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SUMMARY
We analyse the external ¢eld generated by a uniform distribution of magnetic
susceptibility contained in an oblate spheroidal shell when it is magnetized by an
internal magnetic ¢eld of arbitrary complexity. The situation is more relevant to the
Earth than that of a spherical shell considered by Runcorn (1975a) (in the context of
lunar magnetism), because of the larger £attening of the Earth than that of the Moon.
We ¢nd that, to ¢rst order in the susceptibility, each internal harmonic in a spheroidal
harmonic expansion of the magnetic potential generates just one non-vanishing external
¢eld coe¤cient, unlike in the spherical case when all harmonics vanish identically. The
¢eld generated is proportional to the susceptibility, thickness of the shell and square of
the Earth's eccentricity, and hence it appears that this ¢eld ampli¢cation mechanism
will be very ine¡ective for the Earth.
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1 INTRODUCTION

A great deal of e¡ort continues to be devoted to the calcu-
lation of the crustal magnetic ¢eld in the waveband where it
dominates the magnetic ¢eld due to the core (e.g. Arkani-
Hamed et al. 1994;Whaler 1994; Cohen & Achache 1990, 1994;
Ravat et al. 1995; Langel & Whaler 1996; Purucker et al. 1997,
1998). Fig. 1 shows that in a plot of the power spectrum this is
characterized by roughly spherical harmonic degrees of 13 and
greater. Below this spherical harmonic degree the measured
¢eld is primarily of core origin with a small admixture of
crustal ¢eld. As a result of Gauss' theorem, the contribution of
the crustal ¢eld in this region is essentially unknown, although
attempts have been made to estimate it in one form or another
(e.g. Langel et al. 1989; Jackson 1990, 1994, 1996; Cohen
& Achache 1990, 1994). It is clear that the source of crustal
magnetization is both remanent and induced magnetization
within the crust and lithosphere (referred to in this paper
as the crust) in the region above the Curie isotherm, which
lies at some tens of kilometres below the surface. Given this
fundamental inability to separate the two sources of magnetic
¢eld on anything other than spectral arguments, it has been of
interest to attempt to build geologically reasonable models
of source distributions in order to test whether they could
predict the magnetic ¢elds which are actually measured by
high-resolution surveys such as that performed by the satellite
Magsat, which £ew in 1980. Many, but not all (e.g. Arkani-
Hamed 1988, 1989; LaBrecque &Raymond 1985) workers have

Figure 1. Power spectrum of the magnetic ¢eld as a function of
spherical harmonic degree from model M07AV6 of Cain et al. (1989)
(solid line). Also plotted are the induced power spectrum generated by
the continent function of Counil et al. (1991) and an internal source
(¢lled circles) when s0d~1:4 km, and the spectrum for the model of the
induced ¢eld CRST-70-F-22-22- of Hahn et al. (1984) (open circles).
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treated the magnetization M as being induced magnetization
due to the material having susceptibility s in the presence of an
internal magnetic ¢eld Bi. The magnetization is related to these
quantities by

sBi~k0M , (1)

where k0 is the permeability of free space, 4n|10{7 H m{1.
To ¢rst order in s, the external potential �m that is produced at
position rj is given by

�m(rj)~
k0

4n

�
V

+
1

jrj{sj
.M(s) d3s , (2)

