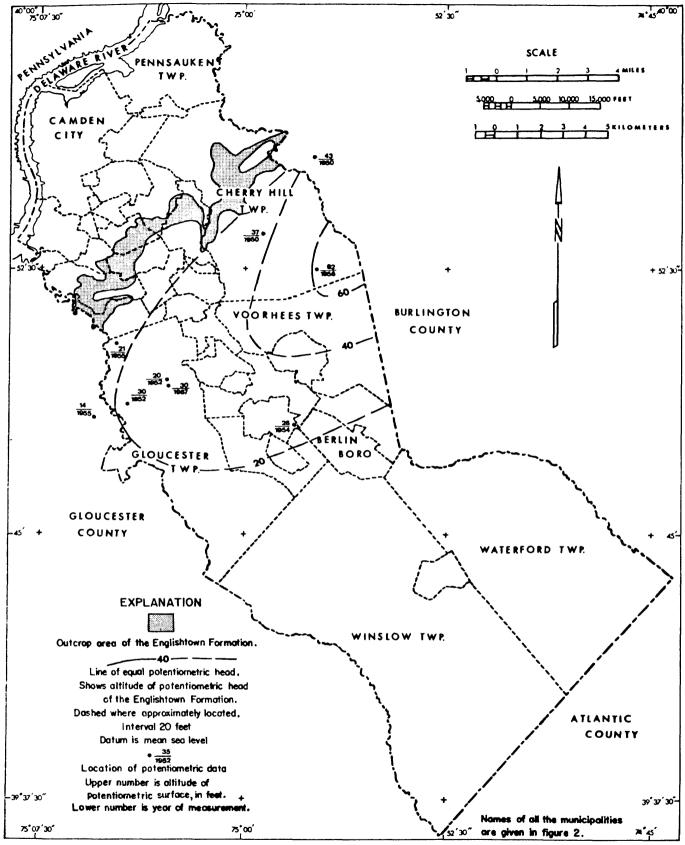


Figure 36. — Generalized potentiometric map of the Englishtown Formation in Camden County.

Geology

Marshalltown Formation The crops out in а northeasterly direction in northwestern Camden County in the vicinity of the New Jersey Turnpike (fig. 4) and has an outcrop area of approximately 6.3 square miles. The Marshalltown is characteristically a dark gray, micaceous, silty, glauconite sand overlying the Englishtown Formation. The abrupt change in lithology between the Marshalltown Formation and Englishtown Formation suggests a disconformable contact (Owens and Sohl, Glauconite and fossils in the Marshalltown indicate 1969). that it is of marine origin. Particle-size analysis of a sample from the New Brooklyn Park well (WI 27) in Winslow Township indicates a silty sand composition (table 5).

In the outcrop area the thickness of the Marshalltown Formation is about 20 feet. Its thickness downdip is about 20-25 feet. Hence, the altitude of the top of the Marshalltown Formation may be approximated by adding 20-25 feet to the top of the Englishtown Formation shown in figure 34.

Hydrology

The Marshalltown Formation functions as a confining layer between the Englishtown Formation and the overlying Wenonah Formation and Mount Laurel Sand. Clayey and silty beds of the lower part of the Wenonah Formation and the Marshalltown Formation form a confining layer 40 to 50 feet thick in Camden County. Vertical leakage from the Wenonah-Mount Laurel aquifer through the Marshalltown Formation recharges the Englishtown Formation. Porosity and hydraulic conductivity values from a laboratory analysis of a sample from the New Brooklyn Park well (WI 27) in Winslow Township are given in table 5. The value of hydraulic conductivity supports the contention that vertical leakage occurs through the Marshalltown Formation.

Wenonah Formation and Mount Laurel Sand

Geology

The Wenonah Formation and the Mount Laurel Sand in Camden County crops out in a northeasterly direction and has an

outcrop area of about 16.6 square miles (fig. 4). The Wenonah Formation is a dark gray, poorly sorted, very micaceous, silty, fine quartz sand. Glauconite is abundant in the lower part but rapidly diminishes in the upper part (Owens and Soh1, 1969). The contact of the Wenonah Formation with the underlying Marshalltown Formation is gradational as is the contact with the overlying Mount Laurel Sand. The change from the Wenonah Formation to the Mount Laurel Sand is generally marked by an increase in average grain size, a decrease in mica, and а change in color from dark gray to lighter gray (Owens and Sohl, 1969). In general, the Mount Laurel Sand is a coarser sand unit than the Wenonah Formation and is the major component of the aquifer. The Wenonah Formation and the Mount Laurel Sand are distinct lithologic units but are hydraulically connected. Particle-size analysis of samples from the New Brooklyn Park well (WI 27) in Winslow Township are given in table 5.

The top of the Mount Laurel Sand in Camden County (fig. 37) strikes in a northeasterly direction and has a dip toward the southeast of approximately 30-35 feet per mile near the outcrop and 27 feet per mile downdip.

The combined thickness of the Wenonah Formation and Laurel Sand in outcrop is about 100 feet in the Mount Mount Holly 7-1/2 minute quadrangle, Burlington County (Minard, Owens, and Nichols, 1964). The Wenonah Formation-Mount Laurel Sand is about the same thickness in the outcrop area in Camden County. In the subsurface the Wenonah Formation and Mount Laurel Sand range in thickness from 80-90 feet near the outcrop to almost 130 feet at the New Brooklyn Park well (WI 27) in The thickness of the Wenonah Winslow Township. map Formation-Mount Laurel Sand (fig. 38) shows that the unit thickens downdip. Interpretation of geophysical logs suggest that the Wenonah Formation-Mount Laurel Sand is mainly a sand unit although the lower 20 percent of the unit consists of silt. A lithologic map of the sand facies is shown in figure The greatest thickness of the sand facies is 39. in the southcentral part of the county.

Hydrology

Wenonah-Mount Laurel aquifer The is an important County. water-bearing unit in Camden Industrial and public-supply wells are screened in this aquifer. In addition many domestic wells southeast of the outcrop area tap this unit. all the wells in Camden Almost County tapping the Wenonah-Mount Laurel aquifer located are in а northeast-trending area less than ten miles from the outcrop.

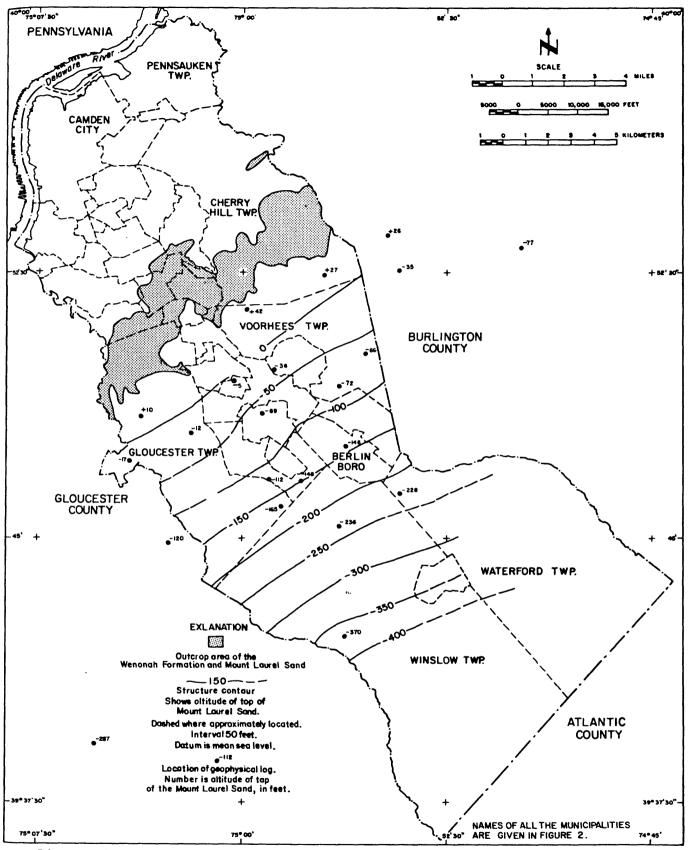


Figure 37. — Structure contour map of the top of the Mount Laurel Sand in Camden County.

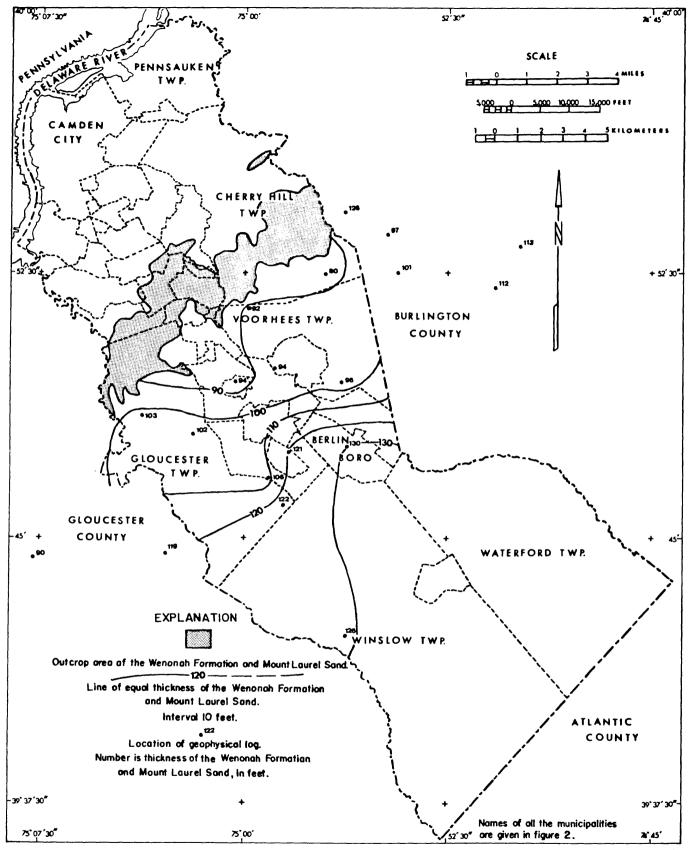


Figure 38. — Thickness map of the Wenonah Formation and Mount Laurel Sand in Camden County.

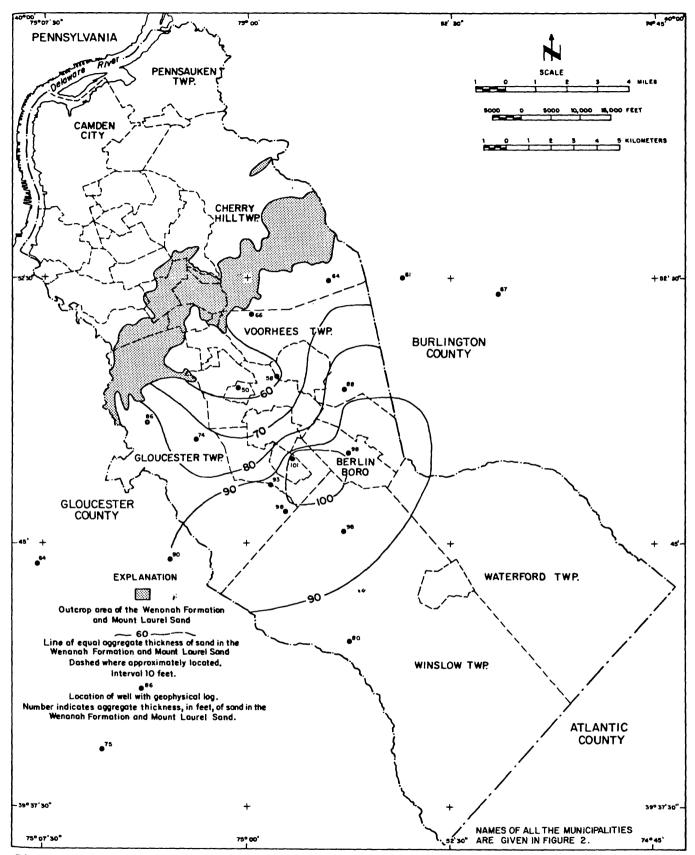


Figure 39. — Map showing aggregate thickness of the sand facies of the Wenonah Formation and Mount Laurel Sand in Camden County.

Data from three aguifer tests of the Wenonah-Mount Laurel aquifer are available. The analysis of aquifer tests conducted in 1954 at Bradley Beach in Monmouth County (Jablonski, 1968, p. 62) indicated an average transmissivity of $670 \text{ ft}^2/\text{day}$ (5,000 gpd/ft) with a range of 360 to 1,420 ft²/day (2,700 to 10,700 gpd/ft). The average coefficient of storage is about 1.2 x 10^{-4} with a range from 7.0 x 10^{-5} to 2.1 x 10^{-4} . The average hydraulic conductivity is about 17 ft/day (130 gpd/ft²). In 1965 an aquifer test was run at Salem City, Salem County. The average transmissivity of the Wenonah-Mount Laurel aquifer was determined to be 1,200 ft²/day (9,000 gpd/ft). The 10^{-4} storage coefficient is 3.5 x and the hydraulic conductivity is about 13 ft/day (100 gpd/ft²) and (Rosenau others, 1969, p. 40). An aquifer test was run at Artificial Island in Salem County in 1968 by Dames and Moore, consulting engineers for Public Service Electric and Gas Company (Dames The transmissivity was about $940 \text{ ft}^2/\text{day}$ and Moore, 1968). (7,000 gpd/ft), and the hydraulic conductivity was about 19 ft/day (140 gpd/ft²).

industrial and public-supply wells tapping Ten the Wenonah-Mount Laurel aquifer in Camden County furnish sufficient specific data capacity for estimating the transmissivity by the Hurr (1966) method (table 11). computed for the 10 wells ranges from Transmissivity 430 to 1.780 ft^2/day (3,200 to 13,300 gpd/ft). The median transmissivity for the 10 wells is 780 ft^2/day (5,820 gpd/ft). The specific capacities for the 10 wells range from 1.8 to 6.4 gpm/ft. The median specific capacity for the 10 wells is 3.2 storage of 2.4 \times 10⁻⁴ was used in gpm/ft. A coefficient of transmissivity. calculations to estimate Porosity and hydraulic conductivity values obtained from laboratory analyses of samples from the New Brooklyn Park well in Winslow Township are given in table 5.

generalized potentiometric surface map of the Α Wenonah-Mount Laurel aquifer based on the earliest record for each well is given in figure 40. Almost all of these wells are within 10 miles of the outcrop area. The map indicates a high potentiometric surface in northeastern Voorhees Township and in southern Gloucester Township. These areas are the main areas for the Wenonah-Mount Laurel aquifer in Camden recharge County and they coincide with areas of topographic highs as shown in figure 3. Recharge is mainly from downward vertical Potentiometric highs coinciding with topographic leakage. highs have been shown to exist for the Wenonah-Mount Laurel aquifer in Burlington County (Rush, 1968, p. 49) and Gloucester County (Hardt and Hilton, 1969, p. 23).

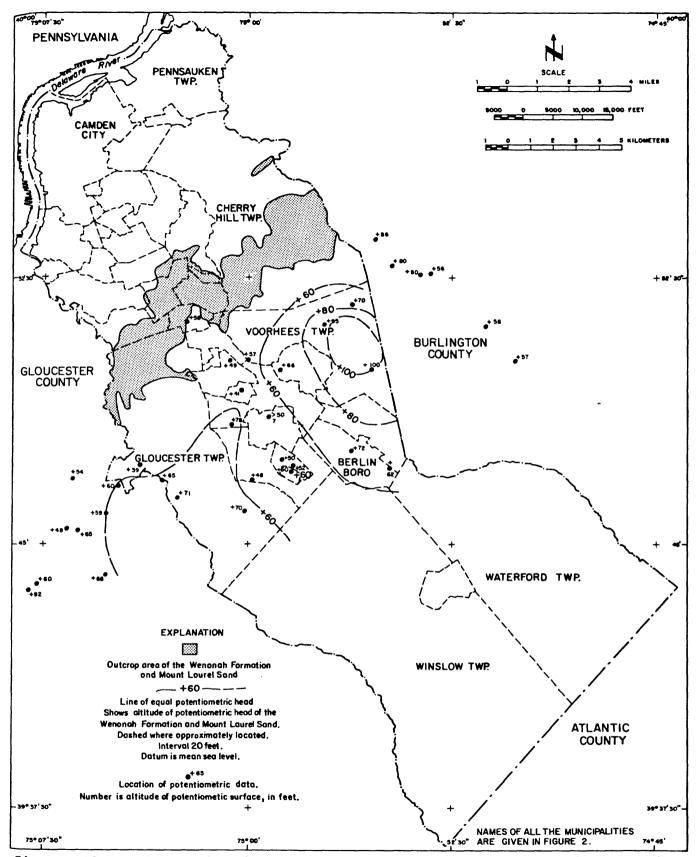


Figure 40. — Generalized potentiometric map of the Wenonah Formation and Mount Laurel Sand, based upon earliest record for each control point.

Natural discharge areas for the aquifer occur along topographic lows in the outcrop area. One of the discharge areas for the Wenonah-Mount Laurel aquifer prior to pumpage was along Cooper River in northern Somerdale Borough.

The potentiometric map of the Wenonah-Mount Laurel aquifer based on data for the period November 1968 to May 1970 is shown in figure 41. The potentiometric surface has been lowered in several areas mainly during the past 20 years. The greatest decline in head (43 feet) known in Camden County for the Wenonah-Mount Laurel aquifer is in the vicinity of Berlin Borough, an area where most of the industrial and public-supply pumpage occurs.

observation well An in the Wenonah-Mount Laurel aquifer was drilled at New Brooklyn Park (WI 29) in 1961. Head data from 1963 to 1970 are given in figure 42. From May 1962 to September 1964 the head declined about 9 feet. The decline is interpreted as being mainly due to additional pumping in the Berlin and northern Winslow Township area of including withdrawals from the Johns-Manville well (WI 3), located 3.5 miles north of the New Brooklyn Park observation well. Pumpage at Johns-Manville began in late 1963.

Quality of Water

The quality of water from the Wenonah-Mount Laurel aquifer is generally within the State's standards for potable water with the exception of high iron concentrations in local areas. A summary of chemical analyses of ground water from wells tapping the Wenonah-Mount Laurel aquifer in Camden County is shown in table 12. The water is generally low in dissolved solids (97-178 mg/l), sulfates (0-28 mg/l), and chloride (0.3-9.7 mg/l). Laboratory analyses of water samples (table 4) indicate 6 of 13 analyses have iron concentrations exceeding the State's potable-water standard of 0.3 mg/l. The range in iron concentration is 0-3.6 mg/1.There is no apparent regional distribution of the high iron concentration in the aquifer in Camden County. Hardness ranges from soft to moderately hard (17-126 mg/l).

Sulfate concentration of 28 mg/l was determined for a sample obtained in January 1970 from the New Jersey Water Company's well 4 (LS 6) at Laurel Springs. Chemical analyses (Donsky, 1963) indicate sulfate concentrations of 13 mg/l in May 1951 and 17 mg/l in August 1960 for well 8 (LS 4) which is screened at the same interval and is located near well 4. In

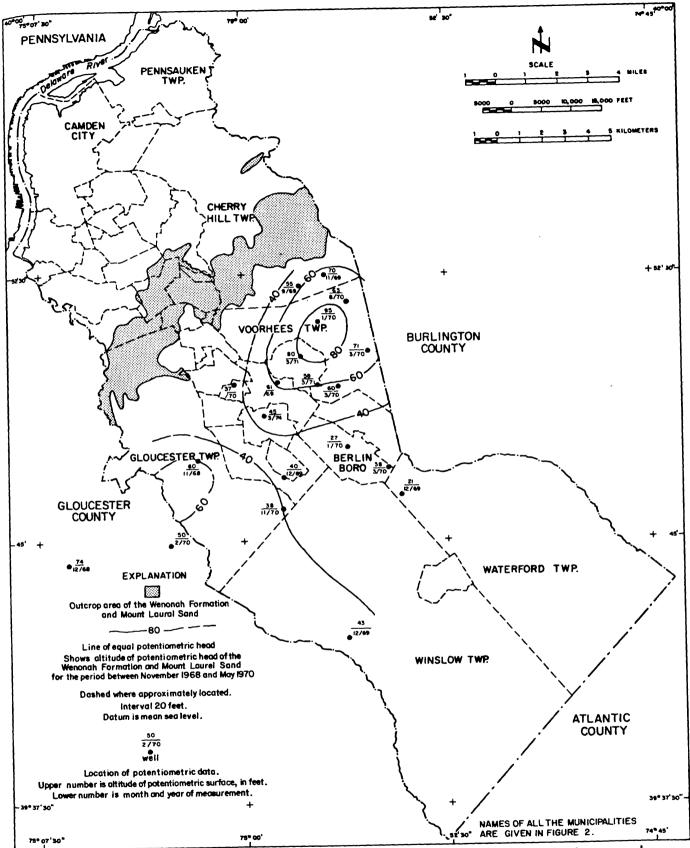
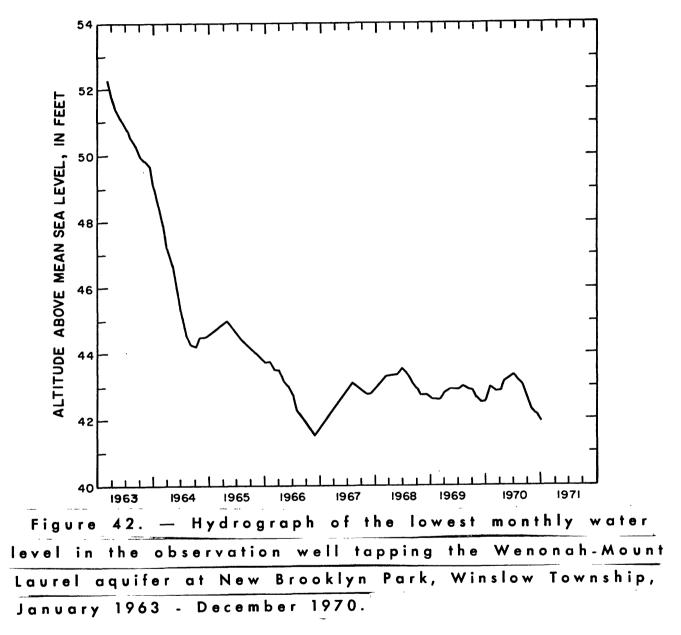



Figure 41.— Potentiometric map of the Wenonah Formation and Mount Laurel Sand, November 1968 - May 1970.

addition to the increase in sulfate, there was an increase in dissolved solids. Although sulfate and dissolved solids are well within the State's Potable Water Standards, the increase may indicate a rising trend. Withdrawals from the Wenonah-Mount Laurel aquifer at Laurel Springs may have reversed the hydraulic gradient, thereby causing the water to move from the outcrop area to the well field.

A water sample obtained in February 1970 from a domestic well (GT 10) located very close to the outcrop area of the Wenonah Formation and Mount Laurel Sand had a nitrate concentration of 15 mg/l. Nitrate in the Wenonah-Mount Laurel aquifer is generally much lower (0 to 1.4 mg/l). The high nitrate suggests local ground-water contamination, possibly from fertilizers in the outcrop area or through the overlying sediments.

Navesink Formation

Geology

The Navesink Formation crops out in an irregular belt southeast of the Mount Laurel Sand in Camden County and is approximately 3.9 square miles in area (fig. 4).

The Navesink Formation in Camden County is the uppermost unit of the Cretaceous System. It is unconformably overlain by the Hornerstown Sand of Tertiary age and underlain conformably by the Mount Laurel Sand. Fossils and glauconite found in the Navesink indicate that it is of marine origin.

The Navesink Formation consists of a dark green to black glauconitic sand and clay mixed with varying amounts of quartz sand. A prominent shell zone occurs at the base of this formation and is one of the best marker horizons in Camden County. The bulk of the fossils are the thick-shelled Exogyra, Gryphaea, and Belemnites (Owens and Minard, 1960, p. 28). The formation dips about 30 feet per mile to the southeast and ranges in thickness from 15 feet in Laurel Springs Borough near the outcrop area to 34 feet in Winslow Township. Particle-size analysis of samples from the New Brooklyn Park well (WI 27) in Winslow Township are listed in table 5.

Hydrology

The Navesink Formation functions as a confining layer in Camden County. Recharge to the underlying Wenonah Formation and Mount Laurel Sand takes place as a result of vertical leakage through the Navesink Formation. Porosity and hydraulic conductivity values for samples of the formation from the New Brooklyn Park well (WI 27) in Winslow Township are listed in table 5.

In this report the Navesink Formation and the Hornerstown Sand are treated as a hydrologic unit. The total thickness of the Navesink Formation and Hornerstown Sand is shown in figure 43.

CENOZOIC ERATHEM

Tertiary System, Paleocene-Eocene Series

Hornerstown Sand

Geology

The Hornerstown Sand of Paleocene age crops out in an irregular belt southeast of the Navesink Formation (fig. 4). The outcrop area in Camden County is approximately 9.4 square miles.

The Hornerstown Sand in Camden County is the lowest unit of the Tertiary System. It unconformably overlies the Navesink Formation. Fossils and the high glauconite content of the Hornerstown Sand indicate that it is of marine origin. Dorf and Fox (1957, .p. 5) suggest that the Hornerstown represents a transgressive marine phase.

The Hornerstown Sand is composed of sand and clay and contains as much as 90 percent glauconite. This mineral gives the Hornerstown Sand its dark-green color. The formation dips about 30 feet per mile to the southeast and ranges in thickness from 36 feet in Voorhees Township near the outcrop area to 18 feet in Waterford Township. Particle-size analysis of samples from the New Brooklyn Park well (WI 27) in Winslow Township are given in table 5.

Gamma-ray logs of wells in Camden County indicate that two relatively high radioactive layers occur 25 to 40 feet apart in the Navesink-Hornerstown confining layer. The layers

76

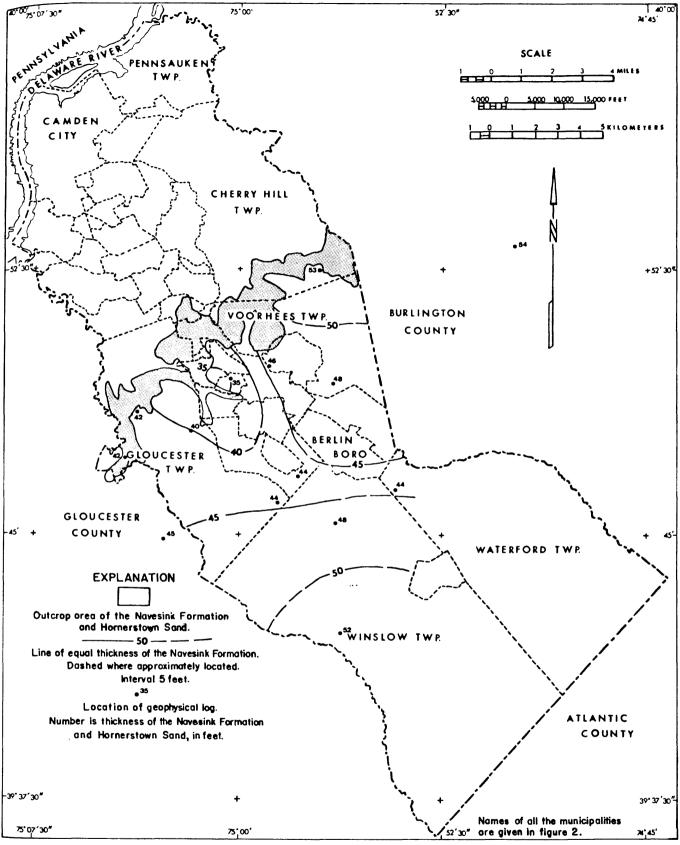


Figure 43. — Thickness map of the Navesink Formation and Hornerstown Sand in Camden County.

appear to coincide in position with high concentrations of glauconitic sand or with reported shell layers near the top of the Hornerstown Sand and the bottom of the Navesink Formation. Thus, one can establish the Tertiary-Cretaceous (Hornerstown Sand-Navesink Formation) contact zone in Camden County. These two layers were used as markers in correlating well logs shown in figure 6.

Hydrology

The Hornerstown Sand in conjunction with the underlying Navesink Formation is а leaky confining unit. Recharge to the Mount Laurel Sand takes place as a result of vertical leakage through these overlying formations. One domestic well is known to tap the Hornerstown Sand and three wells are known to tap the undifferentiated Hornerstown Sand and overlying Vincentown Formation in Camden County. Porosity and hydraulic conductivity values for samples from the New Brooklyn Park well (WI 27) in Winslow Township are given in table 5.

Vincentown and Manasquan Formations

Vincentown Formation

Geology

The Vincentown Formation of Paleocene age does not crop out in Camden County. In the subsurface the formation thickens to the southeast. The authors were unable to differentiate the Vincentown Formation from the overlying Manasquan Formation on geophysical logs. The total thickness of the Vincentown and Manasquan Formations in Camden County ranges from 0 to 210 feet (fig. 44). The Vincentown Formation is estimated to range in thickness in Camden County from 0 to 80 feet. The contact with the underlying Hornerstown Sand is unconformable.

The Vincentown Formation in Camden County consists chiefly of a light brown to light gray, very fine, calcareous, micaceous sand. The formation has two recognizable facies; (1) a quartzose sand with glauconite, and (2) a limey sandstone which contains fossil shells. Neither facies is traceable for any great distance because of the lensing nature of the limey

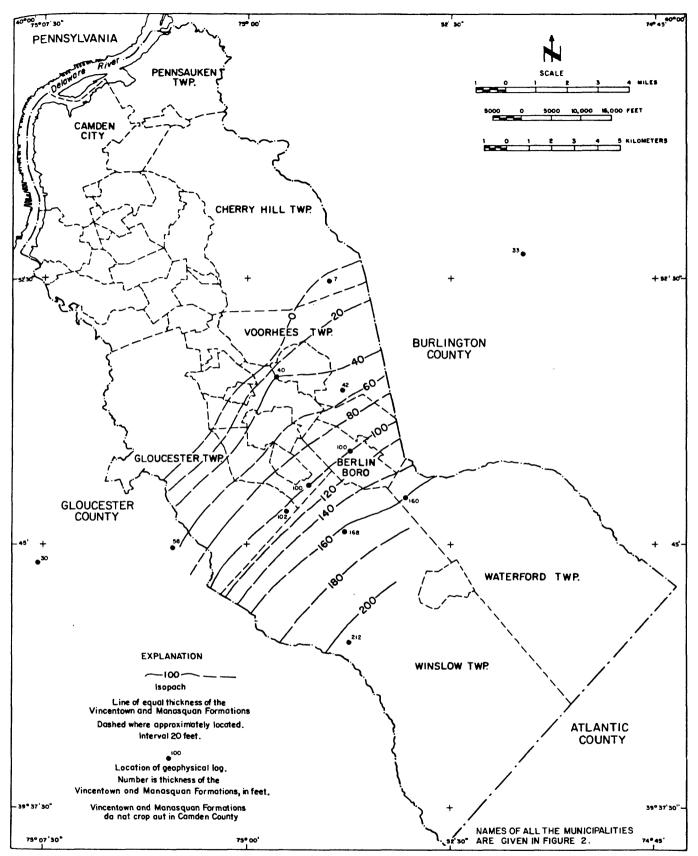


Figure 44. — Thickness map of the Vincentown and Manasquan Formations in Camden County.

The sand fraction in the limey sandstone facies sandstone. consists primarily of calcareous fragments of bryozoans, foraminifera, and corals. The clay-size fraction is primarily with small amounts of montmorillonite (Owens calcite and p. 25). The limey Minard, 1960, sandstone facies 18 in Camden County. Particle-size analysis predominant of samples from the New Brooklyn Park well (WI 27) in Winslow Township are given in table 5.

Manasquan Formation

Geology

The Manasquan Formation of Eocene age does not crop out in Camden County. In the subsurface the formation thickens to the southeast. The total thickness of the Manasquan and Vincentown Formations in Camden County ranges from 0 to about 210 feet (fig. 44). The Manasquan Formation is estimated to range in thickness in Camden County from 0 to about 140 feet.

Manasquan Formation overlies the Vincentown The Formation. The contact between the Manasquan Formation and the overlying Kirkwood Formation is unconformable. Fossils and glauconite found in the Manasquan Formation indicate that it is of marine origin. Dorf and Fox (1957, p. 12) considered the Manasquan Formation to represent a second transgressive phase the lower Tertiary. Perfectly preserved specimens of of vacavillensis Maringulina (Hanna) and associated small foraminifera found in the New Brooklyn Park test well (WI 27) suggest marine conditions during middle Eocene time similar to that of the present day Gulf Coast (Herrick, 1962).

Manasquan Formation is described by The Owens and Minard (1960, p. 25-26) as a clayey, quartz, glauconite sand similar to the Hornerstown Sand, except that the Manasquan has more clay and quartz sand. Samples taken from two test wells of the Manasquan Formation in Burlington County were olive gray, glauconitic, clayey sand having small amounts of mica and shell fragments. Mechanical analyses were made on six samples particle-size and a typical sample gave the following distribution: gravel, 1 percent; very coarse-grained sand. 3 percent; coarse-grained sand, 3 percent; medium-grained sand, percent; fine-grained sand, 36 percent; very fine-grained 12 sand, 20 percent; silt, 8 percent; and clay, 17 percent (Rush, 1968, p. 54). Particle-size analysis of samples from the New Brooklyn Park well (WI 27) in Winslow Township, Camden County, are given in table 5. The samples in general have more than 30 percent clay and as much as 82 percent clay.

Vincentown and Manasquan Formations Undifferentiated

Hydrology

The Vincentown and Manasquan Formations, along with the Hornerstown Sand and Navesink Formation, function as confining layers between the underlying Wenonah-Mount Laurel aquifer and overlying aquifers of the Kirkwood Formation and Cohansey Sand.

Laboratory analysis of an outcrop sample of the Vincentown Formation taken between Jacobstown and New Egypt in Burlington County indicates a hydraulic conductivity of 21 ft/day (160 gpd/ft²). Laboratory analyses of six samples of the Manasquan Formation in Burlington County give a range for hydraulic conductivity from 0.04 to 16 ft/day (0.3 to 120 gpd/ft²) with most hydraulic conductivity values grouped between 0.5 and 0.8 ft/day (4 and 6 gpd/ft²) (Rush, 1968, p. 55). Hydraulic conductivity values of samples from the New Brooklyn Park well (WI 27) in Winslow Township range from 8 x 10^{-5} to 4 x 10^{-2} ft/day (0.0006 to 0.3 gpd/ft²) (table 5).

Ancora State Hospital in Winslow Township has three wells that tap the undifferentiated Vincentown and Manasquan Formations (reported by Rush, 1968, as wells tapping the Kirkwood Formation). Wells 1 (WI 40) and 2 (WI 38) yield 185 gpm and 360 gpm, respectively. Specific capacities for wells 1 and 2 are 1.9 and 1.3 gpm/ft drawdown, respectively.

Continuous water-level data have been collected at observation well 3 (WI 37), Ancora State Hospital, since 1953. A hydrograph of monthly low water levels is shown on figure 45. A close relationship is found between monthly head fluctuations and variation in the monthly pumpage for wells 1 (WI 40) and 2 (WI 38) (fig. 45). The increased rate of head decline in 1955-56, 1958-59, and 1966-67 is the result of increased withdrawals from wells 1 and 2 as shown in figure 45.

