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Summary. Previous studies, both geomagnetic and seismic, have been unable 
to show conclusively whether or not there is fluid upwelling at the core- 
mantle boundary. Here a new method is developed, in which an attempt is 
made to invert geomagnetic secular variation data measured at the Earth’s 
surface for a frozen-flux purely toroidal core-mantle boundary (CMB) 
velocity field, under the assumption that the mantle is electrically insulating 
and flux is frozen in at the CMB. These data have previously been inverted for 
the core-mantle boundary radial secular variation, from which the appropriate 
fit between model and data is known. Two different main field models were 
used to  assess the effect of uncertainty in its radial component at the CMB. 
The conclusions were the same in both cases: frozen-flux purely toroidal 
motions provide a poor fit. A statistical test allows very firm rejection of the 
hypothesis that the residuals are not significantly larger, whereas there is no 
statistical difference between the residuals of inversions for radial secular 
variation and frozen-flux velocity fields at the CMB if upwelling and down- 
welling is included. The inherent non-uniqueness in the velocity field obtained 
is not of concern, since only their statistical properties are utilized and no 
physical significance is attached to the flows obtained. 

Key words: core motions, secular variation, upwelling 

1 Introduction 

Although motion of the electrically conducting fluid of the outer core is now widely 
thought to be responsible for the Earth’s magnetic field and its secular variation, attempts to 
invert magnetic data obtained at, or near, the Earth’s surface for the details of the flow are 
fraught with difficulties. These problems are easier discussed in the context of the specific 
assumptions usually made in geomagnetism, which will now be introduced. The Earth’s 
surface and core-mantle boundary (CMB) will both be assumed spherical and concentric; 
thus spherical polar coordinates (r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, @) with origin at the Earth’s centre are the natural 
coordinates to work in. The electrical conductivity of the core is sufficiently high that, on 
the time-scale of decades of interest in geomagnetism, it can be regarded as a perfect 
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conductor (Roberts & Scott 1965; Backus 1968). Thus the Ohmic diffusion term in the 
induction equation vanishes, giving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B = V x (v x B) 

where B is the magnetic field, B its rate of change, v the velocity field. 
In contrast, the electrical conductivity of the mantle is generally thought to be suffi- 

ciently low that it can be assumed perfectly insulating. Thus the magnetic field can be 
expressed as the gradient of a scalar potential throughout the mantle, there is an infinite 
jump in conductivity across the CMB, and hence only the radial component of the magnetic 
field is continuous across the interface, i.e. its value at the base of the mantle is the same as 
that at the top of the core. Deeper into the core, the presence of electric currents means the 
field cannot be extrapolated. Thus we are restricted to just the radial component of equation 
(1) only at the CMB itself which, with the boundary condition that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu, = 0 (no flow across 
the boundary), becomes 

or 

B, + v - V H B ,  + B , V ~  v = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo (2 1 
where V ,  = V - i(i V )  contains only horizontal derivatives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A denoting a unit vector). 
Backus showed that a necessary condition for the frozen-flux assumption to hold (which can 
be proved from equation (2)) is that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IS, BrdS=O (3  1 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASi is a patch of the CMB bounded by a null-flux curve (contour on which B, = 0) and 
dS is an infinitessimal element of surface area, or equivalently, that the patch integrals of the 
radial main field component are time-imariant . The consequences of this will be considered 
later. Equation (2) indicates the nature of the task: from surface magnetic data, find B, and 
B, at the CMB and hence solve for v. By further assuming that the core fluid is incompressible 
(V - v = 0), the horizontal divergence of velocity, V H  * v, can be interpreted as a measure of 
the amount of upwelling or downwelling of fluid at the CMB (Whaler 1980; Benton 198l), 
perhaps indicating the strength of convection there. 

The problems of deducing the CMB fluid velocity, v, from equation (2) fall into two 
classes. First, there is an inherent non-uniqueness in the velocity defined by (2), even with 
complete and perfect knowledge of B, and Br (Roberts & Scott 1965; Backus 1968). There is 
a whole class of velocity fields which do not generate any radial secular variation outside the 
core when interacting with the radial main field as described by equation (2). Several 
different testable assumptions about the nature of the CMB fluid flow have been developed 
which, if satisfied, reduce the non-uniqueness. These include the assumption of purely 
toroidal flow (i.e. motion without upwelling and downwelling) (Whaler 1980, 1982, 1984), 
steady toroidal flow (Gubbins 1982) and, more recently, the uniqueness of general steady 
flows has also been proved (Voorhies 1984). This paper is concerned with examining the 
possibility of purely toroidal motion from different angles to those discussed by Whaler 
(1980,1982,1984), whichdid not lead to any firm conclusions. A thermal history regime for 
the core in which there would be purely toroidal motion was discussed by Gubbins, 
Thomson & Whaler (1982). 

The second problem to  be faced when solving an equation such as (2) above is one 
common to all geophysical inverse problems - a finite quantity of inaccurate data cannot 
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uniquely determine an unknown function or set of parameters (Backus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Gilbert 1968). 
Thus, even if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv in (2) was taken to represent just that part of the velocity function uniquely 
determined by the induction equation, it could not be unambiguously deduced due to  the 
magnetic data limitations. 

Efforts to  determine the CMB velocity field geomagnetically continue despite these limi- 
tations, since no other data are as sensitive to  the precise details of the flow. 

Backus (1968) showed that, without further information or assumptions, the only 
uniquely determined part of the velocity field is that component perpendicular to null-flux 
curves. However, Whaler (1980) and Benton (1981) showed that, although the velocity itself 
is non-unique, some information on the rate of upwelling and downwelling of fluid can be 
obtained. From equation (2), where V,B, = 0 (i.e. at local maxima, minima and saddle 
points of the radial field - collectively referred to  as critical points in what follows), 

B r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv . v = - -  
Br 

Whaler ( 1  980) further noticed, by superimposing contours on which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, = 0 on radial main 
field component maps of the CMB, that there appeared to  be a tendency for contours on 
which b, = 0 to pass close to critical points, as if B, = 0 where VHB, = 0. This suggests 
VH * v = 0, i.e. v is purely toroidal and there is no upwelling or downwelling of core fluid at 
the CMB. A statistical analysis backed this up (Whaler 1980, 1982). It is dangerous, however, 
to  make assumptions concerning the form of the velocity field over the whole CMB on the 
basis of a few isolated point values (those at the critical points), especially as point measure- 
ments cannot be resolved (the best that can be done is a local average over the CMB centred 
on the point of interest). In this case, though, there are certain meaningful local averages 
that can be estimated without such severe lack of resolution: if VH - v = 0 then 

