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Summary. The method of stochastic inversion, previously applied to secular 
variation data, is applied to main field data. Adaptations to the method are 
required: non-linear, as well as linear, data are used; allowance is made for 
crustal components in the observatory data; and the prior information is 
specified differently. The requirement that the models should satisfy a finite 
lower bound on the Ohmic heating in the core provides strong prior infor- 
mation and gives finite error estimates at the core-mantle boundary. 

The new method is applied to data from the epochs 1969.5 and 1980.0. 
The resulting field models are very much more complex than other models, 
such as the IGRF models extrapolated to the core, and show considerable 
small-scale detail which, on the basis of the error analysis, can be believed. 

The flux integral over the northern hemisphere is computed at each epoch; 
the difference between the two epochs is approximately one standard devia- 
tion, suggesting that the question as to  whether the decay of the dipole is 
consistent with the frozen-flux hypothesis has been resolved in favour of the 
hypothesis. 

1 Introduction 

Charts of the Earth’s magnetic field are made periodically by various national agencies. This 
involves interpolation between measurements made in surveys, at permanent observatories, 
and nowadays from satellites. The usual method is to assume a potential field and to fit the 
coefficients of a truncated spherical harmonic ‘expansion to the measurements by least 
squares. In this paper we aim to map the field at the core-mantle boundary (CMB), which 
requires somewhat different techniques. 

We assume the Earth’s mantle is an insulator and that the field is wholly of internal 
origin (except for a correction made to the Magsat data discussed in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 ) .  The problem 
of calculating the core field becomes one of analytic continuation of the potential from the 
surface where measurements are made, at the Earth’s surface or at satellite altitude some 
500km above, to the core surface. A surface measurement gives a weighted average of the 
core field, the weighting function being the appropriate Green’s function for Laplace’s 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/8
0
/3

/6
9
5
/5

7
2
2
8
4
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



696 

equation (Gubbins zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Roberts 1983). It follows that we can only find an average of the core 
field rather than its value at a point; it also follows that short-wavelength core field will not 
be apparent in the observations because of the averaging process, and conversely any noise 
in the measurements will be amplified into the short-wavelength field, by the downward 
continuation process. 

This instability that accompanies downward continuation is well known. Modern 
methods (for example Shure, Parker & Backus 1982) make use of uncertainties in the 
measurements to produce smooth core fields with as little short-wavelength component as 
possible. These methods cannot, however, reduce the errors in the core field that are depen- 
dent only upon the quality of the data and the extent of our prior information about the 
core field. 

The first two papers of this series, Gubbins (1983, 1984. hereafter referred to as papers 
I and 11) dealt with the analysis of secular variation. The difficulty with making point 
estimates on the CMB was side-stepped by dealing only with integrals over patches of the 
CMB bounded by field contours. The error in the field was assumed negligible compared 
with that in secular variation, In this paper we analyse the main magnetic field. Point 
estimates are required to define the contours used in previous work. We develop a technique 
that yields useful error estimates for the core field. It is based on the physical requirement 
that the dissipation associated with any allowed core field is finite, 

There are several reasons why it is desirable to model main field (MF) rather than secular 
variation (SV). Most importantly we can make use of far more data: SV measurements are 
limited to permanent magnetic observatories whereas MF models incorporate satellite and 
survey data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA succession of MF models, all derived by a consistent method for various 
epochs, contains the information of not only the secular variation but also higher time 
derivatives. 

There are two new problems that arise from MF analysis. The methods must be developed 
to cope with measurements, such as those of the total intensity, that depend non-linearly 
on the model. This requires an iterative solution and a fresh look at the statistical basis of 
the method, given in Section 2. Also the MF contains a significant short-wavelength crustal 
component which was eliminated from the SV data in papers I and I1 by using only those 
observatories that ran continuously throughout the period of investigation. This crustal 
field cannot be modelled by a core field and is effectively a source of noise in the data. Steps 
taken to reduce the effects of the crustal field are described in Section 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGubbins and J. Bloxham 

2 Method 

2.1 N O N - L I N E A R  D A T A  

The use of measurements of total or horizontal intensity, declination, or inclination, all 
require an iterative solution to obtain the model, necessitating some modifications to the 
basic method described in paper I. We take this opportunity to  outline the Bayesian formu- 
lation of stochastic inversion. Jackson (1979) derives the stochastic inverse by two methods: 
first, he derives it using a minimum-variance estimation criterion; this was the formalism 
used in paper I of this series. However, as Tarantola & Valette (1982) have pointed out, the 
minimum-variance formalism is only applicable to linear problems - application of Jackson’s 
form of the inverse to a local linearization of the problem is invalid. Tarantola & Valette 
derive the inverse using a method in which prior information is incorporated in terms of 
stochastic restrictions - the philosophy of Jackson’s second derivation, the use of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori 
data. For a complete account of this ‘classical approach’, as it is called, see Toutenburg 
(1982). 
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Here we describe the Bayesian formalism, detailed accounts of which are given by Box & 

Tiao (1973) and Bard (1974). We follow closely the development of Bard (1974). The 
Bayesian interpretation of probability is a mathematical expression of our degree of belief 
in some~particular proposition, as opposed to the more restrictive frequentist interpretation 
in sampling theory. This enables us to represent our prior beliefs about the range of values 
taken by the coefficients in terms of a probability distribution which can be incorporated 
with the likelihood function (representing the information content of the data), using Bayes’ 
theorem, to  fonn the posterior distribution representing our posterior beliefs. 

