
Geometric algebra:
a computational framework
for geometrical applications

Leo Dorst and Stephen Mann

DRAFT April 24, 2001

Abstract

Geometric algebra is a consistent computational framework in which to
define geometric primitives and their relationships. This algebraic approach
contains all geometric operators and permits specification of constructions in
a totally coordinate-free manner. Since it contains primitives of any dimen-
sionality (rather than just vectors) it has no special cases: all intersections of
primitives are computed with one general incidence operator. We show that
the quaternion representation of rotations is also naturally contained within
the framework. Models of Euclidean geometry can be made which directly
represent the algebra of spheres.

1 Beyond vectors

In the usual way of defining geometrical objects in fields like computer graphics,
robotics and computer vision, one uses vectors to characterize the construction. To
do this effectively, the basic concept of a vector as an element of a linear space
is extended by an inner product and a cross product, and some rather extraneous
constructions such as homogeneous coordinates and Grassmann spaces (see [7]) to
encode compactly the intersection of, for instance, offset planes in space. Many
of these techniques work rather well in 3-dimensional space, although some prob-
lems have been pointed out: the difference between vectors and points, and the
affine non-covariance of the normal vector as a characterization of a tangent line
or tangent plane (i.e. the normal vector of a transformed plane is not the transform
of the normal vector). These problems are then traditionally fixed by the intro-
duction of certain data structures with certain combination rules; object-oriented
programming can be used to implement this patch tidily.

1

2 Leo Dorst and Stephen Mann

Yet there are deeper issues in geometric programming which are still accepted
as ‘the way things are’. For instance, when you need to intersect linear subspaces,
the intersection algorithms are split out in treatment of the various cases: lines and
planes, planes and planes, lines and lines, et cetera, need to be treated in separate
pieces of code. The linear algebra of the systems of equations with its vanish-
ing determinants indicates changes in essential degeneracies, and finite and infinite
intersections can be nicely unified by using homogeneous coordinates. But there
seems no getting away from the necessity of separating the cases. After all, the out-
comes themselves can be points, lines or planes, and those are essentially different
in their further processing.

Yet this need not be so. If we could see subspaces as basic elements of compu-
tation, and do direct algebra with them, then algorithms and their implementation
would not need to split their cases on dimensionality. For instance, A^B could be
‘the subspace spanned by the spaces A and B’, the expression A � B could be ‘the
part of B perpendicular to A’; and then we would always have the computation
rule (A^B) �C = A � (B �C) since computing the part of C perpendicular to the
span of A and B can be computed in two steps, perpendicularity to B followed by
perpendicularity to A. Subspaces therefore have computational rules of their own
which can be used immediately, independent of how many vectors were used to
span then (i.e. independent of their dimensionality). In this view, the split in cases
for the intersection could be avoided, since intersection of subspaces always leads
to subspaces. We should consider using this structure, since it would enormously
simplify the specification of geometric programs.

This paper intends to convince you that subspaces form an algebra with well-
defined products which have direct geometric significance. That algebra can then
be used as a language for geometry, and we claim that it is a better choice than
a language always reducing everything to vectors (which are just 1-dimensional
subspaces). It comes as a bit of a surprise that there is really one basic product
between subspaces that forms the basis for such an algebra, namely the geometric
product. The algebra is then what mathematicians call a Clifford algebra. But for
applications, it is often very convenient to consider ‘components’ of this geomet-
ric product; this gives us sensible extensions, to subspaces, of the inner product
(computing measures of perpendicularity), the cross product (computing measures
of parallelness), and the meet and join (computing intersection and union of sub-
spaces). When used in such an obviously geometrical way, the term geometric
algebra is preferred to describe the field.

In this paper, we will use the basic products of geometric algebra to describe all
familiar elementary constructions of basic geometric objects and their quantitative
relationships. The goal is to show you that this can be done, and that it is compact,
directly computational, and transcends the dimensionality of subspaces. We will

Geometric Algebra: a Computational Framework (DRAFT) 3

not use geometric algebra to develop new algorithms for graphics; but we hope you
to convince you that some of the lower level algorithmic aspects can be taken care
of in an automatic way, without exceptions or hidden degenerate cases by using
geometric algebra as a language – instead of only its vector algebra part as in the
usual approach.