H 

j l  B , d S = O  (4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
si 

where Si is a patch of the CMB bounded by any contour of B, (except the null-flux curves 
whose integrals must vanish as a condition of the flux being frozen in). Whaler (1980) 
calculated integrals of this type from the I965 IGRF (Zmuda 1971), bur was unable to 
estimate their error bounds since there were no published errors on the spherical harmonic 
coefficients. Again, a statistical analysis gave no reason to  reject the hypothesis that 

Further calculations, using observatory data to calculate integrals of the form (4) directly, 
so that a resolution and error analysis could be performed, led to ambiguous results (Whaler 
1984, hereafter referred to  as paper 1). The error bounds on the integrals from the rather 
small number of data treated were sufficiently large that none of the integrals was signifi- 
cantly non-zero, but the range of possible values was so large that this could not really be 
regarded as a stringent test of the purely toroidal velocity hypothesis. 

The calculations reported on here are another test of this hypothesis using an independent 
method on the same data as paper 1. Here i t  is assumed that the velocity field in (2) is purely 
toroidal, and then attempts are made to invert for it directly. A satisfactory inversion - 
where 'satisfactory' will be defined later - means there is no reason t o  reject the hypothesis. 
The non-uniqueness of the velocity field will not be of concern here since no attempt is 
made t o  attach physical significance to  the motions obtained; instead, the uniquely 
determined CMB radial secular variation these flows generate is contoured as an aid to  inter- 
pretation. Solving for a particular non-unique flow is undertaken purely to  assess the 

0" - v =  0. 
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feasibility of the toroidal motions hypothesis. The indeterminate part of the toroidal 
velocity from equation (2) will clearly not affect the data inversion process and the 
assessment of the goodness-of-fit. 

Some previous velocity inversion techniques are described briefly in the following section 
to facilitate comparison with the method to be used here, and some significant differences 
emerge. The inversion methods, which give solutions consistent with the necessary condi- 
tions ( 3 )  imposed by the frozen-flux hypothesis, are presented in Section 3 ,  and the results 
are presented and discussed in terms of the original aims in Section 4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 The toroidal-poloidal velocity decomposition 

Almost all previous studies of the CMB velocity field have made use of the toroidal-poloidal 
decomposition of the velocity field formulated by Roberts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Scott (1965). Since the 
velocity averages to zero over the CMB, it can be expressed in terms of two scalar functions 
of position on the sphere, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS and T, which can be expanded in spherical harmonics: 

v =  VT + vp 

where 

and 

S ( 6 , @ )  = c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS Y  YY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6,4) (5b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Im 

where Y;^ (9, @) is a spherical harmonic, temporarily assumed complex and fully normalized 
to simplify the notation. A notable exception to this formulation is that of Backus (1968) 
who decomposed vB, (rather than just v) into its toroidal and poloidal parts. The main 
advantage of expansion (5) over the Backus expression for the problem at hand is that the 
assumption of purely toroidal velocity can be made extremely simply. 

Proceeding with the mathematical analysis for the moment, substitute (5) into (2) and, 
assuming both the main field and secular variation can be expanded in spherical harmonics, 
the following equation is obtained. 
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CMB fluid upwelling 567 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is the radius of the Earth (6371 km), c is the radius of the core (3485 km), and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{gy}, {g;”} are the spherical harmonic coefficients of the secular variation and main field 
respectively. 

Multiplying by v*, say (where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* denotes the complex conjugate), integrating over the 
surface of  the sphere and nsing the orthogonality of  the spherical harmonics gives matrix 
equations relating the sets of spherical harmonic coefficients: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g = E t + G s = ( E : G )  --- (6 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(:I 
where, after some algebra, the matrices E, G have elements like 

@df2 denotes integration over the sphere) and g, s and t are vectors of spherical harmonic 
coefficients for the secular variation, S and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT respectively, all suitably ordered. The integrals 
in the expressions for E and G are Elsasser and Gaunt integrals respectively (e.g. Gibson & 
Roberts 1969). They are expressible in closed form, and are non-zero only for certain pairs 
o f  (Il, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm,), (Z,, rnJ and (Z3, m3) values given by selection rules detailed by, e.g. Bullard & 
Gellman (1954). The most important of these in this problem is the triangle inequality, 
which states that E l ,  I ,  and l3 must form the sides of  a triangle, i.e. 

13< I I  + I, 

with the additional proviso that the sum of the I values must be even for Gaunt, and odd for 
Elsasser, integrals. This shows that, with the truncation level of the spherical harmonic 
expansion o f  any two of  the main field, secular variation and velocity field fixed, the third is 
also determined. 

Equations (6) form the basis of the inverse problem for CMB velocity calculations. With 
the spherical harmonic coefficients for the main field specified, one can solve for the vectors 
t and s, or just t with s = 0 if purely toroidal CMB velocity fields are sought, from secular 
variation data. The ‘data’ can be either spherical harmonic coefficients g for the secular 
variation or,  as discussed in Section 3 ,  estimates of  components of the scalar variation at 
isolated points at, or near, the Earth’s surface (or a combination of the two). 

Various velocity inversions using equations (6) have been reported in the literature. Kahle, 
Vestine & Ball (1967) (and subsequent papers by the same authors) performed a straight- 
forward least squares inversion of  main field and secular variation coefficients for the 
spherical harmonic coefficients o f  S and T up to  degree and order 4. They found instabilities 
developed when extrapolating the geomagnetic field t o  the CMB, and their results are also 
subject t o  severe truncation effects now well known in spherical harmonic analysis. 
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More recently, Madden zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Le Mouel (1982) performed a damped least squares inversion t o  

reduce the problems of truncation of the spherical harmonic expansions of S and T, using a 
combination of measurements and spherical harmonic models of the secular variation. They 
also examined how well these data resolved the spherical harmonic coefficients obtained, 
and found that the poloidal coefficients, {sy} , were better resolved than the toroidal ones, 
{t;”) . This, they argued, was due to the precise form of the non-uniqueness of the velocity 
field. Any poloidal velocity vectors in the null space, i.e. poloidal velocities which do not 
generate any secular variation outside the core, are pathological, and therefore there is 
unlikely to be a contribution from them in the damped least squares solution, which is 
regular everywhere. However, the toroidal null-space velocities are regular and thus may 
contribute to  the solution obtained. Madden & Le Mouel (1982) state that, since the 
damped inverse solution is minimum norm. i.e. it minimizes a measure of the ‘length’ of the 
velocity vector, the null-space contribution might be reduced, although the reasoning is not 
clear. Thus their argument is that the velocity field they calculate, which extends to harmonic 
degree 5, is a good estimate of that part of the actual CMB motion which is uniquely 
determined by the data. 