Using, wherever possible, the notation of Paper I, we write the model equation (the 
equations of condition) in the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y= f(m) + e (1) 

where y is the D-dimensional data vector, m is the P-dimensional model vector of geo- 
magnetic coefficients 2nd e is the error vector. f is, in general, a non-linear functional of m 
and of the independent variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO,@). In order to make P finite we truncate the spherical 
harmonic series at some degree L ,  where P = L(L + 2), with L chosen to be sufficiently high 
to ensure that the expansion has converged. In this way we have reduced the problem to one 
of parameter estimation without degrading the model specification in any way. We represent 
our prior beliefs about m in terms of the prior probability distribution po(m) given by: 

p,(m) = ( 2 ~ ) - ~ / ’  det-’” C, exp(- I /2mTC~m),  ( 2 )  

m - NP(0, Cm) (3) 

Equation ( 2 )  may be written: 

meaning m is P-dimensional normally distributed with zero mean and covariance matrix C,. 
The choice of C, will be discussed in the next section, 

The information about m contained in the data y may be expressed in a similar form. We 
assume 

~ - N D  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0, Ce) (4) 

where C, is the covariance matrix of the measurement errors, assumed diagonal. 
Then y is a sample from the distribution p(y  ; m) given by 

p(y:m) = ( 2 ~ r ) - ~ / *  det-1’2 C, exp {-% [y-f(rn)lTC;’[y-f(m)]}. (5 1 
The likelihood function L(m) is obtained by considering p ( y :  m) as a function of m with 

The prior distribution and the likelihod function are combined using Bayes’ theorem to 
y fixed, 

form the posterior distribution p(m) by 

P(m> = k Po(m) L b )  (6)  
where k is a normalizing constant. 

p(m) expresses our beliefs about m after considering both our prior beliefs and the 
additional information furnished by the observations. Two statistics of p(m) are of 
particular interest :the mode m of p(m) is the value of m in which we place the strongest 
belief. We shall refer to m as the estimate of m. Secondly, we are interested in the covariance 
matrix C of p(m), although for non-linear problems we must, as will be shown later, exercise 
caution in its interpretation, 

log p(m) = log L (m) + log po(m) + log k ,  

i.e. 

logp(m)= -1/2 [y-f(m)lT~;’ [y-f(m)] - l / z m T ~ z m  + (constant terms). 

Taking logarithms in (6) gives 

(7 )  
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698 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. Gubbins and J. Bloxham zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Seeking the mode of p(m) is equivalent to maximizing log p(m), or equally to minimizing 

the objective function @(m) given by 

@(m) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [y- f (m)lT~, '  [y-f(m)] i- mTCGm. (8) 

The problem is reduced to one of non-linear optimization. Note that in deriving (8) no 
linearizing approximation has been made. Many algorithms exist for seeking the minimum of 
@ (see Luenberger 1969 for details). Gauss's method yields the algorithm: 

mi+l = mi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt (A:c;~A~ t C; 1-l {A~c;' [y- f(mi)] - C; mi} (9 1 
where mi is the model vector at the i th  iteration 

and 

At=-  1 
is the FrBchet derivative at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmi. 

af I 

am zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm = m i  

The procedure is terminated when 

I @(m,) - @(m,-d I < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (11) 

m = m ,  (12) 

where E is small 

and the approximation 

assumed. 
In the neighbourhood of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, we can expand log p(m) in a Taylor series (Bard 1974): 

log p(m) = log p(m) - 1/2(m-m)T H-'(m-m) (13) 

where 

is the Hessian matrix. 
Now, 

So, provided the expression 

is small, then 

H = 2(ATCi1A + C;) 

C = (ATC;'A t Cz)-' 

(17) 

(18) 

and p(m) is approximately normal about m with covariance matrix C given by 

where the right sides of (17) and (18) are evaluated at m. 
The condition (16) for this normality approximation to be valid requires that the 
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residuals are small compared with the extent around min which the neglect of second and 
higher derivatives is valid. 

The practical implementation of this method differs slightly from that outlined above. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAS 
described in Paper I, we introduce a damping parameter X so the objective function (8) 
becomes: 

@(m) = [y-f(m)lT~; '  [y-f(m)] + hmTCzm.  (19) 

Large values of h place more emphasis upon the prior information, while smaller values 
place more emphasis upon the fit to the data. The quadratic form mTCz m defines a norm 
of m; hence, varying h results in a trade-off between misfit and norm. 

In practice, as also mentioned in paper I, we do not know C, precisely. Instead, we know 
only the relative sizes of the elements of C,; in other words, we know Co where 

c, = u2co (20) 

and u2 is an unknown scalar. 
The algorithm (9) is unaltered upon substitution of the factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu2, since this factor is 

absorbed into the choice of A. However, the covariance matrix (18) is affected: we must 
multiply C by the factor u2, so an estimator h2 of u2 is required. An unbiased estimator is 
given by: 

so the covariance matrix C becomes 

c = 6 2 ( ~ T ~ ; 1 ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt hc;)-l. 

The proof of (2 1) is accomplished by minor modification of the proof given, for a more 
general problem, by Theil(l963). 

In Jackson (1979) and paper I, the concept of a resolution matrix was discussed. Here we 
define and interpet the resolution matrix in the sane way, but with the same caveat attached 
as for the covariance matrix, that the residuals are within the linear range. The resolution 
matrix R is given by: 

R = ( A ~ c ; ~ A  t h c 2 l - l  ( A ~ C ~ ~ A ) .  (23). 