Piney Point(?) Formation

The Piney Point(?) Formation of Eocene age does not crop out in New Jersey. The Eocene age marine sediments which are correlated with the Jackson Formation of the Gulf Coast are recognized in well logs from Delaware (Marine and Rasmussen, and southern New Jersey (Richards, 1956, p. 1955) 84). The glauconitic sands and shell beds in southern Maryland were named the Piney Point Formation (Otton, 1955, p. 85) from а well located at Piney Point, St. Mary's County, Maryland, The extended (Rasmussen and others, 1957, p. 61-67) to name was include a similar unit on the eastern shore of Maryland. The sediments penetrated by a deep well at Atlantic City, New were tentatively assigned the name Pinev Point Jersey, Formation by Parker and others (1964, p. 60). The total thickness of the Piney Point Formation at Atlantic City is 290 feet (Parker and others, 1964).

geologic Interpretation of geophysical and logs suggests that the Ancora State Hospital well 3 (WI 37) may penetrate about 35 feet of sand which may be part of the Piney Point(?) Formation. This interpretation is based on primarily stratigraphic correlation study conducted in Cumberland County on the Piney Point aquifer by Nemickas and Carswell (written commun., 1974). The Piney Point aquifer in their study was extended from the Cumberland County area to the New Brooklyn Park wells. Data from the New Brooklyn Park well (WI 27) in Winslow Township in the southern part of Camden County suggests the presence of about 35 feet of sand that may be the extension of the Piney Point aquifer. In the central part of Camden County the Piney Point sand probably pinches out or is truncated by the overlying Kirkwood Formation. Figure 5 shows stratigraphic section (C-C') from Ancora State Hospital well 3 (WI 37) to the Gino's Restaurant well 1 (WA 12) showing the pinching out of the Piney Point sand. Geophysical data indicate that the Piney Point sand is present in Winslow Township in Camden County but would probably be less than 40 feet thick.

Tertiary System, Miocene Series

Kirkwood Formation

Geology.

The Kirkwood Formation of Miocene age crops out in an irregular northeasterly-trending belt southeast of the outcrop area of the Hornerstown Sand (fig. 4). The outcrop area of the Kirkwood Formation in Camden County is approximately 18.9 square miles. The formation dips 15 to 25 feet per mile to the southeast and ranges in thickness from 57 feet in Yoorhees Township to 96 feet in Gloucester Township. The thickness map of the Kirkwood Formation in Camden County is shown in figure Kirkwood Formation in 46. The Camden County rests

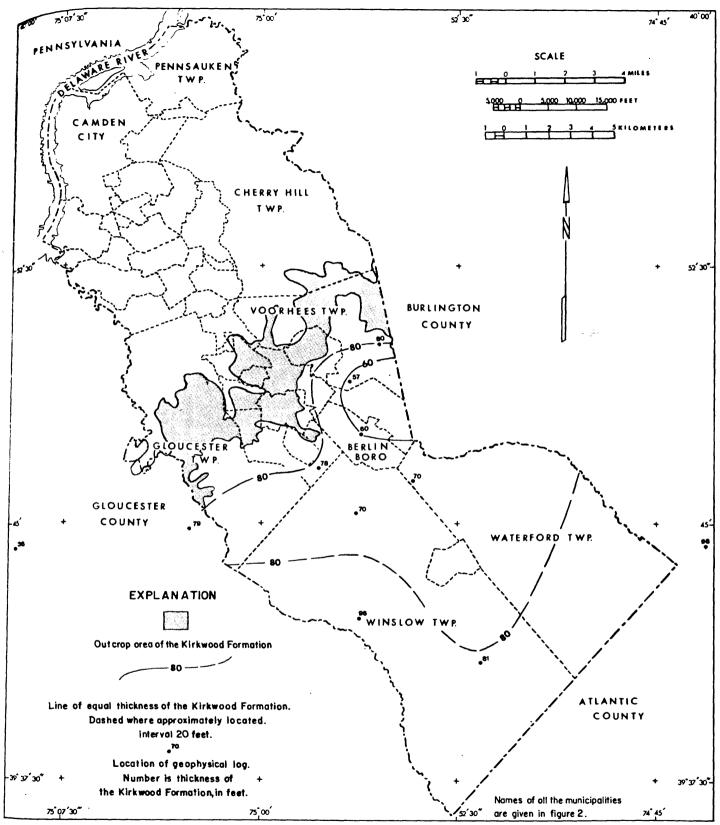


Figure 46. — Thickness map of the Kirkwood Formation in Camden County.

unconformably on the Hornerstown Sand in the outcrop area and on the Manasquan Formation in the subsurface. The structure contour maps of the base and the top of the Kirkwood Formation in 47 and 48) Camden County (figs. are based on the interpretation of geophysical and geologic logs. The Cohansey Sand unconformably overlaps the Kirkwood Formation in Camden County.

The Kirkwood Formation consists chiefly of sand, silt, and clay; dark gray where unaltered; light gray, yellowish- and grayish-orange to grayish-yellow, light red to moderate reddish-brown, and moderate to dusky yellow and yellowish-gray (Minard, 1965). The lower part weathered of where the mostly thick bedded, very fine to fine-grained formation is and is typically micaceous. The basal 2 to 4 feet sand. consists of poor to moderately sorted pebbly coarse sand with The upper part of the formation abundant glauconite. 18 clay. poorly sorted silt and Quartz interbedded is the sand-size constituent throughout the dominant formation: feldspar and mica (mostly muscovite) are less common (Minard, Carbonaceous matter is abundant in the basal 1965). dark-gray beds. The Kirkwood Formation unconformably overlies the Hornerstown Sand on the surface in Camden County and the Manasquan Formation in the subsurface. Particle-size analyses of samples from the New Brooklyn Park well (WI 27) in Winslow Township Atsion well 1 (SH 1) in Burlington County are listed in tables 5 and 13.

Hydrology

The Kirkwood Formation is not being utilized for water The overlying Cohansey in Camden County. Sand supply is preferred for water supply because of its shallower depth. Recharge to the Kirkwood takes place principally in upland percolation into the formation from the overlying areas by Ground-water movement is probably toward the Cohansey Sand. lowland areas where the water is discharged mostly to streams.

The Kirkwood Formation is of hydrologic importance in Camden County because its large surface area absorbs precipitation that is partly transmitted to deeper aquifers. Porosity and hydraulic conductivity values of samples from the New Brooklyn Park well (WI 27) in Winslow Township and Atsion well 1 (SH 1) in Burlington County are listed in tables 5 and 13.

The Kirkwood Formation can be developed as a source of water in the southern part of Camden County. Just southeast of

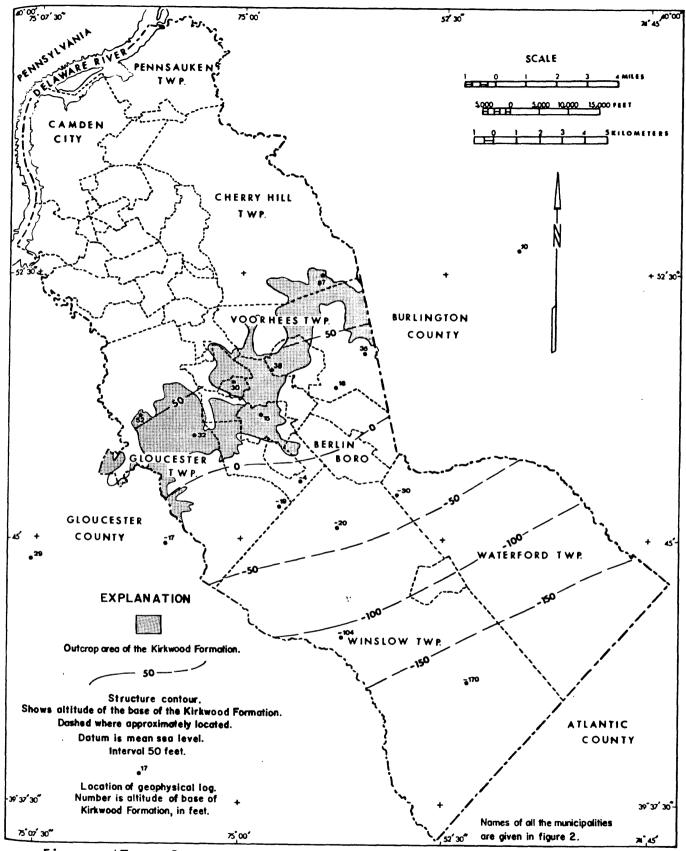


Figure 47. — Structure contour map of the base of the Kirkwood Formation in Camden County.

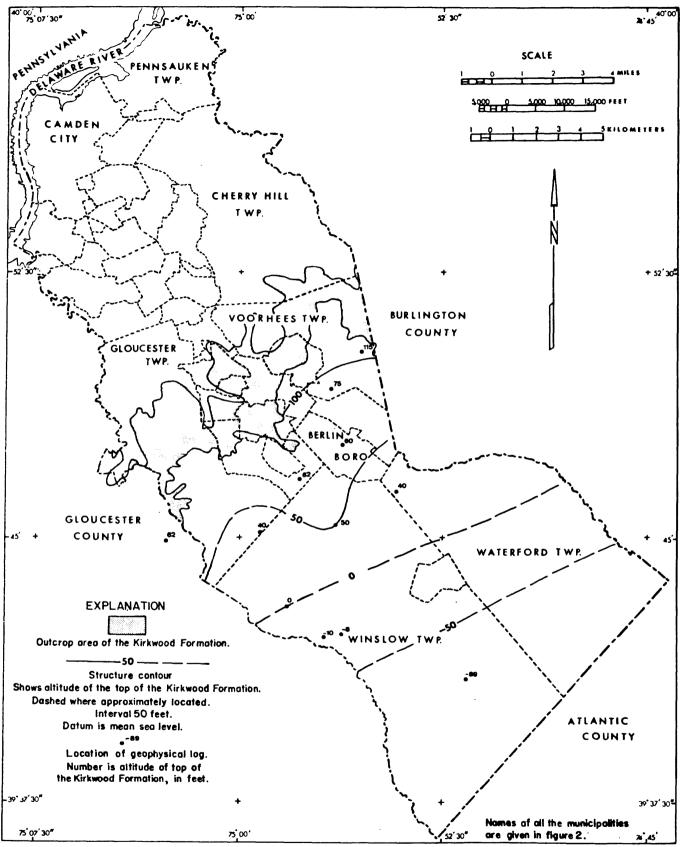


Figure 48. — Structure contour map of the top of the Kirkwood Formation in Camden County.

the Camden County line in Atlantic County yields from wells in the Kirkwood are as high as 700 gpm (Clark and others, 1968). In the outcrop area of the Kirkwood in central Camden County it has been found desirable to drill to the Wenonah Formation and Mount Laurel Sand because the Kirkwood has poor water-transmitting characteristics.

Quality of Water

One chemical analysis of water is available from the Kirkwood Formation in Camden County. The analysis, from the New Brooklyn Park well 4 (WI 30), indicates an iron concentration of 6.0 mg/l and dissolved solids of 136 mg/l. In adjacent Burlington County, analyses from eight wells indicate generally good chemical quality; however, some analyses showed high iron concentrations, ranging from 0.02 to 2.9 mg/l. The water is generally very soft (2 to 94 mg/l) and the dissolved solids are low, ranging from 13 to 125 mg/l.

In Atlantic County (Clark and others, 1968) analyses of water samples from seven wells located 1 to 8 miles from the Camden County line indicate some objectionable chemical characteristics. Iron concentrations range from 0.13 to 4.6 mg/1. Six of the seven samples are above the limit set in the State's Potable Water Standards. Dissolved solids range from 51 to 98 mg/1. Hardness of the seven samples ranges from 9 to 28 mg/1 and pH from 5.0 to 7.4.

Tertiary System, Miocene(?) and Pliocene(?) Series

Cohansey Sand and Younger Sediments

Geology

The Cohansey Sand was named and defined by Ries, Kummel, and Knapp (1904, p. 139). It crops out in all of the southeastern half of Camden County (fig. 4). The outcrop area in Camden County is approximately 124 square miles or about 55 percent of the total county area. The Cohansey Sand rests unconformably on the Kirkwood Formation and is unconformably overlain by the Bridgeton Formation of Pleistocene age.

The structure contour map of the top of the Kirkwood Formation in Camden County, shown in figure 48, also delineates the base of the Cohansey Sand. The Cohansey Sand strikes in a northeasterly direction and dips from 10 to 20 feet per mile to the southeast. The steeper dips, in general, are encountered to the southeast. The estimated thickness of the Cohansey Sand ranges from 0 to 140 feet. The saturated thickness of the Cohansey Sand and the overlying younger sediments ranges from 0 to 190 feet as shown on figure 49 which is based on interpretation of geophysical and geologic logs and water-level measurements (1951 to 1969).

The Cohansey Sand in Camden County consists chiefly of yellowish-orange, fine- to coarse-grained quartzose sand and fine gravel. The sand also contains lenses of silt and clay which are as much as 30 feet thick. The average grain size of southeastward; beds of silt and clay the materials decreases and more extensive to become thicker, more numerous, the Mechanical analysis of New southeast. samples from the Brooklyn Park well (WI 27) in Winslow Township, Camden County, and Atsion well (SH 1) in Burlington County are given in tables 5 and 13.

The Cohansey Sand was derived in part from older sedimentary rocks and from deeply weathered crystalline rocks of the New Jersey Highlands. Sedimentary rocks of Paleozoic indicated by fossiliferous chert pebbles. age. as were incorporated into the Cohansey Sand. The almost complete absence of glauconite in the Cohansey Sand indicates that the older marine Coastal Plain sediments (pre-Kirkwood) were not a contributing source of sediments. These older major glauconitic sediments were either covered by the Kirkwood Formation or the sediments were being transported by longshore currents from the north. The clearness and angularity of most of the quartz grains and the absence of amphiboles, pyroxene, and feldspars indicate a deeply weathered crystalline source. The absence of fossils and the lack of glauconite in the indicate non-marine Cohansev Sand а environment. "Cross-bedding, local cut and fill structures, and heterogenity of grain size suggest an active stream environment on an inland deposits" (Markewicz, extensive alluvial plain in the 1969, p. 368-369). Its coarse texture, poor sorting, and cross-bedding fit this interpretation. However, Owens and Minard (1960, p. 27) discount this hypothesis on the grounds that the formation is too widespread. They favor a hypothesis of beach deposition. Rhodehamel (oral communication, 1970) interprets the Cohansey Sand as a deltaic deposit.

Hydrology

The Cohansey Sand is one of the important aquifers in

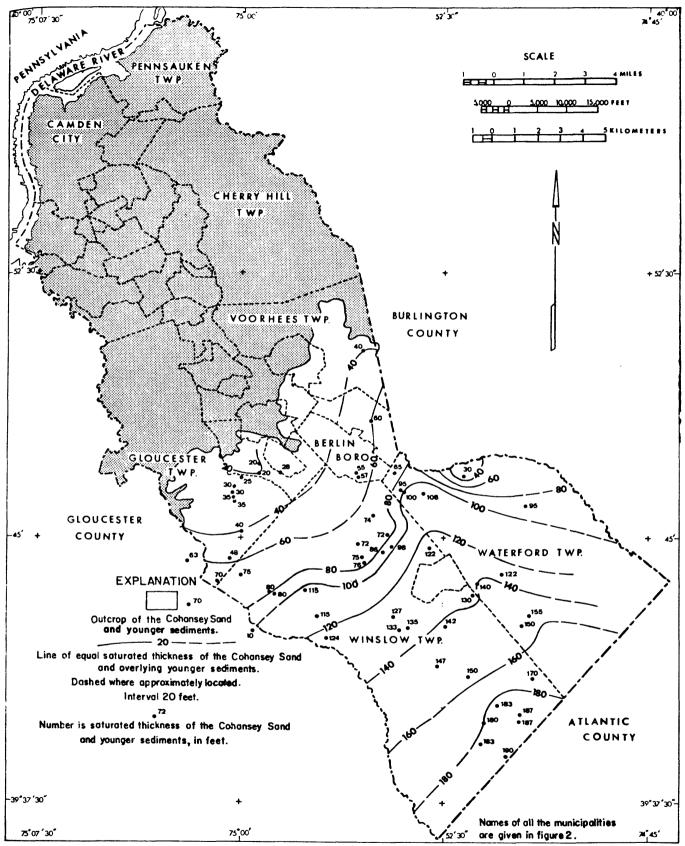


Figure 49. — Saturated thickness of the Cohansey Sand and overlying younger sediments in Camden County.

Camden County. The Cohansey Sand and the overlying younger material consist of as much as 190 feet of saturated sediments of high porosity and permeability. It is virtually untapped by wells and has an excellent potential for water development in the southeastern part of the county. The Cohansey Sand in many areas is hydraulically connected with the underlying Kirkwood Formation. There are no extensive confining beds overlying it, but clay lenses commonly cause local perched water-table conditions. However, most of the formation in Camden County is under water-table conditions.

Water enters the aquifer directly from precipitation low-level areas toward where it 18 ultimately and moves discharged into streams. The generalized water-table map of the Cohansey Sand and overlying sediments (fig. 50) is а subdued replica of the topography (fig. 3).

In Camden County the Cohansey Sand is tapped mostly by domestic and irrigation wells. Relatively few industrial and public-supply wells draw water from the Cohansey Sand as yet because of the rural nature of the area. Berlin Water 5 (BB 4) yields 365 gpm. Department well The other large diameter wells that draw water from the Cohansey Sand are located in Winslow Township. Water-yield data are given below.

Map <u>Number</u>	<u>Owner</u>	Well <u>Number</u>	Yield (gpm)	Specific Capacity (gpm/ft of drawdown)
WI 36	Ancora State Hospital	4	708	9.1
WI 35	Do.	5	502	8.4
WI 12	Certain-teed Saint Gobin	1	524	12.1
WI 11	Do.	2	510	19.6
WI 42	M. and R. Refractory Metals	-	377	10
WI 19	Winslow Water Company	Prod. 1	1,000	35
WI 14	Do.	Prod. 2	1,000	25.6

Aquifer tests on wells in the Cohansey have been Camden. Atlantic, Cape May, conducted in and Cumberland In these tests the aquifer was not Counties. completely penetrated and was partially confined beneath clay layers. The storage coefficient ranged from 2.7 x 10^{-3} to 4×10^{-5} . Computed transmissivity, which did not represent the total thickness of the Cohansey Sand, ranged from 2,410 to 20,100 ft²/day (18,000 to 150,000 gpd/ft). Computed hydraulic

90

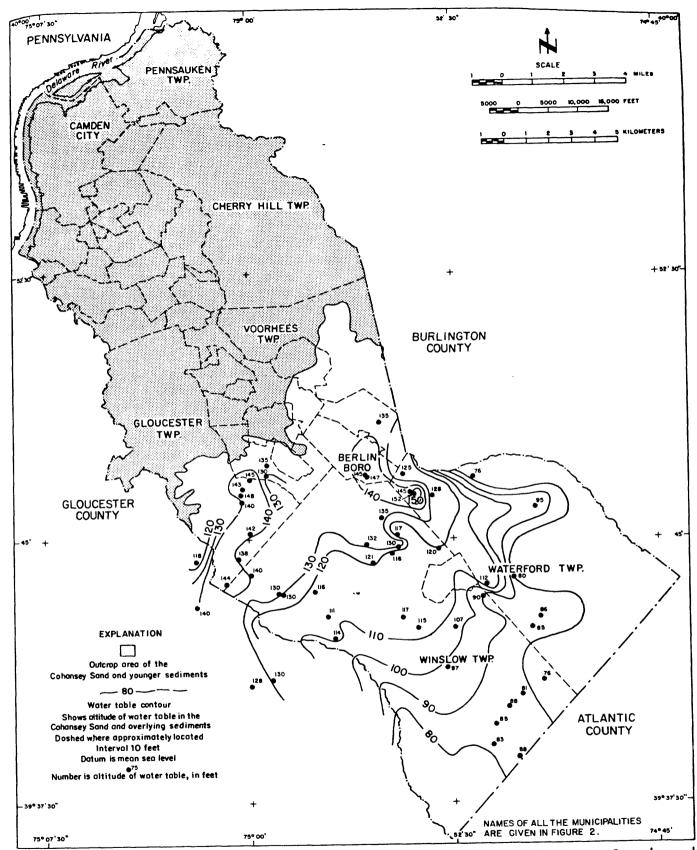


Figure 50. — Generalized water-table surface of the Cohansey Sand and overlying younger sediments in Camden County.

conductivities range from 64 to 442 ft/day (480 to 3,300 gpd/ft²), but typically range from 100 to 134 ft/day (750 to 1,000 gpd/ft²) (Rhodehamel, 1972). Porosity and hydraulic conductivity values of samples from the New Brooklyn Park well (WI 27) and of samples from Atsion well (SH 1) in Burlington County are given in tables 5 and 13.

The Cohansey Sand has an estimated average specific yield of about 21 percent (Rhodehamel, 1970). Thus, where sufficiently thick, the Cohansey Sand can store and release substantial quantities of water.

Rhodehamel (1970) evaluated the hydrologic budget for the Pine Barrens region which includes the entire outcrop area of the Cohansey Sand in Camden County. The average annual stream runoff, measured as inches depth over the Pine Barrens region, was 22.5 inches (1.07 mgd per square mile). If the same value is used for the outcrop area of the Cohansey Sand in Camden County, the 22.5 inches of runoff over the area of 124 square miles is equivalent to about 130 mgd average runoff from the Cohansey Sand in Camden County.

The Cohansey Sand is capable of extensive development as a source of water in Camden County. At present the amount of water withdrawn is small compared to the quantity potentially available. Locally, there may be more than one water-bearing zone present; however, the formation is generally regarded as a hydrologic unit. Large diameter wells (12 or more inches in diameter) can continuously yield 500 to 1,000 gpm of water. A well pumping at a rate of about 700 gpm will produce 1 mgd--enough water for many moderate-sized industries (Rhodehamel, 1966). Development of the water resources could achieved by a number of ways. be One way mentioned by Rhodehamel (1970) is to locate high-yielding wells adjacent to the downstream reaches of major streams thus inducing recharge. Additional wells could be located farther from the stream for use during prolonged low-flow periods.

Reported industrial and institutional withdrawals from the Cohansey Sand in Camden County for 1966 amounted to 0.45 mgd. No public-supply pumpage was reported from the Cohansey Sand in 1966. Annual average use of water for irrigation in Camden County was estimated to be 10 mgd shown below (Asghar Hasan, 1970, New Jersey Division of Water Resources, written commun.).

	(JUNE-AUG.) FOR CAMDEN COUNTY (Based on 1966 Controlling Year) (Hasan, 1970, written communication)												
FARMS GOLF COURSES AND RECREATIONAL, ETC. TOTAL													
Irri- gated (acres)	Rate of Delivery (in/wk)	Water Delivered (mg)	Seasonal Average (mgd)	lrri- gated (acres)	Rate of Delivery (in/wk)	Water Delivered (mg)	Seasonal Average (mgd)	lrri- gated (acres)	Water Delivered (mg)	Seasonal Average (mgd)	Annual Average (mgd)		
5,000	1.3	2,294	25	3,048	1.37	1,475	16	8,048	3,769	41	10		

IRRIGATIONAL DEMAND FOR THE GROWING SEASON

Quality of Water

Chemical analyses of eight samples from wells in the Cohansey Sand and Pleistocene sediments are listed in table 4: the well locations are shown in figure 2. The summary of the analyses (table 14) indicate that water in the Cohansey Sand in Camden County has some objectionable chemical and physical characteristics, such as low pH, high iron concentration, and undesirable color; but, in general, it is suitable for man's use after treatment. The water in the Cohansey is low in dissolved-solids content, ranging from 13 to 125 mg/1 in Camden County. Hardness of the water is generally less than 25 mg/l. The pH ranges from 5.3 to 8.4. In areas of low pH the water is corrosive and readily dissolves iron from the minerals in the soil and underlying sediments. Concentrations of iron range from less than 0.1 mg/l to 3.8 mg/l.

Quaternary System, Pleistocene Series

The Pleistocene Series consists of the Bridgeton. Pensauken, and Cape May Formations. These formations have similar geohydrologic characteristics and cap the older sediments in Camden County. They are normally thin, usually less than 40 feet thick.

The mode of deposition of the Pleistocene formations differs markedly from most of the older Coastal Plain formations. Most of the evidence suggests that the Pleistocene sediments are primarily stream deposits (Owens and Minard, 1960, p. 28). Where these formations overlie aquifers the recharge they receive from precipitation is transmitted downward to the underlying aquifers.

Bridgeton Formation

The Bridgeton Formation occurs as isolated patches on topographic highs. It unconformably overlies the Cohansey Sand and the Kirkwood Formation and is connected hydraulically with them. The thickness of the formation ranges from a few feet to about 30 feet in Camden County.

The Bridgeton Formation consists of fine to very coarse quartzose sand and gravel. Mechanical analysis of a sample collected 2 miles northeast of Mullica Hill in Gloucester County contains more than 95 percent medium- to very coarse-grained sand. The sand is white to brown in color and usually is fairly well sorted and subangular (Hart and Hilton, 1969, p. 30-31).

Pensauken Formation

The Pensauken Formation crops out in isolated and irregular patches in the northcentral part of Camden County and near the Delaware River. The geohydrologic characteristics of the Pensauken Formation are similar to those of the Bridgeton Formation. The Pensauken Formation ranges in thickness from a few feet to 30 feet in Camden County.

The formation consists of medium- to coarse-grained quartzose sand, gravel, and clay. The sand is generally poorly sorted, subangular, and with color ranging from yellow to brown. Because the lithologies of the Pensauken Formation and the older Bridgeton Formation are similar it is difficult to differentiate the two formations.

Cape May Formation

The Cape May Formation occurs adjacent to the Delaware River and tributary streams. The outcrop area is fairly flat and precipitation infiltrates easily through the formation into the underlying Raritan and Magothy Formations. The Cape May Formation ranges in thickness from a few feet to 40 feet in Camden County. The hydrology of the Cape May Formation is discussed with the Potomac-Raritan-Magothy aquifer system, because where both are present they are hydraulically connected.

94

The Cape May Formation consists of medium- to coarse-grained quartzose sand, gravel, and clay. The sand and gravel is usually yellow to brown to gray in color. The clays are yellow, brown, gray, and black. The Cape May is commonly poorly sorted, and the sand grains are subangular. In some areas it is difficult to distinguish the Cape May Formation from the Pensauken Formation because of similar lithologies.

Quaternary System, Holocene Series

Eolian Deposits

Windblown deposits occur locally and are generally thin in Camden County. They are light gray, well sorted quartz sands that have been rounded by wind action. Due to the high permeability of the eolian deposits water percolates through the sands into the underlying aquifers.

Alluvium

The alluvium is a mixture of clay, silt, organic material, sand, and gravel deposited in tidal flats and low-gradient stream channels. Most of the alluvial material consists of fine silt and clay of relatively low permeability. The alluvial deposits retard brackish water from the Delaware River from entering the water-bearing sands of the Potomac-Raritan-Magothy aquifer system where the water levels in this aquifer are below the river level.

SUMMARY AND CONCLUSIONS

Nearly all of the water supplies of Camden County are derived from ground-water sources. The average annual ground-water use of approximately 68 mgd in Camden County during 1966 was the largest county use in the State.

The major fresh-water aquifers are in the unconsolidated sediments of Cretaceous and Tertiary age. The largest producer is the Potomac-Raritan-Magothy aquifer system. In 1966 almost 56 mgd was withdrawn from this aquifer system which was approximately 85 percent of the total pumpage in the county. Other aquifers yielding large amounts of water were

95

the aquifers in the Cohansey Sand, the Wenonah Formation and Mount Laurel Sand, and the Englishtown Formation. The Cohansey Sand is the only water-table aquifer producing significant amounts of water.

artesian aquifers The have had declines in the The largest decline potentiometric surface due to pumping. occurred in the Potomac-Raritan-Magothy aquifer system. The head decline at Haddon Heights from 1900 to 1968 has been over decline in the potentiometric surface in the 110 feet. The aquifer in the Wenonah Formation and Mount Laurel Sand has been about 43 feet at Berlin.

ground water is The quality of generally good: however, there are some exceptions. High iron concentrations (in excess of 0.3 mg/l) are found in some areas of the Potomac-Raritan-Magothy aquifer system, at scattered locations in the Wenonah Formation and Mount Laurel Sand aquifer, and in In the southeastern part the Cohansey Sand. of the county a fresh water-salt water interface exists in the Potomac-Raritan-Magothy aquifer system. Overdevelopment in this area may cause the water to move updip or move upward by There also exists a potential salt-water vertical coning. encroachment of the Potomac-Raritan-Magothy aquifer system in the vicinity of the Delaware River. Previous investigations have shown a hydraulic connection of the upper sands and gravels with the Delaware River. If the Delaware River in the vicinity of Camden sustains high chloride levels for an extended period of time, heavy withdrawals from along the river may induce the high-chloride water into the aquifer system.

Contamination of ground water in Philadelphia has created a potential water-quality problem for the Camden area near the Delaware River. High concentrations of sulfate (in excess of 250 mg/1) and dissolved solids (in excess of 500 in water in the Potomac-Raritan-Magothy mg/1)aquifer system underlying Philadelphia are moving under the Delaware River toward the Texas Company's Eagle Point Plant in Gloucester County near the Camden County line.

Camden County has an abundant supply of ground water. The Potomac-Raritan-Magothy aquifer system will probably remain largest source for many years. The Cohansey Sand the is capable of extensive development in Camden County. Additional supplies of water can be obtained from the aquifers in the Wenonah Formation-Mount Laurel Sand and the Englishtown Formation in parts of Camden County. The Kirkwood Formation, presently untapped in Camden County, can yield an additional artesian conditions mainly in the area supply of water under near the Atlantic County line.

SELECTED REFERENCES

- Allen, J. R. L., 1965, Late Quaternary Niger delta and adjacent areas--sedimentary environments and lithofacies: Am. Assoc. Petroleum Geologists Bull., v. 49, p. 547-600.
- Anderson, H. R., and Appel, C. A., 1969, Geology and ground-water resources of Ocean County, New Jersey: New Jersey Dept. Conserv. and Econ. Devel., Div. Water Policy and Supply, Spec. Rept. 29, 93 p.
- Barksdale, H. C., 1952, Ground water in the New Jersey Pine Barrens area, <u>in</u> The Pine Barrens of New Jersey, a symposium: Bartonia, no. 26, p. 36-38.
- Barksdale, H. C., and Graham, J. B., 1952, Progress of the investigation of the ground-water resources of the Lower Delaware River valley: U. S. Geol. Survey open-file report.
- Barksdale, H. C., Greenman, D. W., Lang, S. M., Hilton, G. S., and Outlaw, D. E., 1958, Ground-water resources in the tri-state region adjacent to the lower Delaware River: New Jersey Dept. Conserv. and Econ. Devel., Div. Water Policy and Supply, Spec. Rept. 13, 190 p.
- Barksdale, H. C., Johnson, M. E., Baker, R. C., Schaefer, E. J., and DeBuchananne, G. D., 1943, The groundwater supplies of Middlesex County, New Jersey: New Jersey Water Policy Comm. Spec. Rept. 8, 160 p.
- Barksdale, H. C., and Jones, P. H., 1953, Availability of ground water in Lower Delaware basin: Pennsylvania Dept. Internal Affairs Bull., v. 21, no. 2, p. 3-10, 26.
- Barksdale, H. C., and Lang, S. M., 1955, Ground water in the Delaware River valley: Am. Soc. Civil Eng. Proc., v. 81, Separate No. 593.
- Bascom, Florence, 1904, Water resources of the Philadelphia district: U. S. Geol. Survey Water-Supply Paper 106, 75 p.
- Bascom, Florence, Clark, W. D., Darton, N. H., Kümmel, H. B., Salisbury, R. D., Miller, B. L., and Knapp, G. N.,

97

1909, Description of the Philadelphia district [Pennsylvania-New Jersey-Delaware]: U. S. Geol. Survey Geol. Atlas, Folio 162, 24 p.

Berry, E. W., 1906, The Flora of the Cliffwood clays: New Jersey Geol. Survey Ann. Rept. 1905, p. 135-172.

_____ 1911, The Flora of the Raritan Formation: New Jersey Geol. Survey Bull. 3, 233 p.

- Brenner, G. J., 1963, The spores and pollen of the Potomac Group: Maryland Dept. Geology, Mines and Water Resources Bull. 27, 215 p.
- Clark, G. A., Meisler, Harold, Rhodehamel, E. C., and Gill, H. E., 1968, Summary of ground-water resources of Atlantic County, New Jersey with special reference to public water supplies: New Jersey Dept. Conserv. and Econ. Devel., Div. Water Policy and Supply, Water Resources Circ. 18, 53 p.
- Dames and Moore, 1968, Report ground water supply proposed nuclear generating station near Salem, New Jersey: Public Service Electric and Gas Company, 18 p.
- Davis, G. H., Small, J. B., and Counts, H. B., 1963, Land subsidence related to decline of artesian pressure in Ocala Limestone at Savannah, Georgia, <u>in</u> Trask, P. D. and Kiersch, G. A., eds., Engineering geology case histories, no. 4: Geol. Soc. America, 57 p.
- Donsky, Ellis, 1963, Records of wells and ground-water quality in Camden County, New Jersey: New Jersey Dept. Conserv. and Econ. Devel., Div. Water Policy and Supply, Water Resources Circ. 10, 70 p.
- Dorf, Erling, and Fox, S. K., 1957, Cretaceous and Cenozoic of the New Jersey Coastal Plain, <u>in</u> Dorf, Erling, ed., Guidebook for field trips, Atlantic City meetings: Geol. Soc. America, 1957, p. 3-27.
- Doyle, J. A., 1969, Cretaceous angiosperm pollen of the Atlantic Coastal Plain and its evolutionary significance: Jour. Arnold Arboretun 50 (1), 35 p.
- Ferris, J. B., Knowles, D. B., Brown, R. H., and Stallman, R. W., 1962, Theory of aquifer tests: U. S. Geol. Survey Water-Supply Paper 1536-E, 174 p.

Fisher, W. L., and McGowen, J. H., 1969, Depositional

systems in Wilcox Group (Eocene) of Texas and their relation to occurrence of oil and gas: Am. Assoc. Petroleum Geologists Bull., v. 53, p. 30-54.

- Gallaher, J. E., and Price, W. E., Jr., 1966, Hydrology of the Alluvial Deposits in the Ohio River Valley in Kentucky: U. S. Geol. Survey Water-Supply Paper 1818, 80 p.
- Gill, H. E., Seaber, P. R., Vecchioli, John, and Anderson, H. R., 1963, Evaluation of geologic and hydrologic data from the test-drilling program at Island Beach State Park, New Jersey: New Jersey Dept. Conserv. and Econ. Devel., Div. Water Policy and Supply, Water Resources Circ. 12, 25 p.
- Graham, J. B., and Kammerer, J. C., 1954, Ground-water resources of the U. S. Naval Base, Philadelphia, Pa.: U. S. Geol. Survey open-file report, 137 p.
- Greenman, D. W., Rima, D. R., Lockwood, W. N., and Meisler, Harold, 1961, Ground-water resources of the Coastal Plain area of southeastern Pennsylvania: Pennsylvania Geol. Survey Bull., 4th ser., W 13, 375 p.
- Hantush, M. S., 1960, Modification of the theory of leaky aquifers: Jour. Geophys. Research, v. 65, no. 11, p. 3713-3725.
- Hardt, W. F., 1963, Public water supplies in Gloucester County, New Jersey: New Jersey Dept. Conserv. and Econ. Devel., Div. Water Policy and Supply, Water Resources Circ. 9, 55 p.
- Hardt, W. F., and Hilton, G. S., 1969, Water resources and geology of Gloucester County, New Jersey: New Jersey Dept. Conserv. and Econ. Devel., Div. Water Policy and Supply, Spec. Rept. 30, 130 p.
- Hely, A. G., Nordenson, T. J., and others, 1961, Precipitation, water loss, and runoff in the Delaware River basin and New Jersey: U. S. Geol. Survey Hydrol. Inv. Atlas HA-11, 11 p.
- Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural waters [2d ed.]: U. S. Geol. Survey Water-Supply Paper 1473, 363 p.