Higher harmonic degree motions (up to degree and order 9 )  have been obtained by Gire, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Le Mouel & Madden (1984, 1986), using the method of Madden & Le Mouel (1982) with 
some extensions and refinements. Gire et al. (1984) were investigating the westward drift 
rate of the geomagnetic field, and were thus primarily interested in the toroidal coeffi- 
cient ty. Due to the stabilizing effects of the methods of analysis they used, ty had similar 
values, and was reasonably well-resolved, regardless of the details of the inversion. These 
conclusions apply to many of the other low degree and order coefficients in the expansion 
(Gire et al. 1986). 

Voorhies (1 984) used published spherical harmonic models o f  the main field and secular 
variation to estimate steady motions, whose uniqueness has been proved (Voorhies & Backus 
1985). The method followed that of Kahle et al. (1967) closely, i.e. an inversion for the 
coefficients of a truncated spherical harmonic expansion that best fit, in both the spatial and 
temporal least squares sense, a model of the time-varying geomagnetic field. Voorhies 
obtained both purely toroidal and complete (i.e. toroidal and poloidal) flows, but concluded 
that an inadequate fit was obtained without including poloidal terms. 

When investigating the purely toroidal velocity hypothesis, there are disadvantages to the 
methods outlined above. First, for non-orthogonal data (always the case in practice), 
truncation of the spherical harmonic series followed by straightforward least squares 
inversion leads to solutions that are strongly dependent on the particular truncation level 
chosen. Changing the truncation level changes all the coefficients, due to  spatial aliasing of 
the higher-order harmonics. This is particularly severe when downward continuation is 
involved, because of the preferential amplification of the shorter wavelength components 
(Whaler & Gubbins 1981). 

Secondly, problems arise when trying to test hypotheses using spherical harmonic models 
for the secular variation, rather than original data. It is impossible to tell whether failure to 
satisfy, say, the purely toroidal velocity assumption, is due to  the failure of the assumption 
itself or the failure of the spherical harmonic model to fit the data it represents. For these 
reasons i t  is better to work with secular variation measurements and, if spherical harmonic 
coefficients are used, to  attach a low weight to them. 

Previous investigators do not generally appear to have used the triangle inequality for 
Gaunt and Elsasser integrals to determine the truncation level of the spherical harmonic 
series for the velocity. If spherical harmonic models are taken to  represent both the main 
field and the secular variation, velocity coefficients can extend to  harmonic degree given by 
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the sum of those of the main field and secular variation models (or that sum minus one for 
purely toroidal motion, since that part of the flow involves Elsasser integrals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- see equations 
(6) - which vanish unless the sum of the harmonic degree value is odd). Most published 
velocity models have been truncated lower than this, usually considerably lower. This would 
be justifiable if the velocity model converged at the chosen truncation level, but in the few 
instances where this has been investigated (e.g. Voorhies 1984), this has not been found to 
be the case. The results of this paper suggest it is unlikely that any of the previously derived 
spherical harmonic series for the CMB velocity field have converged. Specifying the 
truncation level for the velocity field below its maximum value determined by the triangle 
inequality for the Gaunt and Elsasser integrals only serves to introduce a further, 
unnecessary, parameter into the solution and provide another source of ambiguity in the 
results. 

If, on the other hand, ‘raw’ secular variation data are to be inverted for the CMB velocity 
field, there are no constraints on the maximum harmonic degree of the velocity coefficients. 
This maximum value, however, taken in conjunction with the truncation level of the main 
field, indicates to what harmonic degree the secular variation this velocity field generates by 
advection of field lines will run. The CMB secular variation field, which is unaffected by the 
non-uniqueness in the velocity, can then be compared with other models to  gauge its 
acceptability; hence the acceptability of the constraints on the velocity field it was produced 
by can also be assessed. 

Another disadvantage of using spherical harmonic models over original secular variation 
data is that the extent to which the model should fit the ‘data’, i.e. the secular variation 
coefficients, is difficult to ascertain. Some progress could be made using the covariance 
matrix from the original inversion of the raw data, but this is cumbersome and the covariance 
matrix is often unavailable. 

For the reasons outlined above, the approach taken here differs from previous velocity 
determinations in several important respects. The data are estimates of secular variation 
components, with associated errors, rather than spherical harmonic models. The expected 
fit of the model to the data is known from previous inversions, e.g. those in paper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, which 
also enables the CMB secular variation generated by the velocity field advecting field lines to 
be compared to direct CMB secular variation inversions. The truncation level of the secular 
variation field is determined from those of the chosen main field model and that specified in 
the velocity inversion by the triangle inequality. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn aim of the analysis was to  obtain conver- 
gent spherical harmonic series, for which the velocity model runs to relatively high harmonic 
degree, so that raising the harmonic degree does not change the values of the coefficients, or 
alter the goodness-of-fit of the solution, etc. Details of the ways in which solutions were 
obtained are given in the next section. Purely toroidal solutions were obtained by removing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G and s from (6) and inverting only for t. These models were compared with other solutions, 
both those of paper 1 and other velocity inversions including poloidal coefficients, to  assess 
the ‘no-upwelling’ hypothesis. 

3 Stochastic inversion for velocity coefficients 

The method used to  determine the velocity coefficients was stochastic inversion, first used in 
spherical harmonic analysis by Gubbins (1983), in which further details can be found. It is 
also similar to  the methods of Madden & zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALe Moue1 (1 982) and Gire et a1. (1 984, 1986). The 
notation of Gubbins (1983) will be followed quite closely. Equations (6) relating secular 
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570 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA .  Whaler 

variation coefficients t o  velocity coefficients can be rewritten. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABm, 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: G) for toroidal and poloidal flows 

E for purely toroidal motion 
B ={ 

and 

for combined flows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t for purely toroidal motion. 

m =  

(7)  

Winch (1974) has expressed the Gaunt and Elsasser integrals in closed form in terms of  
the Wigner 3jcoeff ic ients of quantum mechanics (Wigner 1959), and has written a 
FORTRAN function t o  evaluate the 3-j coefficients. For the normalization of spherical 
harmonics he chose, the results can be relatively simply recast into Schmidt quasi-normaliza- 
tion recommended in geomagnetism (Winch 1974; Winch & Bamber , unpublished manuscript). 
Thus, the elements of the matrices E and G in (7) could be rapidly and accurately calculated 
using the supplied FORTRAN function, with published values of the spherical harmonic 
coefficients of the main field. The results were checked by comparison with approximate 
numerical integration, ensuring that the renormalization had been performed correctly. 