Note, (21) is equivalent to: 

The trace of the resolution matrix tr(R) represents the effective number of degrees of 
freedom available for fitting the data. Typically- D,  the number of data, is 30 or more times 
larger than t r (  R), so in (24) we approximate 

T -1 
1 

D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA02=  - [y-f(m)l Co [y-f(m)] 

the mean sum of squares of weighted residuals or 'misfit'. 

2.2 P R I O R  I N F O R M A T I O N  

Consider the estimate for the radial component of magnetic field at a point on the CMB. The 
variance of this estimate depends on the covariance matrix of the model parameters (geo- 
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magnetic coefficients). If the model parameters are uncorrelated the covariance matrix is 
diagonal. If the variances of the model estimates are independent of spherical harmonic 
order m, as they are for the spherically symmetric case, then the variance of a point estimate 
is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m 

I = l  

(paper I, equation 10) where ul is the variance of a geomagnetic coefficient of degree zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, and 
a and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc are the Earth and core radii. 

The expression for Vp in (26) will converge only if uz falls off sufficiently rapidly with 
increasing 1. Specifically, it will converge if 

U I  = o [(c/a)’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz - ~  ] (27)  

because any series whose terms approach zero faster than is convergent. We will seek 
prior information in the form of a choice for uI that is strong enough to make (26) converge. 
We could truncate the series at some degree L thus requiring uI to be zero for 1 > L ,  but 
there is no physical justification for such a truncation. We could truncate the series when 
Vp reached some unacceptable level, but this would only have the effect of making Vp 

equal to the prescribed value -we would have assumed the answer! 
Restricting the electrical heating associated with allowed fields does give sufficiently 

strong prior information for (26) to converge. The Ohmic heating in the core is given by 

where 71 is the magnetic diffusivity. 
@ must not greatly exceed the heat flowing out of the Earth’s surface, about 1013W. 

Equation (28) is not useful because it involves the field throughout the core, whereas we 
only know its value at the core surface. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA useful inequality from Gubbins (1975) is 

( I  + 1 )  (21 + 1) (21 + 3 )  I 

@ > 4 n q  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 (a/c)2’+4 1 (gyz + h ~ ’ ) .  
I = 1  1 m =O 

Bounding the right side of (29) is a necessary, but not sufficient, condition that @ itself be 
bounded; a necessary requirement is that 

uI = o [(c/a)* r4] (30) 

which makes the series for Vp converge faster than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1-2. 
This constraint is still a very weak one because only the right side of (29) has been 

bounded, and this itself is only a lower bound on the true Ohmic heating. The Ohmic 
heating could be restricted further by truncating the series at some degree when the right 
.side of (29) had reached some reasonable value, say 1013W. For the calculations reported 
here this truncation level was so high as to make no difference to the point error estimates. 

In paper I1 use was made of the frozen-flux approximation, in which dissipation is 
neglected, and secular variation models were calculated that satisfied the constraints exactly. 
Fitting the constraints involved projecting the model on to the constraints plane, a process 
that introduced short-wavelength components into the model. It is possible to fit any data 
by adding more and more short-wavelength field, but clearly a point will be reached when 
the energy in the short wavelengths becomes so great that the assumption of negligible 
diffusion is negated, and an inconsistency develops. This suggests a second choice of prior 
information in which the diffusion term entering the induction equation is restricted to 
some small value. 
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The radial component of the induction equation at the CMB is 

where o h  denotes the horizontal gradient, A is the angular part of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV2 and v is the velocity 
of the core fluid. The radial gradients are discontinuous across the CMB so that the first two 
terms on the right side of (31)  are unknown to us. The remaining terms on the right side can 
be calculated from surface data. 

We will take the last two terms on the rhs of (31)  as typical of the magnitude of the 
dissipation in the core. It will be an underestimate if there are strong radial field gradients 
in the boundary layer at the top of the core. Multiplying (3 1 )  by B,  and integrating over the 
core surface gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 $ ' / zBjdS+ $BTV,, . (vB,)dS=q 

r ar d t  

The first integral is representative of the strength of secular variation, the last of dissipation. 
For typical MF and SV models and 77 = 1.6 m2s-l, the latter is about 20 per cent of the 
former, which gives an indication of the validity of the frozen-flux approximation. 

The dissipation integral can be expressed in terms of the geomagnetic coefficients as 

If we require that (33)  converge for all fields, then we have prior information of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ul= o [(c/al2 P 1 . (34) 

This is a stronger requirement than (30)  because of the extra factor of 1. Unlike (30) the 
argument is not a rigorous one because it does not involve a proper bound. 

2.3 E R R O R  ESTIMATES 

Proceeding as in Paper I we calculate the model by truncating at some degree L that is 
sufficiently high to achieve numerical convergence. L is larger for MF calculations than it is 
for SV because there are more data and consequently more energy in the shorter wave- 
lengths. As with SV the model converges before the error calculation, but by degree L the 
elements of the covariance matrix have converged on to a diagonal form with elements given 
by the prior information. The asymptotic forms can be used in estimating errors. 

The variance of an estimate of the radial magnetic field at a point on the CMB is given by 

where the components of a have the form 

The contribution to V, from terms up to degree L can be found from the calculated 
covariance matrix. Above degree L the asymptotic forms may be used fo find the 'remainder' 
variance ~ 4 ~ ) .  
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAul can take one of two forms depending on whether (30) or (34) is used for the prior 
information. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. Gubbins and J. Bloxham 

In the case of (30) we take 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu2 is the squared misfit and h the damping constant. This form gives a series in (30) 
that decreases as Z-l. Thus while the norm (30) does not converge. the point variance is given 
by a series that converges as Z-2. The factor of 477 and the precise functional dependence on I 
are chosen to simplify the analysis. Equation (36) becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( a / ~ ) ~  u 2 / 2 n h ~ .  