Herrick, S. M., 1962, Marginal sea of middle Eocene age

in New Jersey, <u>in</u> Short papers in geology, hydrology, and topography: U. S. Geol. Survey Prof. Paper 450-B, p. B56-B58.

- Hurr, R. T., 1966, A new approach for estimating transmissibility from specific capacity: Water Resources Research, v. 2, no. 4, p. 657-664.
- Jablonski, L. A., 1968, Ground-water resources of Monmouth County, New Jersey: New Jersey Dept. Conserv. and Econ. Devel., Div. Water Policy and Supply, Spec. Rept. 23, 117 p.
- Keighton, W. B., 1969, Water quality in the Delaware Estuary for two years of drought: 1965 and 1966 from Trenton, New Jersey to Reedy Island, Delaware: U. S. Geol. Survey Hydrol. Inv. Atlas HA-335.
- Lang, S. M., 1961, Natural movement of ground water at a site on the Mullica River in Wharton Tract, southern New Jersey, <u>in</u> Short papers in the geologic and hydrologic sciences: U. S. Geol. Survey Prof. Paper 424-D, p. D52-D54.
- Lang, S. M., and Rhodehamel, E. C., 1962, Movement of ground water beneath the bed of the Mullica River in the Wharton Tract, southern New Jersey, <u>in</u> Short papers in geology, hydrology, and topography: U. S. Geol. Survey Prof. Paper 450-B, p. B90-B92.
- Langmuir, Donald, 1969a, Iron in ground waters of the Magothy and Raritan Formations in Camden and Burlington counties, New Jersey: New Jersey Dept. Conserv. and Econ. Devel., Div. Water Policy and Supply, Water Resources Circ. 19, 49 p.

1969b, Geochemistry of iron in a coastal-plain ground water of the Camden, New Jersey, area: U. S. Geol. Survey Prof. Paper 650-C, p. C224-235.

- Lohman, S. W., and others, 1972, Definitions of selected ground-water terms--revisions and conceptual refinements: U. S. Geol. Survey Water Supply Paper 1988, 21 p.
- Marine, I. W., and Rasmussen, W. C., 1955, Preliminary report on the geology and ground-water resources of Delaware: Delaware Geol. Survey Bull. 4, 335 p.

Markewicz, J. F., 1969, Ilmenite deposits of the New Jersey

Coastal Plain, <u>in</u> Subitzky, Seymour, ed., Geology of selected areas in New Jersey and eastern Pennsylvania: New Jersey, Rutgers Univ. Press, p. .363-382.

Minard, J. P., 1964, Geology of the Roosevelt quadrangle, New Jersey: U. S. Geol. Survey Geol. Quad. Map GQ-340.

1965, Geologic map of the Woodstown quadrangle Gloucester and Salem counties, New Jersey: U. S. Geol. Survey Geol. Quad. Map GQ-404.

- Minard, J. P., and Owens, J. P., 1960 Differential subsidence of the southern part of the New Jersey coastal plain since early Late Cretaceous time: U. S. Geol. Survey Prof. Paper 400-B, art. 82, p. B184-B186.
- Minard, J. P., and Owens, J. P., 1962, Pre-Quaternary geology of the New Egypt quadrangle, New Jersey: U. S. Geol. Survey Geol. Quad. Map GQ-161.
- Minard, J. P., Owens, J. P., and Nichols, T. C., 1964, Pre-Quaternary geology of the Mount Holly quadrangle, New Jersey: U. S. Geol. Survey Geol. Quad. Map GQ-272.
- Minard, J. P., Owens, J. P., and Todd, Ruth, 1961, Redefinition of the Mount Laurel Sand (Upper Cretaceous) in New Jersey: U. S. Geol. Survey Prof. Paper 424-C, p. C64-C67.
- New Jersey State Department of Environmental Protection, 1970, Potable water standards: New Jersey Dept. Environ. Prot., 6 p.
- Ogorsky, H. O., and Mockus, Victor, 1964, Hydrology of agricultural lands, <u>in</u> Ven Te Chow, ed., Handbook of applied hydrology, 1964: New York, McGraw-Hill Book Co., p. 21-1 - 21-95.
- Otton, E. G., 1955, Ground-water resources of the southern Maryland Coastal Plain: Maryland Dept. Geology, Mines and Water Resources Bull. 15, 347 p.
- Owens, J. P., and Minard, J. P., 1960, The geology of the northcentral part of the New Jersey Coastal Plain: Johns Hopkins Univ. Studies in Geology no. 18, 31 p.

1962, Pre-Quaternary geology of the Columbus quadrangle, New Jersey: U. S. Geol. Survey Geol. Quad. Map GQ-160.

_____ 1964a, Pre-Quaternary geology of the Pemberton

quadrangle, New Jersey: U. S. Geol. Survey Geol. Quad. Map GQ-262.

- Owens, J. P., and Minard, J. P., 1964b, Pre-Quaternary geology of the Trenton East quadrangle, New Jersey-Pennsylvania: U. S. Geol. Survey Geol. Quad. Map GQ-341.
 - 1964c, Pre-Quaternary geology of the Bristol quadrangle, New Jersey-Pennsylvania: U. S. Geol. Survey Geol. Quad. Map GQ-342.
 - ______ 1966, Pre-Quaternary geology of the Allentown quadrangle, New Jersey: U. S. Geol. Survey Geol. Quad. Map GQ-566.
- Owens, J. P., Minard, J. P., and Sohl, N. F., 1968, Cretaceous deltas in the northern New Jersey Coastal Plain, <u>in</u> Finks, R. L., ed., Guidebook to field excursions at the 40th Annual Meeting of the New York State Geological Association: New York, Queens College of the City Univ., p. 33-48.
- Owens, J. P., and Sohl, N. F., 1969, Shelf and deltaic paleoenvironments in the Cretaceous-Tertiary Formations of the New Jersey Coastal Plain, <u>in</u> Subitzky, Seymour, ed., Geology of the selected areas in New Jersey and eastern Pennsylvania and guidebook of excursions: Geol. Soc. America and Associated Societies, Nov. 1969, Ann. Mtg., Atlantic City, N. J., New Brunswick, N. J., Rutgers Univ. Press, p. 235-278.
- Parker, G. G., Hely, A. G., Keighton, W. B., and Olmsted, F. H., 1964, Water resources of the Delaware River basin: U. S. Geol. Survey Prof. Paper 381, 200 p.
- Powell, S. T., Leggette, R. M., and Brashears, M. L., Jr., 1954, Report on the effect of ship channel enlargement, above Philadelphia: Prepared for the Committee for Study of the Delaware River, 37 p.
- Rainwater, F. H., and Thatcher, L. L., 1960, Methods for collection and analysis of water samples: U. S. Geol. Survey Water-Supply Paper 1454, 301 p.
- Rasmussen, W. C., Slaughter, J. H., Hulme, A. E., and Murphy, J. J., 1947, The water resources of Carolina, Dorchester, and Talbot counties: Maryland Dept. Geology, Mines and Water Resources Bull. 18, 371 p.

- Renfro, G. M., 1959, U. S. Conservation Service, Spartanburg, South Carolina, unpublished material, <u>in</u> Ven Te Chow, ed., Handbook of applied hydrology, 1964: New York, McGraw-Hill Book Co., chap. 21, p. 83.
- Rhodehamel, E. C., 1966, A hydrologic analysis of the New Jersey Pine Barrens region: U. S. Geol. Survey openfile report, 76 p. [1968].
 - 1970, A hydrologic analysis of the New Jersey Pine Barrens region: New Jersey Dept. Environ. Prot., Div. Water Policy and Supply, Water Resources Circ. 22, 35 p.
- 1972, Geology and water resources of the Wharton Tract and the Mullica River basin in southern New Jersey: U. S. Geol. Survey open-file report.
- Richards, H. G., 1945, Subsurface stratigraphy of Atlantic Coastal Plain between New Jersey and Georgia: Am. Assoc. Petroleum Geologists Bull., v. 29, no. 7, p. 885-955.
 - 1948, Studies on the subsurface geology and paleontology of the Atlantic Coastal Plain: Philadelphia Acad. Nat. Sci. Proc., v. C, p. 39-76.
 - _____ 1956, Geology of the Delaware Valley: Mineralog. Soc. Pennsylvania, Philadelphia, Pa., 106 p.
- Richards, H. G., Olmsted, F. H., and Ruhle, J. L., 1962, Generalized structure contour maps of the New Jersey Coastal Plain: New Jersey Geol. Rept., ser. 4, 38 p.
- Ries, Heinrich, Kümmel, H. B., and Knapp, G. N., 1904, The clays and clay industry of New Jersey, <u>in</u> Final report of the State Geologist: New Jersey Geol. Survey Final Rept. 6, pt. 2, p. 117-208.
- Rorebaugh, M. I., 1948, Ground-water resources in the northeastern part of the Louisville area, Kentucky: U. S. Geol. Survey Water-Supply Paper 1360-B.
- Rosenau, J. C., Lang, S. M., Hilton, G. S., and Rooney, J. G., 1969, Geology and ground-water resources of Salem County, New Jersey: New Jersey Dept. Conserv. and Econ. Devel., Div. Water Policy and Supply, Spec. Rept. 33, 142 p.

- Rush, F. E., 1962, Records of wells and ground-water quality in Burlington County, New Jersey--A preliminary report: New Jersey Dept. Conserv. and Econ. Devel., Div. Water Policy and Supply, Water Resources Circ. 7, 104 p.
 - 1968, Geology and ground-water resources of Burlington County, New Jersey: New Jersey Dept. Conserv. and Econ. Devel., Div. Water Policy and Supply, Spec. Rept. 26, 65 p.
- Seaber, P. R., 1963, Chloride concentrations of water from wells in the Atlantic Coastal Plain of New Jersey, 1923-61: New Jersey Dept. Conserv. and Econ. Devel., Div. Water Policy and Supply, Spec. Rept. 22, 250 p.
 - 1965, Variations in chemical character of water in the Englishtown Formation, New Jersey: U. S. Geol. Survey Prof. Paper 498-B, 35 p.
- Spangler, W. B., and Peterson, J. J., 1950, Subsurface geology of the Atlantic Coastal Plain in New Jersey, Delaware, Maryland, and Virginia: Am. Assoc. Petroleum Geologist, v. 31, no. 1, p. 1-99.
- Thompson, D. G., 1932, Ground-water supplies of the Camden area, New Jersey: New Jersey Dept. Conserv. and Econ. Devel., Div. Water Policy and Supply Bull. 39, 80 p.
- U. S. Geological Survey, 1967, Engineering geology of the Northeast Corridor, Washington, D. C., to Boston, Mass. Coastal Plain and surficial geology: U. S. Geol. Survey Misc. Geol. Inv. Map I-514-B.
- U. S. Public Health Service, 1962, Drinking water standards:
 U. S. Public Health Service Pub. 956, 61 p.
- Weller, Stuart, 1907, Cretaceous paleontology of New Jersey: Geol. Survey of New Jersey, Paleontology Ser. 4, v. 7, 1106 p.
- Wentworth, C. K., 1922, A scale of grade and class terms for clastic sediments: Jour. Geology, v. 30, p. 377-392.
- Wolfe, J. A. and Pakiser, H. M., 1971, Stratigraphic interpretations of some cretaceous microfossil floras of the Middle Atlantic States: U. S. Geol. Survey Prof. Paper 750-B, p. B35-B47.

TABLES

.

Table 1...Records of selected wells in Camdon County and vicinity

.

-

MAP NUMHER	MUNICIPALITY	LA1-LONG	Odhe k	LOCAL WELL NUMBER	DATE DRILLEO (YEAR)	ALTI- TUDE- OF LSO (FT)	CASING DEPTH (FT)	VELL DEPTH (FT)
			ATLANTI	COUNTY				
MA-1	HAMMONTON TOWN	3936534074493 3.1	ATLANTIC C EXPR BURLINGT	HAMMONTON 1	1964	77	220	230
EV-1 EV-2 EV-3 EV-4 EV-5	EVESHAM TUP EVESHAM TUP EVESHAM TUP EVESHAM TUP EVESHAM TUP	39543000745706.1 34541200745618.1 3453400745503.1 39533600745440.1 39533600745440.1	EVESHAM M U A BYRON T ROBERTS EVESHAM M U A EVESHAM M U A EVESHAM TUP U O	EMUA 2 EMUA 1	1967 1957 1963 1956 1897	60 93 115 89 115	288 322 405 369	334 375 435 389 212
EV-6 EV-7 EV-9 M5-1 M5-2	EVESHAM TWP EVESHAM TWP EVESHAM TWP MAPLE SHADE TWP MAPLE SHADE TWP	39523340745418.1 39523340745418.2 39521440745344.1 34572840745417.1 39572540745414.1	EVESHAM M U A EVESHAM M U A US ARMY MAPLE SMADE # O MAPLE SMADE # O		1969 1970 1954 1955 1961	110 110 84 10 20	689 464 138 211 410	699 500 158 272 494
MS-3 MS-4 MS-5 ML-1 ML-2	MAPLE SHADE TWP MAPLE SHADE TWP Maple Shade TWP Medford Lakes Hor Medford Lakes Hor		MAPLE SHADE & O Maple Shaue & D Maple Shaue & D Lingo L G Campanelli	MSWD 6	1965 1968 1968 1968	35 40 29 75 100	413 173 140 	493 208 195 260 310
ML-3 ME-1 ME-2 ME-3 MF-4	MEDFORD LAKES HOR MEDFORD TWP MEDFORD TWP MEDFORD TWP MEDFORD TWP	395100N0746723.1 395525N0745026.1 395525N0745025.1 395524N0745025.1 395413N0744422.1	THOMAS DICKINSN US GEOL SURVEY US GEOL SURVEY US GEOL SURVEY MEDFORD & C	1 MEOFDRD 4 MEOFORD 5 MEOFORD 1 MWC 3	1967 1967 1967 1963 1957	120 72 70 70	1125 740 400 506	320 1145 750 410 536
ME-S ME-6 ME-7 ME-8 ME-9	MEDFORD TWP MEDFORD TWP MEDFORD TWP MEDFORD TWP MEDFORD TWP	39531640744945.1 39525040745100.1 39520400745100.1 39515540745043.1 39514640745102.1	MEOFORD & C PASSAMONTI Lakes Water Co Menford Laund Lakes & C	MWC 2 1 LWC 3 LAUNDROMAT 1 2	1968 1968 1968 1967 1950	45 50 55 50 52	506 523 193 180	536 130 544 209 200
ME-10 ME-11 ME-12 ME-13 MO-1	MEDFORD TWP MEDFORD TWP MEDFDRO TWP MEDFDRO TWP MEDFDRO TWP MODRESTDAN TWP	39511240745123.1 39510040745108.1 39502040744758.1 39501840745051.1 39591540745554.1	TAUNTON LAKE WC RURERT DICKSDN GEORGE AARON W G FREEMAN MUDRESTUWN T WD		1950 1951 1952 1955 1966	57 66 116 65 88	230 222 320 260 320	252 242 340 275 340
MO-2 MO-3 MO-4 MO-5 MO-6	NOORESTDAN THP Moorestdan ThP Moorestdan ThP Moorestdan ThP Moorestdan ThP	395H38N07459u5.1 395A28N0745914.1 395751N0745832.1 39570&N0745807.1 39570&N0745807.2	CAMPBELL SOUP Moorestown T WD Layne Ny Co Moorestown T WD Moorestown T WD	LAYNE 1 MT#D 5	1958 1968 1960 1963 1963	40 35 70 35 47	242 J15 248 248	268 375 288 288 288
MT-1 MT-2 MT-3 MT-4 SH-1	MOUNT LAUREL TWP MOUNT LAUREL TWP MOUNT LAUREL TWP MOUNT LAUREL TWP SHAMONG TWP	395607NU745643.1 395555N0745152.1 395554040745723.1 395552N0745703.1 394422N0744309.1	HT LAUHEL W CO EVA UIAMONU Ralph Vasturo NJ TKNPKE AUTH US GEOL SURVEY	MLWC 1 INTEHCMANGE 4 ATSION 1	1961 1951 1950 1961 1963	20 73 68 35 46	558 190 100 137 240	589 202 119 147 260
5H-2 5H-3	SHAMONG TWP Shamong Twp	394422N0744309.2 394422N0744309.3	US GEOL SURVEY US GEOL SURVEY	ATSION 2 Atsion 3	1963 1963	49 47	63 14	65 17
AU-1 AU-2 BA-1 BA-2 BA-3	AUDUBON BORD Audubdn Bord Baprington Bord Barrington Bord Barrington Bord	395327N0750524.1 395326N0750358.1 395224N0750338.1 395224N0750303.2 395146N0750254.1	CAMDEN PUALIC'SERV E-G D CORVELLI NJ WATER CO NJ WATER CO DWENS CORNING	COUNTY PSEGC 1 TEST WELL T 1 TEST WELL T 2 CORNING 1	1953 1949 1968 1968 1956	25 65 70 70 60	120 183 482 350 285	130 191 492 360 318
8L-1 8L-2 8L-3 8L-4 88-1	BELLMAWR BORD Bellmawr Bord Bellmawr Bord Bellmawr Bord Berlin Bord	395222N0750632.1 395221N0750633.1 395219N0750641.1 395151N0750533.1 394738N0745614.1	GELLMAWR B W D Bellmawr B W D Bellmawr B W D Bellmawr B W O Berlin Water O	8840 1 8840 3 8840 2 8840 4 840 9	1942 1956 1942 1965 1955	31 31 31 82 150	111 331 111 360 650	160 356 159 557 713
88-2 88-3 88-4 88-5 88-6	BERLIN BORD BERLIN BORD BERLIN BORD BERLIN BORD BERLIN BORD	394738N0745614.2 394738N0745614.3 394738N0745614.4 394738N0745614.5 394738N0745614.5 394705N0745444.1	BERLIN WATER O BERLIN WATER O BERLIN WATER O BERLIN WATER D OWENS COMNING	BWD 10 9WD 1 8WD 5 8WD 6 1	1967 1923 1950 1952 1951	145 145 150 150 160	645 299 67 310 410	713 339 82 360 440
88-7 88-4 81-1 88-1 88-2	BERLIN BORD Berlin Bord Berlin Twp Brooklawn Bord Brooklawn Bord	394653N0745543.1 394644N0745539.1 39481dN0745512.1 395244N0750727.1 395244N0750727.2	D CHILLENNI Gregory Porral Akthur Tiller Brodklawn B w D Brooklawn B w O		1951 1954 1952 1956 1961	160 155 175 13 13	68 40 34 133 307	78 60 40 167 328
BR-3 BR-4 CA-1 CA-2 CA-3	BROOKLAWN RORO Brooklawn Boro Camden City Camden City Camden City	395243N0750724.1 395242N0750725.1 395732N0750532.1 395728N0750520.1 395726N0750518.1	BROOKLAWN B W D BROOKLAWN B W O NJ WATER CO NJ WATER CO NJ WATER CO		1967 1942 1924 1954 1958	13 13 10 10 10	268 120 102 122 139	321 161 135 164 170
CA-4 CA-5 CA-6 CA-7 CA-B	CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY	395725N0750521+1 395722N0750523+1 395722N0750514+1 395720N0750513+1 395719N0750517+1	NJ WATER CO NJ WATER CO NJ WATER CO NJ WATER CO NJ WATER CO	CAMDEN DIV 49 CAMDEN DIV 46 CAMDEN DIV 10 CAMDEN DIV 51 CAMDEN DIV 45	1955 1950 1932 1965 1950	9 11 10 10	137 148 	169 178 150 192 173
CA-9 CA-10 CA-11 CA-12 CA-13	CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY	395718N0750513.1 395718N0750507.1 395716N0750608.1 395716N0750507.1 395716N0750507.2	NJ WATER CO H Komnstamm Co Camden City W D H Komnstamm Co H Komnstamm Co	CAMDEN DIV 47 6 CITY 15 3 4	1953 1967 1954 1954 1959	20 30 8 30 30	159 163 116 116 133	174 183 136 136 158
CA-14 CA-15 CA-16 CA-17 CA-18	CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY	39571600750507.3 39571500750519.1 39571500750517.1 39571100750534.1 39570700750615.1	H KOMNSTAMM CO NJ WATER CO NJ WATER CO NJ WATER CO CAMDEN CITY W D	S CAMDEN DIV 52 CAMDEN DIV 44 36 OBS 27TH ST CITY 14	1960 1965 1950 1932 1953	30 18 20 50 8	112 147 185 105	138 200 198 202 145

Table 1.--Records of selected wells in Camden County and vicinity--Continued

	LENGTH	DEPTH T		or selec	ted welli	in Camd	en Cour	ity and vi	cinityC	ontinu	e d
MAP NUMBER	OF WELL OPEN TO AQUIFER (FEET)	CONSOLI DATED		WATER Level (FT)	UATE WATEN LEVEL MEASUNE	YIELD D (GPM)	DRAW Down (FT)	SPECIFIC CAPACITY	PERIOU	USE OF	MAJOR AGUIFER
					AT	LANTIC COU			(HOURS)	WATER	1
HA-1	10		6	Ŷ	5-04	61	72	0.d	12	н	TM KW
€V-1	46					LINGTON CO	UNTY	•			
ËV-2 EV-3 EV-4 EV-5	53 30 20		10 9 10 8 6	104 100 135 91 42	6-67 11-57 10-63 6-56	608 750 800 517 100	64 80 85 168	9.5 4.4 9.4 3.1	6 	P I P P	KJ MR KJ MR KJ MR KJ MR KJ ET
EV-6 EV-7 EV-8 MS-1 MS-2	10 36 20 61 55	 494	8 15 8 15 15	159 172 41 19 45	12-64 5-70 6-54 12-55 8-61	109 1012 1013 1010 1091	12 41 43 42 64	9.1 24.7 4.7 24.3 15.6	8 48 8	U P - P P	KJ HR KJ HR KJ HR KJ HR KJ HR
MS-3 MS-4 MS-5 ML-1 ML-2	60 25 55 	 	 12 8 4 4	53 57 60 45 75	12-65 7-68 8-68 10-68	131 1034 600 70 100	69 60 	15.0 10.0 	8 8 1 1	• • • I I	K3 MR K3 MR K3 MR K3 MH K3 MH
ML - 3 ME - 1 ME - 2 ME - 3 ME - 4	10 10 30	 	4 K 5 M	70 75 72 86 48	7-64 1-68 1-68 10-63	100 517	 86	 6.0	1 	t C C C t	KJ MW KJ MR KJ MR KJ MR KJ MR
ME-5 ME-6 ME-7 ME-8 ME-9	30 16 20	 	H 4 5 5 4 5 5	94 10 93 20	10-68 10-68 10-68 10-68 10-68 10-68	524 100 307 100	35 76 	15.0 3.9 	8 8 6	P I P I P	KJ MR KJ MW KJ MR KJ MW KJ MW
ME-10 MF-11 ME-12 ME-13 MO-1	20 20 15 20	 	644 44 8	25 20 20 90	11-50 1-51 5-52 1-55 11-60	300 100 50 40 530		 	 	P I I I O	K3 MW K3 MW K3 MW K3 MW K3 MR
MO-2 MO-3 MO-4 MO-5 MO-6	21 40 40 40	 	10 12 12	41 50 67 55	10-58 3-68 11-63 10-63	560 350 805 1300	54 36 55	10.4 22.4 16.2	8 8 8	4 U Z L P	KJ MR K3 MR K3 MR K3 MR K3 MR
MT-1 MT-2 MT-3 MT-4 SH-1 SH-2	31 10 19 10 20	594 	9 4 5 6	35 48 25 39 +6	6-61 6-61 7-63	548 10 10 25	78 6 40 	7.0 1.7 0.6	8 16 	P T T T J	KJ MR KJ ET KJ ET KJ MR TE MA
54-2	5 3		1	6 7	10-63 12-63					U	AA CP
					CAM	DEN COUNTY		-		U	AA CP
AU-1 Au-2 BA-1 BA-2 BA-3	10 4 10 10 30	510 510	4 6 4 12	40 62 111 116 96	1-53 9-49 3-68 3-68 2-56	50 30 130 40 1045	18 21 6 43	 1.7 6.2 6.7 24.3	6 24 60 8	2 1 2 2 2	KJ MR KJ MR KJ MR KJ MR KJ MR
BL-1 8L-2 8L-3 8L-4 8B-1	49 25 48 59 63	570	12 8 12 12 8	42 62 45 127 155	7-42 8-56 10-42 8-66 7-55	1000 1001 500 1016 1000	18 71 12 25 99	55.6 14.1 41.7 40.6 10.1	36 8 24 24 8	P P P	K3 MR K3 MR K3 MR K3 MR K3 MR K3 MR
88-2 88-3 88-4 88-5 88-6	42 40 15 50 30	 	ନ 6 ନ 6	73 98 98		1012 155 365 450 115	69 138 63	14.7 3.3 1.8	8 8 8	- - 	KJ MR KJ MW AA CP KJ MW KJ MW
88-7 88-8 87-1 88-1 88-2	10 20 6 34 21	 328	3 4 4 10 5	15 8 21 16 11	10-51 3-54 9-52 2-60 6-61	30 50 455 500	1 18 33	30.0 25.3 15.2	3 5 	T Z T P P	AA CP AA CP AA CP KJ MR KJ MR
8R-3 8R-4 CA-1 CA-2 CA-3	33 25 33 32 31	 164 	10 12 18 12 12	76 22 21 45 44	8-42 5-24 7-54 5-58	455 1050 1412 1000	18 22 54 52	25.3 47.7 26.1 19.2	8 2 8	P P P	KJ MR KJ MR KJ MR KJ MR KJ MR
CA-4 CA-5 CA-6 CA-7 CA-8	32 30 51 31	169 193 	12 12 8 16 12	44 35 10 56 35	5-55 11-50 3-33 1-65 8-50	1400 1471 700	55 74 65	25.5 19.9 10.8	 8 5	P P U P P	KJ MR KJ MR KJ MR KJ MR KJ MR
CA-9 CA-10 CA-11 CA-12 CA-13	25 20 20 20 25	148 	12 8 19 6 6	3n 4u 37 50 40	9-53 2-07 3-54 12-54 3-59	1012 200 150 150 250	45 70 20	22.5 14.3 12.5	4 48 8 6	P N P N N	KJ MR KJ MR KJ MR KJ MR KJ MR KJ MR
CA-14 CA-15 CA-16 CA-17 CA-18	26 51 10 40	200 164	6 16 12 6 18	40 60 61 57 35	5-50 6-32	200 1404 1400 	26	10.0	4 5 3 	N P U P	KJ MR KJ MR KJ MR KJ MR KJ MR
					107	,					

Table 1.-.Recards of selected wells in Comden County and vicinity--Continued

IGDIE 1,Kecords af selected wells in Comden County and vicinityContinuou								
MAP NUMBER	MUNICIPALITY	LAT-LONG	OWNER	LOCAL WELL NUMBER	DATE DRILLED (YEAR)	ALTI- TUDE- OF LSD (FT)	CASING DEPTH (FT)	WELL DEPTH (FT)
			CAMDEN	COUNTY				
CA-19 CA-20 CA-21 CA-22 CA-23	CAMDEN ÜİYY CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY	395706N0750553.1 395659N0750610.1 395659N0750610.2 395659N0750610.3 395652N0750607.1	CAMDEN CITY W D Camden City W d Camden City W d Camden City W d Camden City W d	CITY 9 TEST WELL 1950 CITY 9-1924	1954 1957 1950 1924 1935	23 9 5 9 10	149 116 129 106 126	179 146 150 146 158
CA-24 CA-25 CA-26 CA-27	CAMDEN CITY Camden City Camden City Camden City	395649N0750743.1 395640N0750622.1 395638N0750622.1 395638N0750622.2	ESTERUROOK PEN Camden City w D Camden City w D Camden City w D Camden City w D) CITY 1-1940) CITY 1A) CITY 1-1922	1940 1953 1922 1945	8 5 10 5 23	135 135 146 136	300 168 170 174 166
CA-28 CA-29 CA-30 CA-31 CA-32 CA-33	CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY	395617N0750710.1 395615N0750633.1 395614N0750633.2 395614N0750633.1 395604N0750735.1 395603N0750736.1	CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D PUBLIC SERV E G PUBLIC SERV E-G) CITY 5N) CITY 5-1937) CITY 5-1928 ; 6 REPLACEMENT	1963 1937 1928 1954 1955	22 22 22 5 4	134 142 152 118 119	169 172 171 145 145
CA-34 CA-35 CA-36 CA-37 CA-38	CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY	395602N0750744.1 395557N0750629.1 395557N0750629.2 395557N0750629.3 395552N0750629.3	PUBLIC SERV E- Camden City W D Camden City W D Camden City W D Camden City W D	9 PSEGC 7 9 CITY 3A 9 CITY 3-1934 9 CITY 3-1922	1947 1953 1934 1922 1953	4 15 15 15 30	116 91 95 185	145 115 113 110 225
CA-39 CA-40 CA-41 CA-42 CA-43	CAMDEN CITY Camden City Camden City Camden City Camden City Camden City	395551N0750725.1 395550N0750729.1 395546N0750533.1 395541N0750622.1 395541N0750622.2	PURLIC SERV E-G Camuen City W D Camden City W d Camden City W d Camden City W d	CITY 28 CITY 17 CITY 4	1950 1953 1954 1950 1935	5 8 34 41 40	120 111 230 131 121	146 136 265 156 156
CA-44 CA-45 CA-46 CA-47 CA-48	CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY	395541N0750622.3 395540N0750742.1 395540N0750742.2 395539N0750630.1 395539N0750541.1	CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D GAMDEN CITY W D W JERSEY HOSP OLOL HOSPITAL	CITY B	1922 1928 1953 1958 1963	40 6 30 30	 150 89 119 241	175 124 140 258
CA-49 CA-50 CA-51 CA-52 CA-53	CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY	395534N0750724.1 395532N0750720.1 395530N0750719.1 395528N0750538.1 395527N0750646.1	GALLAGHERS WHSE GALLAGHERS WHSE GALLAGHERS WHSE A N STOLLWRECK CAMDEN CITY W D	EVRSN LVRNG 2 Evrsn Lvrng 5 2	1929 1933 1929 1950 1948	10 10 28 14	145 111 111	170 171 203 131 136
CA-54 CA-55 CA-56 CA-57 CA-58	CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY	395527N0750646.2 395523N0750729.1 395512N0750640.1 395502N0750655.1 395457N0750641.1	CAMDEN CITY W D Camden City Camden City W d Camden Brewery Camden City W d	SEWAGE PLANT 1 CITY 11	1928 1954 1942 1945	14 9 13 18 21	111 163 124 160 126	135 193 154 180 160
CA-59 CA-60 CA-61 CA-62 CA-63	CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY CAMDEN CITY	395457N0750641.2 395457N0750640.1 395455N0750716.1 395449N0750716.1 395449N0750711.1	CAMDEN CITY W D Camden City W d Sd Jrsy Port CM So Jrsy Port CM So Jrsy Port CM) CITY 7N NY SHIP 7 NY SHIP 6	1928 1966 1942 1941 1940	21 21 12 12 12	126 123 187 119 87	164 163 229 225 104
CA-64 CA-65 CH-1 CH-2 CH-3	CAMDEN CITY CAMDEN CITY CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP	395435N0750720.1 395427N0750606.1 395621N0745840.1 395616N0755027.1 395615N0750027.1	SD JRSY PORT CM CAMDEN CITY W D Anthdny Maladra NJ WATER CO NJ WATER CO	WATER WORKS T1	1956 1942 1955 1960 1961	12 15 60 39 34	50 247 371 153	124 300 115 453 167
CH-4 CH-5 CH-6 CH-7 CH-8	CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP	395613N0750052.1 395612N07501+2.1 395606N0750148.1 395606N0750148.2 395603N0750031.1	JERRY SCHAEFER Radio Corp Amer GS Racing Assct GS Racing Assct NJ Water Co	RCA 1 Chry HLL INN 1	1965 1955 1954 1967 1967	45 128 80 60 45	100 220 148 376	105 179 172 427
CH-9 CH-10 CH-11 CH-12 CH-13	CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP	395556N0745924.1 395530N0750301.1 395514N0750213.1 395511N0750202.1 395502N0750221.1	M HOLZER E H ELLIS SON GARDEN STATE PK WIDELL AND SONS N J NATIONAL GD	RACE TRACK	1953 1949 1953 1956	75 23 25 27 10	178 158 128 125 97	183 168 158 135 111
CH-14 CH-15 CH-16 CH-17 CH-18	CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP	395455N0745929.1 395455N0745929.2 395455N0745924.1 395452N0750035.1 395442N0750103.1	NJ WATER CO NJ WATER CO NJ WATER CO W J DSTERTAG NJ WATER CO	KINGSTON 25 KINGSTON 28 KINGSTON 27 1 ELLISBURG 13	1961 1964 1963 1953 1960	44 40 55 39	309 175 365 87 491	367 207 417 115 527
CH-19 CH-20 CH-21 CH-22 CH-23	CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP	395441N0750104.1 395438N0750107.1 395422N0745841.1 395419N0745721.1 395409N0750048.1	NJ WATER CO NJ WATER CO Deer Park Fire Frank Powers P a Vatter	ELLISBURG 16 ELLISBURG 23 CO 1 	1957 1960 1954 1949 1953	39 32 70 7 2 64	187 318 252 310 224	220 375 258 320 234
CH-24 CH-25 CH-26 CH-27 CH-28	CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP	395409N0745957.1 395406N0745841.1 395356N0745708.1 395356N0745708.2 395356N0745708.3	ROBERT COLEMAN ARNOLD PALMER NJ WATER CO NJ WATER CO NJ WATER CO	DRIVING RANGE OLD ORCHARD A OLD ORCHARD B OLD ORCHARD C	195_ 1964 1967 1967 1967	17 60 71 71 71	98 275 743 328 487	108 285 748 342 500
CH-29 CH-30 CH-31 CH-32 CH-33	CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP	395356N0745708.4 395356N0745708.5 395356N0745708.6 395331N0745920.1 395321N0745617.1	NJ WATER CO NJ WATER CO NJ WATER CO A R ROSS EUGENE MILLER	OLD ORCHARD 36 OLD ORCHARD 37 OLD ORCHARD 38 1 1	1968 1968 1968 1950 1954	8 6 72 100 92	299 454 443 125 360	349 488 493 135 370