Secular variation coefficients, g, can be related t o  surface secular variation data, 
y (measurements of  B,, BB and b$ at permanent magnetic observatories in this case) by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y = Yg. (8) 

Where the elements of Y (of three types, corresponding to  the three components measured) 
are multiples of spherical harmonics and their 9 and @ derivatives. Combining (7) and (8), 
the data are related t o  the model by 

y = Yg = YBm = Am (9) 

where A = YB. 

Then (Gubbins 1983) the stochastic inverse solution for m, m say, is 

m = (ATC,' A + C-,')-' ATC,' y 

where C, is the data covariance matrix and C, is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori covariance matrix of  the 
model. 

All linear systems of  type (10) were solved by Cholesky decomposition and back substitu- 
tion. As usually is the case, the data are assumed uncorrelated, so the covariance matrix of  
the data is diagonal, with their variances the diagonal elements. The a priori model covari- 
ance matrix is chosen t o  reflect our prejudices about the expected model. In this case they 
include our wish that the model converges, which in turn governs the shape of  the power 
spectrum at high harmonic degree, beyond the influence of the data. There is initially no 
a priori reason t o  expect the model parameters t o  be correlated, so zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, is diagonal, where 
each diagonal element depends on the harmonic degree (but not order) of the coefficient it 
is associated with. For example, following Gubbins (1983), we might require that each 
harmonic degree contributesequally t o  the variance of  the quantity of  interest - in Gubbins' 
(1983) case, the CMB radial secular variation field, here the CMB velocity field. Using the 
orthogonality of  the spherical harmonics, where now we have reverted t o  Schmidt quasi- 
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CMB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfluid upwelling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
normalized form, 

I 

(6vp)'= 27r c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1(Z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1) c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6s;7)2 
I m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= O  

571 

where 6v% is the variance of the toroidal velocity field, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASty2 the variance of a toroidal 
velocity coefficient, and similarly for the poloidal velocity field. We do  not expect any 
dependence on orientation, i.e. on harmonic order m, so if we further assume that all coeffi- 
cients of the same harmonic degree have the same variance, a:, we see that,  for each harmonic 
degree to  contribute equally t o  the variance of  the velocity field. 

1 

uf Cr:: 

1 ( 1 +  1)' 

Thus we choose a priori 

C; = hQ 

where 

Q j j = l ( l + 1 ) 6 i j  

Aii being the Kronecker delta, and the elements of Q are arranged according to spherical 
harmonic order and degree in the same way as the model parameters. 

Another choice of a priori information could be obtained by requiring that the solution 
for v be spatially smooth, e.g. that it minimizes §CMBv2df2, where $cMBdS2 denotes integra- 
tion over the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACMB, for a given fit to the data. Again, using the orthogonality of the spherical 
harmonics, it can be shown that 

This will tend to  smooth, or stabilize, the inversion, since (14) discriminates against large 
(absolute) values of  the velocity coefficients, especially at high harmonic degree. In this case, 
then, the a priori covariance matrix would be 

C: = X Q  

where 

ordered as before. This illustrates another interpretation of the stochastic inverse solution - 
it is also a minimum norm solution, minimizing the solution norm 

~ ~ T c Z  = XrfiTQm 

for given residual norm 

eTC,' e 

where e = y - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi. is the residual vector, and i. = Am are the predictions of the data by the 
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572 K. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA .  Whaler zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
model, the relative emphasis on obtaining a good fit to  the data (represented by a small value 
of the residual norm) or a smooth solution (a small value of the solution norm) being 
controlled by the arbitrary multiplier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA .  The residual norm therefore quantifies the fit to the 
data, and should be distributed as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi, where n is the number of data. In inversion for 
spherical harmonic coefficients of the CMB magnetic field or its secular variation (e.g. 
Gubbins 1983, 1984; Gubbins zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Bloxham 1985; Bloxham & Gubbins 1986),the geometrical 
attenuation/amplification factor (a/c)"2 dominates all reasonable choices of a priori 
information, making the solution almost totally insensitive to  the norm chosen, and also 
ensuring convergence at  fairly low harmonic degree. By contrast, the elements of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0- Z2 and 
1 for choices (13) and (15) of C,, respectively, so different choices of a priori information 
for velocity inversions have a more marked effect on the solution obtained, as will be seen in 
the following section. 

Previous inversions for the CMB radial secular variation field (eg. paper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl), using the 
dataset also considered here, suggest a residual norm (eTC,'e, or 

where ui is the standard error on yi, under the assumption of uncorrelated errors made here) 
of about 1300 is appropriate. T h s  is a factor of about 4 greater than the expected value of 
318 (the number of data), which, as discussed in Shure et al. (1983),may be due to external 
geomagnetic effects contaminating the data. Once a solution for the velocity coefficients, m, 
has been calculated, with the appropriate residual norm, it can be multiplied by the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B (see (7)) to obtain the secular variation coefficients, which should also be a convergent 
series if the velocity series is (and, in fact, is likely to converge faster than the velocity). 

The inversions for the CMB secular variation field in paper 1 minimized a norm of the 
secular variation field 

which can also be calculated from the predicted secular variation coefficients g determined 
from m. As these are solutions which minimize velocity, rather than CMB secular variation, 
norms, this quantity will not in general be small. However, it is possible to minimize the 
norm $CMBB: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdS2 when calculating velocity solutions by an appropriate choice of a priori 
covariance matrix C,. This is a norm minimizing a uniquely determined, physically meaning- 
ful quantity, unlike the two earlier choices. The objective function to be minimized in this 
case is 

where p acts as a trade-off parameter 

where Q is diagonal with elements 

2'+4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 t 1 ) 2  4n4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21+1 
(by 16) 

= eTC,' e t mTBT QBm 
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(using 7). which leads to the solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ATCZ;' A + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABT QB)-' ATC,' y. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACMB fluid upwelling 573 

(1  7 )  

Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC z  = BTQB, which is positive definite symmetric, since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ is diagonal, but not itself 
diagonal. Whereas in most cases stochastic inversion involves adding numbers t o  the diagonal 
of the undamped normal equations matrix, a common method of  stabilizing least squares 
inversion, here every element of  the normal equations matrix is modified. In practice, it was 
found that,  although the modified matrix t o  be inverted, ATC,'A + BTQB, is strictly 
algebraically positive definite, it was not numerically so. This problem was circumvented by 
including in the objective function one of  the norms of the velocity field introduced earlier, 
with an extremely small (fixed) weight, i.e. the objective function was, instead, 

where Q has one o f  the forms (13) or (IS), and X was set at an extremely small value - as 
little as 10 orders of  magnitude down (all calculations being in double precision) on its value 
when using (13) or (15) was sufficient t o  achieve a solution numerically. The effect of the 
extra term should be small, and the solution so obtained therefore very nearly minimum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& M B B :  dL! for fixed residual norm, a claim borne out in the following section. The secular 
variation field predicted b y  the velocity fields determined in this fashion can be compared 
directly with their counterparts obtained by inversion of  the same data for secular variation 
coefficients with the same norm. Any other apriori information on B (e.g. other alternatives 
considered by Gubbins 1983) could be incorporated by an appropriate choice of Q in (1 7). 

4 Results 

The data were inverted under the assumptions made in the Introduction, i.e. that the 
electrical conductivity of  the mantle vanishes, and that of the core is very large. Thus, the 
main field at the CMB is known exactly, as given by the downward continued, truncated 
spherical harmonic expansion. Corrections to both the main field and secular variation, on 
downward continuation t o  the CMB, are sniall for likely conductivity profiles (Benton & 
Whaler 1983), so the former assumption should not seriously affect the results. An attempt 
to  assess the effect of  the latter assumption was made by using two independent models of 
the main field, w h c h  had a markedly different CMB radial field configuration and hence a 
different set of  null-flux curves. Therefore, they would not both be consistent with the 
frozen-flux hypothesis. The first was the DGRF for 1965 (Barraclough et al. 1978), which 
extends t o  harmonic degree 8, and was also the main field used in the calculations of paper 1. 
Its null-flux curve configuration is considerably simpler than that for models for 1980 based 
on large quantities of  high quality MAGSAT data. On the assumption that the models for 
1980 are the closest t o  true field, the 1965 DGRF is not consistent with the frozen-flux 
hypothesis, since the null-flux patch integrals are not conserved. Gubbins (1985, private 
communication) has produced an alternative model for the earlier epoch (actually, 1966 
rather than 1965), which has the same set of null-flux curves as theMAGSATmodels. This 
model extends to  harmonic degree 20,  but a map of the CMB radial field component 
obtained by taking terms up t o  degree and order 12 only was virtually indistinguishable from 
that produced by the complete set. Therefore, t o  reduce the computational effort, the 
smaller set of  coefficients was used to define the second model, which will be denoted 
N1966(12) in what follows. The CMB radial component of the two models is contoured in 
Fig. I .  The null-flux patch integrals of the radial component for this model are given in 
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574 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK .  A .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWhaler zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. The CMB radial component of the main field modcls used hcre, contoured on a Lambert equal 
area projection. The contour interval is 100fiT. Positive contours continuous, negative contours dashed, 
thicker lines are zero contours. Coastlines at  the Earth’s surface are included for reference. (a) DGRF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1965, (b) N I  966( 12). 

Table 1, together with those for Gubbins & Bloxham’s (1985) model for 1980, based on 
MAGSAT data, taken from Bloxham & Gubbins (1986). The method by w h c h  the patch 
integrals for 1966 were calculated differs slightly from the previous methods, and is 
described more fully later in this section. The difference between the two methods is 
greatest for integrals over the almost hemispheric patches, numbers 1 and 2 in Table 1. The 
rather large changes in these two patch integrals between the two epochs are probably not 
significant. The value of patch integral number 3 ,  over the region of the core beneath the 
South Atlantic, hardly alters between these two epochs, which provided the strongest 
evidence for flux diffusion in Bloxham & Gubbins’ (1986) analysis. However, using the 
statistical test described by Bloxham & Gubbins (1986), it appears that this model, too, is 
inconsistent with the frozen-flux hypothesis, As there is no  simple way in which errors on 
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CMB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjluid upwelling 575 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- conrimed 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIntegrals of the radial main field component over patches bounded by null-flu\ curves for 
Gubbiiis & Bloxhani’s (1985) model for 1980 and N1966(12) (Gubbins, private communication). Values 
are in MWb. 

Patch 1980 1966 80-66 Error 
86 -66 

Northern hemisphere - 

Southern hemisphere 
South Atlantic 
S t  Helena 
Easter Island 
North Atlantic 
North-west Pacific 
North-east Pacific 
North Pole 

11541 
18850 

-1 214 
-88 
- 20 

3 

33 
3 9  

-17259 
18501 

- 1  239 
- 5 1  
-22 

1 
21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 

31 

-288 
349 
- 35 
-31 

2 
-4 

- 25 
28 
2 

38 
43 
21  
13 
12 
6 

13 
1 

12 
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576 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK .  A .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWhaler zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- continued 

the downward continued main field, i.e. in the equations of  condition relating the model to 
the data, can be taken into account in the inversion scheme proposed here, the differences 
between the results with these two models will be used to  indicate how the uncertainty in B 
affects the conclusions. 

Purely toroidal velocity solutions were sought initially, in keeping with the underlying 
aim of assessing whether they were acceptable models of the data. The required normalized 
sum of  squares of residuals was 1302, for which the minimum $cMBB:dCl value was 
67.8 x lo6 nT2yr-’ (see paper 1) using the Same data. Inversions at successive truncation levels 
for the toroidal velocity field coefficients showed that convergence (to at  least three signifi- 
cant figures) was achieved at about harmonic degree 18 (for the sum of squares of  residuals 
of  paper 1) with the first two norms, (13) and (15) discussed in the previous section. As the 
main field models used run t o  harmonic degree 8 and 12, the fluid motions will therefore 
produce secular variation up to  harmonic degree 25 and 29 respectively b y  advecting the 
field lines, which is considerably higher than the truncation level of  20 b y  which previously 
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CMB fluid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAupwelling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA577 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- continued 

calculated secular variation models had converged (e.g. Gubbins 1983). The predicted 
secular variation coefficients from the models produced by norms (13) and (15) also form a 
convergent spherical harmonic series, with $CMBB: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd Q  values of 257 and 275 respectively 
using the DGRF, and 277 for both norms using N1966(12). Here and in what follows, values 
of $cMBB: dZn will be quoted in units of 106nT2yr-2. Convergence of the secular variation 
series is easily seen in the power spectra for the four models, shown in Fig. 2,  although they 
have not converged by harmonic degree 20. The velocity spectra, also shown, plot the 
contribution to $cMB? ds2 from coefficients o f  degree I ,  i.e. 