In the case of (34) we take 

ul= 02/4nh (c/a)" (21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 1)/P (39) 

and (36) gives 

VJR) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( u / c ) ~  02/4nhL. 

Equations (38) and (40) can be used to estimate the remainder variance once the damping 
constant has been chosen and the misfit calculated. 

In practice we find that the core fields (models) are quite insensitive to  the choice of 
prior information; only the errors depend on it in any significant way. The strength of prior 

information depends also on the damping constant. The physical arguments apply only to 
geomagnetic coefficients a t  very high degree, and so it is crucial that our data be good 
enough to resolve out to  a high enough degree for the prior information to take over, other- 
wise the prior information will be too strong at intermediate degree, leading to optimistic 
error bounds. For the models reported in this paper, the prior information appears to take 
over at about degree 14, and harmonics of degree greater than 70 are effectively zero. 

In contrast to the fields, the error bounds depend critically on the choice of prior 
information, particularly the contribution from high degree terms. 

3 Data 

3.1 1980 M O D E L  

This model was based on a selection of Magsat measurements made on quiet days at dawn. 
The data were selected to give equal area coverage, with one location for an area about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S o x  5" at the equator. These data were supplied to us by Drs R. H. Estes and R. A. Langel 
of Goddard Space Flight Center. A correction was made for the external effects by sub- 
tracting the external field calculated by Langel & Estes (1 984). This gave three component 
measurements at 1262 locations. Above about 50" magnetic latitude external effects become 
very large in the horizontal component. Only vertical component measurements were used 
at 392 locations at these latitudes; in total 4178 measurements were used. The locations 
were supplied in geocentric coordinates, and these were used in the calculations. Equal 
weights were assigned to all these data. 
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3.2 1 9 6 9 . 5  M O D E L  

Most of the data on which this model was based are total field intensity observations from 
the OGO-6 satellite which flew in a polar orbit. The OGO-6 data used here were chosen 
from a set of magnetically quiet period data from 1969 and 1970, provided by Goddard 
Space Flight Center; further details of these data may be found in Langel, Coles & Mayhew 
(1980). The 4270 observations which we used have a mean epoch of 1969 August and were 
chosen to be approximately equal-area in distribution and with as large as possible an 
interval between successive data points along tracks. 

Because total field intensity data give poor resolution of the sectorial harmonics in the 
spherical harmonic expansion, it was necessary to supplement the dataset with observatory 
annual means. Synthetic calculations showed that our observatory set was sufficient to 
resolve the sectorial harmonics satisfactorily. This point is discussed more fully in the 
Appendix. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA problem inherent in the use of observatory data for modelling the core field 
is that these data contain a substantial component due to crustal magnetization, generally 
of about 300nT. Allowance was made for the crustal component in one of three different 
ways: 

3.2.1 Category zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA observatories 

These observatories had records running from 1969.5 until at least 1976.5 with no apparent 
uncorrected changes in baseline. The crustal component was estimated as the difference 
between the observed values of the field at the last available epoch prior to 1980.0 and the 
values calculated from the model D80111 in Fig. 2, corrected, where necessary, for secular 
variation using IGRF80: model D80111 being taken as a good approximation to the core 
field at 1980.0. 

3.2.2 Category B observatories 

Observatories not in category A but for which a crustal correction, valid at 1969.5, is 
available from Langel, Estes & Mead (1982). The crustal corrections are shown in Table 1. 

3.2.3 Category C obsewatories 

All other observatories: for these no correction was possible. 

3.2.4 Weighting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the data 

OGO-6 data were all assigned a standard error of 6 nT. Category A and B observatories were 
assigned standard errors comprising two components: a component of 20 nT corresponding 
to errors in the crustal correction and a component representing observational errors 
estimated by the method described in Shure et al. (1983). 

Category C observatories were assigned a standard error of 300nT. The observatory 
distribution is shown in Fig. 1. All data were given in geodetic coordinates, and the model 
calculations were carried out with the usual ellipticity correction. 

4 Results 

4.1 M O D E L S  F O R  1969 .5  A N D  1980.0 

Two models are shown in Figs 2 and 3, using the second form of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAul (34), with damping 
constant h = lo-". The weight matrix, C,, was diagonal with weights given in Table 1. The 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAObservatory crustal corrections and weights. 
Corrections in nT, weights in O.lnT. 

OBSERVATORY C R U S T 4 L  CORRECTIONS 

X 

ALERT 7 
H E I S S  ISLAND 100 
CHELYUSK I N  -49 
THULE -37 
MOULD BAY -1 6 
RESOLUTE BAY 57 
BEAR ISLAND -92 
DIKSON -55 
BARROW -23 
TRONSO 96 
GODHAVN 259 
ABISKO -5 
LOPARSKAYA 7u 
SODANKY LA -1 87 

COLLEGE 2 
BAKER LAKE 135 
LEIRVOGUR -273 
DOMBAS -86 
YAKUTSK 54 

UELEN -113 

PODKAMENNAYA TUNGU. 45 
NARSSARSSUAQ 
NURMIJARVI  

TOblSK 

KLYUCHI 
MEANOOK 
HEL 

VALENTIA  
BELSK 
HARTLAND 
DYMER 
MANHAY 
DOURBES 
PRUHONICE 
L i i o v  
B E R E L N I A K I  
BUDKOV 
V I C T O R I A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
WTEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~~ 