•

Table 1.--Records of selected wells in Camden County and vicinity--Continued

MAP NUMBER	LENGTH OF WELL OPEN TO AQUIFER (FEET)	DEPTH TO CONSOLI- DATED ROCK (FT)	CASING DIAM- ETER (IN)	WATER Level (Ft)	DATE WATER LEVEL MEASURED	Y IELD (GPM)	DRAW Down (FT)	SPECIFIC CAPACITY		USE OF WATER	NAJOR AQUIFER
					CAM	IDEN COUN	TΥ				
CA-19 CA-20 CA-21 CA-22 CA-23	30 30 21 40 30	146 166 146 158	18 18 6 26 18	50 48 23 15 57	12-54 11-57 7-50 3-24 11-57	1130 1020 300 1420 1020	53 53 57 72 32	21.3 19.2 5.3 19.7 31.9	8 	P P U P	K3 MR K3 MR K3 MR K3 MR K3 MR
CA-24 CA-25 CA-26 CA-27 CA-28	32 35 39 30		6 18 18 26 16	 42 12 32	 12-53 10-22 -45	1000 1050 857	 54 67 74	18.5 15.7 11.6	 8 	U P P P P	WG K3 MR K3 MR K3 MR K3 MR
CA-29 CA-30 CA-31 CA-32 CA-33	35 30 19 32 26		18 18 26 8	58 31 35	10-63 5-28 12-54	1000 1100 350	32 37 25 	31.2 29.7 14.0	24	P P P N N	K3 MR K3 MR K3 MR K3 MR K3 MR
CA-34 CA-35 CA-36 CA-37 CA-38	29 25 22 24 40		18 18 26 18	37 15 46	12-55 8-22 6-53	1000 1160 1000	46 55 24	21.7 21.1 41.7	8 	2000	K3 MR K3 MR K3 MR K3 MR K3 MR
CA-39 CA-40 CA-41 CA-42 CA-43	26 25 35 25 35	190	10 18 18 18 18	31 41 64 77 56	5-50 12-54 7-58 11-57 8-35	506 1000 1250 1000 1200	34 46 32 27 34	14.9 21.7 39.1 37.0 35.3	12 8 8 	N B B B B	K3 MR K3 MR K3 MR K3 MR K3 MR
CA-44 CA-45 CA-46 CA-47 CA-48	25 35 21 21		18 18 8 8	21 12 52 68	9-26 7-53 12-58 9-63	1085 1000 205 275	52 30 58 11	20.9 33.3 3.5 25.0	 8 8 4	Р Р Т Т	K3 MR K3 MR K3 MR K3 MR K3 MR
CA-49 CA-50 CA-51 CA-52 CA-53	26 	 	4 8 12 8 18	 52 39	 2-50 2-48	150 300 210 1012	 8 31	26.2 32.6	 3 8		K3 MR K3 MR K3 MR K3 MR K3 MR
CA-54 CA-55 CA-56 CA-57 CA-58	25 20 40	201	26 10 16 18	18 36 32 49	9-28 1-54 9-42 7-45	1180 907 1005 775	47 30 47	25.1 33.5 16.5	 8 	P U P 7 P	K3 MR K3 MR K3 MR K3 MR K3 MR
CA-59 CA-60 CA-61 CA-62 CA-63	38 40 42 26 17	 	26 18 12 10 8	29 60 35 28 28	9-28 6-66 5-43 3-41 4-41	1000 1023 1005 830 533	38 21 57 81 37	26.3 48.7 17.6 10.2 14.4	8 		K3 MR K3 MR K3 MR K3 MR K3 MR
CA-64 CA-65 CH-1 CH-2 CH-3	62 82 14	 	16 6 12 12	17 27 55 57 26	1-56 5-42 1-55 3-60	15 1067 1051	56 49 44	 21.8 23.9	40 2 8 8	N U I P P	K3 MR K3 MR K3 MV K3 MR K3 MR
CH-4 CH-5 CH-6 CH-7 CH-8	5 25 24 47	 	4 6 8 12 12	50 48 92 85	1-65 9-54 1-67	20 50 400 1030	10 43 	2.0 9.3 18.1	5 4 10 24	H N U I	K3 MR K3 MR K3 MR K3 MR K3 MR
CH-9 CH-10 CH-11 CH-12 CH-13	5 10 30 10 5	 	4 5 6 6	45 25 25 36	3-53 4-49 3-53 5-56	15 15 60 150	10 20 14	1.5 0.7 10.7	2 4 6 8	H N I H T	K3 MR K3 MR K3 MR K3 MR K3 MR
CH-14 CH-15 CH-16 CH-17 CH-18	58 26 52 36	528 531	12 12 12 8 10	69 82 73 74 54	9-61 10-64 12-63 10-53 4-53	1000 857 812 25 1200	70 70 	12.2 11.6 24.0	8 8 2 8	P	K3 MR K3 MR K3 MR K3 MV K3 MR
CH-19 CH-20 CH-21 CH-22 CH-23	33 57 6 10 10	 	12 12 4 5 3	59 62 85 80 80	11-57 5-60 11-54 12-49 2-53	1000 1001 20 100 40	62 34 15 20	16.1 29.4 1.3 5.0	5 8 2 4 4	P P H H H	K3 MR K3 MR K3 MR K3 MR K3 MR
CH-24 CH-25 CH-26 CH-27 CH-28	10 10 5 5 5	807 	4 2 3 3	43 90 107 110 109	5-53 5-64 3-67 3-67 	40 50 	17 10 	2.4 5.0 	 	H U U U	K3 MV K3 MR K3 MR K3 MR K3 MR
CH-29 CH-30 CH-31 CH-32 CH-33	50 34 50 10	 	12 12 12 6 6	123 109 113 63 92	4-68 4-68 5-68 9-50 7-54	703 1209 1455 250 200	116 47 49 18	6.1 25.7 29.7 11.1	24 24 24 6	P P P F F	K3 MR K3 MR K3 MR K3 ET K3 MR

Table 1.--Records of selected wells in Camden County and vicinity--Continued

	10010 IK		I Wells IN COMO	en county and t	//c/w//yCo			
	MUNICIPALITY	LAT-LONG	OWNER	LOCAL WELL NUMBER	DATE DRILLED (YEAR)	ALTI- TUDE- OF LSD (FT)	CASING DEPTH (FT)	WELL DEPTH (FT)
			CAMDEN	COUNTY				
CH-34 CH-35 CH-36 CH-37 CH-38	CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP	395308N0750015.1 395259N0745720.1 395254N0745822.1 395238N0750030.1 395229N0745722.1	NJ TURNPIKE AU Immac Conceptn F Myers Hussman Refridg Harold Snyder	SERVICE 35-2 NOVITIATE 2 I HUSSMAN I	1951 1952 1967 1957 1956	65 65 67 127	231 329 321 276 210	261 339 331 306 215
CH-39 CH-40 CH-41 CH-42 CH-43	CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP CHERRY HILL TWP	395229N0745712.1 395229N0745712.2 395212N0745757.1 395150N0745916.1 395150N0745913.1	NJ WATER CO NJ WATER CO DR E BROWN Woodcrest CT CL Woodcrest CT CL		1965 1965 1969 1949 1955	156 156 100 92 100	552 137 105 400 354	562 147 115 420 385
CL-1 CL-2 CL-3 CL-4 CL-5	CLEMENTON BORO CLEMENTON BORO CLEMENTON BORO CLEMENTON BORO CLEMENTON BORO	394832N0745915.1 394832N0745915.2 394832N0745915.3 394832N0745915.4 394807N0745806.1	CLEMENTON W D CLEMENTON W D CLEMENTON W D CLEMENTON W D CLEMENTON W D	CWD 6 CWD 7 CWD B Abandon Well CWD 9	1924 1943 1950 1954	59 59 60 55 150	543 251 126 367	240 633 276 168 457
CO-1 CO-2 CO-3 CO-4 CO-5	COLLINGSWODD 80R0 COLLINGSWODD RORO COLLINGSWODD RORO COLLINGSWODD RORO COLLINGSWODD RORO	395522N0750432.1 395521N0750435.1 395519N0750432.1	COLLINGSWOOD WO COLLINGSWOOD WO COLLINGSWOOD WD CDLLINGSWOOD WO COLLINGSWOOD WD	CWD 3 CWD 4 CWD 2R	1956 1960 1942 1960 1950	20 10 9 12 16	248 257 275 248 266	278 287 304 278 306
CO-6 CO-7 CO-8 GI-1 GI-2	COLLINGS#OOD RORO COLLINGSWOOD RORO COLLINGSWOOD RORO GIRBSBORD RORO GIRBSBORD RORO	395426N0750514.1	FRIENDSMIP DAIR COLLINGSWOOD WD COLLINGSWODD WD LUCAS PAINT CO LUCAS PAINT CO	CWD 7 CWD 6	1955 1965 1965 	21 10 10 93 93	143 224 218 	164 313 312 165 160
G1-3 GI-4 G1-5 GJ-6 GI-7	GIRBSBORD BORD GIRBSBORD BORD GIRBSBORD BORD GIRBSBORD ROPD GIRBSBORD BORD	394955N0745852.1 394946N0745855.1 394946N0745855.2 394946N0745855.3 394944N0745717.1	KARL W FUCHS NJ WATER CO NJ WATER CO NJ WATER CO JAMES E HALE	1 GIBBSBORO OB 1 GIBBSBORO OB 2 GIBBSBORO OB 3	1951 1969 1969 1969 1952	70 70 70 70 135	108 1081 940 670 138	108 1091 950 680 150
GI-8 GI-9 GC-1 GC-2 GC-3	GIA8580RD BORD GIA8580RD BORD GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY	394927N0745715.1 394923N0745714.1 395354N0750654.1 395355N0750738.1 395349N0750651.1	US AIR FORCE US AIR FORCE GLOUCESTER C WO US GEOL SURVEY GLOUCESTER C WD	COAST GUARD 1	1959 1960 1965 1966 1961	191 193 10 10 10	260 280 226 162 - 221	290 310 266 170 262
GC-4 GC-5 GC-6 GC-7 GC-8	GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY	395348N0750654.1 395348N0750654.2 395348N0750654.3 395348N0750654.4 395348N0750654.4	GLOUCESTER C WD GLOUCESTER C WO GLOUCESTER C WD GLOUCESTER C WD GLOUCESTER C WO	GCWD 30 GCWD 34 GCWD 35	1947 1936 1942 1944 1946	5 13 10 5 5	84 152 88 85	125 175 175 122 126
GC-9 GC-10 GC-11 GC-12 GC-13	GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY	395347N0750652.1 395347N0750651.1 395346N0750651.1 395345N0750653.1 395345N0750653.1 395343N0750652.1	GLOUCESTER C WD GLOUCESTER C WD GLOUCESTER C WD GLOUCESTER C WD GLOUCESTER C WD	GCWD 38 GCWD 32 GCWD 2	1938 1949 1938 1929 1968	14 10 11 11 15	220 279 140 	240 300 175 171 306
GC-14 GC-15 GC-16 GC-17 GC-18	GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY	395332N0750734.1 395329N0750732.1 395324N0750736.1 395322N0750757.1 395322N0750757.1	HINDE AND DAUCH HINDE AND DAUCH HINDE AND DAUCH HARSHAW CHEM CO HARSHAW CHEM CO	2 3 HARSHAW 4	1945 1945 1945 1953 1951	9 9 7 5 6	241 241 240 235 221	261 261 260 260 251
GC-19 GC-20 GC-21 GC-22 GC-23	GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY	395321N0750747.1 39531&N0750755.1 395315N0750617.1 395314N0750749.1 395313N0750&04.1	HARSHAW CHEM CO Harshaw Chem Co H W Wilson Jr NJ Zing Co NJ Zing Co		1952 1948 1954 1945 1958	8 5 25 5 5	245 246 102 230 223	265 266 112 250 255
GC-24 GC-25 GC-26 GC-27 GT-1	GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER CITY GLOUCESTER TWP	395308N0750757.1 395308N0750749.1 395308N0750744.1 395252N0750623.1 395030N0750347.1	NJ ZINC CO NJ ZINC CO NJ ZINC CO GLOUCESTER C WD NJ WATER CO	2-OEEP 5-DEEP 4-DEEP GCWO 39 OTTERBRDOK 29	1954 1958 1965	5 5 24 58	245 249 161 612	275 175 279 185 712
GT-2 GT-3 GT-4 GT-5 GT-6	GLOUCESTER TWP GLOUCESTER TWP GLOUCESTER TWP GLOUCESTER TWP GLOUCESTER TWP	39503040750347.2 39502800750344.1 39502600750502.1 39502540750443.1 39501700750443.1	NJ WATER CO NJ WATER CO EDWARD MARSM HOWARD BROWN W L DOUGHERTY	OTTERBROOK 39 OTTERBROOK 34 	1968 1967 1952 1955 1949	60 60 15 44 31	269 288 65 132	349 377 150 75 142
GT-7 GT-8 GT-9 GT-10 GT-11	GLOUCESTER TWP GLOUCESTER TWP GLOUCESTER TWP GLOUCESTER TWP GLOUCESTER TWP	395007N0750425.1 394932N0750301.1 394914N0750244.1 394855N0750442.1 394841N0750354.1	J STEZZI JOHN WARGO JOHN RISHOP THEISS EILLEN GESSWIN	1 1 	1955 1949 1967 1968 1952	30 71 70 65 70	274 359 160 56 170	287 377 170 71 180
GT-12 GT-13 GT-14 GT-15 GT-16	GLOUCESTER TWP GLOUCESTER TWP GLOUCESTER TWP GLOUCESTER TWP GLOUCESTER TWP	394840N0750314.1 394839N0750410.1 394836N0750150.1 394833N0750355.1 394833N0750428.1	ROBERT MANNING Mary Bennie Warner Lombardi Arthur Jones WM D Cathcart	1 1	1953 1950 1955 1967	104 72 81 70 68	121 166 275 179 175	131 176 290 185 185
GT-17 GT-18 GT-19 GT-20 GT-21	GLOUCESTER TWP GLOUCESTER TWP GLOUCESTER TWP GLOUCESTER TWP GLOUCESTER TWP	394829N0750347.1 394820N0750445.1 394815N0750356.1 394806N0750426.1 394806N0750426.2	SUN TEMP INDUST GLOUC M U AUTH Amandus Carlson Gar St WC-BLKWD Gar St WC-BLKWD		1966 1971 1953 1948 1930	80 20 25 20 60	 188 335 49	388 358 198 386 79

	lable 1Records of selected wells in Camden County and vicinityContinued										
MAP NUMBER	LENGTH OF WELL OPEN TO AQUIFER (FEET)	DEPTH TO Consoli- Dated Rock (FT)	CASING DIAM- Eter (1n)	WATER Level (FT)	DATE WATER LEVEL MEASURED	Y1ELD (GPM)	DRAW Down (FT)	SPECIFIC CAPACITY		USE OF WATER	MAJOR AGUIFER
					CAH	IDEN COUN	TY				
CH-34 CH-35 CH-36 CH-37 CH-38	30 10 10 30 5		8 6 4 8 4	81 41 87 65	8-51 -52 9-67 7-59 2-56	13 100 317 100	24 19	0.5	48 4 5	IIIII	K3 MR K3 MR K3 MR K3 MR K3 ET
CH-39 CH-40 CH-41 CH-42 CH-43	10 10 20 31	 	6 6 4 6 10	200 88 45 100 90	10-65 10-65 9-69 5-49 7-55	30 150 300	 10 9 15	3.0 16.7 20.0	 1 5 8	U U H H H H	K3 MR K3 MW K3 MW K3 MR K3 MR
CL-1 CL-2 CL-3 CL-4 CL-5	90 25 42 46	 	8 6 10 8 8	53 48 1u 124	 4-50 7-50 3-70 7-54	250 500 510 503	135 96	3.7	 15 	P P U P	K3 ET K3 MR K3 ET K3 MW K3 ET
CO-1 CO-2 CO-3 CO-4 CO-5	30 30 30 30 40	300	12 12 12 12	43 57 32 57 54	2-56 -53 7-42 6-60 10-49	1000 1000 760 1000 1023	71 63 37 51 44	14.1 15.9 20.5 19.6 23.2	8 8 8 8	P P P P	K3 MR K3 MR K3 MR K3 MR K3 MR
CO-6 CO-7 CO-8 GI-1 GI-2	21 89 53 	 	6 12 12 4	41 49 46 	1-55 3-65 5-65 	100 1034 1034 150	38 18 13 	2.6 57.4 79.5 	68 8 	N P N I	K3 MR K3 MR K3 MR K3 MW K3 MW
GI-3 GI-4 GI-5 GI-6 GI-7	10 10 10	1142 1142 1142 1142	3 3 3 4	4 115 125 119 42	7-51 3-69 1-69 2-69 11-52	50 43 35 60	30 	1.4 3.9	6 2 	H U U U H	КЗ М₩ КЗ МR КЗ МR КЗ MR TL
G1-8 G1-9 GC-1 GC-2 GC-3	 40 8 40	 252	8 12 6 12	118 130 58 58	4-59 8-60 10-65 6-61	55 102 1034 1000	42 41	24.6 24.4	24 8 	H H P U P	K3 MW K3 MW K3 MR K3 MR K3 MR
6C-4 6C-5 6C-6 6C-7 6C-8	41 23 22 24		6 8 10 8	 17 29	H-61 6-44 1-46	70 600 400	 28 13	21.4 30.8	2	0 0 0 0	K3 MR K3 MR K3 MR K3 MR K3 MR
GC-9 GC-10 GC-11 GC-12 GC-13	20 21 30	 	12 8 8 9 10	21 36 33 	3-38 4-53 	875 300 200	52 32 	16.8 6.2	24	U U U P	K3 MR K3 MR K3 MR K3 MR K3 MR
GC-14 GC-15 GC-16 GC-17 GC-14	20 20 25 30	 	10 10 10 10 10	 55 77	 3-53 3-51	 566 578	 22 24	25.7 24.1	 8	~ ~ ~ ~ ~ ~ ~	K3 MR K3 MR K3 MR K3 MR K3 MR
GC-19 GC-20 GC-21 GC-22 GC-23	20 20 20 30	260	10 10 3 	57 313 33 34 64	9-52 9-48 4-53 -45 12-57	530 560 25 600 600	26 45 25 24	20.4 12.4 24.0 25.0	8 8 8	5 T T Z Z	K3 MR K3 MR K3 MR K3 MR K3 MR
GC-24 GC-25 GC-26 GC-27 GT-1	30 30 24 89	285	10 10 10 10	49 57 49 111	7-54 3-60 1-65	600 600 500 1010	29 35 46 32	20.7 17.1 10.9 31.6	8 8 48 5		K3 MR K3 MR K3 MR K3 MR K3 MR
GT-2 GT-3 GT-4 GT-5 GT-6	80 82 10		12 12 4 3	112 108 5 12 20	4-68 1-67 10-52 1-55 4-49	1529 1000 25 60 25	54 35 4 10	28.3 28.6 15.0 2.5	24 8 4	P	K3 MR K3 MR K3 MV K3 ET K3 MR
GT-7 GT-8 G7-9 GT-10 GT-11	10 18 10 10 10	 	3 4 4 3	47 86 40 35 40	1-55 6-49 10-67 12-68 1-52	20 250 50 8 20	7 6 10 20	2.9 41.7 5.0 0.4	8 12 1 1 2		K3 MR K3 MR K3 ET K3 MW K3 ET
GT-12 GT-13 GT-14 GT-15 GT-16	10 10 6 	 	3 4 4 4	90 45 71 	6-53 3-50 8-55 	40 25 50	 10	 	4 2 12 4	н н н н	K3 MR K3 ET K3 MR K3 ET K3 ET
GT-17 GT-18 GT-19 GT-20 GT-21	10 38 30		6 3 8 6	123 43 24 4	9-66 2-53 8-48 I-30	 600 100	 40 	15.0	 8 10	N	K3 MR K3 ET K3 MR K3 MW

Table 1,--Records of selected wells in Comden County and vicinity--Continued

Table 1Records of selected wells in Camden County and VicinityContinued									
MAP NUMREQ	MUNICIPALITY	LAT-LONG	OWNER	LOCAL WELL NUMBER	DATE DRILLED (YEAR)	ALTI- TUDE- OF LSD (FT)	CASING DEPTH (FT)	WELL DEPTH (FT)	
			CANDEN	COUNTY					
GT-22 GT-23	GLOUCESTER TWP GLOUCESTER TWP	394759N0750158.1 394754N0750343.1	GARDEN STATE WC GAR ST WC-BLKWD	BLACKWOD DIV 3	1970 1956	78 81	458 426	46d 447	
GT-24	GLOUCESTER TWP	394739N0750227.1	GLOU TWP BD ED	LEWIS SCHOOL	1964	117	455	475	
GT-25 GT-26	GLOUCESTER TWP GLOUCESTER TWP	394719N0750146.1 394718N0750341.1	ROBERT BENNETT Garden State wo	MONARCH BOILER	1968 1953	110 65	419	200 449	
GT-27	GLOUCESTER TWP	394716N0750420.1	CAMDEN COUNTY	LAKELAND 1		55		420	
GT-28	GLOUCESTER TWP	394714N0750410.1	CAMDEN COUNTY	LAKELAND 3		25		93 386	
GT-29 GT-30	GLOUCESTER TWP GLOUCESTER TWP	394712N0750413.1 394712N0750220.1	CANDEN COUNTY SOCIETY DIVINE	LAKELAND 2 SAVIOR	1951	25 107	492	512	
GT-31	GLOUCESTER TWP	394711N0750418.1	CANDEN COUNTY	LAKELAND FOUNT		25			
GT-32 GT-33	GLOUCESTER TWP GLOUCESTER TWP	394702N0750321.1 394658N0750305.1	MYRA LORING P HENDRICKS		1957 1956	73 81	109 100	130 135	
GT-34	GLOUCESTER TWP	394641N0745959.1	P BARATTA		1951	180	56	66	
61-35 61-36	GLOUCESTER TWP GLOUCESTER TWP	394626N0750015.1 394620N0750032.1	A MINARDI Robert Bennett	1 HOME WELL	1954	175 172	- 52	62 72	
GT-37		-			1952	130	218	250	
GT-38	GLOUCESTER TWP GLOUCESTER TWP	394618N0750235.1 394617N0750237.1	H A SANDBERG J BECICA		1949	111	200	220	
GT-39 GT-40	GLOUCESTER TWP GLOUCESTER TWP	394614N0750017.1 394607N0750031.1	POWELL GLOUCESTER TWP	BD OF EDUCATN	1951 1960	178 178	49 293	54 315	
GT-41	GLOUCESTER TWP	394606N0750016.1	FMORRISEY		1955	178	55	65	
GT-42	GLOUCESTER TWP	394605N0750016.1	HOWARD MORRISEY		1956	178	55	60	
GT-43 GT-44	GLOUCESTER TWP	394558N0750210.1 394556N0745835.1	E G HOTHO		1955	98	122	135	
GT-45	GLOUCESTER TWP GLOUCESTER TWP	394550N0745835.1 394512N0750145.1	CAMDEN CO BD ED WALTER JOHNSON	*UCGIECH M 5 1	1967 1954	145 110	322 220	401 240	
GT-46	GLOUCESTER TWP	394509N0745958.1	US ARMY		1954	173	82	102	
GT-47	GLOUCESTER TWP	394430N0745958.1	US ARMY		1954	170	62	82	
GT-48 GT-49	GLOUCESTER TWP GLOUCESTER TWP	394421N0750025.1 394343N0750049.1	JOSEPH A MELZI B W BAUER		1952 1951	162 164	58 40	64 45	
HA-1	HADDON TWP HADDON TWP	395444N0750316.1 395436N0750252.1	MILGRAM THEATER			50 50	135	150 451	
HA-2		· · · · · · · · · · · · · · · · · · ·	MORGAN BROTHERS		1967	-	431		
HA-3 HA-4	HADDON TWP Haddon Twp	395416N0750336.1 395412N0750338.1	HAODON TWP BO E HADDON TWP W D	HADDON TWP HS1 HTW0 4	1966 1965	10 82	141 417	165 448	
HA-5	HADODN TWP	395406N0750317.1	HADOON TWP W D	HTWD 1	1952	56	436	468	
HA-6 HA-7	HADDON TWP Haddon TwP	395406N0750317.2 395403N0750322.1	HADDON TWP W D Haddon Twp W D	HTWD 1-R HTWD 2	1968 1952	56 50	439	480 470	
HA-8	HADDON TWP	395359N0750322.1	HADDON TWP W D	HTHD 3	1956	61	432	469	
HA-9	HADDON T#P	395351N0750313.1	GREEN VALLEY FM	FARM 2	1965	77	- 194	215	
HF-2	HADDONFIELD BORO HADDONFIELD BORO	395404N0750202.1 395404N0750202.2	HADDONFIELD W D HADDONFIELD W D		1965 1967	45 50	490 307	510 372	
HF-3	HADDONFIELD BORD	395333N0750132.1	HADDONFIELD W D		1956	20	523	572	
HF-4	HADDONFIELD BORD	395324N0750138.1	HANDONFIELD W D	CREEK 3	1938	18	211	245	
HF-5 HF-6	HADDONFIELD BORD HADDONFIELD BORD	395322N0750154.1 395322N0750147.1	HADDONFIELD # D HADDONFIELD # D		1956 1956	30 38	206 152	246 192	
HF - 7	HADOONFIELO BDRO	395317N0750141.1	HADDONFIELO # D	HWO 4	1943	18	186	240	
HH-1	HADDON HGTS BORD	395248N0750433.1	NJ WATER CO	EGGBERT 18	1958	22	144	191	
HH-2 HH-3	HADDON HGTS BORO Haddon Hgts Boro	395248N0750433.2 395247N0750432.1	NJ WATER CO NJ WATER CO	EGGBERT 6	1926	23	154	202	
HH-4	HADDON HGTS BORO	395246N0750433.1	NJ WATER CO	EGGBERT 35 Egbert	1967 1962	22 24	425 445	484 455	
HH-5 HH-6	HADDON HGTS BORO Haddon Hgts Boro	395242N0750320.1 395240N0750324.1	NJ WATER CO NJ WATER CO	HADDON 11 HADDON 14	1945 1 95 4	84 76	212 506	272 598	
HH-7	HADDON HGTS BORD	20526010750218	NI WATER CO	HAODON 13			207		
HH-B	HADDON HOTS BORD	395240N0750318.1 395238N0750317.1	NJ WATER CO NJ WATER CO	HADDON 12 Haddon 30	1947 1965	66 65	227 224	267 279	
нн-9 нн-10	HADDON HGTS BORO Haddon Hgts Boro	395238N0750316.1 395231N0750314.1	NJ WATER CO NJ WATER CO	HADDON 15 Haddon 20	1956 1958	65 60	452 241	631 275	
LS-1	LAUREL SPRGS BORD		NJ WATER CO	LAUREL 15	1964	75	395	473	
LS-2	LAUREL SPRGS BORD	394928N0750024.1	NJ WATER CO	LAUREL 13	1954	77	395	456	
LS-3 LS-4	LAUREL SPRGS BORD		NJ WATER CD NJ WATER CO	LAUREL 6 LAUREL B	1918 1920	77 77	105	120 125	
LS-5	LAUREL SPRGS BORO	394928N0750021.2	NJ WATER CO	LAUREL 10	1923	77	99	126	
LS-6	LAUREL SPRGS BDRO	394927N0750025.1	NJ WATER CO	LAUREL 4	1918	77		128	
LS-7 LI-1	LAUREL SPRGS BORD LINDENWOLD BORD	394927N0750024.1 394932N0745B54.1	NJ WATER CO Mun util Auth	LAUREL 1 SEWAGE PLANT 1	1918 1964	77 78	100	120	
L1-2	LINDENWOLD BORD	394929N0745208.1	J A PIPPET		1954	93	141 92	152 100	
LI-3 MA-1	LINDENWOLD BORO MAGNOLIA BORO	394805N0745732.1 395135N0750246.1	UINDENWOLD ANM OWENS CORNING	ANIMAL SHELT 1 CORNING 2	1967 1956	160 67	290	285 320	
MA-2	MAGNOLIA BORD	395134N0750251.1	OWENS CORNING	TEST 2		65			
MA-3	MAGNOLIA BORD	395134N0750230.1	NJ WATER CD	MAGNOLIA 33	1964 1967	60	565 271	680 348	
MA-4 ME-1	MAGNOLIA BORD MRCHNTVILLE BORO	395134N0750229.1 395652N0750307.1	NJ WATER CO MERCH-PENNS W C	MAGNOLIA 16 WOODBINE 1	1964 1963	70 90	428 245	510 285	
0A-1	DAKLYN BORD	395358N0750447.1	NJ WATER CO	DAKLYN TEST	1961	33	104	113	
PE-1	PENNSAUKEN TWP	395943N0750212.1	CAMDEN CITY W D			9	77	107	
PE-2 PE-3	PENNSAUKEN TWP PENNSAUKEN TWP	395940N0750230.1 395939N0750229.1	CAMDEN CITY W D CAMDEN CITY W D		1960 1932	5 5	79 80	114 115	
PE-4	PENNSAUKEN TWP	395934N0750229.1	CAMOEN CITY W D	MORRIS 3A	1953	17	73	107	
PE-5	PENNSAUKEN TWP	395929N0750253.1	CAMDEN CITY W D	MURRIS 4A	1960	8	- 95	134	
PE-6 PE-7	PENNSAUKEN TWP Pennsauken Twp	395929N0750253.2 395925N0750230.1	CAMDEN CITY # D Kingston trap	MORRIS 4 Trap RK IND 2	1966	8 35	95 115	130 123	
PE-8	PENNSAUKEN TWP	395923N0750300.1	CAMDEN CITY W D	MORRIS 10	1960	16	75	115	
PE-9 PE-10	PENNSAUKEN TWP PENNSAUKEN TWP	395916N0750303.1 395910N0750307.1	CAMDEN CITY W D CAMOEN CITY W D		1932	10 10	85 89	120 124	
						-			

Table 1.--Records of selected wells in Camden County and vicinity--Centinued

MAP NUMBER	LENGTH OF WELL OPEN TO AQUIFER (FEET)	DEPTH TO CDNSOLI- DATED ROCK (FT)	CASING DIAM- ETER (IN)	WATER LEVEL (FT)	DATE WATER LEVEL MEASURED	YIELD (GPM)	DRAW Down (Ft)	SPECIFIC CAPACITY		USE OF WATER	MAJOR AQUIFER
					CAN	DEN COUN	TY				
GT-22 GT-23 GT-24 GT-25 GT-26	10 21 20 30	 	6 12 6 4 6	125 88 129 50 70	11-70 7-56 8-64 11-68 	75 708 220 100	33 43 56 	2,3 16,5 3,9 	5 8 1	U P T N P	K3 MR K3 MR K3 MR K3 MW K3 MR
GT-27 GT-28 GT-29 GT-30 GT-31	 20	 	10	F 103 +34	8-70 9-51 8-70	510	100	5.1	72	T T H T	K3 MR K3 MW K3 MR K3 MR K3 MW
GT-32 GT-33 GT-34 GT-35 GT-36	21 10 10	 	3 4 3 3	25 6 35 32	11-57 10-56 10-51 7-54	100 150 25 8	 5 3 	5.0	3 4 	1111	K3 MW K3 NA AA CP AA CP AA CP
GT-37 GT-38 GT-39 GT-40 GT-41	32 20 5 10	 	4 4 3 6 4	48 40 30 125 40	6-52 11-49 11-51 4-60 9-55	170 50 5 80 30	 5	0.8 6.0	2 8 3		K3 MW K3 MW AA CP K3 MW AA CP
GT-4? GT-43 GT-44 GT-45 GT-46	5 13 79 20 20	 	4 4 8 4 9	38 159 113 40 36	10-56 1-55 9-67 11-54 6-54	25 100 320 80 240	4 123 15 48	6.2 2.6 5.3 5.0	2 5 8 5 24	H H P H P	AA CP TL VH K3 MW TL HT AA CP
GT-47 GT-48 GT-49 HA-1 HA-2	20 6 5 15	 465	A 4 3 8 10	30 24 20 104	6-54 9-52 10-51 	240 25 5 150 302	40 5 	6.0 1.0 	24 5 8	P H H N	AA CP AA CP AA CP K3 HR K3 HR
HA-3 HA-4 HA-5 HA-6 HA-7	20 27 32 	455 475 	6 12 10 12 10	60 100 80 125 74	11-66 8-65 2-52 11-68 4-52	200 726 800 870 1000	23 42 40 41	8.7 17.3 20.0 24.4	8 8 8 8	I P P P	K3 MR K3 MR K3 MR K3 MR K3 MR
HA-8 HA-9 HF-1 HF-2 HF-3	37 21 20 50 49	 553 	12 15 10 10	95 121 90 107 42	6-56 1-65 1-65 6-67 6-56	800 151 350 1030 1100	35 12 35 48 38	22.9 12.6 10.0 21.5 28.9	 8 8 48	P I U P P	K3 MR K3 MR K3 MR K3 MR K3 MR
HF - 4 HF - 5 HF - 6 HF - 7 HH - 1	33 40 40 54 47	 	8 12 8 6 12	56 105 55 56 69	7-59 5-56 7-59 3-56 7-58	450 1001 600 600 708	54 46 31 26 45	8.3 21.8 19.4 23.1 15.7	8 	P P P P	K3 MR K3 MR K3 MR K3 MR K3 MR
HH-2 HH-3 HH-4 HH-5 HH-6	48 44 10 60 53	477 479 603	8 12 8 8	23 83 61 123 101	-26 3-67 1-62 8-54	535 850 30 450 1018	25 60 30 88	21.4 14.2 1.0 	3 8 8 	P P U P P	K3 MR K3 MR K3 MR K3 MR K3 MR
HH-7 HH-8 HH-9 HH-10 LS-1	40 51 74 21 64	 	10 	93 129 72 36 130	3-65 2-56 8-58 	811 1100 950 650	38 35 52 98	21.3 31.4 18.3 6.6	 6 8 24	P P P P	K3 MR K3 MR K3 MR K3 MR K3 MR
LS-2 LS-3 LS-4 LS-5 LS-6	61 20 		8 8 8 8 8	84 44 	6-54 9-52 	759 175 200 330	80 	9,5 	 	P U P P P	K3 MR K3 MW K3 MW K3 MW K3 MW
LS-7 L1-1 L1-2 L1-3 MA-1	11 		8 3 4 12	16 18 	11-64 7-54 3-56	300 60 14 1000	41		 7 	Р Н Н Л Л	K3 MW K3 MW TL VH K3 MW K3 MR
MA-2 MA-3 MA-4 ME-1 OA-1	60 77 8		6 12 12 6	128 141 85 56	6-64 3-67 9-63 10-61	668 1090 1040 50	48 46 16	13.9 23.7 3.1	22 24 16	N P P P V U	K3 MR K3 MR K3 MR K3 MR K3 MR
PE-1 PE-2 PE-3 PE-4 PE-5	30 35 35 30 35	136	18 18 26 30 18	12 15 12 13	11-60 8-32 7-53 10-60	1180 1450 1630 1000 1585	 46 37 34 28	31.5 44.1 29.4 56.6	8 8 8	P P P P	K3 MR K3 MR K3 MR K3 MR K3 MR
PE-6 PE-7 PE-8 PE-9 PE-10	35 8 40 35 35	 	26 8 18 26 26	26 11 13	8-66 11-61 	200 1450 1680 1412	34 35 32	5.9 41.4 52.5	2 8 8	P N P P P P	K3 MR K3 MR K3 MR K3 MR K3 MR

