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ABSTRACT The unstable nature of radio frequency signals and the need for external infrastructure inside

buildings have limited the use of positioning techniques, such as Wi-Fi and Bluetooth fingerprinting.

Compared to these techniques, the geomagnetic field exhibits stable signal strength in the time domain.

However, existing magnetic positioning methods cannot perform well in a wide space because the magnetic

signal is not always discernible. In this paper, we introduce deep recurrent neural networks (DRNNs) to

build a model that is capable of capturing long-range dependencies in variable-length input sequences. The

use of DRNNs is brought from the idea that the spatial/temporal sequence of magnetic field values around a

given area will create a unique pattern over time, despite multiple locations having the same magnetic field

value. Therefore, we can divide the indoor space into landmarks with magnetic field values and find the

position of the user in a particular area inside the building. We present long short-term memory DRNNs

for spatial/temporal sequence learning of magnetic patterns and evaluate their positioning performance

on our testbed datasets. The experimental results show that our proposed models outperform other traditional

positioning approaches with machine learning methods, such as support vector machine and k-nearest

neighbors.

INDEX TERMS Deep recurrent neural network (DRNN), fingerprinting, geomagnetic field, long short-term

memory (LSTM).

I. INTRODUCTION

The demand for indoor location-based service (LBS) is

fueling the decade-long research into indoor positioning tech-

nology. In an outdoor environment, the global navigation

satellite system (GNSS) uses line-of-sight (LOS) transmis-

sion to position the user [1]. However, it cannot be applied in

an indoor environment due to multipath effect, signal fading,

shadowing, and delay distortion in a radio propagation envi-

ronment [2]. With the proliferation of smartphones and other

mobile devices, an array of embedded sensors can be used for

indoor localization. Many studies have been performed on

Wi-Fi or Bluetooth-based fingerprinting indoor localization

using received signal strength (RSS) and channel state infor-

mation (CSI) [3]–[9]. Although these methods can achieve

the desired accuracy at an acceptable cost, they cannot work

effectively when a RF signal is weak. Also, these methods

need expensive external devices, such as wireless access
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points (WAP) or Bluetooth beacons all over the building to

transmit the RF signal.

In contrast, the geomagnetic field is ubiquitous and does

not need any additional infrastructure. The magnetic field

strength (MFS) is non-uniform inside a building due to build-

ing materials, such as steel, iron, and reinforced concrete

[10], [11]. Due to these anomalies in the MFS, it can be

used by an indoor positioning system. Magnetic signatures

have previously been used for robot tracking and naviga-

tion [12], [13]. Specifically, the fingerprint-based approach

is widely accepted for magnetic signature recognition due to

low complexity and a real-time testing process [14]. This

fingerprinting positioning method is usually divided into two

phases: training and testing. In the training phase, the dataset

is prepared by collecting the MFS at all reference points and

stored in the positioning server. In the testing phase, the real-

time MFS data are collected and given to the positioning

server to find out the current location. The performance can

be evaluated by performance metrics, such as accuracy, pre-

cision, recall, and F1 score.
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We utilize the unique signal features of the magnetic field

gathered from a smartphone for fingerprinting-based classi-

fication. Although many other magnetic-based positioning

methods have been proposed, the ambiguity of magnetic

data in a wide space may converge a positioning result in

the wrong direction in some cases. Here, we adopt a deep

learning model, which can perform effectively to classify

landmarks based on themagnetic signal variations. In the area

of deep learning, there is growing interest in the recurrent

neural network (RNN), which has been used in many techni-

cal applications, such as speech recognition, language mod-

eling, video processing, and many other sequence labeling

tasks [15]–[18]. The reason behind its promising performance

is its ability to exploit contextual information and learn the

temporal dependencies in variable-length data.

In this paper, we use long short-term memory (LSTM)-

based deep RNNs (DRNNs) to classify the location mapped

from variable-length input sequences of MFS, and we

develop a positioning estimation architecture based on deep

layers of unidirectional and bidirectional RNNs, as well as a

cascaded architecture advancing to unidirectional from bidi-

rectional RNNs [19]. Moreover, we test these deep learning

models with different testbeds to validate their performance

at classifying various landmarks. The major contributions of

our work are as follows:

1. We experimentally validate the feasibility of using

MFS for landmark classification. In addition, we show

that the MFS data is stable over a period of time.

2. We show the success of using unidirectional and bidi-

rectional DRNNs for landmark classification without

any additional data preprocessing and validate its per-

formance in two typical indoor environments.

3. We introduce the implementation of bidirectional

DRNNs for magnetic landmark classification. To the

best of our knowledge, this is the first work to do so.

The rest of the paper is organized as follows: Section II

provides a brief review of previous works using the magnetic

field for indoor positioning. Section III and IV present a

preliminary analysis of magnetic field data and a background

overview of RNNs, respectively. Then, the proposed archi-

tecture and experimental setup are explained in Section V

and VI, respectively. Additionally, experimental results and

analysis are presented in Section VII. Finally, Section VIII

contains a conclusion of our work.

II. RELATED WORK

Many approaches have been used to obtain the desired accu-

racy in indoor positioning. Most studies use Wi-Fi signal

strength or radio frequency identification (RFID) to mea-

sure the user position [20]. Recent literature has reported

that the MFS can be used instead of RF signal. Some

studies have shown a navigation system for robots using a

magnetic field. [21] and [22] showed simultaneous local-

ization and mapping (SLAM) for geomagnetic field-based

robot positioning. They used a particle filter, which utilizes

odometers, to achieve a maximum positioning error of 10 cm.

The odometer gave accurate distance and rotation informa-

tion, and thus, re-sampling particles depending upon moving

distance and rotation was accurate.