versus degree, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Note that the velocity power spectra are plotted on linear axes; those for the 
CMB secular variation are log-linear. That the velocity models have converged is less obvious 
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578 K. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA .  Whaler zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 

900 

8 0 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
700 - 

t 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 0 0  

t 
t 

5 0 0  L 

400 t 
L 5  

300 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 
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t 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t 
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Figure 2. Power spectra of (a) thc CMB velocity field and (b) radial CMB secular variation for purely 
toroidal models TI -6. All have a residual norm of 1302,T1, A;T2 ,  o ; T 3 , u ; T 5 , V ; T 6 ,  * ;T7,+.  Points 
for T3 between harmonic degrees 7 and 13 inclusive are off the vertical scale in (a). 
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CMB fluid upwelling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA579 

from these plots, but the linear trend of the last segment suggests the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori information 
takes over at about harmonic degree 15. They also show that the flow is weaker when model 
N1966(12) is used to define the main field. The considerably larger values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$CMBB: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdR 
than that obtained in paper 1 for these four models are reflected in the roughness of the 
CMB secular variation; a typical example of the radial component is contoured in Fig. 3. 
However, the same broad features to those in the maps of paper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 are apparent. Numbers 
characterizing the models (eg. their solution norms) are summarized in Table 2. 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Summary of the numbers characterizing the models presented here. and those of the comparison 
model from paper 1.  

Max. Max. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
degree degree  sslufion norm d a m p i n g  

M o d e l  Solution Of main o f  minimised- paramete r ,  

h f o r  f i e l d  solution 

8 

8 

8 

8 

1 2  

1 2  

1 2  

1 2  

8 

8 

8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 

1 2  

1 2  

1 2  

1 2  

1 4  I 8  

1 8  1 8  

1 8  

18 

1 8  

19 

18 

18 

1 8  

18 

1 R  

1 8  

1 8  

1 8  

, 179  

, 3 3 2  

3 . 3 2 x l i l - O  

5 . ~ 2 ~ 1 0 - ~  

, 6 3 0  

1 .08  

4 .  3 1 1 ~ 1 0 - ~  

6.935~1(1-~ 

3 . 5 2  

5.05 

8.875~10-6 

i.025~1n-6 

5 . 0 5  

8 . 4 ~ 1 0 - 6  

1.s6~1n-5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.77 

Residual 
"OTlll 

1302 

1 3 0 2  

1 3 0 2  

1302 

26n7 

I 302 

1102 

1 1 0 2  

1 7 0 2  

1302 

2 5 9 2  

1302 

1 3 3 2  

1302 

1302 

1302 

1 4 6 0  

d ( : M ~ 2  d '  . 

(km2yr-z) 

1 9 5 1  

1192 
7 

3 4 . 4 8 ~ 1 0  

21 . R B ~ I O ~  

770.2 

6 6 R . 6  

4 6 1 9  

2479 

3 4 0 . 6  

2 1 2 . 4  

1 1 6 4  

1 1 2 7  

2 6 8 . 3  

2 0 2 . 1  

1892 

1738 

6rMBir2dll 

( 1 0 6 m T 2 y r - 2 1  

67.8 

257.4 

2 7 5 . 2  

1 6 2 . 7  

6 7 . 8  

2 7 6 . 7  

276.7 

139.0 

67.8 

111.7 

145.8 

71.0 

6 7 . 8  

1 3 6 . 2  

1 7 6 . 0  

8 1 . 6  

6 1 . 8  

Numbers in brackets refer to  equations numbered in the text. 

There is no obvious way to compare the four solutions obtained here with that of paper 1 
t o  assess the 'no upwelling' hypothesis, since comparing solutions e.g. minimizing 
$CMBV' dR with those minimizing $ C M B B :  d R  is not comparing like with like. Minimizing 
the norms (13) and (15) of v does not lead to solutions with small $ c M B B :  dR as well.This 
prompted development of the norm (18) minimizing (or nearly minimizing) $cMB8; dR 
when inverting for velocity coefficients described in the previous section. We would not 
expect to obtain values of $ c M B B :  d R  quite as small as those of paper 1 since we had to 
stabilize the solutions numerically by adding extra weight to the diagonal elements, but this 
will not turn out to  be crucial in what follows. 

The minimum values of icMBB: dR for purely toroidal motion with a residual norm of 
1302 were found to  be 163 (with the DGRF main field model) and 139 (N1966(12)), about 
two-thirds or a half of those of the previous solutions, but still a factor 2 larger than with 
direct inversion for CMB radial secular variation. Again, the solutions are convergent, as 
Fig. 2 shows, and the predicted radial secular variation resembles that of paper 1, although 
there is considerably more small-scale structure in the Pacific hemisphere. The difference in 
values of $CMBB:  dR seems large, but is it significant? In fact, we chose to answer a slightly 
different question, namely: is the increase in residual norm necessary to produce a solution 
norm of  67.8 significant? The required residual norms are 2607 (DGRF) and 2592 
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580 K. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA .  Whaler zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARadial CMB secular variation generated by model TI on a Lambert equal area projection. The 
contour interval is 2000nTyr  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’, i.e. double that of the maps o f  paper 1. Positive contours are continuous, 
negative contours dashed, thicker lines arc zero contours. 