Table 1.--Records of selected wells in Comden County and vicinity--Centinued

Table 1Records of selected wells in Common County and vicinityCentineed									
	MUNICIPALITY	LAT-LONG	OWNER	LOCAL VELL NUMBER	DATE ORILLED (YEAR)	ALTI+ TUDE+ OF LSD (FT)	CASING DEPTH (FT)	WELL DEPTH (FT)	
			CAMDEN	COUNTY					
PE-11 PE-12	PENNSAUKEN TWP PENNSAUKEN TWP	395906N0750313.1 395902N0750318.1	CAMDEN CITY W D CAMDEN CITY W D		1932 1932	10	118 98	143 133	
PE-13	PENNSAUKEN TWP	395902N0750153.1	MERCH-PENNS W C	NATIONAL HWY 1	1967	40	195	531	
PE-14 PE-15	PENNSAUKEN TWP PENNSAUKEN TWP	395853N0750348.1 395851N0750355.1	CAMDEN CITY W D CAMDEN CITY W D		1930 1930	8 10	86 111	126 141	
PE-16 PE-17	PENNSAUKEN TWP PENNSAUKEN TWP	395848N0750347.1 395845N0750317.1	CAMDEN CITY W D CAMDEN CITY W D		1960 1924	10 10	103 127	138 175	
PE-18	PENNSAUKEN TWP	395845N0750312.1	CAMDEN CITY W D	PUCHACK 1	1924	10	108	140	
PE-19 PE-20	PENNSAUKEN TWP PENNSAUKEN TWP	395844N0750352.1 395842N0750312.1	PENNSYLVANIA RA CAMDEN CITY V D		1951 1924	30 14	102 126	122 169	
			CAMDEN CITY W D			-			
PE-21 PE-22	PENNSAUKEN TUP PENNSAUKEN TUP	395839N0750306.1 395837N0750151.1	CHRISTIAN BR SH		1924 1950	10 73	136 125	184 136	
PE-23	PENNSAUKEN TWP	395835N0750308.1	CAMDEN CITY W D	PUCHACK 5	1924	19	136	186	
PE-24 PE-25	PENNSAUKEN TWP PENNSAUKEN TWP	395827N0750246.1 395815N0750359.1	H W LAYER Paragon oil CD	1	1951 1961	40 25	127 51	137 61	
PE-26	PENNSAUKEN THP	395811N0750549.1	CITIES SERVICE	PETTY IS ORS		11		143	
PE-27	PENNSAUKEN TWP	395802N0750118.1	MERCH-PENNS W C	PARK AVE 2	1943	12	232	257	
PE-28 PE-29	PENNSAUKEN TWP PENNSAUKEN TWP	395802N0750117.1 395801N0750119.1	MERCH PENNS W C		1947 1958	19 19	240 240	270 275	
PE-30	PENNSAUKEN TWP	395800N0750125.1	MERCH PENNS W C		1933	20	146	161	
PE-31	PENNSAUKEN TWP	395800N0750115.1	MERCH-PENNS W C	PARK AVE REP 6	1940	15	212	260	
PE-32	PENNSAUKEN TWP	395758N0750120.1	MERCH-PENNS W C	PARK AVE 5	1948	20	248	288	
PE-33 PE-34	PENNSAUKEN TWP PENNSAUKEN TWP	395757N0750640.1 395752N0750411.1	U S GEOL SURVEY MERCH-PENNS W C		1966 1945	50 50	77 97	84 123	
PE-35	PENNSAUKEN TVP	395752N0750411.2	MERCH-PENNS W C		1955	39	115	145	
PE-36	PENNSAUKEN TWP	395752N0750411.3	MERCH-PENNS W C	DELA GARDEN 1A	1968	50	109	139	
PE-37	PENNSAUKEN TWP	395737N0750626.1	U S GEOL SURVEY	PETTY ISLAND 2	1966	5		129	
PE-38 PE-39	PENNSAUKEN TWP PENNSAUKEN TWP	395737N0750626+2 395720N0750225+1	U S GEOL SURVEY MERCH-PENNS W C		1966 1957	5 61	44 243	55 278	
PE-40	PENNSAUKEN TWP	395713N0750405.1	MERCH-PENNS W C	AMDN HGTS 2	1923	69	157	176	
PE-41	PENNSAUKEN TWP	395711N0750220.1	MERCH-PENNS # C		1963	60	223	258	
PE-42 PE-43	PENNSAUKEN TWP PENNSAUKEN TWP	395628N0750406.1 395628N0750406.2	MERCH PENNS W C MERCH-PENNS W C		1963 1965	25 30	204 110	224 ° 140	
PE-44	PENNSAUKEN TWP	395627N0750404.1	MERCH-PENNS W C	BROWNING 1	1960	25	107	137	
PE-45	PENNSAUKEN TWP	395627N0750404.2	MERCH PENNS W C	FROSTHOFFER T1	1963	25	118	138	
PH-1	PINE HILL BORD	394707N0745921.1	HARRY WEBER		1955	165	56	60	
РН-2 РН-3	PINE HILL BORO PINE HILL BORO	394650N0745922.1 394649N0745833.1	J MC GILLEN PINE HILL M U A	PHHUA 2	1954 1957	160 160	40 296	50 355	
PH-4	PINE HILL BORD	394649N0745833.2	PINE HILL M U A		1960	160	31	86	
PH-5	PINE HILL BORD	394642N0745953.1	LEROY KINGETT	*-	1949	180	337	347	
Рн-6 Рн-7	PINE HILL BORD PINE HILL BORD	394641N0745909.1 394639N0745750.1	PINE HILL M U A OVERBROOK REG H		1962	150	600	687	
PV-1	PINE VALLEY BORD	394728N0745837.1	JOHN GALBRAITH		1971 1952	160 170	310 300	330 355	
PV-2 PV-3	PINE VALLEY BORD PINE VALLEY BORD	394722N0745810.1 394712N0745841.1	PINE VALLEY G C J R FERGUSON	GOLF CLUB	1955 1950	85 172	330	267 360	
PV-4 RU-1	PINE VALLEY BORO RUNNEMEDE BORO	394702N0745824.1 395134N0750454.1	PINE VALLEY G C TRAP ROCK CO	GOLF CLUB 1-49	1949 1963	170 40	310 196	370 222	
RU-2	RUNNEMEDE BORO	395133N0750455.1	TRAP ROCK IND	3	1968	40	195	215	
RU-3 RU-4	RUNNEMEDE BORO Runnemede Boro	395128N0750350.1 395115N0750325.1	EASTERN RECORD RED COACH INC	EASTERN 1 HIRST	1963 1964	40 79	250 302	260 312	
RU-S	RUNNEMEDE BORO	395056N0750417.1	NJ WATER CO		1958	67	201	228	
RU-6	RUNNEMEDE BORD	395055N0750418.1	NJ WATER CO	RUNNEMEDE 19 Runnemede 7	1926	67	301 265	338 318	
50-1 TA-1	SOMERDALE BORO TAVISTOCK BORO	395041N0750053.1 395237N0750122.1	NJ WATER CO Tavistock Club	SOMERDALE 14 Country Club 1	1956 1968	105 30	389	441 246	
V0-1	VOORHEES TWP	395148N0745615.1	THOMAS DECAU	1	1957	115	217 127	147	
¥0-2	VOORHEES TWP	395129N0745906.1	NJ WATER CO	VOORHEES 21	1959	129	422	482	
V0-3	VOORHEES TWP	395128N0745954.1	NJ WATER CO	ASHLAND TER 32	1966	70		459	
V0-4 V0-5	VOORHEES TWP VOORHEES TWP	395128N0745954.2 395128N0745954.3	NJ WATER CO NJ WATER CO	ASHLAND TER 9 Ashlano ter 9r	1926 1966	74 74	355 364	407 437	
V0-6	VOORHEES TWP	395124N0745952.1	NJ WATER CO	ASHLAND 17	1958	100	379	421	
VD-7	VOORHEES TWP	395109N0745715.1	RADIO CORP AMER	RCA	1955	175	220	234	
V0-8 V0-9	VOORHEES TWP VOORHEES TWP	395107N0745854.1 395044N0745749.1	R H DOBBS Haines block co		1949 1955	121 118	140	161	
V0-10	VOORHEES TWP	395015N0745528.1	CAMDEN LIME CO	3		155		160 265	
V0-11	VOORHEES TWP	394954N0745530.1	CAMDEN LIME CO	1	1955	175	260	280	
V0-12	VOORHEES TWP	394922N0745633.1	NJ WATER CO	ELM TREE 2	1963	148	1217	1227	
VO-13 VO-14	VDORHEES TWP Voorhees Twp	394922N0745633.2 394922N0745633.3	NJ WATER CO NJ WATER CO	ELM TREE 3 ELM TREE 26	1963 1960	147 150	706 237	717 275	
WA-1 WA-2	WATERFORD TWP WATERFORD TWP	394651N0745421.1 394645N0745146.1	ATCO DRIVE-IN Central Supply		1955 1955	170 121	65 78	76	
		×							
WA-3 WA-4	WATERFORD TWP WATERFORD TWP	394620N0745403.1 394618N0745413.1	GREEN ACRES MTL IVYSTONE W W	MOTEL 1 WATER WKS 2-62	1968 1962	165 159	71 420	81 460	
WA-5	WATERFORD TWP	394618N0745413.2	IVYSTONE W W	WATER WKS 3-65	1965	159	420	460	
WA-6 · WA-7	WATERFORD TWP WATERFORD-TWP	394615N0745358.1 394614N0745316.1	WIŁLIAM JULANO H W GSELL		1955 1947	170 159	79 93	83 103	
WA-8									
WA-9	WATERFORD TWP WATERFORD TWP	394613N0745353.1 394552N0744930.1	AL GIORDANO JOSEPH LANNI	1	1965 1951	170 101	98 65	113 75	
WA-10 WA-11	WATERFORD TWP WATERFORD TWP	394357N0745022.1 394341N0745117.1	ALBERT PAGIA BRIDGE VIEW FAR		1952 1966	102 120	72	82	
WA-12	WATERFORD TWP	394243N0744932.1	EUGENE BRITTIN		1955	88	110	130 105	

Table 1.--Records of selected wells in Camden County and vicinity--Continued

Current County Current County Ref_11 35 1 26 14 7,13 1760 46 57,5 6 p 63 14 Ref_13 35 1 26 14 7,13 1100 26 57,5 12,5 6 p 63 14 Ref_13 36 14 17,40 15 112,5 113 112,5 113 113,5	MAP NUMRER	LENGTH OF WELL DPEN TO AQUIFER (FEET)	DEPTH TO CDNSOLI- DATEO ROCK (FT)	CASING DIAM- Eter (IN)	WATER LEVEL (FT)	DATE WATER LEVEL MEASURED	YIELD (GPM)	DRAW Down (FT)	SPECIFIC CAPACITY		USE OF WATER	MAJOR AGUIFER
EC-12 35						CAM	DEN COUN	TΥ				
RC-11 46	PE-12 PE-13 PE-14	35 25 30	 135	26 12 26	14 80 11	7-32 7-67 11-30	1700 1000 1850	46 29 49	37.0 34.5 37.8	8 8 6	P P P	K3 MR K3 MR K3 MR
ME-22 11 12-50 75 M K3 ME ME-22 10 4 36 92-21 1005 M K3 ME ME-23 10 4 36 92-21 1005 M K3 ME ME-23 10 4 12-30 100-43 100-43 37.0 8 P K3 ME ME-23 30 12 15 11-61 100-43 100-43 37.0 8 P K3 ME ME-33 30 12 15 11-61 71.0 82 P K3 ME ME-33 30 12 5 1-40 720 20 30.00 24 P K3 ME ME-33 30 12 53 4-50 900 20 112.5 P K3 ME ME-33 30 12 53 4-60 862 15 56.0	PE-17 PE-18 PE-19	48 32 20		26 26 3	14 20 58	5-24 10-24 12-51	1175 1400	67 48 	17.5 29.2	 	P P N	K3 MR K3 MR K3 MR
PE-27 25 12 17 13-51 11-61 27 37.6 8 P K3 ME $PE-30$ 35 12 13 11-61 1000 27 37.6 8 P K3 ME $PE-30$ 35 12 6 1-460 210 36.0 24 P K3 ME $PE-30$ 35 12 6 1-460 720 20 36.0 24 P K3 ME $PE-35$ 30 12 50 7-55 720 20 36.0 24 P K3 ME $PE-36$ 30 12 50 7-55 720 20 36.0 27 0 K3 ME $PE-36$ 30 12 43 4-66 BB2 15 50.6 8 P K3 ME $PE-30$ 30 12 43 5-06 800 25 36.0 8 P K3 ME $PE-43$ 300 12	PE-22 PE-23 PE-24	$-\frac{11}{-10}$	 	26 4	 38 95	11-50 8-24 4-51	75 1000 25	 		 2	H P H	K3 MR K3 MR K3 MR
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PE-27 PE-28 PE-29	25 30 35		12 12 12	17 15 39	10-43 11-47 8-58	1000 1005 1034	27 23 37	37.0 43.7 27.9	8 8 8	P P	K3 MR K3 MR K3 MR
PF-37 U K3 HR PF-30 35 12 59 7-57 1020 39 26.2 8 P K3 HR PF-40 20 12 69 10-62 1000 43 23.3 8 P K3 HR PF-42 20 6 40 10-63 250 16 15.6 U K3 HR PF-43 30 12 43 5-65 900 25 36.0 8 P K3 HR PF-43 30 4 30 8-54 15 5 3.0 4 H AA CP PH-3 30 4 30 8-57 17 T K3 HR PH-7 30 8 120 10-42 759 35 21.7 8 P K3 HR PH-7 50 6 126	PE-32 PE-33 PE-34	40 26	71	12 10 18	-22 	4-48 4-55	1005 900	53 8	19.0	8 	P U P	K3 MR K3 MR K3 MR
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PE-37 PE-38 PE-39	 9 35	116 	10 12	 59	 7-57	1020	 39	26.2	 8	U U P	K3 MR K3 MR K3 MR
p_{P-2} 10 $$ 4 120 $4-55$ 15 5 5.0 4 A CP P_{P-4} 55 $$ 8 22 $3-60$ 100 58 1.7 10 P A CP P_{P-4} 55 $$ 8 22 $3-60$ 100 58 1.7 10 P A CP P_{P-4} 55 $$ 126 $2-57$ $$ $$ T <th< td=""><td>PE-42 PE-43 PE-44</td><td>20 30 30</td><td></td><td>6 12 12</td><td>48 43 47</td><td>-63 5-65 12-59</td><td>250 900 875</td><td>16 25 26</td><td>15.6 36.0 33.7</td><td> 8 8</td><td>U P P</td><td>KJ MR KJ MR KJ MR</td></th<>	PE-42 PE-43 PE-44	20 30 30		6 12 12	48 43 47	-63 5-65 12-59	250 900 875	16 25 26	15.6 36.0 33.7	 8 8	U P P	KJ MR KJ MR KJ MR
P_{V-1} 26 $$ 126 $2-52$ 100 $$	РН-2 РН-3 РН-4	10 36 55		4 4 8	30 120 22	8-54 8-57 3-60	15 197 100	5 61 58	3.0 3.2 1.7	4 4 10	H P P	AA CP K3 MW AA CP
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	РН-7 РV-1 PV-2	20 55		 6 10	126 124 40	5-71 2-52 10-55	100			10 8	T H P	K3 MW K3 MW K3 MW
RU-A 53 6 90 9-26 527 25 21.1 P K3 MR SO-1 52 10 115 5-56 709 76 9.3 8 P K3 MR VO-1 20 8 101 7-68 285 25 11.4 4 I K3 MR VO-2 60 12 161 6-59 1012 30 33.7 8 P K3 MR VO-2 50 12 94 1000 57 17.5 P K3 MR VO-4 50 12 93 12-57 1016 38 26.7 8 P K3 MR VO-6 42 12 93 12-57 1016 38 26.7 8 P K3 MR VO-7 14 6 80 4-55 50 10 H K3 MW VO-10 11	RU-1 RU-2 PIJ-3	26 10 10		8 4 6	62 80 90	8-63 12-68 8-63	250 100 150	18 20 9	13.9 5.0 16.7	2	N H I	K3 MR K3 MR K3 MR
V0-3 12 p K3 MR V0-4 50 12 94 1000 57 17.5 p K3 MR V0-5 60 12 93 12-57 1016 38 26.7 8 p K3 MR V0-6 42 12 93 12-57 1016 38 26.7 8 p K3 MR V0-7 14 6 80 4-55 50 4 H K3 MW V0-7 14 6 80 4-55 50 10 H K3 MW V0-7 14 6 38 12-49 100 10 H K3 MW V0-10 10 H K3 MW K3 MW V0-11 20 4 50 11-55 50 10 5.0 4 N	RU-6 50-1 TA-1	53 52 23		6 10 8	90 115 101	9-26 5-56 7-68	527 709 285	25 76 25	21.1 9.3 11.4	 8 4	P P I	K3 MR K3 MR K3 MR
VO-R 21 6 38 12-49 100 10 H K3 MW VO-9 4 11 2-55 50 N K3 MW VO-10 4 81 3-70 N K3 MW VO-11 20 4 50 11-55 50 10 5.0 4 N K3 MW VO-12 10 1259 6 183 2-63 10 258 0.0 U K3 MR VO-13 11 6 190 2-63 15 U K3 MR VO-14 42 8 81 6-60 P K3 MR VA-2 5 4 45 3-55 45 5 9.0 1 H AA CP WA-3	V0-3 V0-4 V0-5	50 40		12 12 8	94 136	 6-66	1000 709	57 22	17.5	 8	P P P	K3 MR K3 MR K3 MR
V0-13 11 6 190 2-63 15 U K3 MR V0-14 42 B B1 6-60 P K3 MR WA-1 11 6 45 6-55 60 B 7.5 5 N AA CP WA-2 5 4 45 3-55 45 5 9.0 1 H AA CP WA-3 10 4 20 10-68 70 10 7.0 1 H AA CP WA-4 40 10 135 5-62 535 155 3.5 48 P K3 MW WA-5 40 6 140 2-65 500 108 4.6 8 P K3 MW WA-5 40 6 140 2-65 500 108 4.6 8 P K3 MW WA-6 5 31 12-47	VO-8 VO-9 VO-10	21 	 ·	6 4 4	38 11 81	12-49 2-55 3-70	100 50			10	L Z J	K3 MW K3 MW K3 MW
wA-4 40 10 135 5-62 535 155 3.5 48 P K3 MW wA-5 40 6 140 2-65 500 108 4.6 8 P K3 MW wA-6 5 6 140 2-65 500 108 4.6 8 P K3 MW wA-7 10 6 18 5-55 30 7 4.3 4 H AA CP wA-7 10 31 12-47 8 H AA CP wA-8 H AA CP wA-9 10 6 6 8-51 50 6 H AA CP wA-10 10 3 22 11-52 40 6 6.7 4 H AA CP wA-11 20	VO-13 VO-14 WA-1 WA-2	11 42 11 5		6 8 6	190 81 45 45	2-63 6-60 6-55 3-55	15 60 45	 8 5	 7.5 9.0	 5 1	U P N H	K3 MR K3 MW AA CP AA CP
WA-9 10 6 6 8-51 50 6 H AA CP WA-10 10 3 22 11-52 40 6 6.7 4 H AA CP WA-11 20 4 8 4-66 60 1 60.0 2 I AA CP	₩4-4 ₩4-5 ₩4-6	40 40 5		10 6 4	135 140 18	5-62 2-65 5-55	535 500 30	155 108 7	3.5 4.6 4.3	48 8 4	Р Р Н	K3 MW K3 MW AA CP
	WA-9 WA-10 WA-11	10 10 20		6 3 4	6 22 8	8-51 11-52 4-66	50 40 60	 6 1	6.7 60.0	6 4 2	H H I	AA CP Aa Cp Aa Cp

Ta' le 1.--Records af selected wells in Camden County and vicinity--Continued

	To' le 1Records at selected wells in Camden County and Vicinity-Continuou										
MAP NUMBER	MUNICIPALITY	LAT-LONG	OWNER	LOCAL VELL NUMBER	DATE DRILLED (YEAR)	ALTI- TUDE- OF LSD (FT)	CASING DEPTH (FT)	WELL DEPTH (FT)			
			CAMDEN	COUNTY							
WA-13 WA-14 WI-1 WI-2 WI-3	WATERFORD TWP WATERFDRD TWP WINSLOW TWP WINSLOW TWP WINSLOW TWP	394243n0744918.1 394229n0744941.1 394623n0745544.1 394538n0745506.1 394522n0745625.1	E A CAPOFERRI E A CAPOFERRI HERBERT WILSON RDY W KRESGE JOHNS-MANVILLE	1 2 1 	1966 1966 1966 1956 1956	92 89 163 160 160	10 30 53 61 410	130 129 58 67 450			
₩1-4 ₩1-5 ₩1-6 ₩1-7 ₩1-8	WINSLOW TWP WINSLOW TWP WINSLOW TWP WINSLOW TWP WINSLOW TWP	394522N0745625.2 394522N0745625.3 394507N0745438.1 394449N0745540.1 394443N0745434.1	JOHNS-MANVILLE JOHNS-MANVILLE PETER SEN FORMEGLI CORP CAMDEN CO R M S	2 TEST HOLE 1 	1963 1963 1952 1957 1957	160 160 143 150 175	410 90 86 102	450 890 97 106 110			
WI-9 WI-10 WI-11 WI-12 WI-13	AINSTOA IAb Ainstoa Iab Ainstoa Iab Ainstoa Iab Ainstoa Iab	394443N0745304.1 394433N0745445.1 394423N0745540.1 394417N0745538.1 394400N0745959.1	DOMENIC CASARIO AMERICAN TELEPH CERTAIN TEED ST CERTAIN TEED ST N TOMASELLA	TELEGRAPH 1 2	1951 1966 1969 1965 1964	150 172 160 165	53 120 113 113 82	60 130 138 138 101			
WI-14 WI-15 WI-16 WI-17 WI-18	WINSLOW TWP WINSLOW TWP WINSLOW TWP WINSLOW TWP WINSLOW TWP	394332n0745740.1 394326n0745856.1 394326n0745849.1 394322n0745125.1 394322n0745125.1	VINSLOW W C Joseph Volpa J La Gratto James Sarappa Vinslow W C	PROD 2 TEST 5	1971 1951 1955 1970	120 159 160 125 145	64 112 68 113	90 127 75 133 167			
WI-19 WI-20 WI-21 WI-22 WI-23	WINSLOW TWP WINSLOW TWP WINSLOW TWP WINSLOW TWP WINSLOW TWP	394248n0745710.1 394248n0745423.1 394246n0745708.1 394246n0745708.2 394246n0745707.1	WINSLOW W C Nick Ettore Winslow W C Winslow W C Winslow W C	PROD 1 085 1 085 2 085 3	1971 1952 1970 1970 1970	115 135 115 115 115	72 84 25 77 77	103 90 30 103 103			
WI-24 WI-25 WI-26 WI-27 WI-28	WINSLOW TWP WINSLOW TWP WINSLOW TWP WINSLOW TWP WINSLOW TWP	394230N0745229.1 394228N0745341.1 394221N0745412.1 394215N0745617.1 394215N0745617.2	WINSLOW BD ED Howard Buser A K Brown Jr US Geol Survey US Geol Survey	1 J New Brooklyn 1 New Brooklyn 2	1968 1955 1967 1960 1961	120 130 140 112 112	118 87 40 1485 829	139 94 100 1495 839			
WI-29 WI-30 WI-33	WINSLOW TWP WINSLOW TWP WINSLOW TWP WINSLOW TWP WINSLOW TWP	394215N0745617。3 394215N0745617。4 394210N0745654。1 394139N0745424。1 394129N0745055。1	US GEDL SURVEY US GEOL SURVEY WINSLOW W C RUDDLPH KRUGER ANCORA FARM	NEW BRODKLYN 3 NEW BRDDKLYN 4 TEST 1 POOR FARM	1961 1961 1970 1953 1942	111 112 115 134 105	520 200 94 49	530 210 114 55 325			
WI-34 WI-35 WI-36 WI-37 WI-38	WINSLOW TWP WINSLOW TWP WINSLOW TWP WINSLOW TWP WINSLOW TWP	394121N0745247。1 394107N0745123。1 394105N0745134。1 394105N0745134。1 394104N0745134。1 394100N0745157。1	WINSLDW BD ED Ancora Sta Hosp Ancora Sta Hosp Ancora Sta Hosp Ancora Sta Hosp	4 Ash 3	1952 1953 1953 1952 1952	130 105 108 109 114	64 117 141 326 306	70 138 167 356 331			
WI-39 WI-40 WI-41 WI-42 WI-43	WINSLOW TWP WINSLOW TWP WINSLOW TWP WINSLOW TWP WINSLOW TWP	394100n0744912.1 394046n0745208.1 394038n0744958.1 394015n0745030.1 393957n0744940.1	CARMEN GRASSE ANCORA STA HDSP WINSLOW BD ED M&R REFRACTORY JOSEPH DEMEGLID		1954 1952 1951 1965 1966	91 135 93 110 105	65 344 144 70 20	71 372 151 104 200			
WI-44 WI-45 WI-46 WI-47 WI-48	WINSLOW TWP WINSLOW TWP WINSLOW TWP WINSLOW TWP WINSLOW TWP	393946N0745102.1 393946N0744940.1 393945N0745102.1 393909N0745104.1 393845N0745009.1	SJ TRANSIT MIX JOSEPH PAGAND LORENZO ROMANO THOMAS FEBO A SCARDO JR	1 1 1 1	1965 1966 1953 1969 1968	100 100 95 98 102	33 40 97 57 122	53 180 103 67 122			
			GLOUCEST	ER COUNTY							
CL-1 DE-1 DE-2 DE-3 DE-4	CLAYTON BORO Deptford Twp Deptford Twp Deptford Twp Deptford Twp	393912N0750522.1 395003N0750722.1 394950N0750626.1 394947N0750731.1 394827N0750758.1	CLAYTON W D WALTER POTTS LEROY LLOYD WM PINTDZZI MARION THOMPSON	CwD 3	1956 1949 1952 1968 1953	133 60 55 45 102	746 120 47 110 83	800 130 55 120 107			
0E-5 DE-6 DE-7 DE-8 GL-1	DEPTFORD TWP OEPTFORD TWP DEPTFORD TWP DEPTFORD TWP GLASSBORD BORO	394821N0750530.1 394816N0750730.1 394805N0750913.1 394628N0750813.2 394142N0750608.1	ROBERT A GREER New Sharon F C Deptford T H A Woodbury W D E foulkes	DTHA 2 SEWELL IA 1	1955 1953 1958 1967 1966	44 82 40 20 138	120 30 255 263 306	132 35 281 311 311			
MA-1 MA-2 MA-3 MA-4 MA-5	MANTUA TWP Mantua Twp Mantua Twp Mantua Twp Mantua Twp	394712N0751008.1 394636N0751115.1 394629N0750859.1 394617N0750833.1 394430N0750911.1	MANTUA WATER CO Edenwood W C Sewell W C Pricketts Nurs Pitman Cnty Clb	EWC 1 SWC 2 NURSERY 1	1954 1957 1965 1969 1967	65 88 60 80 85	295 315 336 377 378	317 337 368 397 408			
NO-1 NO-2 NP-1 PI-1 WA-1	MONROE TWP Monroe TWP National Pk Boro Pitman Boro Washington TWP	394059N0745913.1 394050N0745958.1 395156N0751053.1 394427N0750743.1 394649N0750624.1	THOMAS BRYNELL VIOLET PACKING NATIONAL PK W D PITMAN W D RUSSEL GRASMICK		1968 1967 1956 1960 1954	140 155 30 99 100	75 115 241 447 106	85 150 282 487 125			
WA-2 WA-3 WA-4 WA-5 WA-6	WASHINGTON TWP WASHINGTON TWP WASHINGTON TWP WASHINGTON TWP WASHINGTON TWP	394649N0750624。2 394641N0750449。1 394623N0750328。1 394610N0750303。1 394533N0750323。1	RUSSEL GRASMICK WILLIAM MICHAEL RUTH SAGERS PRIMROSE MOTEL WASHINGTON THUA	 	1968 1952 1953 1955 1965	105 80 89 83 90	122 75 164 543	124 140 105 190 577			
WA-7 WA-8 WA-9 WA-10 WA-11	WASHINGTON TWP WASHINGTON TWP WASHINGTON TWP WASHINGTON TWP WASHINGTON TWP	394531N0750653.1 394525N0750640.1 394522N0750617.1 394520N0750218.1 394517N0750300.2	R KRAEMER C BRETT Carlton gant Washington thua Bells lake W C		1968 1960 1953 1959 1968	60 70 81 100 130	72 107 581 547	104 90 125 612 620			

Table 1,--Recards of selected wells in Comden County and vicinity--Continued GTH DEPTH TO

MAP NUMRER	LENGTH OF WELL OPEN TO AQUIFER (FEET)	DEPTH TO CONSOLI- DATEO ROCK (FT)	CASING DIAM- ETER (IN)	WATER Level (FT)	DATE WATER LEVEL MEASURED	Y IELD (GPM)	DRAW Down (FT)	SPECIFIC CAPACITY		USE OF WATER	MAJOR AQUIFER
					CA	DEN COUN	TY				
WA-13 WA-14 WI-1 WI-2 WI-3	120 99 5 6 40	 	6 6 3 10	6 4 25 126	4-66 4-66 1-56 10-63	60 60 7 300	1 1 10 124	60.0 60.0 0.7 2.4	3 2 C 24	I I H N	AA CP AA CP AA CP AA CP K3 MW
WI-4 WI-5 WI-6 WI-7 WI-8	40 7 20 8	 	8 3 6 6	126 26 18 48	8-63 2-52 2-57 9-57	200 15 100 240	98 12	2.0 7.5 20.0	48 5 4 8	N U H N T	K3 MW —— AA CP AA CP AA CP
WI-9 WI-10 WI-11 WI-12 WI-13	7 21	 	3 6 8 12	30 59 35 39 32	8-51 1-66 7-69 7-65 1-64	10 150 510 524 596	 42		5 4 8	H C N N N N I	AA CP AA CP AA CP AA CP AA CP
WI-14 WI-15 WI-16 WI-17 WI-18	26 15 7 20	 	24 8 3 4	4 29 30 35	1-71 8-51 4-55 	1000 10 50	39 	25.6 	48 8 4 	P 1 14 14 1	AA CP AA CP AA CP AA CP AA CP
WI-23 WI-23 WI-23	31 6 5 26 26	 	24 2 2 2 2 2	5 18 3 3 3	12-70 2-52 12-70 12-70 12-70	1000 20 	28 10 	35.7 2.0 	48 2 	₽ Ħ U U U	AA CP AA CP AA CP AA CP AA CP
WI-24 WI-25 WI-26 WI-27 WI-28	20 7 60 10 10	2010	8 3 6 4 6	14 15 27 120 131	5-68 2-55 4-67 8-60 4-61	225 50 300 30 14	9 1 53 4 6	25.0 50.0 5.7 7.5 2.3	8 4 2 8 58	H H U U	AA CP AA CP AA CP K3 MR K3 MR
WI-29 WI-30 WI-32 WI-33	01 02 6	 	5 5 3 	56 4 1 	5-61 4-61 12-70 	6 3 	49 	0.1 	8 57 	U U H T	K3 HW TM KW AA CP AA CP TS HV
WI-34 WI-35 WI-36 WI-37 WI-38	10 21 26 30 25	 	3 8 8 8 8	33 16 22 41 46	7-52 10-54 7-53 1-63 9-52	7 502 708 360	2 60 78 206	3.5 8.4 9.1 1.7	5 8 24	H T T T	AA CP AA CP AA CP TS MV TS MV
WI-39 WI-40 WI-41 WI-42 WI-43	6 28 7 34 180	 	3 8 3 8 6	15 72 12 22 18	2-54 10-54 6-51 11-65 5-66	6 185 30 377 60	6 98 38 1	1.0 1.9 9.9 60.0	1 4 1 3	H T P N I	AA CP TS HV AA CP AA CP AA CP
WI-44 WI-45 WI-46 WI-47 WI-48	20 140 6 10 92	 	4 6 4 3 6	16 13 10 15 12	9-65 5-66 9-53 11-69 5-68	72 60 30 40 75	21 1 12 10 2	3.4 60.0 2.5 4.0 37.5	5 3 1 1	N 1 H 1	AA CP AA CP AA CP AA CP AA CP
					GLOUG	CESTER CO	UNTY				
CL-I DE-1 DE-2 DE-3 DE-4	30 20 10 10 24	 	8 4 3 4 4	151 50 4 80 23	11-56 4-49 10-52 8-68 4-53	708 50 25 20 25	90 10 20	7.9 5.0 1.0	8 4 6 1 8	Р I I I I I I I I	K3 MR K3 MV K3 MW K3 MW K3 MW
DE-5 DE-6 DE-7 DE-8 GL-1	12 5 26 42 5	 	4 12 12 4	30 10 70 60 80	10-55 12-53 1-58 11-67 5-66	30 25 1018 1150 5	10 59 25 5	3.0 17.3 46.0 1.0	4 2 8 8	H # P P U	K3 ET K3 MW K3 MR K3 MR K3 MW
MA-] MA-2 MA-3 MA-4 MA-5	21 22 32 20 30	700 	8 12 10 6 10	00 93 501 120 122	12-53 2-57 4-65 3-69 3-67	287 533 525 150 411	40 13 13 12 34	7.2 41.0 40.4 12.5 12.1	4 8 4 2 8	P P H I	K3 MR K3 MR K3 MR K3 MR K3 MR
MO-1 MO-2 NP-1 PI-1 WA-1	10 35 41 40 19	288	4 8 8 10 4	10 27 52 122 44	4-68 11-69 4-56 12-60 2-54	60 300 636 1000 90	5 20 31 27	12.0 15.0 20.5 37.0	1 3 8 8	H Z P P H	AA CP AA CP K3 MR K3 MR K3 MW
WA-2 WA-3 WA-4 WA-5 WA-6	1 A 30 20 30	 	 3 4 8	20 23 30 119	5-52 9-53 7-55 7-65	100 50 150 503	 33	 15.2	 8 2 3 8	IIIP	K3 MW K3 MW TL K3 MW K3 MR
WA-7 WA-8 WA-9 WA-10 WA-11	32 18 31 50	 	4 3 4 8 8	7 16 131 174	2-68 5-53 9-59 3-68	50 90 626 735	10 28 33	5.0 22.4 22.3	1 4 8 8	IIIQQ	K3 MW TF CS K3 MW K3 MR K3 MR