2 Subspaces as elements of computation

As in the classical approach, we start with a real vector space Rn which we use
to denote 1-dimensional directed magnitudes. Typical usage would be to employ
a vector to denote a translation in such a space, to establish the location of a point
of interest. (Points are not vectors, but their locations are.) Another usage is to
denote the velocity of a moving point. (Points are not vectors, but their velocities
are.) We now want to extend this capability of indicating directed magnitudes
to higher-dimensional directions such as facets of objects, or tangent planes. In
doing so, we will find that we have automatically encoded the algebraic properties
of multi-point objects such as line segments or circles. This is rather surprising,
and not at all obvious from the start. For educational reasons, we will start with
the simplest subspaces: the ‘proper’ subspaces of a linear vector space which are
lines, planes, etcetera through the origin, and develop their algebra of spanning
and perpendicularity measures. Only in Section refmodels do we show some of
the considerable power of the products when used in the context of models of
geometries.

2.1 Vectors

So we start with a real m-dimensional linear space V m, of which the elements
are called vectors. They can be added, with real coefficients, in the usual way to
produce new vectors.

We will always view vectors geometrically: a vector will denote a ‘1-dimensional
direction element’, with a certain ‘attitude’ or ‘stance’ in space, and a ‘magnitude’,
a measure of length in that direction. These properties are well characterized by
calling a vector a ‘directed line element’, as long as we mentally associate an ori-
entation and magnitude with it: v is not the same as �v or 2v.

2.2 The outer product

In geometric algebra, higher-dimensional oriented subspaces are also basic ele-
ments of computation. They are called blades, and we use the term k-blade for
a k-dimensional homogeneous subspace. So a vector is a 1-blade. (Again, we

4 Leo Dorst and Stephen Mann

first focus on ‘proper’ linear subspaces, i.e. subspaces which contain the origin:
the 1-dimensional homogeneous subspaces are lines through the origin, the 2-
dimensional homogeneous subspaces are planes through the origin, etc.)

A common way of constructing a blade is from vectors, using a product that
constructs the span of vectors. This product is called the outer product (sometimes
the wedge product) and denoted by ^. It is codified by its algebraic properties,
which have been chosen to make sure we indeed get m-dimensional space elements
with an appropriate magnitude (area element for m = 2, volume elements for
m = 3). As you have seen in linear algebra, such magnitudes are determinants
of matrices representing the basis of vectors spanning them. But such a definition
would be too specifically dependent on that matrix representation. Mathematically,
a determinant is viewed as an anti-symmetric linear scalar-valued function of its
vector arguments. That gives the clue to the rather abstract definition of the outer
product in geometric algebra:

The outer product of vectors a1; � � � ;ak is anti-symmetric, asso-
ciative and linear in its arguments. It is denoted as a1 ^ � � � ^ ak, and
called a k-blade.

The only thing that is different from a determinant is that the outer product is
not forced to be scalar-valued; and this gives it the capability of representing the
‘attitude’ of a k-dimensional subspace element as well as its magnitude.

2.3 2-blades in 3-dimensional space

Let us see how this works in the geometric algebra of a 3-dimensional space V 3.
For convenience, let us choose a basis fe1; e2; e3g in this space, relative to which
we denote any vector (there is no need to choose this basis orthonormally – we have
not mentioned the inner product yet – but you can think of it as such if you like).
Now let us compute a^b for a = a1e1+a2e2+a3e3 and b = b1e1+b2e2+b3e3.
By linearity, we can write this as the sum of six terms of the form a1b2e1 ^ e2 or
a1b1e1 ^ e1. By anti-symmetry, the outer product of any vector with itself must
be zero, so the term with a1b1e1 ^ e1 and other similar terms disappear. Also by
anti-symmetry, e2 ^ e1 = �e1 ^ e2, so some terms can be grouped. You may
verify that the final result is:

a ^ b =

= (a1e1 + a2e2 + a3e3) ^ (b1e1 + b2e2 + b3e3)

= (a1b2 � a2b1) e1 ^ e2 + (a2b3 � a3b2) e2 ^ e3 + (a3b1 � a1b3) e3 ^ e1 (1)

We cannot simplify this further. Apparently, the axioms of the outer product permit
us to decompose any 2-blade in 3-dimensional space onto a basis of 3 elements.
This ‘2-blade basis’ (also called ‘bivector basis) fe1^e2; e2^e3; e3^e1g consists

Geometric Algebra: a Computational Framework (DRAFT) 5

a

b

c

(d)

a ^ b ^ c
a

b

a ^ b

(c)(a)

�
a

(b)

origin originorigin

Figure 1: Spanning proper subspaces using the outer product.