Haverinen and Kemppainen [23] implemented the same

SLAMwith a human by replacing the odometers with pedes-

trian dead-reckoning (PDR). However, due to lack of proper

odometric information, the performance was not as good as

when using odometers.

In another work, Navarro and Benet [24] used a two-

dimensional magnetic map to determine the local heading of

the robot. They considered the magnetic field as a continuous

function and used bilinear interpolation to determine theMFS

at un-sampled points. In [25] mobile phones were used

to measure MFS and interpreted it as magnetic signatures

for identifying rooms. Since this system depends heavily on

pillars in the building, it only achieved room-level accuracy.

Gozick et al. [26] attempted magnetic landmark localiza-

tion with the MFS created from pillars of a building. They

measured the sequence of peak values and matched these

values to pre-obtained landmarks’ MFS. However, in their

research, the magnetic landmarks are defined with a prior

knowledge that columns are ferromagnetic objects.

Recently, the use of deep neural networks (DNNs) is mak-

ing a big impact in various research fields. In [27], the five-

layer DNN classifier has been used with dynamic acous-

tic features. They proposed a scoring method using human

log-likelihoods (HLLs) along with mathematical verification

suggesting that their method can overcome other classical

log-likelihood ratio (LLR) scoring methods. Also, the use of

a LSTM neural network has been found to be more efficient

in natural language processing. In [28], it has been used for

speech recognition based on short utterance.

In our work, we advance the work of [25] and [26] by

using DRNNs in a two-dimensional space. In terms of use

of DRNNs, we used an LSTM network, which is a popular

RNN for dealing with long-range dependencies [29], to train

our magnetic field data. This LSTM network model is more

flexible for classifying variable-length windows, in opposi-

tion to the fixed-length windows used by convolutional neural

networks (CNNs).

III. MAGNETIC FIELD PRELIMINARIES

The geomagnetic field is present on the surface of the earth

with a magnitude from 0.22 to 0.65 Gauss (22 to 65 µT).

By using a magnetometer, a smartphone can measure the

magnetic field in the form of a vector with three components

(mx ,my,mz). The geomagnetic field is found to be stable in

the absence of any interference from other external magnetic

elements. We conducted an experiment to find the stability

of the magnetic field in a corridor located on the eighth floor

of an IT department building, Chosun university. Magnetic

field data were collected along the corridor of length 100 m

at different times for a day, a week, and a month, as shown

in Fig. 1. Later, the data were analyzed to see the statistical

significance of the magnetic field over a period of time.
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FIGURE 1. Stability of magnetic field value over time. (a) Variation over a day. (b) Variation over a week. (c) Variation over
a month.

There were no statistically significant differences between

magnetic field data from different times of day (F =

0.29,P = 0.74), week (F = 0.90,P = 0.41), and month

(F = 0.96,P = 0.39) as determined by a one-way analysis

of variance (ANOVA) [30]. Here, F is the ratio of variation

between MFS sample means to variation within the samples

and P is the probability to determine how common or rare

an F-value is under the assumption that the null hypothesis

is true. The null hypothesis is usually rejected if P < 0.05.

Therefore, we used the magnetic field, which is stable over a

period of time, for the indoor landmark classification.

A. MAGNETIC DATA ACQUISITION

The magnetic data for a landmark or reference loca-

tion is obtained from the magnetic sensor of a smart-

phone. The data structure can be formed as D =

[mx ,my,mz,MA,mxrot ,myrot ,mzrot ], where mx ,my, and mz
represent magnetic field intensity from the three-axis mag-

netic sensor of a smartphone in space relative to the orienta-

tion of the phone,MA represents averagemagnetic field inten-

sity, and mxrot ,myrot , and mzrot represent the magnetic field

intensity after it has been converted to a global frame system.

Since the orientation of the smartphone plays an important

role in positioning, we have also gathered magnetic field

data with a quaternion-derived rotation matrix. Thus, we had

to obtain the 3 × 3 rotation matrix R, which is the change

from the device coordinate system to the global coordinate

system. Given any vector m in the device coordinate system,

the corresponding vectormrot in the global coordinate system

can be obtained by multiplying m with R.

MA =

√

m2
x + m2

y + m2
z (1)

[

mxrot ,myrot ,mzrot
]

= R×
[

mx ,my,mz
]T

. (2)

The first feature, mxrot , in (2) is a very small value close

to zero, thusmyrot and mzrot usually retain the variation of the

magnetic field at different location points.

IV. BACKGROUND: RECURRENT NEURAL NETWORK

A. RECURRENT NEURAL NETWORK

A recurrent neural network (RNN) is a class of deep neural

network that contains cyclic connections that allow it to

learn the temporal dynamics of sequential data. Unlike tradi-

tional feed-forward neural networks (FNNs), a RNN has the

characteristics of memorizing the previous information and

applying it to the current input. RNNs have been successfully

applied to sequential nature datasets, such as natural language

processing, due to their capability to model highly non-linear
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FIGURE 2. Schematic diagram of an RNN node.

features. As shown in Fig. 2, each RNN node generates the

output yt and current hidden state ht by using the current

input xt and previous hidden stateht−1 based on the following

equations:

ht = σH (WHHht−1 +WIHxt + bh) (3)

yt = σO
(

WHOht + by
)

, (4)

where σH and σO are the hidden layer and output layer

activation functions, respectively. WHH , WIH , and WHO are

the weights for the hidden-to-hidden recurrent connection,

input-to-hidden connection, and hidden-to-output connec-

tion, respectively. bh and by are the bias terms for the hid-

den and output states, respectively. The activation functions

are element-wise and non-linear and are commonly selected

from various existing functions, such as sigmoid, hyperbolic

tangent, or rectified linear unit (ReLU).