Table 1.-. Records of selected wells in Camden Caunty and vicinity-. Continued

				LOCAL	DATE	ALTI- TUDE-	CASING	WELL
MAP		LAT-LONG	OWNER	WELL	ORILLED	OF LSD	DEPTH	DEPTH
NUMBER	MUNICIPALITY			NUMBER	(YEAR)	(FT)	(FT)	(FT)
		·	GLOUCEST	ER COUNTY				
WA-12	WASHINGTON TWP	394452N0750243.1	GINO'S REST	1	1970	150	278	310
WA-13	WASHINGTON TWP	394442N0750504.1	WALTER F EMOND	ī	1968	150	220	244
WA-14	WASHINGTON TWP	394433N0750250.1	FRIES MILLS W C	FMWC 1	1964	152	584	652
WA-15	WASHINGTON TWP	394423N0750157.1	C W GREENE		1954	150	57	67
WA-16	WASHINGTON TWP	394420N0750630.1	HARRY J DE SOI	1	1968	90	141	165
WA-17	WASHINGTON TWP	394309N0750155.1	JOSEPH BRYAN		1954	155	42	47
WE-1	WENONAH BORO	394751N0750912.1	WENONAH WATER D		1951	30	270	310
WE-2	WENONAH BORO	394743N0750902.1	WENONAH WATER D		1944	80	280	320
WD-1	WEST DEPTFORD TWP		TEXAS OIL CO	EAGLE PT DBS 4	1948	10	214	224
WD-2	WEST DEPTFORD TWP	395232N0750942.1	TEXAS DIL CO	EAGLE PT OBS 3	1948	21	255	276
WD-3	WEST DEPTFORD TWP	395222N0750918.1	TEXAS OIL CO	EAGLE POINT 3	1947	20	258	288
WD-4	WEST DEPTFORD TWP		TEXAS OIL CO	EAGLE POINT 5	1948	10	237	277
WD-5	WEST DEPTFORD TWP		TEXAS DIL CO	EAGLE POINT 1	1947	32	248	288
WD-6	WEST DEPTFORD TWP		TEXAS OIL CO	EAGLE POINT 4	1948	14	259	289
₩D-7	WEST DEPTFORD TWP	395207N0750930.1	TEXAS DIL CO	EAGLE PDINT 2	1948	17	263	289
WD-8	WEST DEPTFORD TWP	395159N0750907.1	TEXAS DIL CO	EAGLE PT DBS 1	1948	32	288	298
₩D-9	WEST DEPTFORD TWP		TEXAS OIL CO	EAGLE PT OBS 2	1948	10	285	295
wD-10	WEST DEPTFORD TWP		TEXAS OIL CO	EAGLE POINT 6	1949	15	279	318
WD-11	WEST DEPTFORD TWP		SHELL CHEM CO	SHELL 3	1962	30	358	384
WD-12	WEST DEPTFORD TWP	394917N0751307.1	SHELL CHEM CO	SHELL 1	1962	12	328	360
WS-1	WESTVILLE BORD	395221N0750737.1	WESTVILLE W D	WWD 4	1957	16	286	313
WS-2	WESTVILLE BORD	395221N0750737.2	WESTVILLE W D	WWD 3	1945	16	115	140
WB-1	WOODBURY CITY	394950N0750909.1	WOODBURY W D	RAILROAD 5	1960	35	405	457
			PHILADELP	HIA COUNTY				
PH-1	PHILADELPHIA CITY	395538N0750843.1	CROWN PAPER BRD	1	1925	13		108
PH-2	PHILADELPHIA CITY		S P ORESS BEEF	S PHILA BEEF 4		15		60
PH-3	PHILADELPHIA CITY		GILBERT ADDED	PRES THEATER	1936	30	65	86
PH-4	PHILADELPHIA CITY		CONTINENTL DIST		1948	10	118	128
PH-5	PHILADELPHIA CITY	395511N0750833.1	WILSON-MARTIN	WILSON 1	1953	13	150	175
PH-6	PHILADELPHIA CITY		TWIN PACKING CO			10	140	180
PH-7	PHILADELPHIA CITY		PUBLICKER IND	P INDUSTRIES17	1937	8	159	189
PH-8	PHILADELPHIA CITY		GULF DIL CORP	WEST WELL	1946	17	72	182
PH-9	PHILADELPHIA CITY		U S NAVAL BASE	DBS WELL PH-12	1944	10	94	104
PH-10	PHILADELPHIA CITY	342354N0121015.1	U S NAVAL BASE	2	1940	10	207	232
PH-11	PHILAOELPHIA CITY		U S NAVAL BASE	4	1941	11	237	267
PH-12	PHILADELPHIA CITY		U S NAVAL BASE	3	1941	12	238	268
PH-13	PHILADELPHIA CITY		U S NAVAL BASE	9	1943	12	189	228
PH-] 4	PHILADELPHIA CITY		U S NAVAL BASE	DBS WELL PH-20	1946	13	238	243
PH-15	PHILADELPHIA CITY		U S NAVAL BASE	8	1944	15	200	230
PH-16	PHILADELPHIA CITY	395315N0751007.1	U S NAVAL BASE	11	1952	11	214	245

EXPLANATION

AQUIFER WG WISSAMICKON FORMATION KJRR ARRITAN FORMATION KJRR MAGOIMY-RARITAN FORMATIONS KJRV MERCHANTVILLE FORMATION KJET ENGLISHTOWN FORMATION KJNW MOUNT LAUREL SAND-WENONAH FORMATION KJNW MOUNT LAUREL SAND-WENONAH FORMATION TLAT HORNERSTOWN SAND TLVH VINCENTOWN FORMATION-HORNERSTOWN SAND TLVH VINCENTOWN FORMATION TKMA WANASQUAN-VINCENTOWN FORMATION THAM MANASQUAN FORMATION THAM MANASQUAN FORMATION THAM KIRKWOOD, FORMATION TAKW KIRKWOOD, FORMATION TAKW KIRKWOOD, FORMATION TL TERTIARY-PALEOCENE OGCH CAPE MAY FORMATION 2. WATER LEVEL BELOW LAND SURFACE F FLOWS 1. AQUIFER 3. WATER USE A AIR CONDITION C COMMERCIAL H DOMESTIC I IRRIGATION N INDUSTRIAL P PUBLIC SUPPLY T INSTITUTIONAL U UNUSED Z OTHER

-

MAP NUMRER -	LENGTH OF WELL OPEN TO AQUIFER (FEET)	DEPTH TO CONSOLI- DATED ROCK (FT)	CASING DIAM- Eter (IN)	WATER Level (Ft)	DATE WATER LEVEL MEASURED	YIELD (GPM)	DRAW Down (FT)	SPECIFIC CAPACITY		USE OF WATER	MAJOR AQUIFER
					GLOUC	ESTER CO	UNTY				
WA-12	32		6	100	2-70					с	K3 NW
WA-13	24		4	74	2-68	60	15	4.0	1	н	K3 MW
WA-14	68		8	188	9-64	858	50	17.2		Р	K3 MR
WA-15	10		4	32	10-54	15	6	2.5		н	AA CP
WA-16	24		4	16	12-68	60	15	5.0	2	н	K3 HW
WA-17	5		3	15	5-54	9	7	1.3	4	н	AA CP
WE-1	46		12	67	2-51	1200	40	30.0	8	P	K3 MR
WE-2	40	700	12	90	5-44	500	30	16.7	24	P	K3 MR
WD-1	10		3	31	7-48					U	K3 MR
¥0-2	20	298	6	42	11-52					U	K3 MR
WD-3	30	288	12	39	12-47	1012	43	23,5	24	N	K3 MR
#D-4	40	287	12	46	10-48	1029	44	23.4	8	N	K3 MR
WD-5	40		15	39	11-47	1110	34	32.6	8	N	K3 MR
WD-6	31		16	38	3-48	1100	52	21.2	90	N	K3 MR
₩0 - 7	31		16	38	1-48	1100	59	18.6	24	N	K3 MR
WD-8	10		4		10-47					υ	K3 MR
WD-9	10		3	18	7-48	250				U	K.J. MR
WD-10	39	~-	16	35	1-49	1200	76	15.8	48	N	K3 MR
WD-11	25		12	35	12-61	1000	105	9.5	8	N	K3 MR
WD-12	30		12	30	10-61	1000	36	27.8	8	N	K3 MR
₩S -1	27	325	10	51		1205	95	12.7	8	Ρ	K3 MR
₩5-2	28		10	24	6-45	500	28	17.9	2	P	K3 MR
WA-1	52		15	62	4-60	1016	24	42.3	10	Р	КЗ MR
					PHILAD	ELPHIA C	OUNTY				
PH-1			8	18		100				N	K3 MR
PH-2										Z	K3 MR
PH-3	21		8	39	6-36	90	30	3.0		A	QG CM
PH-4	17		10	41	10-48					N	K3 RA
PH ~ 5	25		10			250				Z	K3 MR
PH-6	15	172		72	12-43	726				N	K3 RA
PH-7	30		18	48		1030				I	K3 RA
PH-8	10		6	14	3-46	420				N	K3 RA
PH-9	10		8	27	11-44					U	K3 MR
PH-10	35		15	18	7-40	730	75	9.7		N	K3 RA
PH-11	30		12	25		800				N	K3 RA
PH-12			12	30		860				N	K3 RA
PH-13			15	32		710				N	K3 RA
PH-14	5		8	23	5-46					U	K3 MR
PH-15	30		8	51	12-44	740			* *	N	K3 RA
PH-16	31		12	47		640				N	K3 RA

-

Table 3.--Source and significance of dissolved mineral constituents and physical properties

of ground water in Camden County

(Gallaher and Price, 1966)

[Mg/l, milligrams per liter]

Constituent or Physical property	Source or cause	Significance
Silica (SiO ₂)	Dissolved from almost all rocks and soils, usually in small amounts from 1-30 mg/l. High concentrations as much as 100 mg/lgenerally occur in highly alkaline waters.	Forms hard scale in pipes and boilers. Carried over in steam of high-pressure boilers to form deposits on blades of steam turbines. Inhibits deterioration of zeolite-type water softeners.
Iron (Fe)	Dissolved from almost all rocks and soils. May also be derived from iron pipes, pumps, and other equip- ment. More than 1 or 2 mg/l of soluble iron in surface water usually indicates acid wastes from mine drainage or other sources.	On exposure to air, iron in ground water oxidizes to reddish-brown sediment. Content of more than about 0.3 mg/l stains laundry and utensils reddish brown. Objectionable for food processing, beverages, dyeing, bleaching, ice manufacture, brewing, and other processes. The U. S. Public Health Service (1962) recommends, in its water- quality standards, that iron and manganese together should not exceed 0.3 mg/l; larger quantities cause unpleasant taste and favor growth of iron bacteria.
Manganese (Mn)	Dissolved from some rocks and soils. Not as common as iron. Large quanti- ties often associated with high iron content and with acid waters.	Same objectionable features as iron. Causes dark-brown or black stain. Federal standards recommend that iron and manganese together should not exceed 0.3 mg/1.
Cəlcium (Ca) and magnesium (Mg)	Dissolved from almost all soils and rocks, especially limestone, dolomite, and gypsum. Calcium and magnesium are found in large quantities in some brines. Large quantities of magnesium are present in sea water.	Cause most of the hardness and scale-forming properties of water; soap consuming (see hardness). Water with low calcium and magnesium contents desired for electroplating, tanning, dyeing, and textile manufacturing.
Sodium (Na) and potassium (K)	Dissolved from almost all rocks and soils. Found also in ancient brines, sea water, some industrial brines, and sewage.	Large amounts, in combination with chloride, give a salty taste. Moderate quantities have little effect on the usefulness of water for most purposes. Sodium salts may cause foaming in steam boilers, and a high sodium ratio may limit the use of water for irrigation.
Bicarbonate (HCO3) and carbonate (CO ₃)	Action of carbon dioxide in water on carbonate rocks such as lime- stone and dolomite.	Bicarbonate and carbonate produce alkalinity. Bicarbonates of calcium and magnesium decompose in steam boilers and hot-water facilities to form scale and release corrosive carbon dioxide gas In combination with calcium and magnesium cause carbonate hardness.
Sulfate (SO ₄)	Dissolved from rocks and soils containing gypsum, iron sulfides, and other sulfur compounds. Usually present in mine waters and in some industrial wastes.	Sulfate in water containing calcium forms hard scal in steam boilers. In large amounts, sulfate in combination with other ions gives bitter taste to water. Some calcium sulfate is considered benefici in the brewing process. Federal standards recommen that the sulfate content should not exceed 250 mg/l
Chloride (Cl)	Dissolved from rocks and soils. Present in sewage. Found in large amounts in ancient brines, sea water, and industrial brines.	In large amounts in combination with sodium gives salty taste to drinking water. In large quantities increases the corrosiveness of water. Federal standards recommend that chloride content should no exceed 250 mg/1.

Table 3.--Source and significance of dissolved mineral constituents and physical properties

of ground water in Camden County--Continued

(Gallaher and Price, 1966)

[Mg/l, milligrams per liter]

Constituent or hysical property	Source or cause	Significance
Fluoride (F)	Dissolved in small to minute quanti- ties from most rocks and soils.	Fluoride in drinking water reduces the incidence of tooth decay when the water is consumed during the period of calcification. However, it may cause mottling of the teeth depending on the concentration of fluoride, age of the child, amount of drinking water consumed, and susceptibi- lity of the individual.
Nitrate (NO ₃)	Decaying organic matter, sewage, and soil nitrates.	Concentrations much greater than the local average may suggest pollution. There is evidence that more than about 45 mg/l of nitrate may cause a type of methemoglobinemia in infants, sometimes fatal. Nitrate has shown to be helpful in reduc- ing intercrystalline cracking of boiler steel. It encourages growth of algae and other organisms which produce undesirable tastes and odors.
Dissolved solids	Chiefly mineral constituents dissolved from rocks and soils. Includes any organic matter and some water of crystallization.	Federal standards recommend that dissolved solids should not exceed 500 mg/l. Water becomes unsuitable for many purposes when it contains more than 1,000 mg/l of dissolved solids.
Hardness as CaCO ₃	Nearly all of the hardness in most waters is due to calcium and magnesium. All metallic cations other than the alkali metals also cause hardness.	Consumes soap before a lather will form. Deposits soap curd on bathtubs. Hard water forms scale in boilers, water heaters, and pipes. Hardness equivalent to the bicarbonate and carbonate is called carbonate hardness. Any hardness in excess of this is called noncarbonate hardness. Waters of hardness up to 60 mg/l are considered soft; 61-120 mg/l, moderately hard; 122 200 mg/l, hard; more than 200 mg/l, very hard.
Specific conductance (micromhos at 25°C)	Mineral content of the water.	Specific conductance is a measure of the capacity of water to conduct an electric current; varies with concentration and degree of ionization of the constituents. Varies with temperature, reported at 25°C.
Hydrogen-ion concentration (pH)	Acids, acid-generating salts, and free carbon dioxide lower the pH. Carbonates, bicarbonates, hydroxides, silicates, and borates raise the pH.	pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote increasing alkalinity; values lower than 7.0 indicate increasing acidity. The pH is a measure of hydrogen-ion activity. The corrosive properties of water generally increase with decreasing pH; however, excessively alkaline water may also attack metals.
Temperature		Affects the usefulness of water for many purposes. For most uses, a water of uniformly low temperatur is desired. Shallow wells show some seasonal fluctuations in water temperature. Ground water from moderate depths usually is nearly constant in temperature, which is near the mean annual air temperature of the area. In very deep wells the water temperature generally increases on the average about 1°C with each 100-ft increment of depth. Seasonal fluctuations in temperatures of surface water are comparatively large-depending on the depth of waterbut do not reach the extrem of air temperature.

Table 4.--Chemical analysis of water samples from wells tapping the various aquifers of the Camden County area

4 1

-

101	ble 4Chemical						-	•			•	
MAP NUMBER	WELL OWNER	LOCAL	NUMBER	MA.JOR AQUIFER	DATE OF SAMPLE	SILICA (SI02) (MG/L)	TOTAL Iron (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	CAL- CIUN (CA) (MG/L)	MAG- NE- SIUM (MG) (MG/L)	SODIUM (NA) (MG/L)	PO- TAS- SIUM (K) (MG/L)
HA-1 EV-3 EV-4 MS-1 MS-2	ATLANTIC C FXPR EVESHAM M U A EVESHAM M U A Maple Smade W D Maple Smade W D	EMUA 2 EMUA 1 MSWD 4	1	TMKW K3MR K3MR K3MR K3MR	11-06-69 08-11-66 08-11-66 08-10-66 08-10-66	8.0 8.7 10 13	350 390 3100 3200	0 0 0 0	31 31 14 17	7.6 7.7 3.8 4.9	3.5 2.5 1.8 3.0	7.0 8.8 2.1 4.7
4E-4 HO-2 HO-4 HO-6 MT-1	MFDFORD W C CAMPRELL SOUP Layne Ny Co Moorestdwn t Wd Mt Laurel w Co	MWC 3 CAMPRELL LAYNE 1 MTWD 6 MLWC 1	1	K 3MR K 3MR K 3MR K 3MR K 3MR	08-12-66 08-16-66 08-11-66 08-10-66 08-11-66	9.1 10 13 10 9.8	460 210 1900 3000 3000	0 80 0 0	24 3.5 8.1 16 17	5.6 1.6 3.3 3.8 3.0	9.0 4.6 1.8 3.0 6.2	8.2 1.8 2.1 4.0 5.5
8L-1 8L-2 8L-4 88-1 88-2	BELLMANG B W D BELLMANG B W D BELLMANG B W D BERLIN WATER D RERLIN WATER D	PBWD 1 BRWD 3 RRWD 4 RWD 9 RWD 10		K 3MR K 3MR K 3MR K 3MR K 3MR	08-19-66 08-19-66 08-17-67 08-23-66 01-13-70	9.1 8.7 8.4 9.1	670 480 380 180	0 50 0	21 13 15 15	6.0 3.0 3.3 5.6	7.6 19 16 18	4.8 6.8 6.7 8.8
88-6 88-1 88-2 CA-4 CA-7	OWENS CORNING Brdoklawn B W D Brdoklawn B W D NJ Watfr Co NJ Watfr Co	1 RRWD 2 RRWD 3 CAMDEN DI CAMDEN DI		K 3MW K 3MR K 3MR K 3MR K 3MR	01-16-70 08-19-66 08-19-66 08-31-66 08-31-66	9.8 12 9.3 4.5 8,4	50 3500 540 15000 120	0 60 50 3600 50	23 39 16 22 3 0	6.0 , 8.8 3.8 12 .6	3,8 13 18 12 51	7.7 6.6 7.0 3.1 2.1
CA-20 CA-20 CA-20 CA-20 CA-20	CAMDEN CITY W D Camden City W d Camden City W d Camden City W d	CITY 9 CITY 9 CITY 9		K 3MR K 3MR K 3MR K 3MR K 3MR	08-24-66 12-07-65 11-17-65 08-13-63 04-12-63	6.4 	6700 	6200 	38 	14	23	3.6
CA-20 CA-20 CA-23 CA-23	CAMDEN CITY W D Camden City W D Camden City W D Camden City W D Camden City W D	CITY 9 CITY 9 CITY 10		K3MR K3MR K3MR K3MR K3MR	10-02-62 04-24-62 08-31-61 03-10-69 02-12-69	 	 	 	 	 	 	
CA-23 CA-23 CA-23 CA-26 CA-26	CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D	CITY 10 CITY 10 CITY 1A		K 3MR K 3MR K 3MR K 3MR K 3MR	12-07-65 11-17-65 04-16-64 03-10-69 03-10-69	10 	480 	4400 	26 	12 12	29	3.2
CA-26 CA-26 CA-26 CA-26 CA-26	CAMDEN CITY W D Camden City W D Camden City W D Camden City W D Camden City W D	CITY 1A CITY 1A CITY 1A		K3MR K3MR K3MR K3MR K3MR	12-98-65 11-17-65 08-24-66 12-08-65 11-17-65	13 	4800 	2600	28 	10	42 	4.5
CA-29 CA-29 CA-29 CA-29 CA-29	CAMDEN CITY W D Camden City W D Camden City W D Camden City W D Camden City W D	CITY SN CITY SN CITY SN		K 3MR K 3MR K 3MR K 3MR K 3MR	10-08-69 03-10-69 02-12-69 08-24-66 11-17-65	12	 360	260	 24 	 10	34	 4.7
CA-29 CA-35 CA-35 CA-35 CA-35	CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D	CITY 3A CITY 3A CITY 3A		K 3MR K 3MR K 3MR K 3MR K 3MR	05-01-64 03-11-69 12-08-65 11-29-65 11-19-65		 	 	 			
CA-35 CA-38 CA-38 CA-38 CA-38	CAMDEN CITY W D Camden City W D Camden City W D Camden City W D Camden City W D	CITY 13 CITY 13 CITY 13	ş. *	K 349 K 3MR K 3MR K 3MR K 3MR	11-17-65 03-11-69 08-24-66 12-09-65 11-17-65	14 	930 	120	12 12	 4.4 	 11 	3.3
CA-38 CA-38 CA-41 CA-41 CA-41	GAMDEN CITY W D Camden City W D Camden City W D Camden City W D Camden City W D	CITY 13 CITY 17 CITY 17		K3MR K3MR K3MR K3MR K3MR	08-13-63 04-12-63 12-22-70 02-12-69 08-24-66	14 15 11 10	1500 2100 1300 	140 80 100 	11 9.6 16 16	3.4 3.4 4.8 5.2	5.9 6.9 8.4 	2.4 2.2 4.1
CA-41 CA-41 CA-41 CA-41 CA-41	CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D	CITY 17 CITY 17 CITY 17 CITY 17		K 34R K 34R K 34R K 34R K 34R	11-18-65 11-17-65 04-16-64 08-13-63 04-12-63	 11 12	 1300 20 1400	 120 150 50	 17 16	 5.1 5.1	 5.6 6.0	3.2 3.2
CA-41 CA-41 CA-41 CA-42 CA-42 CA-42	CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D	CITY 17 CITY 17 CITY 4		K 3MR K 3MR K 3MR K 3MR K 3MR	10-02-62 04-24-62 08-31-61 10-08-69 03-11-69	יי 	1200	110 	16 	5.1 	5,5 	3.6
CA-42 CA-42 CA-42 CA-53 CA-53	CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D	CITY 4 CITY 4 CITY 6N		K 3MR K 3MR K 3MR K 3MR K 3MR	08-24-66 12-07-65 11-17-65 03-11-69 08-24-66	7.6	290 140	100 1000	32 52	23 35	25 29	11 14
CA-53 CA-53 CA-53 CA-56 CA-56	CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D	CITY 6N CITY 6N CITY 11		К ЗМR К ЗМR К ЗМR К ЗМR К ЗМR	04-16-64 08-13-63 10-02-62 03-11-69 12-09-65	 		 		 		

Table 4.--Chemical analysis of water samples from wells tapping the various aquifers of the Camdon County area--Continued

100.0													
HAP NUMBER	BICAR- RONATE (HCO3) (MG/L)	CAR- RONATE (CO3) (MG/L)	SULFATE (SO4) (MG/L)	CHLO- RIDE (CL) (MG/L)	FL110- RIDE (F) (MG/L)	NITRATE (NO3) (MG/L)	DISS- OLVFD SOLIDS (RESI- DUE AT 180 C)	HARD- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARD- NESS (HG/L)	SPECI- FIC COND- UCTANCE (MICRO- MHOS)	Рн	COLOR	TEMP- ERATURE (DEG C)
HA-1 EV-3 EV-4 HS-1 HS-2	112 103 43 64	0 0 0 0	36 35 15 14	4.5 .6 1.2 3.5 5.0	•1 •0 •0	•8 1.2 •3 •1	153 148 78 91	109 109 51 63	17 25 16 10	60 255 252 115 146	7.7 7.1 6.1 6.4	3 2 3 2	
HE-4 HO-2 HO-4 HO-6 HT-1	106 4 34 46 57	0 0 0 0	19 3.8 9.4 27 23	8.6 5.8 3.0 2.2 3.4	• 0 • 0 • 0 • 0	16 .2 .3	125 59 59 89 97	83 15 34 56 55	0 12 81 9	205 69 86 139 155	7.9 5.4 6.1 6.2 6.6	5 2 3 2 3	16.5
BL-1 BL-2 BL-4 BB-1 BB-2	89 85 83 108	0 0 0	25 16 19 19	1.6 7.4 6.0 1.6 4.5	•2 •2 •4 •2	.7 .6 .1 .0	133 110 124 132	77 45 51 61	0 0 0	200 188 188 212 223	7.4 7.6 7.3 7.9	2 10 2 3	13.5 16.5 15.5 19.5 17.8
88-6 8R-1 8R-2 CA-4 CA-7	104 150 90 148 136	0 0 0 0	8.4 36 23 .8 45	2.0 16 6.4 17 23	.4 .2 1.0 .2	.2 .2 .2 .2 8.7	118 214 128 152 244	82 134 56 105 78	0 11 0 0 0	192 350 209 286 393	8.1 7.2 7.1 6.9 6.9	3 5 3 0	15.0 14.5 14.0 13.5 14.5
CA-20 CA-20 CA-20 CA-20 CA-20	140	0 	21 	54 56 46 44	.5 	1,7	256 	153 	38 	433 594 621	6.7 	5 	16.5 14.5 13.5
CA-20 CA-20 CA-20 CA-23 CA-23				42 44 38 54 55			 	 		580 504 519 503 491	 		14.5 14.5 14.0
CA-23 CA-23 CA-23 CA-26 CA-26	50	0	69 	64 20 47 61 61	 .1 	6.1	236	115	 74 	 396 477 477	6.1 	2]4.0
CA-26 CA-26 CA-26 CA-26 CA-26 CA-26	61 	 0 	81 	78 80 59 78 80	•1	.2	286	 111 	61 	 474 	 6.4 	2	14.5
CA-29 CA-29 CA-29 CA-29 CA-29 CA-29			82 	46 41 36 41	.0	 7.6	247	101		428 435 441 398	6.0 		15.5 16.0 15.0
CA-29 CA-35 CA-35 CA-35 CA-35 CA-35		 		28 41 50 50 36						293 577 			15.0
CA-35 CA-38 CA-38 CA-38 CA-38 CA-38	32	0	24	48 25 16 17 16	.0	5,3	111	 48 	22	237	6.2	 5 	 13.5
CA-38 CA-38 CA-41 CA-41 CA-41	28 27 42 	0 0 	16 16 32 31	10 9.5 11 10 9.1	.2 .0 .0 .0	4.5 4.6 1.9 	96 77 109 111	42 38 60 62	19 16 25 25	130 138 181 186 170	6.3 6.2 7.2 6.3	4 2 1 	14.0 13.5 13.5 14.0 13.5
CA-41 CA-41 CA-41 CA-41 CA-41	 47 49 45	 0 0	29 30 29	11 16 8.2 8.4 7.0	 • 0 • 3 • 0	 .1 .8 .9	104 109 101	 61 64 61	 23 24 24	170 174 185	6.2 6.3 6.2	 4 2	 14.0 14.0 13.5
CA-41 CA-41 CA-41 CA-42 CA-42	47 	0 	28	8.0 8.4 8.8 48 37	.0 	-1 	112	61 	23 	173 167 170 538 530	6.3 6.1	5 	14.0 15.1
CA-42 CA-42 CA-42 CA-53 CA-53	102 160	0 0	101 176	28 35 32 32 29	-1 -0	16 5.5	308 445	175 274	91 143	493 699 702	6.6 6.4	3	14.5 14.5
CA-53 CA-53 CA-53 CA-56 CA-56		 		30 30 31 40 80						778 765 805 391		 	· 15.0 15.0 15.5

Table 4.--Chemical analysis of water samples from wells tapping the various aquifers of the Camdon County area--Continued

10016 4		•			•						B0
MAP NUMBER	WFLL OWNER	LOCAL NUMBER	MA JOR AQUIFER	DATE OF SAMPLE	SILICA (SI02) (MG/L)	TOTAL IRON (FF) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	CAL- CIUM (CA) (MG/L)	MAG- NE- SIUM (MG) (MG/L)	SODIUM (NA) (MG/L)	PO+ TAS- SIUM (K) (MG/L)
CA-56 CA-58 CA-60 CA-60 CA-61	CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D SO JRSY PORT CM	CITY 7 CITY 7N CITY 7N	K 3MR K 3MR K 3MR K 3MR K 3MR	11-18-65 11-18-65 03-11-69 02-12-69 07-14-71	 5.9	 3900	 330	 20	 4.5	 17	 4.1
CH-5 CH-14 CH-19 CH-20 CH-37	PADIO CORP AMER NJ WATER CO NJ WATER CO NJ WATER CO HUSSMAN REFRIDG	KINGSTON 25 Ellisburg 16 Ellisburg 23	K 3 MR K 3 MR K 3 MR K 3 MR K 3 MR	08-18-67 08-17-66 08-23-66 08-17-66 08-24-66	12 8.0 9.1 7.8 8.4	3800 2900 3600 3700 310	50 90 100 0 40	33 27 24 27 27 27	7.5 6.0 5.4 5.4 6.4	2.5 3.1 10 1.7 5.8	5.0 7.2 6.2 4.2 8.6
CL-3 CQ-2 CQ-7 G1-3 G1-8	CLEMENTON W D CALLINGSWOAD WD CALLINGSWOAD WD KARL W FUCHS US AIR FORCE		K3FT K3MR K3MR K3MW K3MW	09-11-69 08-23-66 08-23-66 01-15-70 01-04-71	12 11 9.1 10	350 810 3000 1100	20 0 0	25 18 23 25	3.0 6.0 4.8 2.5	1.8 2.8 6.0 2.7	3.8 4.0 7.2 4.0
G1-8 G1-9 G1-9 GC-3 GC-4	US ATR FORCE US ATR FORCE US ATR FORCE GLOUCESTER C WD GLOUCESTER C WD		К ЗМЖ К ЗМЖ К ЗМЖ К ЗМR К ЗМR	12-04-67 01-04-71 12-04-67 08-31-66 08-31-66	10 10 9.8 12 1]	800 130 560 2800 7800	10 10 20 50 180	24 25 24 22 18	2.5 2.5 1.8 5.2 12	2.8 2.7 2.0 12 20	4.0 4.2 3.7 7.8 6.6
GC-10 GC-14 GC-17 GC-23 GC-23	GLOUCESTEP C WD HINDE AND DAUCH Harshaw Chem CO NJ 7INC CO NJ 7INC CO	JEPSEY AVE 1	К ЗЫR К ЗМR К ЗМR К ЗМR К ЗМR	08-31-66 08-31-66 12-12-68 05-14-71 12-12-68	14 15 10	3900 3600 3100	70 90 130	28 22 46	6.6 5.2 10	14 15 30	8.8 7.4 12
GC-24 GC-26 GT-4 GT-9 GT-10	NJ 7ING CO NJ 7ING CO Edward Marsh John Rishor Thfiss	2-NEEP 4-NEFP 1]	К 34R К 34R К 34V К 3FT К 34W	12-12-68 12-12-68 11-06-69 01-28-70 02-16-70	 11 16	20 50	20 20 100	26	 3.5 2.8	 3.4 3.4	5.1
GT-20 GT-25 GT-29 GT-32 GT-36	GAR ST WC-RLKWD Robert Bennett Camden County Myra Loring Robert Rennett	BLACKWOD DIV 1 MONARCH ROILER LAKELAND 2 HOME WELL	К 34R К 34W К 34R К 34W А АСР	08-25-66 02-16-70 11-07-69 11-06-69 02-16-70	9.1 9.0 4.4	140 70 1100	30 10 20	12 22 12	3.2 1.5 2.8	24 1.3 7.8	6.8 2.0 6.4
GT-38 GT-44 HA-5 HA-7 HF-3	J RECICA CAMDEN CO RD ED Haddon TWP W D Haddon TWP W D Haddonfield W D	HTWD 1 HTWD 2	K 344 K 344 K 34R K 34R K 34R	11-06-69 01-15-70 08-23-66 08-23-66 08-22-66	8.3 9.1 9.5 9.1	20 210 4200 1300	20 100 60 50	23 22 22 20	7•0 5•0 5•4 4•8	8.4 7.2 7.1 8.8	 8.4 7.4 7.8 8.4
HF-5 HH-1 HH-8 HH-9 LS-6	HAODONFIELD W D NJ WATER CO NJ WATER CO NJ WATER CO NJ WATER CO	LAYNE 2 Eggrert Ir Handon 30 Handon 15 Laurel 4	K 34R K 34R K 34R K 34R K 34R	08-22-66 08-21-67 08-17-66 08-17-66 01-22-70	8.4 7.6 9.1 8.9 15	1400 970 680 730 2000	60 0 40 40 30	26 17 26 18 46	5.8 3.8 5.6 3.8 2.6	4.6 11 6.0 11 2.0	7.8 8.3 8.2 6.8 2.2
L I-1 ME-1 PE-1 PE-4 PE-4	MUN UTIL AUTH MEPCH-PENNS W C Camden City W D Camden City W D Camden City W D	MORRIS 1 MORRIS 34	K 3MH K 3MR K 3MR K 3MR K 3MR	11-06-69 08-19-66 08-30-66 08-30-66 08-13-63	12 11 4.9 4.4	2000 80 5300 6800	40 20 3600 8300	27 6.5 21 34	1.0 3.2 11 22	1.6 12 18 24	2.7 2.1 2.4 2.2
PE-4 PE-10 PE-14 PE-15 PE-18	CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D	MORPIS 8 Delair 3 Delair 2	K 3MR K 3MR K 3MR K 3MR K 3MR	08-31-61 08-30-66 08-30-66 08-30-66 06-11-69	5.5 6.5 6.7 4.1	 6800 100 9100 20	2800 1100 2400 1900	16 17 12 16	7.0 11 4.6 6.9	10 17 20 18	1.4 4.0 2.4 2.2
PE-18 PE-21 PE-21 PE-23 PE-27	CAMDEN CITY W D +CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D MFRCH-PENNS W C	PUCHACK 4 PUCHACK 4 PUCHACK 5	К ЗМR К ЗМР К ЗМР К ЗМR К ЗМR	08-30-66 06-11-69 08-30-66 06-11-69 09-20-66	3.8 7.7 8.4 7.4 13	0 120 0 50 600	1300 50 0 100 80	16 5.3 6.5 9.2 4.2	10 2.3 3.0 4.7 1.4	12 4.0 3.2 9.0 7.0	2.0 .2 1.4 2.3 .6
PE-34 PE-39 PE-41 PE-43 PE-44	MFRCH-PENNS & C Merch-Penns & C Merch-Penns & C Merch-Penns & C Mfrch-Penns & C	MARION 1 Marion 2 Browning 24	K 3MR K 3MR K 3MR K 3MR K 3MR	08-31-66 08-31-66 08-19-66 08-19-66 08-19-66	5.5 12 13 15 12	160 160 160 1600 2000	100 100 30 70 60	12 5.0 3.5 3.0 3.0	5.2 2.2 1.4 1.4	11 5.1 3.5 4.5 4.5	2.8 2.0 1.6 1.1 1.1
PH-6 PV-4 RU-5 S0-1 V0-6	PINE HJLL M U A PINE VALLEY G C NJ WATER CO NJ WATER CO NJ WATER CO		K 3MR K 3MW K 3MR K 3MR K 3MR	08-17-67 08-16-67 09-21-66 08-17-66 08-17-66	8.7 11 8.7 9.1 9.5	30 340 280 990 290	' 0 50 0 30 50	12 25 16 18 22	4.5 4.3 3.4 4.5 6.2	22 2.5 12 11 7.2	9.6 4.9 7.2 7.6 9.0
VO-7 VO-11 VO-14 WA-4 WA-5	RADIO CORP AMER Camden Lime Co NJ WATER CO Ivystone W W Ivystone W W	RCA 1 ELM TREE 26 WATER WKS 2-62 WATER WKS 3-65	K3MW K3MW K3MW K3MW K3MW	01-15-70 01-15-70 03-16-70 04-25-69 12-16-69	12 10 10	130 40 1500	10 10 20	26 22 22 22	2.5 1.8 6.3	2.0 2.0 7.0	2.6 3.2 9.2
WA-8 WI-3 WI-10 WI-12	AL GIORDANO JOHNS-MANVILLE CAMDEN CO R H S Amfrican Teleph Certain Teed St	REGIONAL H S 1 Telfgraph 1	ААСР КЗМШ ААСР ААСР ААСР	03-11-70 01-22-70 02-16-70 11-06-69 11-06-69	5.5 9.3 5.2 5.7	3800 3600 0 100	30 60 10 10	1.4 16 22 .3	1.8 4.0 1.6 .4	4.5 7.8 3.0 I.4	1.2 5.2 2.6 .6

Table 4Chemical analysis of water samples fram wells tap	ping the various (aquifers of the Camden County areaCantinued	l