of 2-blades spanned by the basis vectors. Linearity of the outer product implies
that the set of 2-blades forms a linear space on this basis. We will interpret this
as the space of all plane elements or area elements. Let us show that they have
indeed the correct magnitude for an area element. That is particularly clear if we
choose a particular orthonormal basis fe1; e2; e3g, chosen such that a lies in the
e1-direction, and b lies in the (e1; e2)-plane. Then a = ae1, b = b cos� e1 +
b sin� e2 (with � the angle from a to b), so that

a ^ b = (a b sin�) e1 ^ e2 (2)

This single result contains both the correct magnitude of the area a b sin� spanned
by a and b, and the plane in which it resides – for we should learn to read e1 ^ e2
as ‘the unit directed area element of the (e1; e2)-plane’. Since we can always adapt
our coordinates to vectors in this way, this result is universally valid: a ^ b is an
area element of the plane spanned by a and b.

You can visualize this as the parallelogram spanned by a and b, but you should
be a bit careful: the shape of the area element is not defined in a^b. For instance,
by the properties of the outer product, a ^ b = a ^ (b + �a), for any �, so
the parallelogram can be sheared. Also, the area element is free to translate: the
sum of the area elements 1

4
(a ^ b), 1

4
(b ^ (�a)), 1

4
((�a) ^ (�b)), 1

4
((�b) ^ a)

equals a^b; drawing this equation shows that we should imagine the area element
to have no specific location in its plane. You may also verify that an orthogonal
transformation of a and b in their common plane (such as a rotation in that plane)
leaves a^b unchanged. (This is obvious once you know the result for determinants
and note that a ^ b can always be expressed as in eq.(1), but we will revisit its
deeper meaning in Section 7).

It is important to realize that the 2-blades have an existence of their own, in-
dependent of any vectors that one might use to define them; that is reflected in the
fact that they are not parallelograms. Planes (or, more precisely, plane elements)
are nouns in our computational geometrical language, of the same basic nature as

6 Leo Dorst and Stephen Mann

vectors (or line elements).

2.4 Volumes as 3-blades

We can also form the outer product of three vectors a, b, c. Considering each of
those decomposed onto their 3 components on some basis in our 3-dimensional
space (as above), we obtain terms of three different types, depending on how many
common components occur: terms like a1b1c1 e1^e1^e1, like a1b1c2 e1^e1^e2,
and like a1b2c3 e1 ^ e2 ^ e3. Because of associativity and anti-symmetry, only the
last type survives, in all its permutations. The final result is:

a^b^ c = (a1b2c3� a1b3c2 + a2b1c3� a2b3c1 + a3b1c2� a3b2c1) e1 ^ e2 ^ e3:

The scalar factor is the determinant of the matrix with columns a, b, c, which is
proportional to the signed volume spanned by them (as is well known from linear
algebra). The term e1 ^ e2 ^ e3 is the denotation of which volume is used as unit:
that spanned by e1; e2; e3. The order of the vectors gives its orientation, so this
is a ‘signed volume’. In 3-dimensional space, there is not really any other choice
for the construction of volumes than (possibly negative) multiples of this volume.
But in higher dimensional spaces, the attitude of the volume element needs to be
indicated just as much as we needed to denote the attitude of planes in 3-space.

2.5 Linear dependence

Note that if the three vectors are linearly dependent, they satisfy:

a,b,c linearly dependent () a ^ b ^ c = 0:

We interpret the latter immediately as the geometric statement that the vectors span
a zero volume. This makes linear dependence a computational property rather than
a predicate: three vectors can be ‘almost linearly dependent’. The magnitude of
a ^ b ^ c obviously involves the determinant of the matrix (a b c), so this view
corresponds with the usual computation of determinants to check degeneracy.

2.6 The pseudoscalar as hypervolume

Forming the outer product of four vectors a ^ b ^ c ^ d in 3-dimensional space
will always produce zero (since they must be linearly dependent). To see this,
just decompose the vectors on some basis (for instance, the fourth vector on a basis
formed by the other 3), and apply the outer product. Since (a^b^c) is proportional
to e1^e2^e3, multiplication by d will always lead to terms like e1^e2^e3^e1,

Geometric Algebra: a Computational Framework (DRAFT) 7

in which at least two vectors are the same. Associativity and anti-symmetry then
makes all terms equal to zero.

The highest order blade which is non-zero in an m-dimensional space is there-
fore an m-blade. Such a blade, representing an m-dimensional volume element, is
called a pseudoscalar for that space (for historical reasons); unfortunately a rather
abstract term for the elementary geometric concept of ‘hypervolume element’.