B. LONG SHORT-TERM MEMORY (LSTM)

The traditional RNN is unable to handle long sequences of

data. In addition, training RNNs can be challenging due to

vanishing and exploding gradients, which create a problem

when backpropagating through long-range temporal inter-

vals [31]. In order to handle the long-range dependencies

of learning data, a new class of network architecture with

learnable gates has been used which is known as LSTM.

LSTM contains memory blocks with memory cells called

gates in the recurrent hidden layer, as shown in Fig. 3.

These learnable gatesmodulate the flow of information and

control when to forget previous hidden states. Also, the gates

update states with new information. The function of each

memory block is as follows:

• Input gateit controls input activation into the memory

cell.

• Output gate ot controls memory cell outflow of activa-

tion to output.

• Forget gate ft determines when to forget content regard-

ing the internal state.

• Input modulation gate gt provides the input to the mem-

ory cell.

• Internal state It controls cell internal recurrence.

FIGURE 3. Schematic diagram of a LSTM cell structure with an internal
recurrence ct and outer recurrence ht.

• Hidden state ht contains information from previous sam-

ples within the context window.

it = σ (bi + Uixt +Wiht−1) (5)

ft = σ
(

bf + Uf xt +Wf ht−1

)

(6)

ot = σ (bo + Uoxt +Woht−1) (7)

gt = σ
(

bg + Ugxt +Wght−1

)

(8)

It = ft It−1 + gt it (9)

ht = tanh (It) ot , (10)

where σ is the activation function, the U and W terms rep-

resent weight matrices (e.g., Ui is the weight matrix for the

input data xt given to input gate itandWi is the weight matrix

for ht−1data given to input gate it ), and the b term denotes

the bias vector (e.g., bi is the input gate bias vector). The

training process of LSTM-RNNs is essentially focused on

learning when to let an activation into the internal states of its

cell and when to let an activation of the outputs. In addition,

the network needs to learn the parameters b,U , andW of the

cell gates, as shown in (5) – (10).

V. PROPOSED ARCHITECTURES

A. SYSTEM ARCHITECTURE

The architecture of the proposed DRNN-based landmark

classification system is shown in Fig. 4. It does not require

any additional infrastructure except a smartphone device with

a magnetic sensor to classify the landmark locations. The

system consists of two steps: an offline training phase and

an online testing phase. First, the raw magnetic data are

collected at various reference locations known as landmarks.

Then, in the preprocessing procedure, the data are divided

into different segments according to the length of our DRNN

input. Finally, the preprocessed data from the landmarks are

combined to generate a fingerprint database corresponding to

each location, which consists of training and testing sets.
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FIGURE 4. Architecture of the proposed LSTM-DRNN positioning system representing the training and testing
phases.

FIGURE 5. Proposed DRNN indoor positioning architecture. The inputs
are raw signals obtained from a magnetometer that are then segmented
with windows of length T given to the LSTM-based DRNN model. The
output is the class membership probability obtained from the output
prediction score for each timestamp, merged via late-fusion.

The training set is used to train our proposed

LSTM-DRNN, whereas the testing set is used to validate the

model. In the testing phase, the trained model uses the test

data to classify the estimated landmark. The accuracy of the

landmark’s classification can be dependent on the training

model of the proposed LSTM-DRNN.

B. DRNN ARCHITECTURE

Fig. 5 presents a schematic diagram of the proposed DRNN

indoor positioning system. It performs direct mapping from

magnetometer inputs to different landmarks. A specific time

window is used to classify the landmark’s position. The

input contains a discrete sequence of equally spaced samples

(x1, x2, . . . , xT ), where each data point xt is a vector of indi-

vidual MFS samples D observed by the magnetic sensor at

timet . These samples are passed to a LSTM-based DRNN

model after being segmented into windows of maximum

time index T . For the output, we get a sequence of scores

denoting the landmark label prediction for each time step

(yL1 , yL2 , . . . , yLT ),where y
L
t ∈R

k is a vector of prediction scores

for a given input sample xt , Lis the number of DRNN layers or

top layer, and k is the number of landmark positions. A score

is assigned at each time-step for the label of a landmark

occurring at timet . Later, the prediction for the entire window

T is obtained by adding the scores into a single prediction.

Equation (11) shows the ‘‘sum rule’’ that is used as the fusion

scheme for better results, which is theoretically superior to

other schemes used in [32]. We applied a softmax layer over

Y to convert predictions into probabilities:

Y =
1

T

∑T

t=1
yLt . (11)

1) UNIDIRECTIONAL LSTM-BASED DRNN MODEL

We used a unidirectional LSTM-based DRNN, as shown

in Fig. 6. A higher number of DRNN layers can help
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FIGURE 6. Unidirectional LSTM-based DRNN model.

FIGURE 7. Bidirectional LSTM-based DRNN model with forward LSTMfl

and backward LSTMbl tracks.

in transforming raw data into a more abstract representa-

tion, as well as for learning spatial dependencies [15]. The

input is the MFS, which is a discrete sequence of samples

(x1, x2, . . . , xT ) that are passed into the first layer at time

t (t = 1, 2, . . .,T ) .

Initially, the internal state I l0 and the hidden state hl0 are

both set to zero. The first layer output y1t is obtained using

the input sample xt at time t, previous internal hidden state

I1t−1 and previous hidden state h
1
t−1 given its parameter θ1 as

follows:

y1t , h
1
t , I

1
t = LSTM1

(

I1t−1, h
1
t−1, xt ;θ

1
)

. (12)

Any layer l in the upper layers uses the lower layers yl−1
t

as its input. If θ l represents the parameter (b,U ,W ) of the

LSTM cells for layer l, then (12) can be written as:

ylt , h
l
t , I

l
t = LSTM l(I lt−1, h

l
t−1, y

l−1
t ; θ l). (13)

The prediction at every time step in the window T is given

by the outputs (yL1 , yL2 , . . . , yLT ) from the top layer L.