Table							niss-		NON-	SPECI-			
MAP NUMBER	BTCAR- RONATE (HCO3) (MG/L)	CAR- BONATE (CO3) (MG/L)	SULFATF (504) (MG/L)	CHLO- PIOF (CL) (MG/L)	FLU0- PIDE (F) (MG/L)	NITRATE (NO3) (MG/L)	OLVED SOLIDS (RESI- DUE AT 180 C)	HARD- NESS (CA+MG) (MG/L)	NUN- CAR- RONATE HARD- NESS (MG/L)	FIC COND- UCTANCE (MICRD- MHDS)	Рн	COLOR	TFMP- ERATURE (DEG C)
CA-56 CA-58 CA-60 CA-60 CA-61	 48		23	82 27 30 30 23		 1.1	135	 69		227 236 226	7,5		 15.0 14.9
CH-5 CH-14 CH-19 CH-20 CH-37	134 92 94 78 104	0 0 0 0	11 33 34 35 29	3.0 1.8 2.0 2.1 1.4	•0 •0 •0	.1 .2 .0 .3 1.1	150 132 148 121 141	114 92 82 90 94	4 17 5 26 9	232 212 221 198 226	7.1 6.0 7.2 7.1 7.6	2 10 3 3 3	15.0 14.5 14.5 14.5 17.0
CL-3 CO-2 CO-7 G1-3 G1-8	86 64 82 77	0 0 	8.4 23 28 	2.0 4.2 2.8 6.2 7.6	•2 •1 •1 	•0 •3 •	105 105 118 98	75 70 77 73	5 17 10 	167 163 201 185 171	8.0 6.7 6.7 7.9	3 3 2 0	17.0 13.5 14.5 11.0
GI-8 GI-9 GI-9 GC-3 GC-4	72 79 72 80 12	0 0 0 0	11 12 12 33 105	5.9 8.0 2.6 11 23	2 .2 .0	.5 .1 .4 .0	104 100 92 142 203	71 73 68 77 95	12 8 9 11 85	160 174 148 235 331	7.2 7.5 7.0 6.8 5.7	2 5 2 3 5	14.0 19.0 13.5 15.0
GC-10 GC-14 GC-17 GC-23 GC-23	78 67 241 	0 	51 78 11 9,8 6.3	18 21 20	.0 .0 .3	.? .? 4.5	185 160 248	97 77 156	33 22 0 	293 253 693 439 393	6.8 6.3 7.3	5 1 	14.5 14.0 14.0 14.4 13.0
GC-24 GC-26 GT-4 GT-9 GT-10	106		26 55 3.9 .1	.R 4.7 1.1	 -6 .1	 -0 15	107 97	 80 17	 0 	303 434 181 147 116	8.3 6.7		13.0 14.0 12.0 14.0
GT-20 GT-25 GT-29 GT-32 GT-36	107 66 3	0 0	15 10 	3.1 .3 3.8 5.0 11	-0 -4 -1	•0 •4 57	124 100 120	43 61 42	0 7 39	201 143 213 180 137	8.0 8.1 5.6	3 3	15.5 12.0
GT-38 GT-44 HA-5 HA-7 HF-3	127 96 88 91		9.8 29 28 21	2.8 1.0 3.8 3.8 4.0	.4 .0 .0 .1	• 1 • 0 • 0	137 125 129 120	97 76 77 70	0 5 5 0	202 228 200 205 197	8.3 7.3 6.9 7.5	3 5 2 5	10.0 14.5 16.0
HF-5 HH-1 HH-8 HH-9 LS-6	97 83 98 86 100	0000	30 20 27 19 28	1.7 4.0 2.0 4.4 9.7	0. 2. .? .2	.0 .? .7 .3	137 120 133 108 178	89 58 88 61 126	10 1 8 0 44	218 182 221 184 266	7.2 7.4 7.5 7.1 8.3	8 1 3 10 3	14.5 13.5 15.5 12.0
L I - 1 ME - 1 PE - 1 PE - 4 PE - 4	P2 11 75 179 	0000	8.7 7.9 47 36 	2.3 18 22 38 20	.4 .0 .? .1	22 .2 .5	98 86 170 263	29 98 176	5 20 36 29	155 126 300 484 353	8.1 5.9 6.9 6.6	0 15 2 3	17.0 12.5 14.5 13.5 12.5
PE-4 PE-10 PE-14 PE-15 PE-18	 41 59 46 45		31 40 36 36	8.4 19 26 22 27	.2 .0 .5	1.8 8.8 .0 5.6	110 172 130 137	69 88 49 69	36 39 12 32	141 211 279 228 245	6.3 6.4 6.5 7.6	3 3 5 1	13.5 12.5 14.0 15.0 17.0
PE-18 PE-21 PE-21 PE-23 PE-27	53 4 11 12	0,000	35 13 15 31 6.6	23 6.8 7.6 14 5.5	.2 .0 .2	5. 9.6 11 8.0 7.2	137 60 63 90 67	81 23 29 43 17	38 19 25 34 7	235 86 95 153 66	6.5 6.6 5.4 7.1 6.0	4 1 2 1 8	13.0 12.0 13.0
PE-34 PE-39 PE-41 PE-43 PE-44	43 5 9 13	0 0 0 0 0	20 7.4 2.6 .6 4.0	15 10 5.4 11 7.0	•1 •1 •0 •0	•6 10 6•5 2•8 •7	96 62 48 48 39	52 22 14 14 14	17 18 7 4 3	163 81 53 55 48	6.1 5.5 5.9 7.1 6.1	3 0 5 15 10	13.5 12.0 13.5 13.5 13.5
PH-6 PV-4 RU-5 S0-1 V0-6	108 96 84 84 102	0 0 0 0	19 11 17 23 24	1.7 1.0 2.2 4.4 1.6	.4 .2 .2 .2	•0 •0	137 117 116 110 130	49 80 54 64 81	0 2 0 0 0	210 172 171 185 211	7.4 7.7 7.4 7.5 7.6	1 4 5 15 2	19.0 14.5 15.0 14.5
VD-7 VD-11 VO-14 WA-4 WA-5	87 76 114	0 0 1	4.8 •0 14	4.0 3.0 2.6 2.1 2.8	.3 .5 .3	 	113 98 118	75 63 81	4 0 0	154 161 155 206 156	8.0 8.1 8.4 	3 3 2	12.0 13.0 14.0 16.0 14.0
WA-8 WI-3 WI-8 WI-10 WI-12	2 125 	0 0 	.4 7.3 9.8 .0	10 4.0 2.2 2.2	•1 •4 •1 	15 1.4 16 1.0	53 134 50 13	11 57 12 2	$ \frac{10}{9} - \frac{10}{0} $	69 227 61 17 24	5.3 8.3 6.0 6.6	3 3 0	12.2 14.0 12.0 14.0

Table 4.--Chemical analysis of water samples from wells tapping the various aquifers of the Camden County area--Continued

MAP NUMBER	WELL OWNER	LOCAL NUMBER	MAJOR AQUIFER	DATE OF SAMPLE	SILICA (S102) (MG/L)	TOTAL IRON (FE) (UG/L)	TOTAL MAN- GANESE (MN) (UG/L)	CAL- CIUM (CA) (HG/L)	MAG- NE- SIUM (MG) (MG/L)	SODIUM (NA) (MG/L)	PO- TAS- SIUM (K) (HG/L)
¥I-27	US GEOL SURVEY	NEW BROOKLYN 1	K 3MR	04-27-72	12	680	20	10	2.4	240	5.8
WI-27	US GEOL SURVEY	NEW BROOKLYN 1	K3MR	04-06-67		1600	110	11	2.4	229 97	5.0
WI-28 WI-30	US GEOL SURVEY US GEOL SURVEY	NEW BROOKLYN 2 NEW BROOKLYN 4	K 3MR TMKW	04-26-72 02-07-64	14	6000	0 520	3.6 8.8	•4 1•2	13	9.9 2.0
WI-38	ANCORA STA HOSP	2	TSHV	04-25-69	9.6	30	10	9.2	2.6	44	7.3
WI-42	MAR REFRACTORY	1	AACP	11-05-69	4.6	100	10	.2	.4	2.0	.5
CL-1	CLAYTON W D	CWD 3	K3MR K3MR	07-13-67 08-17-67	9.8	950	150	2.4 8.7	1.2	222 57	7.2 6.3
DE-7 GL-1	DEPTFORD T M A	OTMA 2	K 3MK K 3MW	01-23-70	7.6	80	0	···		5/	0.3
MA-1	MANTUA WATER CO	MWC 2	K 3MR	07-17-67	9.8	90	100	8.5	2.2	82	5.5
MA-2	EDENWOOD W C	EWC 1	K 3MR	08-15-67	8.0	120	100	7.0	2.0	92	6.7
MA-3	SEWELL W C	SWC 2	K 3MR	07-17-67	9.5	270	190	6.0	1.8	80	5.8
M0-2	VIOLET PACKING	2	AACP	11-06-69							
NP-1 NP-1	NATIONAL PK W 0 NATIONAL PK W D	NPWD 2	K 3MR K 3MR	05-18-71 07-13-67	10 11	780 90	30 50	8.5 6.5	2.3 1.5	53 60	4.5 3.2
-											
NP-1 WA-5	NATIONAL PK W D PRIMROSE MOTEL	NPWD 2	K 3MR K 3MW	08-29-66 01-22-70	9.8	530	20	6.5	2.2	57	3.8
WA-5	WASHINGTON THUA	WTMUA 2	K 3MR	08-17-67	8.0	70	50	5.0	1.9	46	6.4
WA-7	R KRAEMFR	1	КЗМШ	01-20-70							
WA-8	C BRETT		TFCS	10-20-68	20	590	30	36	•9	2.5	1.7
WA-10	WASHINGTON THUA	WTMUA 1	K 3MR	08-17-67	9.8	130	0	5.2	2.0	48	6.8
WA-12	GINO'S REST	1	K3MW	02-25-70	8.6	50	20	20	7.0	6.2	6.8
WA-13	WALTER F EMOND - FRIES MILLS W C		K3MW K3MR	01-23-70 08-15-67	8.7	90	50	3,5	1.5	65	5.9
WA-14 WA-16	HARRY J DE SOI		K3wW	01-20-70							
WE-1	WENONAH WATER D	AMD S	K 3MR	07-17-67	9.5	170	0	7.5	2.1	58	5.8
WE-2	WENONAH WATER D	WWD 1	K 3MR	07-17-67	9.6	290	150	7.3	2.0	60	5.8
MD-5	TEXAS OIL CO	EAGLE PT OBS 3	K3MR	05-18-71	11	2600	90	26	5.9	34	8.4
WD-5 WD-6	TEXAS OIL CO TEXAS OIL CO	EAGLE POINT 1 EAGLE POINT 4	K 3MR K 3MR	08-25-66 05-18-71	10 12	1400 1200	50 40	16 11	4.0 2.9	33 44	6.4 5.2
WD-6	TEXAS OIL CO	EAGLE POINT 4	K3MR	12-19-68							
W0-6	TEXAS DIL CO	EAGLE POINT 4	K 3MR	08-25-66	11	660	0	7.5	3.0	36	3.9
WD-7	TEXAS DIL CO	EAGLE POINT 2	K 3MR	08-25-66	11	820	0	11	5.0	32	5.5
WD-10 WD-11	TFXAS NIL CO SHELL CHEM CO	EAGLE POINT 6 SHELL 1	K 3MR K 3MR	12-22-70 08-15-67	13 8.0	2200 460	60 100	15 8.0	3.0 1.9	30 165	5.1 4.9
WD-12	SHELL CHEM CO	SHELL 3	K 3MR	08-15-67	9.3	670	110	7.5	1.5	144	4.3
WS-1	WESTVILLE W D	WWD 4	K 3MR	05-20-71	8.9	450	30	13	2.9	23	6.6
WS-1	WESTVILLE W D	WWD 4	K3MR	07-13-67	9.1			12	2.3	25	5.2
W8-1 PH-1	WOODBURY W D Crown Paper Brd	RAILROAD 5 1	K 3MR K 3MR	07-12-67 07-31-67	9.5 12	110 80	280 3400	3.9 30	1.4	71 30	4.0 7.8
PH-2	S P DRESS BEEF	S PHILA BEEF 4	K3MR	12-13-68							
PH-3	GTLBERT ADDEN	PRES THEATER	QGCM	06-08-71	24	24500	630	60	78	38	7.6
PH-4	CONTINENTL DIST		KJRA	07-31-67	15	18000	1100	14	6.8	25	3.4
PH-5 PH-6	WILSON-MARTIN TWIN PACKING CO	WILSON 1	K3MR K3RA	12-19-68 07-30-67	14	40	420	74	67	62	10
-						••					
РН-7 Рн-7	PUBLICKER IND PUBLICKER IND	P INDUSTRIES17 P INDUSTRIES17	K 3RA K 3RA	05-28-71 07-31-67	9.9 9.5	64000 3700	1310 40	60 22	26 5.5	50 14	7.8
PH-B	GULF OIL CORP	WEST WELL	K3PA	05-13-71	23	1530	100	40	26	29	8.6 3.8
PH-8	GULF OIL CORP	WEST WELL	K3RA	07-31-67	23	33000	2500	52	36	26	4.9
PH-10	U S NAVAL BASE	2	K3RA	12-08-71	9.6	56000	2900	55	26	39	12
PH-11	U S NAVAL BASE	4	KBRA	05-17-71	13	36000	300	45	24	22	4.4
PH-11	U S NAVAL BASE	4	K 3RA	08-04-67	14	10000	320	42	26	26	4.2
PH-12 PH-13	U S NAVAL BASE U S NAVAL BASE	3	K3RA K3ra	08-04-67 12-08-71	14	4700 24000	200 210	30 100	16 38	30 65	3.6
PH-13	U S NAVAL BASE	9	KBRA	08-04-67	13	17000	200	84	33	70	12.7
PH-15	U S NAVAL BASE	8	K 3R A	08-04-67	8.9	46000	430	44	26	25	8.0
PH-16	U S NAVAL BASE	11	KJRA	06-02-71	10	6300	3200	70	28	40	8.1
PH-16	U S NAVAL RASE	11	K3RA	08-04-67	13	8700	100	88	44	59	10

EXPLANATION

AQUIFER

K3RA RARITAN FORMATION K3MR MAGOTHY-RARITAN FORMATIONS K3MV MERCHANTVILLE FORMATION K3ET ENGLISHTOWN FORMATION K3MW MOUNT LAUREL SAND-MENONAH FORMATION TSMV MANASOUAN-VINCENTOWN FORMATION TMKW KIRKWOOD FORMATION TFCS COHANSEY SAND AACP PLEISTOCENE-COHANSEY SAND GGCM CAPE MAY FORMATION

Table 4Chemical analysis o	f water samples from well	s tapping the various aquifer	s of the Camden County areaContinued

		•											
MAP NUMBER	BICAR- Ronate (HCD3) (MG/L)	CAR- BONATE (CO3) (MG/L)	SULFATE (SO4) (MG/L)	CHLO- RIDE (CL) (MG/L)	FLUD- RIDE (F) (MG/L)	NITRATE (ND3) (MG/L)	DISS- OLVED SOLIDS (RESI- DUE AT 180 C)	HARO- NESS (CA+MG) (MG/L)	NON- CAR- BONATE HARO- NESS (MG/L)	SPECI- FIC COND- UCTANCE (MICRO- MHOS)	Рн	CDLOR	TEMP- ERATURE (DEG C)
WI-27 WI-27 WI-28 WI-30 WI-38	162 168 172 3 151	0 0 54 0 3	5.3 6.9 4.7 56 12	283 298 2.5 2.6 2.0	1.9 1.6 .5 .3 .6	.9 .3 .4 .2 .4	663 670 297 136 165	35 38 11 27 34	0 0 25 0	1110 1220 453 167 256	7.6 8.1 9.4 5.1 8.6	10 7 40 3 4	22.0 24.0 18.5 12.0 13.0
WI-42 CL-1 DE-7 GL-1 MA-1	4 369 162 189	0 4 0 	•1 •6 7•8 6•1	5.0 129 9.2 3.8 26	1.0 1.0 2.0	•9 •2 •4 •8	19 568 173 241	2 11 31 30	0 0 0	21 961 285 196 391	6.4 8.5 7.7 8.5	3 5 1 	14.0 20.5 16.5 11.0 14.5
MA-2 MA-3 M0-2 NP-1 NP-1	227 204 120	0 5 0	5.5 5.1 8.8	30 20 9.0 30	1.6 1.6 	.1 1.2 	276 231 178	26 23 31	0 0	438 378 51 316	7.9 8.5 6.5	4 	15.0 13.5 13.4
NP-1 WA-5 WA-6 WA-7	120 120 134	0 0 	8.4 8.8 13	34 37 3.5 2.0 4.0	.8 1.0 .6	.2 .0 .1	187 191 159	22 25 21	0 0 	312 318 183 233 160	8.0 7.8 7.7	3	13.5 13.5 13.0 18.5 11.0
WA-8 WA-10 WA-12 WA-13 WA-14	95 140 110 174	1 0 0	19 15 6.9 7.6	4.7 2.3 1.5 3.5 2.0	.2 .0 .4 	.4 .2 .2	125 136 122 186	94 21 79 15	14 0 	212 237 211 176 278	8.4 7.8 8.0 7.9	1 3 2	 17.0 15.0 11.0 18.5
WA-16 WE-1 WE-2 WD-2 WD-5	171 173 164 145	 0 0 0	6.9 6.9 5.4 7.8	6.0 12 12 20 13	1.6 1.6 .3	.3 .0 .7 .0	190 205 189 164	27 26 90 57	 0 0 0	208 307 308 337 274	8.2 8.2 7.1 7.3	 3 3 0 3	12.0 11.0 13.5 14.5 13.5
WD-6 WD-6 WD-6 WD-7 WD-7	117 85 80 33	0 0 0	10 15 14 27 65	23 25 23	•4 •4 •3	.9 .6 .8	164 143 158 169	40 31 48 50	0 0 23	289 265 236 254 275	7.1 7.5 7.2 6.9	11 5 13 1	14.2 13.0 13.5 13.5 13.8
WD-11 WD-12 WS-1 WS-1	180 165 92 90	0 0 0 0	9.2 10 15 15	24 165 138 7.6 7.5	.2 1.2 2.4 .5 .4	• 3 • 1 • 3 • 4	464 425 119 121	28 25 45 40	23 0 0 0 0	806 708 202 191	7.7 7.8 7.4 8.0	3 5 1 3	14.5 14.5 14.2 14.5
W8-1 PH-1 PH-2 PH-3	122 158 259	0 0 0	7.9 28 139 276	48 46 57	.9 .5 .3	.1 .4 1.2	213 272 708	16 137 471	0 7 259	354 451 815 970	7.8 8.1 7.4	3 2 5	, 14.5 14.5 16.0 15.6
РН-4 РН-5 РН-6 РН-7	25 400 158 94	0 0	31 95 162 131	42 68 66	.3 .0 .4	19 10	204 665 479	63 460 257	43 132 127	298 770 1050 802	6.1 7.4 6.4	2 2 1	11.0 16.0 15.5 14.8
РН-7 РН-8 РН-8 РН-10 РН-11	193 316 258 186	0 0 0 0	22 57 38 795 82	14 51 32 41 21	.2 .2 .0 .8	.8 .0 1,9 .2	147 337 ** 372 402 325	78 210 278 244 211	0 52 19 33 59	235 563 629 696 524	6.9 6.2 6.9 6.7	2 1 5 1	14,5 15.9 13.5 16.3 15.1
PH-1] PH-12 PH-13 PH-13	173 152 271 152	0 0 0	96 48 281 247	20 27 82 102	•4 •2 •2 •2	•2 •1 •2	335 248 709 700	212 141 406 345	70 17 225 221	508 415 1030 992	6.6 6.6 6.2 6.6	2 2 1 2	14.2
РН-15 РН-16 РН-16	279 289 238	0 0 0	22 107 250	24 38 58	.6 .4 .0	•2 •4 •2	295 414 691	217 290 401	0 53 206	546 727 966	6.7 6.5 6.6	5 2 2	14.9

-

			Pd	Particle-size	diameter,	dismeter, in millimeters	ie Lers									
	Sample depth below land				Sand size	Sand sizes, in percent	ent			Gravel siz	Gravel sizes, in percent	int		Poroal ty	Rydraulic	Coefficient of
	aurface (feet)	Clay sizes, in percent (.004 mm)	in percent (.004- .0625 mm)	V. fine (.0625- .125 mm)	Fine (.125- .25 mm)	Medium (.25- .5 mm)	Coarse (.5- 1 mm)	V. COMTRE (1-2 mm)	V. fine (2-4 mm)	Fine (4-8 mm)	Medium (8-16 mm)	Coarse (16- 32 mm)	V. coarse (32- 64 mm)	(percent)	ConductIVICy (ft ² /dmy)	(gpd/ft ²)
Cohansey Sand and younger	10-12	8.4	8	5.9	27.1	41.8	17.5	2.4	ŗ	:	:	:	:	36.2	27	200
ро.	20-22	1.7	12.1	3.0	18.6	39.4	13.4	4.8	80.	.2	:	;	;	1.16	1.1	8.0
Ъ.	30.5-32.5	36.9	20	2.3	15.8	17.1	3.1	1.5	1.5	1.8	:	:	;	50.9	40.	ŗ.
Do.	51-53	8.0	3.1	1.1	5.2	11.6	28.1	22.2	14.2	5.9	ş.	;	;	31.2	46.	7.0
Do.	110-112	4.3	5.1	5.9	15.3	16.3	14.2	9.8	7.6	6.8	8.4	6.3	:	27.4	46.	7.0
Kirkwood Pormation	120-122	6.9	6.0	32.3	16	2.4	7.8	5.9	3.0	2.3	8.7	5.7	;	42.6	2.3	17
Do.	130-132	10.7	14	47.6	17.7	· 6	4.	s.	ş.	2.0	5.9	:	:	46.2	1.6	12
Bo.	140-142	7.5	22.8	32.6	7.6	9.	.،	.,		3.0	17.5	6.3	:	42.6	45.	4.0
Do.	150-152	23.7	91.9	9.6	33	1.8	;	:	:	:	:	:	;	41.1	.007	.05
Do.	162-164	26	34.6	9.4	15.8	14.2	i .	:	:	:	:	:	:	40.7	1000.	100.
Ъ.	174-176	25.2	67.6	5.0	1.8	4.	:	:	:	:	:	:	:	46.5	.003	.02
Ъ.	186-188	6.7	24.1	66	2.4	8.	;	:	:	:	1	;	:	53	2.28	17
ро.	198-200	1.1	54.1	37	1.0	.2	:	:	:	:	:	:	:	50.7	1.1	8.0
Do.	210-212	8.0	35.6	54	1.0	۳.	9.	;	ł	:	:	:	:	54.5	1.7	13
Manasquan and Vincentown Formations undiffereñtiated	220-222	25.9	19.9	7.8	19.8	23.4	3.0	.2	ł	1	1	:	;	45.1	10.	
Do.	230-232	30.8	18.8	13.9	19.2	15.6	1.6	٥.	ŗ.	;	:	:	:	43.8	.00.	.02
Ъ.	240-242	31.4	18.6	20.6	20	8.6	9.	.2	:	;	:	:	:	4	.001	10.
Ъ.	250-252	25.8	20	. 45.2	7.4	1.2	.2	.2	;	:	:	:	:	42.8	.003	.02
Do.	260-262	42.1	37.1	18.8	1.6	4.	:	1	:	:	:	:	:	41.2	1000.	100
Do.	270-272	43.4	46	7.4	2.6		;	;	:	:	;	:	:	9	£000 [.]	.002
ро.	280-282	34.1	29.5	23.4	7.8	5.2	;	;	;	:	1	;	:	56.9	700.	60
Do.	290-292	39.8	41	16.4	1.8	1.0	:	:	:	:	:	:	:	41.6	.0001	.002
Ъ.	300-302	33.6	23.2	7.6	13.8	19.8	1.6	4.	:	:	:	;	;	41.1	.007	SO .
Do.	310-312	35.7	31.9	22.8	6.2	2.8	9 .	1	:	;	1	;	:	47.8	100.	10.
Do.	320-322	43	29.2	10.2	8.5	6.4	2.0	.2	4.	۰.	1	1	1	58.7	.000	.02
Ъ.	330-332	67	29.2	20.8	8.		:	;	!	:	;	:	;	35.2	600.	.07
Ъ.	340-342	65	24.8	0.6	1.0	.2	:	1	1	1	1	1	;	53.2	1000.	100.
Do.	350-352	81.7	12.7	8.	2.2	2.6	;	;	:	:	:	;	:	14.1	.000	.002
ъ.	360-362	72.6	26.8	4.	°.	.2	;	:	:	:	:	:	:	1.16	80000.	9000

			ž	Perticle-size	dismeter,	dismeter, in millimeters	neters								-	
	Sample depth below land				Sand size	Sand sizes, in percent	tent			Gravel siz	Gravel sizes, in percent	int		Porosity	Hydreµlic	Coefficient of
Formation	surface (feet)	Clay sizes, in percent (.004 mm)	Silt sizes, in percent (.004- .0625 mm)	V. fine (.0625- .125 mm)	Fine (.125- .25 m)	Medium (.25- .5 mm)	Conre (. 3-	V. COATRE (1-2)	V. fine (2-4 mm)	Fine (4-B mm)	Medium (8-16 mm)	Coarse (16- 32 mm)	V. coerse (32- 64)	(percent)	Conductivity (ft ² /day)	Permeebility (gpd/ft ²)
Manasquan and Vincentown Formations undifferentistedCont.	380-382	76	23.4	4.	2.	:	:	1	:	:	:	:	:	37.9	.0005	100.
р.	390-392	82	17.4	.2	.2		:	:	:	:	:	;	:	39	.000	.002
р.	400-402	78.9	20.3	9	.2	;	:	1	;	;	:	;	1	38.1	.000	.002
8.	408-410	26.8	25.6	46	1.4	.2	:	:	:	:	:	:	:	94.9	40.	
ро.	420-422	29.2	23.4	22.6	7.0	13.4	4.4	;	;	1	;	;	:	33.9	£000°	.002
Hornerstown Sand	430-432	13.4	10.2	6.8	17.2	30.4	21.4	9 .	;	:	:	1	:	43.3	40.	ŗ
ъ.	440-442	4.61	6.4	4.6	22.8	43.4	9.2	.2	:	:	:	:	:	45.7	.67	5.0
Do.	450-452	23.5	16.5	3.4	16	38.8	1.8	:	:	:	:	1	:	38.7	800.	8.
Navesink Formation	460-462	27	15.5	3.6	12.5	55	7.5	.2	4	ŗ	:	:	:	34.2	,000	100 .
ю.	470-472	26.1	15.7	3.5	12.9	31.1	7.9	1.8	ŗ	ŗ	:	1	:	45.2	61.	1.0
ю.	480-482	19.3	14.8	4.0	13.3	36.7	9.4	2.2	•	r.	:	:	:	41.8	ы.	1.0
Mount Laurel Sand and Wenonah Formation undifferentiated	490-492	22.4	11.6	2.2	10	40.7	10.2	2.8	-	:	:	:	:	35.1	10 .	80.
р.	500-502	22.4	9.7	2.0	10.4	47.1	7.6	9.		.1	:	;	:	\$.12	6.
ро.	112-605	15.7	9.2	3.0	10.9	50.4	9.0	1.4		.2	;	1	;	43.8	.67	5.0
Do.	520-522	12.9	9.4	2.9	13.4	50.4	6.5	.	ŗ	2.1	1.5	:	:	43.64	1.2	0.6
ю.	530-532	14	10.7	3.1	10.9	41.3	5.2	ŗ	••	7.2	6.3	!	:	42.1	07.	3.0
р.	540-542	15.3	6.3	3.9	22.1	43.1	6.3	1.0	6.	1.1	;	;	1	42.3	07.	3.0
ю.	550-552	16.9	6.3	3.5	39.9	29.2	1.6	.2	9.	1.4	4.	;	:	47.4	1.07	8.0
Do.	560-562	19.8	6.7	5.0	49.1	18	4.	.2	•.	.2	:	1	:	47.6	07.	3.0
ю.	570-572	19.6	9.8	6.4	51.1	12.6	.2	.2	.1.	:	ł	:	:	52.4	.67	\$.0
Do.	580-582	24.1	16.3	11.8	39.2	6.9	4.	.2	s.	9 .	:	1	;	33.6	100.	.01
P	590-592	24.2	22.2	27.4	13.5	1.1	4.	ŗ	1.0	4.2	5.5	;	;	52.5	.07	ŗ.
р.	600-602	28.2	29	20.3	13.7	7.8	4.	.2	.2		:	;	:	52.3	10.	ŗ.
Marshelltown Formation	610-612	17.1	40.5	38.8	3.0		٥.	0.	4.	:	:	;	:	53.5	٤١.	1.0
Englishtown Formation	620-622	21.2	46.2	14.6	1.6	9.	s.	ŗ.	•:		1.7	12.5	:	55	ą	ŗ
ро.	630-632	21.3	57.7	18.6	1.6	9.	.2	:	ł	:	:	:	;	45.6	c10.	.1
ю.	640-642	35.3	51.9	11.2	1.2	4.	;	ł	;	;	1	:	:	35.7	.0000	.0005
Woodbury Clsy	650-652	42.2	42.8	6.2	5.0	3.0	9.	.2	;	;	:	:	1	32	1000.	100'
в.	660-662	18.4	51.2	14.7	3.3	ŗ.	.2		4.	1.3	2.8	7.0	:	40.1	100.	10.
		-			-											