NEYPORT 
FURSTENFELDBRUCK 
CHAMBON-I.-FORE1 
HURBANOVO 
ULAN BATOR 
NAGYCENK 
ST .JOHNS 

OTTAWA 
SURLARI  
GROCKA 
ROBURENT 
MEMAMBETSU 
GORNOTAYEZHNAYA 
ALYA ATA 
PANAGYURISHTE 
LOGRONO 
L 'AQUILA 
DIJSHETI 
YANGI BAZAR 
K A N D I L L I  
EBRO 
COIMBRA 
a o u L D E R  
P E K I N G  
TOLEDO 
MIZUSAWA 
FREDERICKSBURG 

-273 
267 

-134 
-304 

63 
32 

-154 
0 

-298 
0 

29 
-295 

129 
-7 

257 
165 
114 
50 

279 
51 

-357 
15 
12 

109 
109 
-57 

-9 
0 

-3  
0 

153 
-424 
-52 

17 
2 3  

-48 
-25 
-92 

2 
-3  
22 
34 
-7 
36 

-27 
-107 

114 
2 

-45 
0 

-254 
-26 
125 

-208 
-4 

-1 9 
-236 
-304 

181 
15 
3 

-31 
595 

-4 
-103 

39 

-38 

Y 

39 
-680 

-99 
123 
-9  
24 
57 

-63 
-400 
-227 

69 
331 
-97 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
47 

-57 
-54 
596 
-36 

-1226 
15 

269 
-85 
182 

-747 
36 

-1 2a 

21 
-1 1 
-2 

-112 
0 

11 

-11 
-40 
110 
-89 

9 
-1 46 

193 
60 

225 
1 3  
46 
14  

-44 
151 
1 3  
97 

0 
-1 1 

0 
139 
1 5  
-3  

3 
7 

105 
-2 

-20 
-9 

-56 
8 

20 
11 

-1 66 
18 

-690 
-147 
-22 
-1 7 

0 
140 
-1 3 
36 

-1 60 
-3  
42 
16  
53 

131 
-2 
-9 
5 3  

-226 
4 

47 
-61 

-316 

2 

-117 
1133 
-46 
26  

-54 

14  
-246 
-13 
119 
488 

29 
-552 

-58 
-90 

-485 
-265 

116 
-294 
507 
126 
26 
3'1 

-233 
17  

-250 

-483 
0 

-44 
-240 

244 
-62 
-55 
-17 

-120 
-79 

-104 
-68 
272 
-81 
-65 
-77 

16  
31 4 
58 

133 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

71 
0 

I54 
339 
-32 

-311 
4 

-1 39 
-2 

104 
-56 

-104 
-46 

6 
-46 

-151 
-55 
59 

156 
-80 
-84 

0 
61  

-65 
-155 
-207 

38 
-1 7 

-121 
-97 
-24 
-34 

20 
-176 

469 
2 

-251 
127 

4a 

-582 

-a7 

-a1 

H E I G H i S  

X Y Z  

276 256 31' 
2?6 231 323 
228 205 293 
210 201 206 
206 231 221 
225 213 216 
200 201 206 

231 216 333 
213 201 213 
206 203 221 
213 203 223 

205 226 203 
216 233 233 
206 216 203 
201 210 256 

218 206 213 

i o a  221 211 

210 226 233 
206 216 201 
205 216 240 
201 201 203 
225 206 231 
208 221 205 
205 230 205 
201 201 211 

201 ZOO 203 
208 218 201 
701 201 201 
510 216 206 
231 208 276 
206 216 201 
205 221 210 
205 218 201 
206 218 206 
237 zoa 203 

3006 3000 3000 
206 216 201 

3000 3000 3000 
213 221 218 
211 213 243 
211 203 206 
206 210 211 
210 21; 216 
203 203 203 
208 215 205 
208 208 203 
271 2C6 210 
263 200 216 
213 206 283 
201 203 203 
206 203 201 
206 203 206 
213 208 206 
201 201 211 
201 201 201 
221 213 231 
208 21 3 208 

3000 3000 3000 

245 213 270 
208 243 256 

225 203 218 

215 206 226 
211 211 203 
208 210 208 
213 203 238 
200 200 200 
208 215 213 
206 213 203 
223 213 218 
215 201 z i a  
268 210 236 
213 206 203 
228 203 243 
261 203 281 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconrinued zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
OBSERVATORY 

ASHKHABAD 
S A N  M I G U E L  
ALMERIA  
S A N  FERNANDO 
KAKIOKA 
TEHERAN 
KANGZAII  
S I M O S A T O  
D A L L A S  
TUCSON 
KANOYA 
20-SE 
DEHRA DUN 
QUETTA 
LHASA 
HELNAN 
3 L ~ E R I F E  

3 ,. ‘ D 7 y G  
i Y I / .  I *  

T k Y A N R A S S E i  
CHA ?A 
HGIIGLULU 
I ~ ~ L C ‘ Y U C A N  
AL:B;c 
SAX JU’A!i 
HY3iRA3.L.D 
E ’ B O U R  
iUb:TI l ;LUPA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c;*,.: 
A N l i A X A L d i N A G A i  
KODAIKANAL 
A D D I S  ABAa.4 

-- 1 

T?” 