2) BIDIRECTIONAL LSTM-BASED DRNN MODEL

This architecture uses a bidirectional LSTM-based DRNN,

as shown in Fig. 7. It includes two parallel LSTM tracks:

forward and backward loops to exploit context from past and

future to predict its label [19], [34]. In the first layer, the

forward track (LSTM f 1) and backward track (LSTMb1) read

FIGURE 8. Cascaded unidirectional and bidirectional LSTM-based DRNN
model. The upper unidirectional layer is concatenated with the
bidirectional first layer.

input window T from left-to-right and right-to-left, respec-

tively:

y
f 1
t , h

f 1
t , I

f 1
t = LSTM f 1(I

f 1
t−1, h

f 1
t−1, xt ;W

f 1) (14)

yb1t , hb1t , Ib1t = LSTMb1(Ib1t−1, h
b1
t−1, xt ;W

b1). (15)

At each time step, the top layer L outputs a sequence of

scores from both forward LSTM (y
fL
1 , y

fL
2 , . . . , y

fL
T ) and back-

ward LSTM (ybL1 , . . . ybL2 , . . . , ybLT ). The combined scores

Y ∈ Rk represent landmark label prediction for the window

segment T . The late-fusion is the resulting outputs from both

forward and backward tracks, which are combined as follows:

Y =
1

T

∑T

t=1

(

y
fL
t + ybLt

)

. (16)

3) CASCADED BIDIRECTIONAL AND UNIDIRECTIONAL

LSTM-BASED DRNN MODEL

Themodel architecture, shown in Fig. 8, is inspired from [19]

and [32]. In this architecture, the first layer is designed with

a bidirectional RNN, whereas the upper layers are unidirec-

tional. The first layer has a forward LSTM track LSTM f 1

generating an output (y
fL
1 , y

fL
2 , . . . , y

fL
T ) and a backward track

LSTMb1 generating an output(ybL1 , ybL2 , . . . , ybLT ). The two

types of outputs are combined and fed into the second uni-

directional layer to form a new output (y11, y
1
2, . . . , y

1
T ):

y1t = y
f 1
t + yb1T−t+1. (17)

The operation of the upper layers is same as in the unidirec-

tional model described earlier.

VI. EXPERIMENTAL PRELIMINARIES

A. EXPERIMENT SETUP

The experiments were conducted in a corridor and a lab on the

eighth floor of an IT department building, Chosun University

in Korea, with dimensions of 100 m× 2.5 m and 7 m× 7 m,

respectively. The corridor contains magnetic elements like
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FIGURE 9. Magnetic field strength variation measured near various
external factors.

iron doors, bearing columns, and other building materials,

which create fluctuations to the MFS. On the other hand,

the lab has other factors, such as computers, microwaves, and

lab equipment, that cause further significant magnetic field

fluctuations. We studied the effect of these external factors

in MFS fluctuation by collecting a sample of MFS using a

smartphone. We found that the factors such as computers,

microwaves, doors and other equipment significantly distorts

magnetic field near them as shown in Fig. 9. This can be due

to the presence of a magnetic element or an electrical circuit

inside them. A pictorial representation of the test environment

is shown in Fig. 10.

B. EXPERIMENT METHODOLOGY

The proposed model was evaluated through experiments. The

layouts of the testbeds are shown in Figs. 11 (c) and (d).

The magnetic field data were collected by using an Android

smartphone, which has a Yamaha MS-3E magnetometer

sensor. To make this process convenient, we developed an

Android application for the smartphone that sensed the geo-

magnetic field. In the corridor, we marked 25 landmarks and

measured magnetic signals by moving around the point in all

possible directions, as shown by the red eclipse dots in Fig. 11

(d). While recording the data in the corridor, the orientation

of the phone was held by a walking user, as shown in Fig. 11

(a) to avoid errors due to soft iron distortion.

However, in the lab, due to limited space, we used a

movable stand, as shown in Fig. 11 (b). Also, in the lab,

we marked 17 landmarks and gathered magnetic field data

at each point, denoted by a red circular dot in Fig. 11 (c).

Finally, our dataset consisted of 25 landmark positions in the

corridor and 17 landmark positions inside the lab. The size

of the training data in the corridor was about 71,300 MFS

samples for the 25 landmarks, and in the lab, it was about

19,500 MFS samples for 17 landmarks.

C. EXPERIMENT EVALUATION

We used Google TensorFlow as a deep learning framework

as it allowed us to design a more detailed neural network

TABLE 1. Server system configuration and framework for deep learning
network.

model. Also, NVIDIA cuDNN and CUDA Toolkit, which

provide parallel processing, were used to drastically improve

our training performance [33].

The proposed LSTM-DRNN positioning system uses the

configuration and framework shown in Table 1.

1) NETWORK TRAINING AND TESTING

We trained our DRNNmodel with the preprocessed geomag-

netic data stored in a fingerprinting database or dataset. The

dataset was divided such that 80% of the data is used for

training and the remaining 20% is for the testing process.

The hyperparameters, such as the number of hidden nodes,

mini-batch size, number of iterations, learning rate, etc., were

chosen for the optimized model. Also, the biases and weights

were initialized by using a standard normal distribution. The

cost function L in (18) was obtained by using the mean

cross-entropy between the ground truth landmark labels and

the predicted output labels. The ground truth labels indicate

the true landmark labels for the segmented windows and were

given in the dataset. They are provided as a one-hot vector

O ∈ Rk with a value oc associated with each landmark label

c.