The dimensionality of a k-blade is the number of vector factors that span it;
this is usually called the grade of the blade. It obeys the simple rule:

grade (A ^B) = grade (A) + grade (B) : (3)

Of course the outcome may be 0, so this zero element of the algebra should be seen
as an element of arbitrary grade. There is then no need to distinguish separate zero
scalars, zero vectors, zero 2-blades.

2.7 Scalars as subspaces

To make scalars fully admissible elements of the algebra we have so far, we can de-
fine the outer product of two scalars, and a scalar and a vector, through identifying
it with the familiar scalar product in the vector space we started with:

� ^ � = �� and � ^ v = �v

This automatically extends (by associativity) to the outer product of scalars with
higher order blades.

We will denote scalars mostly by Greek lower case letters. Since they are
constructed by the outer product of zero vectors, we can interpret the scalars as the
representation in geometric algebra of 0-dimensional subspace elements, i.e. as a
weighted points at the origin – or maybe you prefer ‘charged’, since the weight can
be negative. This is indeed consistent, we will get back to that when intersecting
subspaces in Section 4.

2.8 The Grassmann algebra of 3-space

Collating what we have so far, we have constructed a geometrically significant
algebra containing only two operations: the addition + and the outer multiplica-
tion ^ (subsuming the usual scalar multiplication). Starting from scalars and a
3-dimensional vector space we have generated a 3-dimensional space of 2-blades,
and a 1-dimensional space of 3-blades (since all volumes are proportional to each
other). In total, therefore, we have a set of elements which naturally group by their

8 Leo Dorst and Stephen Mann

dimensionality. Choosing some basis fe1; e2; e3g, we can write what we have as
spanned by the set:8>><>>: 1|{z}

scalars

; e1; e2; e3| {z }
vector space

; e1 ^ e2; e2 ^ e3; e3 ^ e1| {z }
bivector space

; e1 ^ e2 ^ e3| {z }
trivector space

9>>=>>; (4)

Every k-blade formed by ^ can be decomposed on the k-vector basis using +.
The ‘dimensionality’ k is often called the grade or step of the k-blade or k-vector,
reserving the term dimension for that of the vector space which generated them. A
k-blade represents a k-dimensional oriented subspace element.

If we allow the scalar-weighted addition of arbitrary elements in this set of
basis blades, we get an 8-dimensional linear space from the original 3-dimensional
vector space. This space, with + and ^ as operations, is called the Grassmann
algebra of 3-space.

We have no interpretation (yet) for mixed-grade terms such as 1+e1. Actually,
even addition of elements of the same grade is hard to interpret in spaces of more
than 3 dimensions, since it easily leads to elements that cannot be decomposed
using the outer product – so to non-blades, i.e. objects that cannot be ‘spanned’ by
vectors. (For instance, e1 ^ e2 + e3 ^ e4 in 4-space cannot be written in the form
a ^ b – try it!) The general term for the sum of k-blades (for the same k) is k-
vector, and the general term for the mixed-grade elements permitted in Grassmann
algebra is multivector.

2.9 Many blades

¿From the way it is constructed through the anti-symmetric product, it should be
clear that the k-dimensional subspaces of an m-dimensional space have a basis
which consists of a number of independent elements equal to the number of ways
one can take k distinct indices from a set of m indices. That is

The linear space of k-vectors in m-space is (m
k
)-dimensional.

Adding them all up, we find:

The linear space of all subspaces of an m-dimensional vector space is
2m-dimensional.

To have a basis for all possible subspaces (through the origin) in 3-dimensional
space takes 23 = 8 elements, such as in eq.(4). You can characterize an element X
of that space therefore by a 8 � 1 matrix [X]. Since the outer product by another
element vector A is linear, A ^X can be written as the action of a linear operator

Geometric Algebra: a Computational Framework (DRAFT) 9

A^ on X , and hence be represented as a matrix multiplication [A^] [X], with [A^]
an 8� 8 matrix. This is not a particularly efficient representation, but it shows that
this algebra of + and ^ on a vector space is just a special linear algebra; a fact
which may give you some confidence that it is at least consistent.

When they just learn about this algebra, most people are put off by how many
blades there are, and some have rejected the practical use of geometric algebra
because of its exponentially large basis. This is a legitimate concern, and the im-
plementation just sketched obviously does not scale well with dimensionality. For
now, a helpful view may be to see this 2m-dimensional basis as a cabinet in which
all relationships which we may care to compute in the course of our computa-
tions in m-dimensional space can be filed properly: k-point relationships in the
(m
k
) files in the k-th drawer. And the files themselves have clear computational

relationships (we have seen the outer product, more will follow). This should be
compared to the usual way in which such k-point relationships are made whenever
they are needed, but not preserved in a structural way relating them algebraically
to the other relationships of the application. This simile suggests that there might
be some potential gain in building up the overall structure rather than reinventing
it several times along the way, as long as we make sure that this organization does
not affect the efficiency of individual computations too much. This paper should
provide you with sufficient material to ponder this new possibility.