Totation Status Statu				2	Perticle-size	ze dismeter, in millimeters	in millime	tere									
Transform CLAP Transform V. f. f. Mass. V. f. f. Mass. M. f. Mass. 660-682 4A.8 31.2 3.4 .2 .2 660-682 4A.8 31.2 3.4 .2 .2 700-702 55.9 41.1 1.6 .6 .2 710-712 54.2 41.3 1.4 .8 .6 710-712 54.2 41.3 1.6 .6 .6 710-712 54.2 41.3 1.6 .6 .6 710-712 54.2 41.3 1.6 .6 .6 710-712 54.2 44.4 1.2 .6 .6 700-722 21.4 15.6 7.6 .7 22 700-722 21.4 15.6 7.6 7.6 22 700-722 21.4 15.6 1.1 1.2 20.8 22 700-722 20.1 13.1 13.2 21.6 1.2 22 700-722	:		<u> </u>			Sand sizes	, in perce	'nt			Grevel eiz	Gravel sizes, in percent	184		Poroal Ly	Rydreulic	Coefficient
600-662 44.8 51.2 3.4 $$ $$ $$ $$ 700-702 55.9 41.1 1.6 .6 6 .6 710-712 54.2 41.3 1.6 .6 .6 .6 700-702 55.9 41.1 1.6 .6 .6 .6 710-712 54.2 41.3 1.6 .6 .6 .6 700-702 53.6 44.4 1.1 .6 .6 .6 .6 710-712 54.7 66.3 4.6 1.6 .6 .6 .6 .7 700-792 53.6 44.4 1.2 .6 .6 .6 .6 .6 .6 .6 .6 .6 .7 700-792 28.8 21.4 16.6 7.6 1.12 19.2 .7 .1 .7 .7 .7 700-792 28.1 15.1 13.4 15.4 16.1 11.4 .7 .7 .7 .1 1035-1036 35.6 31.4 15.4	Formation			Silt sizes, f in percent (.004-	V. fine (.0625- 135 -)				V. CONTRE	V. fine	Fine (4.4	Medium	Coerse (16- 23)	V. coerse (32- 64 _)	(percent)	Conductivity (ft ² /dey)	
600-682 44.8 51.2 $3.4.8$ 51.2 $3.4.8$ 51.2 $3.4.$ 2.3 1.6 2 <th></th> <th>╡</th> <th>_</th> <th>i from:</th> <th></th> <th>+</th> <th>-+-</th> <th>-+</th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th>		╡	_	i from :		+	-+-	-+					1				
690-692 $6,3,2$ $6,7,7$ $2,3$ $1,6$ $,9$ $700-702$ $55,9$ $4,1,1$ $1,6$ $,6$ $,6$ $710-712$ $54,2$ $4,1,3$ $1,6$ $,6$ $,6$ $710-712$ $54,2$ $4,1,3$ $1,6$ $,6$	Woodbury Clay	680-682	44.8	51.2	3.4				;	:	:	:	:	:	33.2	.0003	8
700-702 53.9 41.1 1.6 .6	ß.	690-692	43.2	1.14	2.5	1.6	6.	.2		ŗ.	1.6	1.6	:	:	53.6	60.	ŗ
710-712 54.2 41.3 1.4 $.6$ </td <td><u>В</u>.</td> <td>100-702</td> <td>55.9</td> <td>41.1</td> <td>1.6</td> <td>9.</td> <td>8.</td> <td>;</td> <td>:</td> <td>1</td> <td>:</td> <td>1</td> <td>1</td> <td>:</td> <td>56.5</td> <td>.004</td> <td>60.</td>	<u>В</u> .	100-702	55.9	41.1	1.6	9.	8.	;	:	1	:	1	1	:	56.5	.004	60.
720-722 47.7 46.3 4.6 1.2 $.6$ $.2$ $.2$ $700-732$ 28.6 21.6 11.6 11.6 21.6 11.6 $.2$ $.2$ $700-732$ 28.6 21.6 11.6 11.6 11.6 22.3 21.6 11.6 22.3 21.6 11.6 22.3 21.6 11.1 11.2 21.2 22.3 11.2 21.2 21.2 21.2 21.2 22.3 21.2 22.3 21.2 22.3 21.2 22.3 21.2 22.3 21.2 22.3 21.2 22.3 21.2 22.3 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 <td>.е</td> <td>710-712</td> <td>54.2</td> <td>41.3</td> <td>1.4</td> <td>8.</td> <td>9.</td> <td>4.</td> <td>.2</td> <td>.1</td> <td>1.0</td> <td>;</td> <td>:</td> <td>:</td> <td>8</td> <td>600.</td> <td>.02</td>	.е	710-712	54.2	41.3	1.4	8 .	9.	4.	.2	.1	1.0	;	:	:	8	600.	.02
730-73253.6 44.4 1.2 $.6$ $.2$ 740-782 61.4 $31'$ $.8$ $.4$ $.4$ $.2$ 740-782 61.4 $31'$ $.8$ $.4$ $.2$ 750-732 28.6 23.5 3.6 20.8 $22'$ 760-782 21.4 16.6 7.6 $32'$ $22'$ 700-792 23 21.6 11.6 $23'$ $22'$ 700-792 23 31.1 13.2 6.1 11.6 $22'$ 700-792 23 31.1 13.2 6.1 11.6 $22'$ 700-792 23 31.6 33.6 31.4 13.2 6.1 11.6 $22'$ 1035-1036 33.6 33.6 33.6 33.6 9.6 7.6 11.1 11.2 1035-1036 33.6 33.6 33.6 9.3 6.4 4.6 9.6 4.6 1146-1149 33.6 33.6 33.7 6.4 4.6 9.6 11.2 1237-1239 33.2 24.4 31.5 24.4 31.6 11.2 11.2 1346-1349 17.3 24.4 31.6 3.6 9.6 9.6 11.2 1359-1295 24.4 31.6 31.6 3.6 9.6 11.2 1359-1395 49.6 31.6 32.6 9.2 9.6 11.2 1359-1395 17.4 12.6 12.6 9.6 11.2 1359-1395 17.6 12.6 32.6 12.6 <td< td=""><td>ě.</td><td>720-722</td><td>47.7</td><td>46.3</td><td>4.8</td><td>9.</td><td>9.</td><td>;</td><td>:</td><td>:</td><td>:</td><td>;</td><td>;</td><td>:</td><td>58.1</td><td>400.</td><td>60.</td></td<>	ě.	720-722	47.7	46.3	4.8	9.	9.	;	:	:	:	;	;	:	58.1	400.	60.
740-742 61.4 31 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .2 750-752 28.6 23.5 3.6 23.5 3.6 20.6 22 760-782 21.4 16.6 7.6 32 22 790-792 23 31.4 15.4 16.2 9.2 790-792 23 31.4 15.4 16.2 9.2 7005-1036 35.6 31.4 13.2 6.1 11.4 1.2 1035-1036 35.6 35.2 42.8 6.1 13.4 9.6 1144-1149 35.2 42.8 6.4 4.6 9.6 1155-1139 30 60 9.4 4.6 9.6 1237-1239 33 34.9 9.2 1.1 1.2 1394-1395 24.4 31.3 28.4 14.2 1.2 1394-1395 24.4 31.3 2.6 3.6 9.6 1.12 1394-1395 14.4 31.6 3.1.6			53.6	44.4	1.2	e	.2		:	;	:	:	1	:	36.7	.0003	.002
750-732 28.6 23.5 3.6 20.6 22 $760-762$ 21.4 16.6 7.6 22 22 $770-772$ 20.5 21.4 16.6 7.6 22 22 $790-792$ 20.5 21.4 16.6 7.6 12.4 9.6 $790-792$ 23.5 31.4 13.2 6.1 19.2 9.2 $790-792$ 23.5 31.4 13.2 6.1 19.4 9.6 $1035-1036$ 33.5 42.6 9.6 9.6 9.6 9.6 9.6 9.6 $1146-1140$ 33.2 42.8 6.6 4.6 7.0 9.6 $1153-1130$ 33.2 42.8 6.6 4.6 9.6 9.6 9.1 12.2 11.2	ġ	740-742	61.4	37	••	4.	.2		:	:	:	:	:	:	57.9	100.	10.
760-762 21.4 16.6 7.6 32 22 770-772 20.5 21.6 11.6 26.3 19.2 790-732 20.5 21.6 11.6 26.3 19.2 790-732 20.5 31.4 15.4 16.2 9.2 905-1036 33.6 35.6 35 7.6 1.1 1.2 1055-1036 30 60 9.4 2 4 1146-1149 33.2 42.8 6.4 4.6 9.6 1153-1155 40 37.2 6.2 7.4 7.0 1133-1159 30.2 42.8 6.4 4.6 9.6 1133-1239 33.2 42.8 6.4 4.6 7.0 1237-1239 33.4 9.5 8.2 7.4 7.0 12394-1395 $2.6.4$ $3.1.6$ $3.2.6$ $1.2.6$ 9.6 1729-1730 32.8 32.6 $1.2.6$ 7.0	Merchantville Formation	750-752	28.8	23.5	3.6	20.8	52	9.	4.	· 1.	1	:	:	:	32.5	.000	,002
770-772 20.5 21.6 11.6 26.3 19.2 $790-792$ 23 31.4 15.4 16.2 9.2 $820-822$ 13.1 13.2 6.1 13.4 9.6 $820-822$ 13.1 13.2 6.1 13.4 9.6 $1005-1038$ 30 60 9.4 $.2$ $.4$ $1140-1149$ 35.2 42.8 6.4 4.6 9.6 $1140-1149$ 35.2 42.8 6.4 4.6 9.6 $1133-1155$ 40 31.2 6.4 4.6 9.6 $11237-1239$ 33.2 42.8 6.4 4.6 7.0 $1237-1239$ 33.2 42.9 9.2 7.4 7.0 $1237-1239$ 33.2 42.9 9.2 7.4 7.0 $1139-1395$ 17.5 32.3 10.2 9.2 11.2 11.2 $1129-1395$ 17.6 11.2 9.2 32.8 32.3 11.2 11.2	ġ	760-762	21.4	16.6	7.6	32	22	4	:	:	:	;	1	;	33.6	1000.	600 .
790-792 23 31.4 15.6 16.2 9.2 $820-822$ 13.1 13.2 6.1 13.4 9.6 $1035-1036$ 33.6 35 7.6 1.1 1.2 $1035-1036$ 33.6 35 7.6 1.1 1.2 $1035-1036$ 33.6 35 7.6 1.1 1.2 $1140-1140$ 33.2 42.8 5.4 4.6 9.6 $1135-1135$ 40 31.2 6.2 7.4 7.0 $1237-1239$ 33 34.9 9.5 6.2 7.4 7.0 $1239-11395$ 40 31.2 6.2 7.4 7.0 9.1 $1236-1236$ 17.5 31.5 28.4 11.2 9.1 1.2 1.2 $1246-1316$ 17.5 32.6 9.16 9.0 9.6 1.2 1.2 1.12 $11729-1395$ 12.6 32.6 12.6 9.2 11.2 1.12 $1729-1395$	š.	770-772	20.5	21.6	11.6	26.3	19.2	9 .	٩.			:	1	1	33.6	1000.	6000
820-622 13.1 13.2 6.1 13.4 9.6 1035-1036 35.6 35 7.6 1.1 1.2 1035-1038 30 60 9.4 .2 .4 1056-1038 30 60 9.4 .2 .4 1164-1149 35.2 4.2.8 6.4 4.6 9.6 1153-1155 40 31.2 8.2 7.4 7.0 1237-1239 33 34.9 9.5 8.3 7.7 1239-1239 33 34.9 9.5 8.3 7.7 1239-1239 34.6 31.3 28.4 14.2 1.2 1239-1239 24.4 31.3 28.4 14.2 1.2 1394-1395 49.6 31.8 3.6 3.6 3.6 3.1 1729-1730 32.8 13.6 7.0 9.0 1.2 1.2 1729-1730 32.8 13.6 7.0 9.0 9.0 9.0 1729-1730 32.8 13.6 7.0 9.0 9.0 9.0	B .	790-792	23	31.4	15.4	16.2	9.2	2.2	œ.	;	1	!	;	:	1.76	1000.	100.
1035-1036 35.6 35 7.6 1.1 1.2 1056-1058 30 60 9.4 .2 .4 1146-1149 35.2 42.8 6.4 4.6 9.8 1153-1155 40 37.2 8.2 7.4 7.0 1237-1295 35.2 42.8 8.3 7.7 7.0 1237-1295 34.9 9.5 8.3 7.7 1.2 1237-1295 34.4 31.5 8.3 7.0 9.3 1394-1395 49.6 31.8 3.6 3.6 8.6 1316-1518 17.5 32.3 32.5 10 9.5 11.2 1729-1730 32.8 33.8 13.6 7.0 9.0 9.0 1729-1730 32.8 33.6 13.6 7.0 9.0 9.0	Magothy Formation	820-822	13.1	13.2	6,1	13.4	9.6	6.7	12.9	17.5	7.5	:	:	:	30.5	900.	8
1056-1058 30 60 9.4 .2 .4 1146-1149 35.2 42.8 6.4 4.6 9.8 1153-1155 40 31.2 8.2 7.4 7.0 1237-1239 33 34.9 9.5 8.3 7.4 7.0 1237-1239 33 34.9 9.5 8.3 7.7 1237-1295 24.4 31.5 28.4 14.2 1.2 1296-1395 49.6 31.8 3.6 3.6 3.6 1316-1318 17.5 32.5 10 9.5 11.2 1729-1790 32.8 35.8 13.6 7.0 9.0 1729-1790 32.8 35.8 13.6 7.0 9.0	B .	1035-1038	35.6	35	7.6	1.1	1.2	1.7	1.3	4.6	5.5	6.4	:	:	:	66	240
1146-1149 35.2 42.8 6.4 4.6 9.8 1135-1155 40 37.2 6.2 7.4 7.0 1237-1239 33 34.9 9.5 6.3 7.4 7.0 1237-1239 33 34.9 9.5 6.3 7.4 7.0 1237-1239 33 34.9 9.5 6.3 6.3 6.5 1289-1285 24.4 31.5 28.4 14.2 1.2 1294-1395 49.6 31.8 3.6 3.6 9.6 1316-1318 17.5 32.5 10 9.5 11.2 1729-1790 32.8 13.6 13.6 7.0 9.0 1729-1790 32.8 13.6 13.6 7.0 9.0	ю.	1056-1058	30	99	9.4	.2	4.	:	;	;	:	:	1	;	:	10.	ŀ
1133-1135 40 37.2 6.2 7.4 7.0 1237-1239 33 34.9 9.5 6.3 7.7 1283-1285 24.4 31.5 28.6 14.2 1.2 1283-1285 24.4 31.5 28.6 14.2 1.2 1394-1395 49.6 31.8 3.6 3.6 3.8 8.6 1394-1395 49.6 31.8 3.6 3.6 3.8 8.6 1729-1790 32.8 32.3 10 9.5 11.2 1 1729-1790 32.6 35.8 13.6 7.0 9.0 9.0	Rariten Formation	1148-1149	35.2	42.8	6.4	4.6	9.8	1.2	;	:	:	:	:	1	;	:	:
127-1239 33 34.9 9.5 8.3 7.7 1280-1285 24.4 31.5 28.6 14.2 1.2 1294-1395 49.6 31.6 3.6 3.6 3.6 1304-1395 49.6 31.8 3.6 3.6 3.6 112-130 32.8 35.8 13.6 7.0 9.0 1729-1730 32.8 35.8 13.6 7.0 9.0	Do.	1153-1155	40	37.2	8.2	7.4	1.0	.2	;	:	;	:	:	:	:	:	;
1283-1285 24.4 31.5 28.4 14.2 1.2 1394-1395 49.6 31.8 3.6 3.8 8.6 1516-1518 17.3 32.5 10 9.5 11.2 1729-1700 32.8 35.8 13.6 7.0 9.0	Do.	1237-1239	33	34.9	9.5	8.3	7.7	3.1	3.5	6.	1.4	1.2	;	:	;	:	:
1314-1395 49.6 31.8 3.6 3.6 3.8 8.6 1316-1318 17.5 32.3 10 9.5 11.2 1 1729-1790 32.8 13.6 7.0 9.0 9.0 1729-1790 32.8 13.6 7.0 9.0 9.172 13.6 13.6 13.6 7.0	Do.	1283-1285	24.4	31.5	28.4	16.2	1.2	.2	o.	۰.	:	:	:	:	:	.007	. 03
1316-1318 17.5 32.3 10 9.5 11.2 1729-1790 32.8 35.6 13.6 7.0 9.0 9.0	<u>в</u> .	1394-1395	8.64	31.8	3.6	3.6	8.6	2.4	;	:	:	:	;	:	:	:	:
35.8 13.6 7.0 9.0	è.	1516-1518	17.5	32.5	10	9.5	11.2	11.8	6.1	1.1	;	8.	:	:	:	:	:
	Ъо.	1729-1730	32.8	35.8	13.6	7.0	0.6	1.8	;	:	;	:	1	;	:	100.	10.
												_					
								·									
					<u> </u>												

Z) from water use inventory of non-reporting users which may have omissions. Does not include all itrigation pumpage, most of which is from the Cohansey Sand. Estimated water use for itrigation from the Cohansey Sand is about 10 mgd.

isers and Not

ċ	pue
*Includes additional pumpage from Potomac-Raritan-Magothy aquifer system, individual aquifer not known.	Note - Pumpage is from 1) data reported to the State by public-supply purveyors and industrial users and 2) from water use inventory of non-reporting users which may have omissions.
not	1
lfer	trl
in þe	Indu
due l	2
divi	
, La	rvey
s tem	y pu
r sy	uppl
ulfe	fc-s h
9 P	publ ch m
goth	τų Tr
eM-n	tate
rtte	the S ng u
c-R	to t
o tom	rted n-rei
E P	repoi
e fr	ete -
8 a dua	1) d
1 pu	1 nv
Lone	1s f use
ddfe	Note - Pumpage is from 1) data reported to the State by public-supply purveyors 2) from water use inventory of non-reporting users which may have omissions.
	Pump
clud	. 4 . 4
"I"	Not 2

, individu	
ly aquifer system	
nel pumpage from Potomac-Raritan-Magothy a	
pumpage fro	:
s additional	
Includes	
Ŧ	

-

			Pu	mpage by a	Pumpage by equifer, in million gallons per day	ton gallons per	r dey		Pumpag	e by use, in m	Pumpage by use, in million gallons per	r day
Muni cipelity	Po toma c-R	ari ten-Mago	Potomac-Raritan-Magothy aquifer system	system	Englishtown	Wenoneh Formetion-	Vincentown and	Cohansey	Public			Totel
	Lower aquifer	Middle aquifer	Upper aquifer	Totel	Formation	Mount Leurel Send	Manasquan Formations, undifferentiated	Sand	supply	Talitau	Miscellaneous	(pBe) aBedmand
Bellmawr Boro	.59	:	.58	1.17	:	1.	:		1.17	:	:	1.17
Berlin Boro	:	;	.52	.52	:	.15	:	;	.52	.15	:	.67
Brooklawn Boro	.28	:	:	.28	:	:	:	:	.28	:	1	.28
Camden City	2.92	8.89	1.81	13.76*	:	:	1	:	46.11	1.82	ł	13.76
Clementon Boro	:	;	;	1	.76	:	1	:	.76	;	;	. 76
Collingswood Boro	:	2.48	;	2.48	;	ł	1	1	2.48	:	;	2.48
Cherry Hill Twp.	1.04	1.44	1.15	3.63	:	;	1	1	3.58	10.	.04	3.63
Gibbsboro Boro	:	;	:	1	:	80.	;	1	1	1	80.	80.
Gloucester City	5.73	.13	1	6.00 *	1	:	;	:	1.32	4.68	;	6.00
Gloucester Twp.	. 83	1	.84	1.67	:	1	ţ	:	1.37	:	.30	1.67
Haddon Twp.	:	68.	40.	.93	:	:	1	:	.89	.02	.02	
Haddonfleld Boro	:	.26	1.02	1.28	:	:	:	:	1.28	:	;	1.28
Heddon Heights Boro	:	1.53	1.89	3.42	:	:	:	:	3.42	ſ	ł	3.42
Leurel Springs Boro	;	;	1.01	1.01	:	.18	:	:	1.19	:	;	1.19
Magnolia Boro	:	44.	1.36	1.80	:	:	:	:	.62	1.18	1	1.80
Merchantville Boro	.72	:	;	. 72	:	ł	;	;	. 72	;	;	. 72
Pennseuken Twp.	12.96	96	1.58	14.54	1	:	:	;	14.54	:	1	14.54
Pine Hill Boro	:	:	.23	.23	;	:	:	:	.23	:	:	.23
Runnemede Boro	ł	1	ы.	61.	:	:	:	1	60.	70.	:	c1.
Somerdale Boro	:	1	. 18	.18	;	:	•	1	.18	;	;	.18
Voorhees Twp.	;	:	2.17	2.17	ł	.03	:	1	2.20	;	;	2.20
Waterford Twp.	:	:	;	1	1	.05	1	:	. 05	:	:	. 05
Winslow Tup.	:	:	:	:	:	.35	.14	.46	:	.55	.40	56.
Totel	41.15	15	14.51	55.92*	. 76	.84	.14	. 46	48.83	8.45	.84	\$8.12
											L	

Table 7.--Analyses of water from wells 1 and 4 at the Puchack Run station of the Camden Water Department, 1924-69 (Militgrams per liter except pH and specific conductance)

Analyzed by the U. S. Geological Survey

Specific Conductance (micromhos at 25°C) 245 5 8 196 235 661 961 212 224 181 Dissolved Solids (residue at 150°C) 5 \$ 8 : 1 5 2 16 28 2 : 16 16 02 1 8 8 4 : : \$ Ş * * * * * * \$ 23 1 5.2 5.4 5.4 6.5 6.1 6.5 * : 6.5 7.6 5.3 5.8 ; 5.4 5.9 6.8 : Hq : . . . ; : : Hardness as CaCO₃ 32 23 23 8 2 1 2 8 8 1 2 8 3 3 3 3 3 **3 8 8 1 9 5** 3 7 1 5 32 3 3 8.3 8.0 1.2 7.5 5.7 5.8 ς. °.6 NI-trate (NO₁) 6.9 26 117 117 117 : : Fluo-- - - -٦ . ¹ . . ٩ • • • • ٦. : . : : : : ~ : : - the 3.0 9.2 7.0 5.0 6.2 6.1 7.2 7.0 7.3 8.2 8.2 6.8 8.0 8.9 9.8 23 23 1.0 2.5 12. Ξ 12 Ξ 12 15 1 2 9 I 1.7 1.1 ... 1.0 9.2 Sul-Fate (SO_A) 1.6 3.0 i \$ 2 5 2 ្ព 16. 2 51 \$ 27 : 2 2 24 35 8 2 2 11 3 : TELL 4 (PE 21) 18) TIT 1 (PE Bicar-bonate (HCO₃) 3.7 2.0 3.7 4.0 5.0 6.0 7.0 6.0 8.0 4.0 4.0 3.0 ••• 5.0 5 2 2 2 3 2 2 ; 54 \$ 49 : 2 : ş Potas-K) ••• 9.1 2.6 0.0 2.5 1.7 2.0 1 1 1.2 6 1. k : 2 1.5 : : 3.0 4.1 3.6 7.5 9.2 8.8 6.9 8.7 3.9 3.5 4.4 \$.5 5.0 3.2 - So-Milen : 3 9.8 8.6 Ξ 2 9 ł Magne-Mg (Mg) 1.1 2.8 1.4 3.0 3.6 7.2 7.8 6.9 8.8 6.1 6.3 : : 6.9 1.0 3.3 --1.9 2.2 2.2 3.0 2.3 : : : 2 5.1 6.8 7.0 6.2 5.0 6.6 6.5 3.3 ÷ 12 2 2 2 : : Manga (m) .24 .01 .14 .12 . . 32 •9• : : 3 ••• : ۳. : . : : : : t Le l 5 10 39 00 ... · · · · · · 8 8111ca (810₂) 6.5 7.3 7.6 6.7 5.6 4.0 5.4 5.0 3.9 4.3 7 1 2 17 **..** 1 2 8.4 7.2 : 2 7.9 8.8 2 8.4 7.7 : : ł 2 Date Collected 08/14/63 12/08/26 11/21/33 07/24/62 04/12/63 05/10/24 11/21/32 08/07/57 08/14/63 05/08/64 02/06/34 11/07/49 07/03/53 08/07/57 09/01/61 10/02/62 05/08/64 07/09/65 07/30/66 02/06/34 11/12/35 11/07/49 07/03/53 03/27/24 11/21/32 06/11/69 12/08/26 11/12/33 08/30/66 06/11/69

Table 8.--Summary of chemical analyses of water from the Potomac-Raritan-Magothy aquifer system in Camden County (Milligrams per liter except pH and specific conductance)

	Wells] Potomac-Rarit	lls located in ou Raritan-Magothy a	outcrop of aquifer system	Wells located downdip Potomac-Raritan-Magothy		of outcrop of aquifer system*
	Maximum	Average	Minimum	Maximum	Average	Minimum
Iron (Fe)	15	2.9	0.	4.2	1.3	.03
Calcium (Ca)	5 2	20	3.0	33	19	3.5
Magnesium (Mg)	35	8.5	.6	6.4	4.8	1.4
Sodium (Na)	51	17	3.2	22	8.8	1.7
Potassium (K)	14	4.1	.2	9.6	6.5	1.6
Bicarbonate (HCO ₃)	179	66	4.0	134	82	5.0
Sulfate (SO4)	178	42	8.	34	9.8	2.6
Chloride (Cl)	59	22	5.5	18	4.1	1.4
Fluoride (F.)	1.0	.1	0.	. 4	.1	0.
Nitrate (NO ₃)	16	3.6	0.	22	1.8	0.
Dissolved solids (residue on evaporation at 180°C)	445	166	39	148	118	48
Hardness, as CaCO ₃ :						
Calcium, magnesium	274	85	14	114	66	14
Noncarbonate	143	32	0	26	7.0	0.
Specific conductance (micromhos at 25°C)	702	273	4 8	232	187	53
Hď	7.6	;	5.4	7.9	1	5.5

137

*Does not include New Brooklyn Park Well No. 1 (WI 27)

Map number	Well owner	Local number	Source of data	Date of aample	Chloride (Cl) (mg/l)	Sulfate (SO ₄) (mg/l)	Nitrate (NO ₃) (mg/l)	Dissolved solids (residue at 180°C)
CA 27	Camden City W. D.	1-1922	٨	05-08-23	4.0			
CA 27	Do.	1-1922	•	12-08-26	10	20	3.0	
CA 27	Do.	1-1922	В	11-21-32	12	10	13	84
CA 25	Do.	1-1940	В	11-28-49	37	1.0		181
CA 26	Do.	1.	В	04-30-56	47		.3	
CA 26	Do.	14	В	06-03-58	25	59	2.4	
CA 26	Do.	14	Table 4	11-16-65	30			
CA 26	Do.	14	Table 4	12-08-65	78			
CA 26	Do.	14	Table 4	08-24-66	59	81	. 2	286
CA 26	Do.	14	Table 4	03-10-69	61			
CA 37	Do.	3-1922	A	12-08-26	51	80	35	
CA 37	Do.	3-1922	В	11-21-32	46	85	45	
CA 36	Do.	3-1934	В	11-28-49	28	101	28	273
CA 35	Do.	3A	Table 4	11-17-65	48			
CA 35	Do.	3A	Table 4	12-08-65	50			
CA 35	Do.	3A	Table 4	03-11-69	41			
CA 44	Do.	4-1922	•	05-09-23	23			
CA 44	Do.	4-1922	A	12-08-26	25	28	28	
CA 44	Do.	4-1922	В	11-21-32	37	36	29	
CA 43	Do.	4-1935	В	02-16-51	14	48	11	132
CA 42	Do.	4	в	11-17-65	32			
CA 42	Do.	4	Table 4	08-24-66	28	101	16	308
CA 42	Do.	4	Table 4	12-07-65	35			
CA 42	Do.	4	Table 4	03-11-69	37			
CA 42	Do.	4	Table 4	10-08-69	48			538
CA 30	Do.	5-1937	В	11-07-49	5.8	27	1.8	80
CA 30	Do.	5-1937	В	08-07-57	7.2	32	2.0	85
CA 29	Do.	5N	Table 4	05-01-64	28			
CA 29	Do.	5N	Table 4	11-17-65	41			
CA 29	Do.	5 N	Table 4	08-24-66	36	82	7.6	247
CA 29	Do.	5N	Table 4	03-10-69	40			
CA 29	Do.	5N	Table 4	10-08-69	46			

Table 9.--Chemical analyses of water samples from selected wells tapping the Potomac-Raritan-Magothy aquifer system in Camden City

Map number	Well owner	Loc al 'number	Source of data	Date of sample	Chloride (Cl) (mg/l)	Sulfate (SO ₄) (mg/l)	Nitrate (NO ₃) (mg/1)	Dissolved solids (residua at 180°C)
CA 54	Camden City W. D.	6-1928	В	11-21-32	72	60	46	
CA 53	Do.	6N	В	11-28-49	48	137	52	460
CA 53	Do.	6 N	В	08-31-61	32	227	10	490
CA 53	Do.	6N	Table 4	10-02-62	31	222	2.2	489
CA 53	Do.	6N	Table 4	08-13-63	30	212	5.8	507
CA 53	Do.	6N	Table 4	04-16-64	30	222	6.8	493
CA 53	Do.	6N	Table 4	08-24-66	29	178	5.5	445
CA 53	Do.	6N	Table 4	03-11-69	32			
CA 59	Do.	7-1928	В	11-21-32	13	34	16	102
CA 58	Do.	7	В	12-22-49	11	38	5.2	90
CA 58	Do.	7	В	02-16-51	13	41	4.0	103
CA 58	Do.	7	Table 4	11-18-65	27			
CA 60	Do.	7 N	Table 4	02-12-69	30			
CA 22	Do.	9-1924	В	11-12-35	44		49	
CA 22	Do.	9-1924	В	11-11-49	12	47	3.8	169
CA 22	Do.	9-1924	В	10-14-52	13	60	12	144
CA 22	Do.	9-1924	В	07-03-53	14	68	14	240
CA 20	Do.	9	В	08-31-61	38	46	25	228
CA 20	Do.	9	В	04-24-62	44	48	26	297
CA 20	Do.	9	Table 4	04-12-63	46	59	37	20 9
CA 20	Do.	9	Table 4	08-13-63	44	44	4.1	213
CA 20	Do.	9	Table 4	11-17-65	46			
CA 20	Do.	9	Table 4	12-07-65	56			
CA 20	Do.	9	Table 4	08-24-66	54	21	1.7	256
CA 23	Do.	10	В	11-12-35	12			
CA 23	Do.	10	В	11-28-49	17	38	16	175
CA 23	Do.	10	В	02-16-51	22	38	11	187
CA 23	Do.	10	В	07-03-53	34	49	16	206
CA 23	Do.	10	В	04-30-56	40		2.4	
CA 23	Do.	10	Table 4	04-16-64	47	69	6.1	236
CA 23	Do.	10	Table 4	11-17-65	20			

Table 9.--Chemical analyses of water samples from selected wells tapping the Potomac-Raritan-Magothy aquifer system in Camden City--Continued

Map number	Well owner	Local number	Source of data	Date of aample	Chloride (Cl) (mg/l)	Sulfate (SO ₄) (mg/1)	Nitrate (NO ₃) (mg/1)	Dissolved solids (residus at 180°C)
CA 23	Camden City W. D.	10	Table 4	12-07-65	64			
CA 23	Do.	10	Table 4	02-12-69	55			
CA 23	Do.	10	Table 4	03-10-69	54			
CA 56	Do.	11	В	11-28-49	18	60	17	154
CA 56	Do.	11	В	02-15-51	24	70	5.0	196
CA 56	Do.	11	Table 4	11-18-65	82			
CA 56	Do.	11	Table 4	12-09-65	80			
CA 56	Do.	11	Table 4	03-11-69	40			
CA 38	Do.	13	В	11-16-53	10		. 2	70
CA 38	Do.	13	В	08-03-60	8.2	14	3.2	69
CA 38	Do.	13	В	08-31-61	10	14	4.0	80
CA 38	Do.	13	В	04-24-62	9.0	15	4.2	76
CA 38	Do.	13	Table 4	04-12-63	9.5	16	4.6	77
CA 38	Do.	13	Table 4	08-13-63	10	16	4.5	96
CA 38	Do.	13	Table 4	11-17-65	16			
CA 38	Do.	13	Table 4	12-09-65	17			
CA 38	Do.	13	Table 4	08-24-66	16	24	5.3	111
CA 38	Do.	13	Table 4	03-11-69	25			
CA 41	Do.	17	В	10-06-54	7.0		.1	147
CA 41	Do.	17	В	08-03-60	8.2	34	. 2	122
CA 41	Do.	17	В	08-31-61	8.8	31	. 2	105
CA 41	Do.	17	В	04-24-62	7.8	28	. 4	103
CA 41	Do.	17	Table 4	10-02-62	8.0	28	.1	112
CA 41	Do.	17	Table 4	04-12-63	7.0	29	.9	101
CA 41	Do.	17	Table 4	08-13-63	8.4	30	.8	109
CA 41	Do.	17	Table 4	04-16-64	8.2	29	.1	104
CA 41	Do.	17	Table 4	11-17-65	16			
CA 41	Do.	17	Table 4	08-24-66	9.1	31	.9	111
CA 41	Do.	17	Table 4	02-12-69	10			
CA 41	Do.	17	Table 4	12-22-70	11	32	1.9	109

Table 9.--Chemical analyses of water samples from selected wells tapping the Potomac-Raritan-Magothy aquifer system in Camden City--Continued

A - Thompson, 1932

B - Donaky, 1961

large	
al and	County
estimated transmissivity for selected industrial and large	nt Laurel aquifer in Camden County
elected	er .
for s	aquif
nissivity	t Laurel
transn	h-Mount
estimated	
and	g the
capacity	tapping
	wells
11Specific	>
Table	T

-

	-			•	
Map number	Municipality	Well owner and number	Specific capacity (gpm per ft drawdown)	Estimated transmissivity (ft ² /day)	Estimated coefficien of transmissibility (gpd/ft)
BB 5	Berlín Boro	Berlin Boro W. D. 8	3.3	760	5,700
BB 6	Berlin Boro	Owens Corning l	1.8	430	3,200
GI 9	Gibbsboro Boro	U.S. Air Force Radar 2	6.4	1,780	13,300
GT 44	Gloucester Twp.	Camden Co. Bd. Ed. Voc. & Tech. H.S. l	2.6	610	4,500
PV 4	Pine Valley Boro	Pine Valley Golf Club 1-49	6.2	1,530	11,400
РН 3	Pine Hill Boro	Pine Hill MUA 2	3.2	062	2,900
WA 4	Waterford Twp.	Ivystone Water Works 2-62	3.5	006	6,700
WA 5	Waterford Twp.	Ivystone Water Works 3-65	4.6	1,200	8,700
E IM	Winslow Twp.	Johns Mansville l	2.4	600	4,400
4 IM	Winslow Twp.	Johns Mansville 2	2.0	530	4,000

143

	Maximum	Average	Minimum
Iron (Fe)	3.6	. 8	.0
Calcium (Ca)	46	23	2.0
Magnesium (Mg)	7.0	3.6	1.0
Sodium (Na)	8.4	3.4	1.3
Potassium (K)	9.2	4.4	2.0
Bicarbonate (HCO ₃)	127	89	15
Sulfate (SO ₄)	28	9.5	.0
Chloride (Cl)	9.7	3.4	. 3
Fluoride (F)	. 5	. 3	.1
Nitrate (NO ₃)	15	1.4	.0
Dissolved solids (residue on evaporation at 180°C)	178	116	97
Hardness, as CaCO ₃ :			
Calcium, magnesium	126	73	17
Noncarbonate	44	6.0	.0
Specific conductance (micromhos at 25°C)	266	181	116
рH	8.4		7.5

Table 12.--Summary of chemical analyses of water from the Wenonah-Mount Laurel aquifer in Camden County

(Milligrams per liter except pH and specific conductance)

			Pa	Particle-size dismeter, in millimeters	dismeter.	, in milli	lmeters								
	Sample depth below land				Sand size	Sand sizes, in percent	cent.			Gravel al.	Gravel sizes, in percent	ent		Nydraulic	Coefficien'
Porma tion	surface (feet)	Clay sizes, in percent (.004 mm)	Silt sizes, in percent (.004- .0625 umm)	v. fine (.0625- .125 mm)	Fine (.125- .25 mm)	Medium (.25- .5 mm)	Coarse (.5- 1 mm)	V. coarse (1-2 mm)	V. fine (2-4 mm)	Fine (4-8 mm)	Medium (8-15 mm)	Coarse (16- 32 mm)	V. coarse (32- 64 mm)	Conductivity (ft²/day)	Permeehf11 (gpd/ft?)
Cohensey Send and younger	0-5	6.5	5.6	13.1	28.1	22.1	14.9	4.0	8.	2.8	-	:	:		:
8	5-10		2	2,5	8.2	25.6	44.8	12.1	s.	:	;	1	:	:	:
В.	10-15	• _	7	ŗ.	1.5	6.8	28.8	30	13.2	2.1	3.2	13.4	:	:	;
Ъ.	20-22	32.9	23.5	2.7	2.8	3.2	5.3	10.6	14.2	1.5	1.3	:	:	:	:
В.	22-25	5.4	7.6	16.6	\$1.4	13.6	4.8	<u>9</u> .	:	:	:	:	:	1.6	12
ŝ	30-35	10.8		15.9	39.5	18.1	6.9	4.8	3.2	8.	:	;	;	:	:
В.	35-40	-7	6	4.5	16.3	29.9	25.9	16	2.5	:	:	;	;	:	:
ß.	40-45	34.8	27.8	6.6	14.4	15.6	æ.	:	:	:	:	:	:	10.	1.
ß.	58-60		6	2.1	8.3	36	24.6	9.7	7.5	5.4	s.	:	;	:	:
<u>В</u> .	65-70	0. ¹ E	0	4.2	19.5	48.7	21.5	2.6	ŗ	:	:	:	1	:	:
<u>ه</u> .	75-80	17:17	7	2.2	6.7	31.4	30.2	10.5	٠.	:	1	:	;	;	:
Bo.	85-90	6.2	2	5.5	15.8	32.6	33.4	6.0	۶.	:	:	;	1	:	:
ß.	95-100	2:0	0	3.8	10.9	29.4	30.2	16.2	4.2	ť.	1	;	;	:	;
Do.	110-112	7.5	2	2.9	26.5	39.2	16.7	5.3	1.7	.2	:	:	;	:	:
Do.	115-120			2.7	21.6	41.8	22.2	4.7	1.9	:	:	:	:	:	:
Do.	125-130	5.0	7.3	1.21	38.8	20.2	7.3	5.4	6.	:	:	:	:	:	:
Kirkwood Formation	137-139	5.7	8.0	18	38.7	21.5	5.5	1.8	.,	٦.	:	:	:	1.6	12
Do.	145-150	6.9	17.9	32.2	27.8	3.5	2.4	4.1	1.9	с.	:	ţ	:	:	:
Do.	155-160	12	47.2	21.2	12.8	6.8	:	:	:	:	:	;	:	:	:
Bo.	165-170	23.6	67.9	5.7	1.2	4.	.2	0.	·1	6.	:	;	;	£0 [°] .	.2
Do.	175-177	22.4	63.4	9.6	9.6	æ.	:	1	;	:	:	:	:	;	:
Bo.	184-185	18.2	17.8	\$5.5	6.9	.2	4.	0.	.2	4.	4.	1	:	:	:
Do.	185-190	9.4	69.4	18.4	2.4	4.	ł	:	!	;	;	;	:	:	:
р.	202-203	10.5	~	34.8	3.5	5.8	8.61	10.8	13.6	5.4	1.8	1	:	ł	;
Do.	203-205	8.5	29.3	57.8	3.4	9 .	.2	.2	:	;	;	:	:	. 54	4.0
Do.	205-210	10.3	32.3	52.8	4.4	.2	:	:	:	1	:	:	;	:	:
8.	215-220	12.4	31.2	52.2	2.8	9.	4.	4.	;	1	;	:	:	:	:
°8	225-230	13.2	29.8	21.6	16.6	12.8	5.8	.2	:	;	1	;	:	:	:
Eocene undifferentiated	235-237	28.5	17.3	5.2	29.6	18.4	1.0	:	:	;	:	:	:	£0°	۲.
Ъ.	237-240	14	17.4	14.5	24.9	23.7	3.7	4.	1.4	1	1	;	1	:	
Do.	245-250	16.6	16.8	8.0	25.4	27.4	5.4	4.	:	:	:	:	:	:	:
ġ	260-262	1 4	18	5.6	45.4	16.4				;			-		•

	Maximum	Average	Minimum
Iron (Fe)	3.8	.9	.0
Calcium (Ca)	36	12	. 2
Magnesium (Mg)	2.8	1.3	. 4
Sodium (Na)	7.8	3.8	1.4
Potassium (K)	6.4	2.3	. 5
Bicarbonate (HCO ₃)	95	19	2.0
Sulfate (SO ₄)	19	5.0	.0
Chloride (Cl)	9.0	6.0	2.2
Fluoride (F)	. 2	.1	.0
Nitrate (NO ₃)	57	15	. 4
Dissolved solids (residue on evaporation at 180°C)	125	63	13
Hardness, as CaCO ₃ :			
Calcium, magnesium	94	27	42
Noncarbonate	39	12	.0
Specific conductance (micromhos at 25°C)	212	64	17
рН	8.4		5.3

Table 14.--Summary of chemical analyses of water from the Cohansey Sand and Pleistocene sediments in Camden County

(Milligrams per liter except pH and specific conductance)

.

.