The predicted classes Ô ∈ Rk include the probability of

every class ρc generated by our model:

L

(

O, Ô
)

= −
∑k

c=1
oc log ρc. (18)

The Adam optimization algorithm was used to minimize

the cost function L(O, Ô) by backpropagating its gradient

and updating the model parameters [34]. The weight and

other parameters were optimized with forward and backprop-

agation. In our work, we provided parameters for forward

propagation and Google TensorFlow calculated all required

back propagation steps. We used a dropout technique as

regularization to avoid overfitting in our model [35]. During

a training iteration, the node is dropped out based on the

dropout probability ℘, which represents the percentage of

units to drop. The output of the final layer’s hidden state is

passed as an input to a fully connected layer, which uses a

simplified hidden layer neural network to train the output data

using a softmax classifier. Also, the datasets were segmented
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FIGURE 10. Experiment environments. (a) First testbed in the corridor. (b) Second testbed in the lab.

with different window lengths, as shown in Table 2. The

optimal window length was selected based on their perfor-

mance results by a ‘‘trial-and-error’’ method. The fixed length

windows were used for training and testing, but during real-

time data acquisition scenarios, we were able to use variable-

length windows.

We used two separate sets of hyperparameters due to a

different number of data samples in the different testbeds,

i.e., the corridor and lab. Fig. 12 shows the accuracy and cost

of the training and testing processes for the unidirectional

DRNNmodel on our testbed. The training and testing accura-

cies increase with training epoch as the model generalizes to

new data. Similarly, the training and testing costs decrease

with each epoch as the model learns the data and reaches

an optimal value. In addition, the testing accuracy and cost

follow the training accuracy and cost graphs closely, which

indicates the effectiveness of the dropout technique in the

model for avoiding overfitting.

We divided our dataset into a mini-batch for efficient mem-

ory usage and to prevent the problem of gradient explosion

caused when the dataset is used as a single batch. When we

used the small batch size, the training time was generally

increased. This could be due to smaller step-sizes taken by

the smaller mini-batch to reduce the variances of gradient

updates. For example, a batch size of 128 or 256 can process

more data per mini-batch than that of 16 or 32. However,

TABLE 2. Summary of DRNN input data to evaluate the proposed deep
learning models. Training window length denotes the number of samples
in a window that we found to yield the best results for each testbed. Each
dataset was divided into 80% for training and 20% for testing.

TABLE 3. Summary of hyperparameters used in the two different
testbeds.

using a small mini-batch helped us to increase the accuracy.

The configuration of the proposed DRNN system that was

found to be best for our testbeds is listed in Table 3.
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FIGURE 11. Data gathering methods. (a) Orientation of the smartphone while collecting data in the corridor at
each grid. (b) Stand used in the lab to gather data at each landmark. (c) Layout of the lab containing working
desks surrounded with landmarks denoted by the red dots, where the data are gathered. (d) Layout of the
corridor with the landmarks denoted by red eclipse, where the data are gathered.

The trained DRNN models were evaluated with the test

dataset. We found that the testing accuracy was greatly

affected by the number of hidden nodes per layer and the

mini-batch size. It was observed that the accuracy increased

as the number of hidden nodes per layer increased. However,

if we increased the number of hidden layers, the performance

of the model was not necessarily good. This could be due

to the difficulty in gradient propagation when we increase

the number of layers. Fig. 13 shows the test accuracy when

we changed the number of hidden nodes in each layer using

a ‘‘trial-and-error’’ method. It can be seen that the best test

accuracies for the lab and corridor were obtained with hidden

units of 128 and 256, respectively.

2) PERFORMANCE METRICS

The performance of the proposed model was verified using

the following evaluation metrics [36]:

1. Precision: measuring the number of true samples out of

those classified as positive. The overall precision was

calculated by averaging the precision of each class:

Per − class Precisionc =
tpc

tpc + fpc
(19)

Overall Precision =
1

k

(

∑k

c=1

tpc

tpc + fpc

)

,

(20)

where tpc is the true positive rate of landmark c, fpc is

the false positive rate, and k is the number of landmarks

in the dataset.

2. Recall (Sensitivity): measuring the number of samples

that are correctly classified out of the total samples in

a class. The overall recall is the average of the recalls
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FIGURE 12. The accuracy and cost of our DRNN model for the testbed dataset over mini-batch training iterations.
(a) Training and testing accuracies in the lab. (b) Cross-entropy cost between the ground truth labels and
predicted labels for both training and testing in the lab. (c) Training and testing accuracy in the corridor.
(d) Cross-entropy cost in the corridor.

FIGURE 13. Accuracy measurements with increasing number of hidden units per layer. (a) Test accuracy for a different number
of hidden units per layer in the lab. (b) Test accuracy for a different number of hidden units per layer in the corridor.

for each class:

Per − class Recallc =
tpc

tpc + fnc
(21)

Overall Recall =
1

k

(

∑k

c=1

tpc

tpc + fnc

)

, (22)

where fnc is the false negative rate of a class c.
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FIGURE 14. Performance results for the proposed bidirectional DRNN model in the lab. (a) Confusion matrix for the landmark
classification in the lab with per-class precision and recall. (b) Accuracy comparison of the proposed model with other methods.
(c) F1-score comparison of the proposed model with other methods.

3. Accuracy: measuring the proportion of correctly pre-

dicted classes overall predictions:

Overall Accuracy =
TP+ TN

TP+ TN + FP+ FN
, (23)

where TP =
∑k

c=1 tpc is the overall true positive for a

classifier of all classes, TN =
∑k

c=1 tnc is the overall

true negative rate, FP =
∑k

c=1 fpc is the overall false

positive rate, and FN =
∑k

c=1 fnc is the overall false

negative rate.