W I R O  
B I R Z A  
TANGERANG 
LUANGA I E L A S  
PORT !<ORESBY 
HUANCAYC 
A P I A  
T.ANANARIVB 
TSUb!EB 
LA 4 U I A C A  
C’ASSGURAS 
MAPUTC 
P I L A R  
GNARGARA 
HEWMANUS 
TOCJLANGI 
AMBERLEY 
TRELEW 
P O R T  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiUX FRAIiiAIS 
Y A i Q U A R i i  ISL. 
A R G E N T I N E  I S L  
:.iIRNY 
DUKOXT D U R V I L L E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y . - -  . ~ r S 0 : <  

MOLCDBZHNAYA 
S Y O 7 A  B A S E  
SANAE 
NGVOLAZAREVSKAYA 
SZGTT B A S E  
VOSTCK 

C R U S T A L  C O R R E C T I O N S  

x 

142 
592 
-26 
105 
-23 

0 

-72 
-58 

0 
-96 
-35 

-271 
-15 
-1 6 

0 
0 

-447 
-15 

35 
-1 20 
-191 
-124 
-1 4i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

290 
86 
-i3 
139 
125 

-571 
494 
25C 

0 

77 
-198 

0 
11 
0 

23 
276 
-15 

55 
-79 
372 

12 
23 
39 

31 2 
-1 3 
-22 

1 
16 

-44 
0 

191 
244 

60 
-95 

-153 
37 
23 
0 

-45 
-273 

-2276 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-23  

_“I ti 

Y 

105 
468 

20 
36 
17 

0 
40 
42 

- 6 4  
43 
71 

-28 
78 

0 
0 

1 0 5  
41 

-256 
-91 

3 
456 
164 

15 
27 

-56 
66 

-9’ 
275 

-2 
195 

0 
0 

-68 
-1 3 

0 

32 
0 

0 
71 

-20 

36 
50 

220 
0 

-62 
- 1  

-51 
52 
0 

-1 3C 
16 

-27 
-1 7 

0 
206 

-3 
-71 

63 
-405 

33 
-1 18 

0 
-31 

92 
-937 

148 

a7 

2 

55 
1807 

15 
-96 
-97 

0 
-52 

-1 
0 

124 
-44 
231 

63 
-35 

0 
0 

-1042 
55 

- W  
-3 

-335 
-12 
653 
176 
455 

32 
67 

-9’ 
-62 
6 i 

196 
C 
0 

63 
244 

0 
0 

13 
3 
0 

42 
21 7 
266 

41 
-885 
-447 

87 
54 

-33 
-127 

1 
147 
23 
110 

58 

‘9, 
656 
291 
483 

-447 
-2860 

165 
-283 

0 
12 
36 

-3767 
14 

W E I G H T S  

X Y Z  

218 206 235 
500 500 500 
211 208 205 
228 231 498 
201 200 200 

3000 3000 3000 
218 206 200 
253 203 208 

3000 3000 3000 
213 203 216 
261 201 203 
700 206 206 
$06 211 243 
201 201 203 

3000 3000 3000 
3000 3000 3000 
241 215 776 
205 301 206 
201 200 200 
293 213 323 
208 201 203 
215 261 245 
258 213 221 
205 2cc 201 
208 300 255 
217 207 205 
236 2Oi 221 
223 205 206 
230 221 263 
226 300 231 
201 203 200 
206 200 201 

3000 300C 3000 
3000 3000 3000 

201 203 311 
206 236 206 

3000 3000 3000 
3000 3000 3000 

213 203 228 
3000 3000 3000 
3000 3000 3000 

526 331 726 
215 203 270 
205 208 225 
228 201 256 
213 210 203 
216 210 236 
205 201 203 
238 251 205 
216 207 203 
218 205 215 
231 233 206 
201 206 236 
218 201 201 
205 210 203 
206 205 211 

3000 3000 3000 
206 231 326 
206 208 208 
200 200 201 
206 206 283 
248 253 413 
213 221 323 
233 213 555 

3000 3000 3000 
203 203 206 
208 221 451 
215 215 228 
286 245 273 

H & 2 U S E D :  NO C O R R E C T I O N S  A P P L I E D  H A U R I T I U S  

misfits were u =  1.09 and 1.29 respectively. The calculation was terminated at degree 20, 
which gave satisfactory numerical convergence. The traces of the resolution matrices were 
155 and 150 respectively, indicating that both models had a similar balance of prior infor- 
mation and data. 

The models show very much more detail than core fields based on the IGRF or DGRF 
for 1970, and more detail than Magsat models, such as model GFSC 9/80 of Langel et al. 

(1982), when truncated at low degree; they bear more resemblance to model GSFC 9/30 when 
truncated near degree 12. The advantage of this method is that we have error estimates and 
can therefore decide which aspects of the detailed structure can be believed. 
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Figure 1. Observatories used for the 1969.5 field models plotted on a Sanson-Flamsteed projection. 

Error estimates were calculated at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5" intervals over the entire core surface for each model 
using the covariance matrices. The remainder errors were 16 and 1 9 p T  respectively. These 
were combined with each point variance based on the series up to  degree 20 to give typical 
errors of 28 and 3 6 p T  respectively. The contour intervals in Figs 2 and 3 are at an interval 
of  lOOpT, so our error analysis indicates that the small-scale features are indeed well 
resolved. 

The remainder errors are independent of position. The errors up to degree 20 are not 
uniform over the whole sphere, and for the 1980 model they vary from about 23.8 I.IT near 
the poles to  22.6pT near the equator. This is because only vertical component measure- 
ments were used at high latitudes. For the 1969.5 model the errors to degree 20 are smallest 
near the poles (26 pT) and largest at the equator (33 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApT), because of the preponderance o f  
total field data. The variances of  the sectorial harmonics, which are not well resolved by the 
data, are several times greater than for other harmonics. 