where V is the volume of the crust and the associated exter-
nal magnetic ¢eld is Be~{+�m. Values for susceptibilities
encountered in typical crustal rocks can be found in e.g.
Vacquier (1972), Harrison (1987) or Gee et al. (1989). Su¤ce
it to say that there is a great variability in this property, but
a value in the range 10{2^10{1 is not atypical. Early work
(Meyer et al. 1983, 1985; Hahn et al. 1984) built a model of
the material characteristics of the crust and used the internal
magnetic ¢eld to induce magnetization within it. It became
clear that it is possible to generate an essentially white
magnetic ¢eld spectrum of about the right amplitude in the
l > 13 range where the crustal ¢eld dominates the core ¢eld
(see Fig. 1). A simple order of magnitude calculation shows
why this is so. From (2) we ¢nd Be*(d/a)k0M*(d/a)sBi,
where d is the thickness of the source shell with outer radius
a, so for an internal ¢eld of 50 000 nT and a typical value of sd
of 1 km (e.g. Cohen & Achache 1990, 1994; Jackson 1990)
we have Be*10 nT, which is in reasonable accord with the
observations. This clearly gives only an order of magnitude
estimate, but it shows the possibility of generating the observed
spectrum beyond l~13. In a somewhat simpler model, Counil
et al. (1991) attempted to explain the spectral characteristics by
a di¡erence in the depth-integrated susceptibility between the
continents and oceans. Certainly some margins show evidence
of this contrast, but the applicability of the model on a global
scale is not clear (see e.g. Jackson 1990). This model, again,
is capable of reproducing the high-degree power spectrum
(Fig. 1). It is useful for workers interested in attempting to
extrapolate the low-degree (l < 13) part of the core ¢eld down
to the core^mantle boundary (CMB) to have estimates of the
contamination in this waveband due to the crust, in order
either to account for it statistically (Langel et al. 1989; Jackson
1990) or even to subtract its e¡ect. These forward models
therefore play a vital role in this process. Even extremely simple
models which nevertheless acknowledge the presence of crustal
magnetization can be useful as a ¢rst approximation to the
Earth, and we consider such models below.
A very powerful result was obtained by Runcorn (1975a,b)

for the case of a perfectly spherical shell of uniform magnetic
susceptibility. He showed that when a shell is magnetized by a
purely internal source (of arbitrary complexity), the magnetic
¢eld produced by this magnetization external to the body
is exactly zero, to ¢rst order in the susceptibility. He also
showed that the result could be generalized to the case where
susceptibility varies purely with radius. This result was used
to great e¡ect in explaining the magnetization and magnetic
¢eld of the moon. Measurements of remanent magnetization
of rock samples returned from the moon showed them to be
signi¢cantly magnetized, whereas the magnetic ¢eld currently

measured outside the moon is negligible (the dipole ¢eld is
less than 1 nT at the equator). The answer to this conundrum
(Runcorn 1975a,b) seems to be that the moon once possessed a
dynamo operating within its core, which was responsible for
magnetizing rocks near the surface when they cooled through
their Curie temperature. If either the rocks were magnetized
simultaneously or the core ¢eld did not vary signi¢cantly over
the time that the rocks were emplaced, they will approximate
magnetized spherical shells and the mathematical result, now
almost universally known as Runcorn's theorem, will apply.
It is interesting to note that the moon obeys rather well the
conditions of the theorem, since its £attening is very small
(roughly one part in 1000, corresponding to a di¡erence of
less than 2 km between the maximum and minimum radii),
whereas the depth to the Curie temperature may be as large as
100 km (Runcorn 1975b). This means that despite the great
thickness of the shell, it is highly spherical.
Conditions on the Earth are rather di¡erent. A £attening

of approximately 1 part in 300 corresponds to a di¡erence
of 22 km between the polar and equatorial radii. This is large,
and indeed is comparable to the depth to the Curie isotherm.
We will therefore consider the idealized case of an oblate
spheroidal shell of uniform susceptibility which is magnetized
by an internal magnetic ¢eld. The result can be generalized to
the case of susceptibility which is depth-dependent but which
is constant on surfaces of constant £attening. In view of our
poor knowledge of the depth dependence of susceptibility,
we will not devote attention to this scenario. Although it has
been suggested that there are signi¢cant di¡erences between
the depth-integrated susceptibilities of the oceans and con-
tinents, it is very di¤cult to see this in satellite data, and
the constant-susceptibility question is nevertheless relevant
because such ocean/continent di¡erences can be considered
by adding them to the result for a magnetized shell. The
situation we consider is illustrated in Fig. 2. Fig. 2(a) shows
the susceptibility in an oblate spheroidal shell. Since the focal
radius is the same for both inner and outer surfaces, the shell
thickness is not quite constant; however, for a very thin shell the
deviation is tiny. Also shown in Fig. 2(b) are inner and outer
spheres with radii equal to the length of the major axis of the
inner spheroidal surface, and equal to the length of the minor
axis of the outer spheroidal shell. Fig. 2(b) shows that, by
Runcorn's theorem, only the susceptibility distribution in
crescent-shaped regions is relevant to actually generating an
external magnetic ¢eld. Given the fact that the distribution is
large scale, and given the estimate for Be given above, it is of

(a) (b)

Figure 2. Cartoon of susceptibility distribution in an oblate
spheroidal shell (shaded). (b) By Runcorn's theorem, only the part of
the distribution which is not spherically symmetric has any e¡ect.
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interest to examine the generalization of Runcorn's theorem
to the case of an oblate spheroidal shell appropriate to the
Earth. The problem can be solved exactly using confocal
spheroidal coordinates, since Laplace's equation separates in
this coordinate system.