4. F1-score: the weighted harmonicmean of precision and

recall:

F1Score =
∑k

c=1

(

2
(nc

N

) precisionc ∗ recallc

precisionc + recallc

)

,

(24)

where nc is the number of samples in a class c and

N =
∑k

c=1 nc is the total number of samples in a set of

k classes. The F1-score provides a measure of a test’s

accuracy.

VII. EXPERIMENTAL RESULTS AND ANALYSIS

Our proposed LSTM-DRNN-based positioning system was

compared with other previously introduced machine learning

methods tested on both testbeds. In the lab, a bidirectional

DRNN model with three-layers yielded the best performance

results with an overall classification accuracy of 97.20%.

The confusion matrix in Fig. 14 (a) gives an overview of

the classification results for the proposed model in the test

set, along with the per-class precision and recall results.

Figs. 14 (b) and (c) show a performance comparison of the

proposed system with other machine learning methods, such

as k-nearest neighbor (KNN) [37], support vector machine

(SVM), logistic regression, decision tree, and Gaussian Naïve

Bayes (GNB). However, in the corridor, we found that four

layers of a unidirectional DRNN yield the best performance

results in term of per-class precision and recall, as shown

by the confusion matrix in Fig. 15 (a). Here, the over-

all classification accuracy is 91.1%. Also, we compared

the performances with other machine learning algorithms.

A comparison of accuracy and F1-score between our model
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FIGURE 15. Performance results of the proposed unidirectional DRNN model in the corridor. (a) Confusion matrix for the test in the
corridor along with per-class precision and recall. (b) Accuracy comparison of the proposed model with other methods. (c) F1-score
comparison of the proposed model with other methods.

and these algorithms can be seen in Figs. 15 (b) and (c),

respectively.

The performance results of the proposed models clearly

show that all of the architectures performed very well with

a dataset on both testbeds. The corridor is a wide space

with MFS fluctuations mostly due to pillars and columns.

However, the lab is a small space with a cluttered environ-

ment that has MFS fluctuations due to equipment, such as

computers, microwave ovens, printers, etc. Also, we studied

the MFS at different landmarks from two testbed to find

the overall changes brought by the aforementioned external

factors. We found that the difference in fluctuations of MFS

observed at different landmark positions inside the lab ismore

significant compared to the corridor as shown in Fig. 16.

It allows our model to extract the reliable features of the

magnetic pattern inside the lab. Hence, the performance of

our model is found to be better in lab. Since the range of

fluctuation in MFS around landmarks in lab is greater,

we have included more landmarks in the lab in terms of

space density. It proves that our models can be effective for

a broad range of landmark classifications in various indoor

environments. Table 4 contains a performance summary of

our models in the two test environments.

As the sample size grew, the conventional shallow-

structured methods, like KNN, SVM, and logistic regression,

have limited modeling capability and cannot extract reliable

features from a large dataset of fluctuating MFS. To show the

efficiency of our model with more amount of data samples,

we trained the model with a total of 42 landmarks, obtained

from combining the data samples from both testbeds. The

result in Fig. 17 shows that our model outperform other

methods drastically when the amount of samples and number

of landmark increases. Including more layers in the DRNN

helped the model to extract the discriminative features. These

features were exploited for effective learning and distinguish-

ing more complex patterns formed by MFS at landmarks.
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TABLE 4. performance summary of our model with the datasets on the two testbeds.

FIGURE 16. Distribution of MFS fluctuation measured around different
landmarks in two testbeds.

FIGURE 17. Performance result of the proposed model in a combined
dataset from the lab and the corridor.

In addition, using DRNNs to capture sequential and temporal

dependencies provided a significant improvement in perfor-

mance.

VIII. CONCLUSION

This paper presented three novel LSTM-based DRNN archi-

tectures for indoor landmark classification usingMFS.More-

over, we first verified experimentally the feasibility of using

MFS for landmark classification and empirically evaluated

our models using experiments with datasets on two testbeds.

Although the training phase was computationally demanding,

the test phase was fast and suitable for real-time indoor

landmark classification. Experimental results showed that the

proposed models outperform other state-of-the-art methods.

The performance improvement was mainly due to the ability

of our models to extract more discriminative features by

using deep layers at various landmark positions. Furthermore,

by exploiting the functionality of DRNNs, our models were

able to capture temporal dependencies between input mag-

netic field data.

REFERENCES

[1] B. P. Misra and P. Enge, Global Positioning System: Signals, Measure-

ments, and Performance, 2nd ed. Lincoln, MA, USA: Ganga-Jamuna

Press, 2005.

[2] X.Wang, S. Mao, S. Pandey, and P. Agrawal, ‘‘CA2T: Cooperative antenna

arrays technique for pinpoint indoor localization,’’ Procedia Comput. Sci.,

vol. 34, pp. 392–399, Jan. 2014.

[3] M. X. Gong, B. Hart, and S. Mao, ‘‘Advanced wireless LAN technolo-

gies: IEEE 802.11ac and beyond,’’ GetMobile, Mobile Comput. Commun.,

vol. 18, no. 4, pp. 48–52, Jan. 2015.

[4] S. Subedi and J.-Y. Pyun, ‘‘Practical fingerprinting localization for indoor

positioning system by using beacons,’’ J. Sensors, vol. 2017, pp. 1–16,

Dec. 2017.

[5] H. Liu, H. Darabi, P. Banerjee, and J. Liu, ‘‘Survey of wireless indoor

positioning techniques and systems,’’ IEEE Trans. Syst., Man, Cybern. C,

Appl. Rev., vol. 37, no. 6, pp. 1067–1080, Nov. 2007.