Figure 2. Contour map of the radial field at the CMB for model D80111, epoch 1980. Contour interval 
is 100 pT; solid contours represent flux into the core, dashed contours flus out of the core. The thicker 
lines are null-flux curves. The projection is Lambert equal area. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/8
0
/3

/6
9
5
/5

7
2
2
8
4
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Contour map of the radial field at the CMB for model D69111, epoch 1969.5. 

Equation (30) gives weaker prior information and the error estimates are correspondingly 
greater. Models were produced .for 1980 for a variety of damping constants. The models 
were virtually indistinguishable from those derived from (34). The error estimates were 
larger, however, A model with h = 5 x , k i d  misfit u = 1.07, remainder error of 44pT 
and a total error of about 60pT. The errors in the very high-degree terms dominate with this 
choice of prior information. All other models reported on in this paper were calculated using 
(34). 

4.2 THE EFFECT O F  V A R Y I N G  T H E  D A M P I N G  C O N S T A N T  

Choosing a large value of the damping constant produces a smooth core field and small 
variance. A small value of the damping constant produces a rough model but many of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 -  

2 -  

1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09' 1.10 

M i s f  it 
Figure 4. Trade-off curve for the 1980 field models. Dimensionless units. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/8
0
/3

/6
9
5
/5

7
2
2
8
4
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



708 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGubbins and J. Bloxham zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I I I ,  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 2 1 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 b 5 A .) 10 11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI? 13 1: IS ,b I! IS , I  19 20 

Degree 
Figure 5 .  Model norm by spherical harmonic degree for 1980 field models. 

details may be submerged in the larger noise. We regard all solutions as valid when taken 
with their error estimates: any interpretation should not depend on the model used, 
provided our prior information is not too strong. 

The trade-off curve for the 1980 models is shown in Fig. 4. The model in Fig. 2 has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X = and corresponds to the smooth, heavily damped end of the trade-off curve. Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 
shows the contribution to  the norm m T C z m ,  by spherical harmonic degree, for the 1980 
models. The dramatic drop in the contribution occurs when prior information dominates, 
which is at a higher degree for smaller values of A. Resolution, as given by the diagonal 
elements of the resolution matrix, is plotted in Fig. 6. Resolution is very good for the low- 
degree coefficients, and again it falls off dramatically when the prior information takes over. 
The fall-off occurs at higher degree for a smaller damping constant. 

1 

1 

Degree 

Figure 6 .  Model resolution by spherical harmonic degree for 1980 field models. 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7.  Contour map of the radial field at the CMB foi model D80513, epoch 1980. 

4.3 R O U G H E R  C O K E  F I E L D S  

The trade-off curves suggest we try smaller values of the damping constant. Two more 
models are shown in Figs 7 and 8. Fig. 7 has a 1980 model with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX = 5 x u = 1.04; 
Fig, 8 has a 1969.5 model with X = 5 x and u = 1.27. The errors for the 1980 model are 
about 106pT. The traces for the resolution matrices are 203 and 197 respectively. 

In comparing Figs 7 and 8 we see some very similar features. The topologies of the null 
flux curves are the same except for some features in the Pacific. These differences are well 
within the errors. The undulations in the magnetic equator under Indonesia are present in 
both plots but are more intense in 1980 - probably a real change, The models are based on 
totally different datasets, collected lOyr apart, one being mainly total field data and the 
other vector data. Their similarity is further indirect evidence that these features can be 
believed, and that our error estimates are realistic. 

Figure 8. Contour map of the radial field at the CMB for model D69513, epoch 1969.5. 
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5 Conclusions 

5.1 T H E  C O R E  FIELD 

The major conclusion of this paper is that the core field is much more complex, and contains 
far more short-wavelength field, than has hitherto been supposed. The maps displayed in 
Figs 2 and 3 show very much more detail than appears on a map of, for example, the 1965 
IGRF or DGRF, and yet our error analysis shows that most of these features are real. The 
method does not discriminate between true core field and long-wavelength crustal anomalies. 
Any crustal field will be mapped into an apparent core field. 

Null-flux curves, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 on the CMB, play an important role in the frozen-flux 
theory of secular variation. Core fields based on truncated spherical harmonic series all give 
similar pictures for the null-flux curves, regardless of epoch, with a magnetic equator, one 
under South America, one under South Africa, and two other small curves in the North 
Pacific and Arctic (Shure et  al. 1983, fig. 1). The fields presented in this paper are quite 
different. The null-flux curves for the 1980 model are shown in Fig. 9, together with the 
error corridor for one standard deviation. The magnetic equator now has sharp bends under 
Indonesia, there is one large null-flux curve in the South Atlantic and a second, smaller one 
to the north. There are four more small curves, most of which appear to be significant. These 
curves are also apparent in conventional Magsat models with high truncation, but they have 
previously been believed to be spurious (Benton et al. 1982). The new configuration of null- 
flux curves will radically alter the core motions determined using the frozen-flux approxi- 
mation. 

D. Gubbins and J. Bloxham 

5.2 S E C U L A R  V A R I A T I O N  

Secular variation was estimated from the difference between models D8Ol 1 1 and D69 11 1 
(Figs 2 and 3) and dividing by 10.5 yr. The result is a spherical harmonic model with similar 
low-degree coefficients to those reported in papers I and 11, but the high-degree coefficients 
are very much larger. The resulting map is very rough in appearance, indicating very much 
weaker damping than was used in the earlier secular variation calculations. 