2 A MAGNETIZED OBLATE SPHEROIDAL
SHELL

Here we consider the external magnetic ¢eld generated by
an oblate spheroidal shell of uniform susceptibility which is
magnetized by an internal source. We begin by brie£y review-
ing the result which applies to a spherical shell under the same
conditions, the result which has become known as Runcorn's
theorem.
We represent the internal magnetic ¢eld in spherical polar

coordinates (r, h, �) in the form

Bi~{+Vi , (3)

and Vi is expanded in terms of fully normalized spherical
harmonics with coe¤cients bm

l , analogous to the conventional
Gauss coe¤cients fgml ; hml g:

Vi~a
X?
l~1

Xl
m~{l

a
r

� �lz1
bm
l Y

m
l (h, �) , (4)

where a~6371:2 km is the mean Earth radius. The spherical
harmonics satisfy

1
4n

�
)
Ym

l Y
q
p d)~dlpdmq . (5)

For constant susceptibility, (2) can be written

�m(rj)~{s
1
4n

�
S
nª . +

1
jrj{sj Vi(s) d2s (6)

by an application of Gauss' theorem, where nª is a unit normal
and S represents both the inner and the outer surfaces of
the shell. We use the expansion of the reciprocal distance in
spherical harmonics for jrj j > jsj,

1
jrj{sj~

1
rj

X?
l~0

Xl
m~{l

1
2lz1

r
rj

� �l

Ym
l (h, �)Y

m
l (hj , �j) , (7)

to obtain

�m(rj)~{s
1
4n

�
S

X
l,m

l
2lz1

r
rj

� �lz1

Ym
l (h, �)Y

m
l (hj , �j)

|a
X
p,q

�
a
r

�pz1

bq
pY

q
p (h, �) d) . (8)

The orthogonality of the Ym
l couples l and p in the sums,

and leads to the result that each surface integral gives a
contribution of the same absolute value but of opposite sign,
and therefore the external potential generated is zero. This is
Runcorn's theorem (1975a,b).

To treat the spheroidal case, we must introduce a confocal
spheroidal coordinate system. Discussions of the solution of
Laplace's equation in this coordinate system can be found
in classical books such as Hobson (1931), Kellogg (1929),
MacMillan (1958) or Ramsey (1959). Our treatment follows
closely that of MacRobert (1927).
The confocal ellipsoidal coordinate system (r0, h, �) that we

use is related to the Cartesian coordinates (x, y, z) by

x~
��������������
r02zc2

p
sin h cos� , (9)

y~
��������������
r02zc2

p
sin h sin� , (10)

z~r0 cos h . (11)

In terms of a standard ellipse with semi-major axis a,
semi-minor axis b, eccentricity e and focal distance c, we have

c~ae; a~
��������������
b2zc2

p
. (12)

For the Earth b~6356 km and c~522 km.We take the shell to
have outer and inner boundaries given by r0~b and r0~b{d.
In this coordinate system the internal (inducing) potential is
described by

Vi~b
X
l,m

im
l Y

m
l (h, �)Q

m
l (ir

0/c) (13)

(e.g. Winch 1967), where the coe¤cients im
l are real and

Qm
l is an associated Legendre function of the second kind.

We need to calculate (6) in this coordinate system. We will
need the expansion of reciprocal distance in oblate spheroidal
harmonics, namely

1
jr{rj j~

i({1)m

c

X?
n~0

Xn
m~{n

|
(n{m)!
(nzm)!