[6] P. B. and V. N. Padmanabhan, ‘‘RADAR: An in-building RF based user

location and tracking system,’’ in Proc. IEEE Conf. Comput. Commun.

90th Annu. Joint Conf. IEEE Comput. Commun. Soc. (INFOCOM), vol. 2,

Mar. 2000, pp. 775–784.

[7] M. Youssef and A. Agrawala, ‘‘The Horus WLAN location determina-

tion system,’’ in Proc. 3rd Int. Conf. Mobile Syst., Appl., Services, 2005,

pp. 205–218.

[8] X. Wang, L. Gao, S. Mao, and S. Pandey, ‘‘CSI-based fingerprinting for

indoor localization: A deep learning approach,’’ IEEE Trans. Veh. Technol.,

vol. 66, no. 1, pp. 763–776, Jan. 2017.

[9] X. Wang, L. Gao, and S. Mao, ‘‘BiLoc: Bi-modal deep learning for

indoor localization with commodity 5GHz WiFi,’’ IEEE Access, vol. 5,

pp. 4209–4220, 2017.

[10] K. Yamazaki et al., ‘‘Analysis of magnetic disturbance due to buildings,’’

IEEE Trans. Magn., vol. 39, no. 5, pp. 3226–3228, Sep. 2003.

[11] G. Casinovi, A. Geri, and G. M. Veca, ‘‘Magnetic field near a concrete

wall during a lightning stroke,’’ IEEE Trans. Magn., vol. 25, no. 5,

pp. 4006–4008, Sep. 1989.

[12] J. Chung, M. Donahoe, C. Schmandt, I.-J. Kim, P. Razavai, and

M. Wiseman, ‘‘Indoor location sensing using geo-magnetism,’’ in Proc.

9th Int. Conf. Mobile Syst., Appl., Services, 2011, pp. 141–154.

[13] W. Storms, J. Shockley, and J. Raquet, ‘‘Magnetic field navigation in

an indoor environment,’’ in Proc. Ubiquitous Position Indoor Navigat.

Location Service (UPINLBS), Oct. 2010, pp. 1–4.

[14] X. Wang, L. Gao, and S. Mao, ‘‘CSI phase fingerprinting for indoor

localization with a deep learning approach,’’ IEEE Internet Things J.,

vol. 3, no. 6, pp. 1113–1123, Dec. 2016.

[15] A. Graves, A.-R.Mohamed, andG. Hinton, ‘‘Speech recognition with deep

recurrent neural networks,’’ in Proc. IEEE Int. Conf. Acoust. Speech Signal

Process., no. 6, May 2013, pp. 6645–6649.

[16] M. Sundermeyer, R. Schl, and H. Ney, ‘‘LSTM neural networks for lan-

guage modeling,’’ in Proc. Interspeech, 2012, pp. 194–197.

[17] L. Yao et al., ‘‘Describing videos by exploiting temporal structure,’’ in

Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 4507–4515.

[18] Z. Chen and C.Wang, ‘‘Modeling RFID signal distribution based on neural

network combined with continuous ant colony optimization,’’ Neurocom-

puting, vol. 123, pp. 354–361, Jan. 2014.

VOLUME 7, 2019 33955



B. Bhattarai et al.: Geomagnetic Field-Based Indoor Landmark Classification Using Deep Learning

[19] A. Murad and J.-Y. Pyun, ‘‘Deep recurrent neural networks for human

activity recognition,’’ Sensors, vol. 17, no. 11, p. 2556, 2017.

[20] Z. Yang, P. Zhang, and L. Chen, ‘‘RFID-enabled indoor positioningmethod

for a real-time manufacturing execution system using OS-ELM,’’ Neuro-

computing, vol. 174, pp. 121–133, Jan. 2016.

[21] I. Vallivaara, J. Haverinen, A. Kemppainen, and J. Röning, ‘‘Magnetic

field-based SLAM method for solving the localization problem in mobile

robot floor-cleaning task,’’ in Proc. IEEE 15th Int. Conf. Adv. Robot. New

Boundaries Robot. (ICAR), Jun. 2011, pp. 198–203.

[22] J. Jung, T. Oh, and H. Myung, ‘‘Magnetic field constraints and

sequence-based matching for indoor pose graph SLAM,’’ Robot. Auton.

Syst., vol. 70, pp. 92–105, Aug. 2015.

[23] J. Haverinen and A. Kemppainen, ‘‘Global indoor self-localization based

on the ambient magnetic field,’’ Robot. Auto. Syst., vol. 57, no. 10,

pp. 1028–1035, Oct. 2009.

[24] D. Navarro and G. Benet, ‘‘Magnetic map building for mobile robot

localization purpose,’’ in Proc. IEEE Conf. Emerg. Technol. Fact. Autom.

(ETFA), Sep. 2009, pp. 4–7.

[25] K. P. Subbu, B. Gozick, and R. Dantu, ‘‘LocateMe: Magnetic-fields-based

indoor localization using smartphones,’’ ACM Trans. Intell. Syst. Technol.,

vol. 4, no. 4, pp. 1–27, 2013.

[26] B. Gozick, K. P. Subbu, R. Dantu, and T. Maeshiro, ‘‘Magnetic maps

for indoor navigation,’’ IEEE Trans. Instrum. Meas., vol. 60, no. 12,

pp. 3883–3891, Dec. 2011.

[27] H. Yu, Z.-H. Tan, Z. Ma, R. Martin, and J. Guo, ‘‘Spoofing detection in

automatic speaker verification systems using DNN classifiers and dynamic

acoustic features,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 10,

pp. 4633–4644, Oct. 2018.