(N1966(12)), again a factor of 2 larger than in the direct inversion. They should be distri- 
buted as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2 on the number o f  degrees of freedom of the solution, which is 318 (the number 
of data) minus the trace of the resolution matrix.AnF-test indicates whether they are samples 
from the same distribution, or whether the purely toroidal velocity model value is signifi- 
cantly larger. The traces of the required resolution matrices are 66 (for solution T4) and 63 
(solution T8). Ratios of  2.00 on 252, 318  and 2.90 on 255, 318 degrees of freedom are 
indeed significant, at h e  100.00 per cent level (quoting the result t o  five significant figures), 
which implies that the null hypothesis o f  the residuals between the model and data are the 
same for the two pairs o f  models can be totally rejected, Note that this result does not 
depend on the estimates of  the data residuals being correct, since any constant factors 
cancel. Thus the extra average 1 nTyr-’ residual pointed out by Shure et al. (1983)should 
not affect the conclusions. 
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CMB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfluid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAupwelling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA581 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- continued 

This would appear to be very strong evidence against the 'no upwelling' hypothesis. The 
result is insensitive to the choice of main field model, implying that errors in the CMB radial 
field are unlikely to  negate this conclusion. There are two other possibilities that can be 
investigated, Firstly, there may be no flow of the form (5) capable of fitting the data or, 
secondly, the numerical stabilizing of the solution explains the increase in $ c M B  B: dSt value. 
The latter possibility seems unlikely, since altering the very small number used to stabilize 
(norms (13) or (15) with damping factor X in (18) varying between and lo-'') pro- 
duced negligible change in $cMBB:dSt. Both can be examined by including poloidal terms in 
the velocity expansion. 

For a full velocity expansion, norms (13) and (15) again produce convergent solutions 
(for both the velocity and CMB radial secular variation) with values of $CMB B:dSt greater 
than that of paper 1. However, i n  this case they are only about 112 and 146 for the DGRF 
and 136 and 176 for N1966(12)) respectively (see Table 2). Also the power in the velocity 
field is considerably reduced (by at least an order of magnitude) when poloidal coefficients 
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Figure 4. Power spectra for toroidal and poloidal flows. The velocity spectra for the toroidal and poloidal 
flows are shown separately. Likewise, the power spectrum of the radial CMB secular variation is split into 
the parts generated by the toroidal and poloidal parts of the flow. Thc toroidal and poloidal parts of both 
spectra are roughly equal, so there is no suggestion of weak upwelling and downwelling, o r  that the 
poloidal flow generates only a small part of the secular variation. (a) Toroidal velocity, (b) poloidal 
velocity, (c) radial CMB secular variation generated by the toroidal flow, (d) that generated by poloidal 
flow. TP1, A ;  TP2, o ;TP3 ,  u ;  TP5, V;TP6, V;TP7, +. The harmonic degree 4 point is off the vertical scale 
for TP6 in part (b). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/8
6
/2

/5
6
3
/6

8
4
0
3
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



CMB fluid upwelling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA583 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
LOGlO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 

LOG10 

P O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 1  1 I I I I I I I I I I I L - U  

o 2 4 8 B 10 12 $4 i8  i e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 22 24 28 28 30 

(d)  

Figure 4 - continued zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
are included - see Fig. 4 which shows the toroidal and poloidal power separately. Ths  
shows that the power in the toroidal flow is roughIy comparable with, rather than consider- 
ably larger than, that in the poloidal flow (a conclusion also reached by Gire et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf. 1986). 
Likewise, the power in the secular variation generated by the toroidal and poloidal parts of 
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584 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK.  A .  Whaler zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the flow separately is roughly comparable (see Fig. 4). Thus it is not the case that the 
observations of Whaler (1980, 1982) can be explained by weak upwelling and downwelling 
not resolved by the data and methods of those papers. 

Again, we need to look at solutions minimizing & M B @ d Q  to  compare like with like. 
Once more, the system of equations is numerically unstable, and small numbers were added 
to  the diagonal of the normal equations matrix. The (nearly) minimum values Of&,,fB B:dQ 
are 71.0 (DGRF) and 81.6 (N1966(12)), only a few per cent larger than that of paper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 .  
Thus, the numerical stabilization is not responsible for the large value $&BB:dQ in the 
purely toroidal case. For the $CMB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdQ value of paper 1 ,  the residual norms only need to 
be increased to  1332 and 1460, and the traces of the corresponding resolution matrices are 
91 and 86. An F-test shows no statistically significant difference between the sums of 
squares of residuals in this case, demonstrating that there is at least one flow which ade- 
quately explains the data (thereby veri€ying the decomposition (5) of v at the CMB). Unless 
errors due t o  the non-zero conductivity of the mantle and/or flux not being frozen-in at the 
CMB have caused a false negative result of the F-test on the toroidal solutions, there is no 
alternative but to accept the implications of the F-tests on the purely toroidal solutions, i.e. 
there is upwelling at the CMB. 

The power spectra for models TP3 and TP7 are also shown in Fig. 4. The toroidal part of 
the velocity is not convergent for model TP3, oscillating from about degree 14 onwards, 
although a solution obtained when the series was truncated instead at degree 14 appeared to  
be tending towards convergence. Thus, it is probably an instability arising with the DGRF, as 
model TP7 using N1966(12) shows normal convergent behaviour. 

Since the secular variation is generated by advecting the main field by a specified velocity 
field in the frozen-flux approximation, it should be consistent with the constraints (3) .  

These patch integrals were evaluated numerically as a check on the calculation of the 
equations of condition matrix, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, of equation (7), which relates velocity to  secular variation 
coefficients. 

Initially, a rather imprecise method was used, whereby a rectangular region of integration 
in (9, 4) space was defined containing the patch, and the integrand at any point within was 
set to zero if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, took the wrong sign, i.e. was outside the patch. This method has been used 
in previous evaluations of, and constraints on, the patch integrals (e.g. Shure et al. 1983; 
Gubbins 1983, 1984; Bloxham zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Gubbins 1986). This was not adequate for present 
purposes - integrals of predicted secular variation over patches bounded by null-flux curves 
were not small, for instance, the magnitude of the two almost hemispheric patch integrals 
was about 500. Instead, a numerical zero-finding routine (applied to B,) was used to find the 
@ limits of the patches at each 6 value. Besides being more accurate, the method is more 
efficient numerically, since B, does not have to be calculated at every point of a rectangular 
region to determine its sign - once the @ limits have been determined, for given 9, all points 
between them lie within the patch. In a further improvement, integrals over the almost 
hemispheric regions were calculated using analytic expressions for integrals of the spherical 
harmonics over hemispheric patches given by Gubbins (1983), and adding or subtracting the 
integrals over the regions contained between the undulations of the magnetic about the geo- 
graphical equator, calculated as described above, and the patches nested within, as appro- 
priate. This reduced absolute values of integrals of secular variation by an order of 
magnitude, to the values of about 50 presented in Table 3 .  