� �
Ym

n (h, �)Y
m
n (hj , �j)Q

m
n

ir0j
c

� �
Pm
n

ir0

c

� �� �
(14)

[MacRobert (1927), p. 199, amended for the phases given
in (15) and (16)]. In this formula the Ym

l (h, �) have the same
normalization as in (5). The associated Legendre functions of
the ¢rst and second kinds (Pm

n and Qm
n ) have been left in

unnormalized form; they are de¢ned by the explicit forms for
large argument (jxj > 1):

Pm
n (x)~(x2{1)m=2

d
dx

� �m

Pn(x) , (15)

Qm
n (x)~({1)m(x2{1)m=2

d
dx

� �m

Qn(x) . (16)

Care must be taken to account for the metrics in the de¢nitions
of surface area and gradients in this coordinate system; the
element of surface area, dS, is

dS~
�����������������������������������������������
(r02zc2)(r02zc2 cos2 h)

p
sin h dh d� , (17)

whilst the rª 0-component of the gradient has the form

rª 0 . +f �
����������������������������

r02 � c2

r02 � c2 cos2 h

s
df
dr0

: (18)
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The integral (6) becomes

�m(rj)~({1)mz1 si
4nc

�
S
(r02zc2)b

X
p,q

iq
pY

q
p (h, �)Q

q
p(ir

0/c)

|
X?
n~0

Xn
m~{n

(n{m)!
(nzm)!

� �
Ym

n (h, �)Y
m
n (hj , �j)

�

|Qm
n

ir0j
c

� �
d
dr0

Pm
n

ir0

c

� ��
d) . (19)

Performing the angular integration leads to

�m(rj)~
sb
c2
X
n,m

({1)m
(n{m)!
(nzm)!

� �
im
l Y

m
n (hj , �j)Q

m
n (ir

0
j/c)

| (c2zr02)Qm
n

ir0

c

� �
d

d
ir0

c

� � Pm
n

ir0

c

� �2664
3775
r0~b

r0~b{d

. (20)

This is the ¢nal result: a single harmonic of the internal
(inducing) ¢eld generates one single harmonic of the magnetic
¢eld due to the crust, where the latter is equal to the former
multiplied by an `ampli¢cation factor' amn , where

amn ~
s
c2

(n{m)!
(nzm)!

� �
(c2zr02)Qm

n
ir0

c

� �
d

d
ir0

c

� � Pm
n

ir0

c

� �2664
3775
r0~b

r0~b{d

.

(21)

For illustrative purposes, consider the ¢eld induced by the
dipole component of the core ¢eld i0

1. In this case we ¢nd that
the ampli¢cation factor a01 is

a01~
s
c2

(r02zc2)
ir0

2c
log

ir0/cz1
ir0/c{1

� �
{1

� �� �b
b{d

~
s
c2

{(r02zc2)
r0

2c
tan{1 {2c/r0

1{c2/r02

� �
z1

� �� �b
b{d

. (22)

The argument of the tan{1 function is small and the
function can be approximated by its Taylor series as
{2c/r0z2c3/3r03{2c5/5r05; we ¢nd for a very thin shell, as
is the case for the Earth, the approximate result

a01&
4
15

c2

b2
s
d
b
. (23)

3 RESULTS AND DISCUSSION

We compute typical results for an assumed homogeneous
shell covering the Earth, taking the values to be those appro-
priate for old oceanic crust. Although it is accepted that the
primary source of remanent magnetism in the oceans is layer
2A, we must consider the susceptibility of the much thicker
underlying gabbros, down to the Moho. An upper value for the
susceptibility of gabbro is probably 0.1 (with many gabbros
falling below this; Vacquier 1972), and we take the thickness of
the crust to be 10 km. These values give a product sd of 1 km,
which is not at all unreasonable.

Fig. 3 displays the results for all aml up to degree 10. As could
be predicted from eq. (23), the ampli¢cation factors are tiny.
Contrary to expectation, some of the ampli¢cation factors are
negative, representing diminution of a particular inducing ¢eld
harmonic; recall that we have treated only isotropic (inherently
positive) susceptibilities, and this therefore represents a geo-
metrical e¡ect. Clearly the £attening of the Earth is insu¤cient
to circumvent the e¡ects of Runcorn's theorem to a large
degree.
We should note that the treatment given here is inherently

linear, and the e¡ects of self-interactions are ignored.When the
boundary value problem is solved in its entirety, non-linear
e¡ects are introduced which circumvent Runcorn's theorem,
even in the spherical case. Results of these calculations are
reported in Lesur & Jackson (1999).
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