[28] Z. Ma, H. Yu, W. Chen, and J. Guo, ‘‘Short utterance based speech lan-

guage identification in intelligent vehicles with time-scale modifications

and deep bottleneck features,’’ IEEE Trans. Veh. Technol., vol. 68, no. 1,

pp. 121–128, Jan. 2019.

[29] K. Greff, R. K. Srivastava, J. Koutnìk, B. R. Steunebrink, and

J. Schmidhuber, ‘‘LSTM: A search space odyssey,’’ IEEE Trans. Neural

Netw. Learn. Syst., vol. 28, no. 10, pp. 2222–2232, Oct. 2017.

[30] M. Myllymäki, T. Mrkvička, P. Grabarnik, H. Seijo, and U. Hahn, ‘‘Global

envelope tests for spatial processes,’’ J. Roy. Stat. Soc. B, Stat. Methodol.,

vol. 79, no. 2, pp. 381–404, 2017.

[31] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, ‘‘Gradient flow

in recurrent nets: The difficulty of learning long-term dependencies,’’ in A

Field Guide to Dynamical Recurrent Neural Networks, Kremer and Kolen,

Eds. Piscataway, NJ, USA: IEEE Press, 2001.

[32] Y. Wu et al.. (2016). ‘‘Google’s neural machine translation system: Bridg-

ing the gap between human and machine translation.’’ [Online]. Available:

https://arxiv.org/abs/1609.08144

[33] M. Abadi et al. (2016). ‘‘TensorFlow: Large-scale machine learning

on heterogeneous distributed systems.’’ [Online]. Available: https://arxiv.

org/abs/1603.04467

[34] I. Goodfellow,Y. Bengio, andA. Courville, ‘‘Book review:Deep learning,’’

Deep Learn., vol. 22, no. 4, pp. 351–354, 2016.

[35] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour, ‘‘Dropout improves

recurrent neural networks for handwriting recognition,’’ in Proc. Int. Conf.

Front. Handwriting Recognit. (ICFHR), Sep. 2014, pp. 285–290.

[36] M. Sokolova and G. Lapalme, ‘‘A systematic analysis of performance

measures for classification tasks,’’ Inf. Process. Manag., vol. 45, no. 4,

pp. 427–437, 2009.

[37] M. Yao and B. Vocational, ‘‘Research on learning evidence improvement

for KNN based classification algorithm,’’ Int. J. Database Theory Appl.,

vol. 7, no. 1, pp. 103–110, 2014.

BIMAL BHATTARAI received the B.Tech. degree
in electronics and communication engineering

from JNTUA, India, in 2015, and the M.Sc. degree

from the Department of Information and Commu-

nication Engineering, Chosun University, South

Korea. He was a BSS Engineer with ZTE Corpo-

ration, Nepal. His research interests include inter-

disciplinary research, including indoor positioning

and navigation, signal processing, machine learn-

ing, and deep learning applications.

ROHAN KUMAR YADAV received the B.E.

degree in electronics and communication from

the Sona College of Technology, Anna University,

India, in 2015, and the master’s degree in informa-

tion and communication engineering from Chosun

University, South Korea. He was a NOC Engineer

with Huawei Technologies, Nepal, from 2015 to

2017. His research interests include indoor posi-

tioning and navigation, signal processing, machine

learning, deep learning, and its applications.

HUI-SEON GANG received the B.S. and M.S.

degrees in information and communication engi-

neering from Chosun University, South Korea,

in 2012 and 2014, respectively, where he is cur-

rently pursuing the Ph.D. degree. His research area

includes video coding technique, error resilience

and concealment, multimedia communication,

wireless networks, signal processing, and indoor

positioning techniques.

JAE-YOUNG PYUN received the B.S. degree from

Chosun University, South Korea, in 1997, theM.S.

degree from Chonnam University, in 1999, and the

Ph.D. degree from Korea University, South Korea,

in 2003. From 2001 to 2003, he was a Research

Engineer with Dalitech Corporation. He has also

served as a Research Engineer with Samsung Elec-

tronics for research and development of mobile

phone communication system, from 2003 to 2004.

He is currently a Professor with the Department

of Information and Communication Engineering, Chosun University. His

research interests include indoor localization, the IoT-based services, mobile

QoS, IP QoS, wireless sensor networks, and video communication. He was

selected for 2000 Outstanding Intellectual of 21st Century Award by the

International Biographical Centre, and Great Minds of 21st Century by

American Biographical Institute, in 2008.

33956 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	MAGNETIC FIELD PRELIMINARIES
	MAGNETIC DATA ACQUISITION

	BACKGROUND: RECURRENT NEURAL NETWORK
	RECURRENT NEURAL NETWORK
	LONG SHORT-TERM MEMORY (LSTM)

	PROPOSED ARCHITECTURES
	SYSTEM ARCHITECTURE
	DRNN ARCHITECTURE
	UNIDIRECTIONAL LSTM-BASED DRNN MODEL
	BIDIRECTIONAL LSTM-BASED DRNN MODEL
	CASCADED BIDIRECTIONAL AND UNIDIRECTIONAL LSTM-BASED DRNN MODEL


	EXPERIMENTAL PRELIMINARIES
	EXPERIMENT SETUP
	EXPERIMENT METHODOLOGY
	EXPERIMENT EVALUATION
	NETWORK TRAINING AND TESTING
	PERFORMANCE METRICS


	EXPERIMENTAL RESULTS AND ANALYSIS
	CONCLUSION
	REFERENCES
	Biographies
	BIMAL BHATTARAI
	ROHAN KUMAR YADAV
	HUI-SEON GANG
	JAE-YOUNG PYUN