The distribution of observatories is similar for both the new MF models and the earlier 
secular variation models. The process of using 1980 measurements to correct for the crustal 

Figure 9. One standard deviation error bounds on the null-flux contours for model D80111, epoch 1980. 
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fields means that we are effectively using the observatories of categories zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and B to define 
field differences between 1969.5 and 1980; in other words secular variation. We should 
therefore expect the data quality for the MF models to be as good as, if not better than, that 
for secular variation, because it includes additional satellite data. Error estimates on the 
fields suggest an error on their differences of about 4000nT yr-', not much less than the 
maximum SV reported in paper I. It is not surprising, therefore, that the secular variation 
map appears rough. 

The noise can be reduced by increasing the damping constant. This is the usual proce- 
dure, and it was followed in papers I and 11, but it is not strictly honest. Prior information 
is obtained without recourse to the measurements, and should therefore be completely 
independent of them. Increasing the damping will produce a perfectly acceptable model, 
but the error estimates will be too small because our prior information is too strong, leading 
in this case to unjustifiably small error estimates in the degree range 6-13, for which the 
data lack resolving power but  which are too large in scale for the prior information to apply. 

There is some evidence that the damping used in papers I and I1 was too heavy. The flux 
integral over the northern hemisphere indicated a fall in magnitude several times larger than 
the standard deviation, mainly due to the decay of the dipole term. This had been noticed 
earlier by Booker (1969). The new field models have rather different null-flux curves, but 
this difference does not affect the integral significantly. To this extent the assumption, that 
the errors in the MF model could be neglected, is justified. 

The corresponding flux integral for models D80111 and D69111 are 17.544 and 
17.478 GWb respectively, an increase of 7 MWb yr-', in contradiction to the previous results 
which showed a decrease of 9 MWb yr-'. Furthermore the change in the magnetic equator 
between 1969 and 1980 is so great that the dipole term alone causes an increasing contri- 
bution to the integral. The error estimate on each integral is about 30MWb, however, 
showing that these differences are not significant. We have therefore answered the question 
raised by Booker (1969): the new data are sufficiently good to resolve the high harmonics 
and show that the observed decay of the dipole is consistent with the frozen-flux hypothesis. 
It also indicates that the error analysis of papers I and I1 was optimistic. 

There remains the fundamental difficulty that our prior information is still too strong 
even for the Magsat data. We can only address this problem by making better measurements 
and achieving a better understanding of the core pl;ocesses. If we do make the damping 
weaker then the field model will be so rough that the frozen-flux approximation will be 
invalidated: already model D80111 gives a dissipation integral in (33) that is 23 per cent of 
the secular variation term on the left side of (32), based on the secular variation models of 
paper I. 
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Appendix: Analysis of total intensity data 

Following the launch of the OGO-2 satellite in 1965 into a polar orbit, accurate, globally 
distributed observations of the magnetic field became available for the first time. The OGO 
generation of satellites observed only the total field intensity, F ;  from these observations 
many models of the field have been produced using non-linear least-squares methods. 
However, it was soon recognized that models based entirely on these data contained large 
discrepancies in the components of the magnetic field vector, although having a good fit to 
the intensity data: moreover, these discrepancies followed a regular pattern (Benkova et al. 
197 1) with, in particular, the largest discrepancies occurring in the radial component of the 
field in the vicinity of the magnetic equator. 

Contemporaneously, Backus (1 970) showed, by exhibiting a specific counter-example, 
that the magnetic scalar potential is not necessarily determined uniquely from the know- 
ledge of the field intensity everywhere on the surface r = a. Stern & Bredekamp (1974) 
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proposed that the discrepancies may be related to the form of the counter-example 
exhibited by Backus; Stern, Langel & Mead (1980) have produced some evidence in favour 
of this proposition. 

Lowes (1975) offered a particularly simple explanation of these discrepancies in terms of 
the perpendicular error effect: the tendency for the error vector to be perpendicular to the 
true vector, This explanation is consistent with the observation that the discrepancies in the 
radial field follow the magnetic equator very closely. In either case the effect on a spherical 
harmonic series is the same: it is the vectorial harmonics that are poorly determined by total 
intensity data. 

The requirement, as part of the main study described in this paper, to produce a field 
model for 1969.5 (when the only satellite data available were total intensity data) moti- 
vated a re-examimtion of suggestions which have been made for reducing the effect. 
Hurwitz & Knapp (1974) suggested the use of some 3-component (‘vector’) data and 
Barraclough & Nevitt (1976) conclude that approximately 10 per cent of vector data is 
required. 

Data, with added Gaussian noise, were synthesized from an IGRF model in order to 
investigate these suggestions further. F data were synthesized at a grid of points with an 
approximately even distribution in area, and vector data at a selection of observatory sites. 
Models were produced using varying proportions of these two sets of data and compared 
with the original model. The results were quite straightforward: adding vector data greatly 
improves the determination of the sectorial harmonics and so reduces the discrepancies in 
the computed radial field. However, the amount of vector data which is required is not 
dependent on the amount of F data used: adding more F data serves to improve further the 
resultant model. There is no limit placed on the amount of F data which may be used by 
the availability of vector data. 

It is useful to remember that these discrepancies are reflected in the covariance matrix 
of the estimates and so, by examination of the covariance matrix, it is possible to check 
whether a particular model suffers significantly from this effect. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/8
0
/3

/6
9
5
/5

7
2
2
8
4
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2