One final point which emerged during these calculations will be briefly mentioned here. 
Gire e f  al. (1984) have estimated the westward drift velocity of core fluid by a variety of 
techniques, some closely similar to that discussed here. They investigated varying the 
harmonic dependence of terms of a diagonal model covariance matrix using forms similar to 
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CMB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfluid upwelling 585 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Integrals of various secular variation models, or secular variation generated by velocity models, 
over patches of the CMB bounded by null-flux curves. The patches are named and numbered according to 
the region of the Earth's surface below which they lie (see, e.g. Bloxham zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Gubbins 1986). The first three 
rows are taken from Shure et al. (1983), the fourth from paper 1 ,  and used inaccurate calculations of the 
patch integrals of the spherical harmonics. However, recalculations performed using the more accurate 
method presented here d o  not chnngc the order of magnitude of the values obtained for the previously 
published models. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Hain 
f i e l d  S e c u l a r  Variation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP a t c h  Integrals (nTyi - ' )  

Parch 2 1 
S .  of  N. of  
mrgnelic magnetic South* South* N.W. N .  s. St. N.E. Easter  N. 
e q u a t o r  equator Afr ica America P a c i f i c  Pole Pale Helena Pacific Island Atlantic 

IICHb "CRF 609 - 3 7 1  90 -143 - 1 2 8  

icni I G R f  4 9 7  -635 289 -169 47 

-602 62 -9  40 ncnf Shure e f  a l .  (1983)  516 
2 " T y r - l f i i  

UGRf Paper  I bR7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-4R9 -28 - 3 9  - 2 2  

DCFf  T 4  34 - Z b  -4 0 .1  0.7 

56 -53 - 3  1.3 0 . 3  

0 . 0  0.0 1 . 2  33 - 6 3  29 -0.1 - 4  -4  8 

i n 1  - 7 3  - 2 9  0.1 -1 1 0.4 - 0 . 4  0.0 0.1 

*Numbers appearing midway between these two columns are for the N1966(12) main field. in which 
these two patches are amalgamated. 

(13) and (15). They found that the value of ty, the westward drift velocity, did not vary 
much whatever inversion method was used, and it was always the largest coefficient in the 
expansion, Having forced the velocity field t o  be primarily of low harmonic degree and 
order, through the choice of a priori covariance matrix, and finding that these results were 
broadly similar regardless of exactly how the diagonal covariance matrix was specified, they 
concluded that, if the motion was primarily of this form, as opposed to, say, turbulent 
motion, their value of ty was indeed representative of the drift of the CMB fluid, and this is 
the dominant motion. Table 4 gives the ty values of the full flow models presented here 
(purely toroidal motions are not considered since we have had to reject them); they are all 
smaller than Gire et aZ.3 (1 984) for 1970. More interestingly, for models TP3 and TP4, ty is 
not the largest coefficient; for instance, ti('), t:, ti(') and ti, where the superscripts (s) and (c) 
denote the coefficient multiplying sin m @  and cos m@, are all larger in magnitude than ty for 

Table 4. ty ,  in o y ~ - ' ,  for the full flows calculated here. 
The value? are all negative indicating westward drift, 
but  this is not the predominant motion in all the flows 
obtained. Subscripts (c) and (s) in the third column 
indicate the coefficient multiplying cos rnc$ and sin 
nz@ respectively. 

Model r y  ("yr-I) Coefficients greater 
than t ;  in magnitude 

TP 1 
TP2 
TP3 
TP4 
TP5 
TP6 
TP7 
TP8 

- 0.047 - 

- 0.022 - 

-0.011 
- 0.01 2 
- 0.046 - 

-0.020 - 
- 0.035 - 

-0.033 - 

t ; ,  t ; ,  t ; ( c ) ,  t:, t :  
t;?, t;, t:(c? t: 
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model TP4, This casts doubt on the conclusions of Gire e t  al. (1984) since (18) is a valid 
norm of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv, broadly satisfying their requirements of large-scale, ordered flow, yet it produces 
very little westward drift. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 Discussion 

The main conclusion of  this paper is that there is fluid upwelling and downwelling at the 
CMB, This is resolvable by the method described here even with the relatively small dataset 
investigated, whereas other methods applied to  the same data have been unable t o  distin- 
guish between hypotheses. The result is not affected by the non-uniqueness of the CMB 
velocity determined geomagnetically zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 

The method involves solving a parameter by parameter system of linear equations, so is 
capable of handling large datasets. Since most secular variation data are obtained from 
magnetic observatory records, the maximum number is unlikely t o  be more than, say, a factor 
of  2 larger. The 15yr  timespan, 1959-74, used t o  obtain the secular variation data used 
here is larger than ideal, especially as it spans the geomagnetic ‘jerk’ of about 1970, which 
may be associated with a change in magnetic field and/or velocity geometry. Also, it is 
impossible to fit these secular variation data to within their estimated errors calculated by 
Shure et  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf. (1983). so they may be contaminated by external fields. Thus it is desirable t o  
apply the method t o  a different dataset t o  confirm the results. 

A second area in which the results of the present study might eventually be improved on 
is to relax the assumptions of an insulating mantle and perfectly conducting core. The 
electrical conductivity of the mantle is too poorly known, and earlier field models, with 
relatively low truncation levels, too inaccurate a t  the CMB, to make these calculations 
worthwhile at the moment.  This situation may change with the availability of what are 
believed to  be more accurate recent models (eg.  Bloxham & Gubbins 1986). The effects of 
finite core conductivity can easily be taken into account in the method described here. 
Retaining the Ohmic diffusion term in the induction equation contributes an easily 
evaluated constant term on the right side. This term depends on the (unknown) jump in 
aB,/a, across the CMB but ,  if this is specified, the extra term can be incorporated into the 
data on the left side t o  give new ‘effective’ data. 

No physical significance can be attached to  the flows presented here because of the non- 
uniqueness of the velocity determined using the frozen-flux form of the radial component of 
the induction equation. Thus we cannot address the question as t o  where the upwelling and 
downwelling occurs. Likewise, the values of  the torodial coefficient ty from this method do  
not represent westward drift of the fluid layers adjacent t o  the CMB. Predominantly low 
degree mot ion produces a wide variety of ty values, and this need not be the dominant term 
in the expansion, depending o n  how a priori information is specified. 

The method developed here can be adapted to find the steady (i.e. constant with time) 
part of  the motion, whose uniqueness has recently been proved (Voorhies 1984). Main field 
models and secular variation data from several epochs can be fed into equation (7) with the 
same velocity coefficients, independent of epoch, as the model parameters. Each secular 
variation datum defines an equation of  condition, and the inversion of the larger dataset will 
then determine the steady part o f  the motion. Different norms, e.g. minimizing the power in 
the time-varying part of  the flow, may be more appropriate than those used here. 
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