3 Relative subspaces measures

The outer product gives computational meaning to the notion of ‘spanning sub-
spaces’. It does not use any metric structure which we may have available for our
original vector space V m. The familiar inner product of vectors in a vector space
does use the metric – in fact, it defines the metric, since it gives a bilinear form
returning a scalar value a �b for each pair of vectors, which can be used to defined
the distance measure

p
(a� b) � (a� b). Now that vectors are viewed as rep-

resentatives of 1-dimensional subspaces, we of course want to extend this metric
capability to arbitrary subspaces. This leads to the scalar product, and its meshing
with the outer product gives a generalized inner product between blades.

3.1 The scalar product: a metric for blades

Between two blades Ak and Bk of the same grade k, we can define a metric mea-
sure. The most computational way of doing so is to span each of the blades by k

vectors: Ak = a1 ^ aq ^ � � � ^ ak and Bk = b1 ^ bq ^ � � � ^ bk. Then the scalar

10 Leo Dorst and Stephen Mann

product between them is defined as:

Ak �Bk �

����������
a1 � bk a1 � bk�1 � � � a1 � b1
a2 � bk a2 � bk�1 � � � a2 � b1

...
...

. . .
...

ak � bk ak � bk�1 � � � ak � b1

����������
(5)

The unfortunate order of the factors was chosen historically. We get a nicer form
if we introduce an operation that reverses a factorization, for instance A = a1 ^
a2 ^ a3 would become a3 ^ a2 ^ a1. (We need this for other purposes as well,
or we would have preferred to fix the scalar product.) Due to the anti-symmetry
of the outer product, these differ only by a sign factor, for a k-blade a sign of

(�1)
1
2
k(k�1). We denote it by a tilde, so: eA = a3 ^ a2 ^ a1 = �A. Now eA �B

has nicely matching coefficients.
The value of eA � B is independent of the factorization of A and B, as you

may verify by the properties of determinants: adding a multiple of, say a2 to a1
leaves the blade A unchanged, so it should give the same answer. In eA �B, it leads
to addition of a multiple of the second column to the first, and this indeed leaves
the determinant unchanged – the two anti-symmetries in the definitions of ^ and �
match well. The value of eA � B is proportional to the cosine of the angle of the
two subspaces – if a rotation exists that rotates one into the other, otherwise it is
zero. The definition is extended to blades of different grade by setting A �B = 0
whenever the grades are different. So no scalar metric comparison is possible
between such different subspaces (but for them we have the inner product of the
next section).

The scalar product of a subspace with itself gives us the norm of the subspace,
defined as 1:

jAj =
qeA �A (6)

For a 2-blade A = a1 ^ a2, with an angle of � between a1 and a2, you may
verify that this gives jAj = ja1j ja2j j sin�j, the absolute value of the area measure,
precisely what one would hope.

3.2 The inner product

The geometric nature of blades means that there are relationships between the met-
ric measures of different grades: for instance, the angle two 2-blades make is re-
lated to that of two properly chosen vectors in their planes (see Figure 2). We

1This works only in a Euclidean metric in a real vector space; in other metrics one should define
the ‘norm squared’ and avoid the square root.

Geometric Algebra: a Computational Framework (DRAFT) 11

B

A ^B

A

BcC
C

B

A

C

Figure 2: The metric relationship between different spans.

should therefore be capable of relating those numerically. If a blade is spanned as
A^B, and we are interested in its measure relative toC we compute (A^B)�C;
but we should be able to find a similar measure between the subblade A, and some
subblade of C, which is ‘C with B taken out’. This can be used to define a new
product, through:

(A ^B) �C = A � (B �C); for all C (7)

The blade B �C is the inner product of B and C. Its grade is the difference of the
grades of C and B (since it should equal the grade of A in the definition). The
inner product can be interpreted more directly as

B �C is the blade representing the largest subspace which is con-
tained in the subspace C and which is perpendicular to the subspace
B; it is linear in B and C; it coincides with the usual inner product
b � c of V m when computed for vectors b and c.

The above determines the inner product uniquely2. It turns out not to be sym-
metrical (as one would expect since the definition is asymmetrical) and also not
associative. But we do demand linearity, to make it computable between any two
elements in our linear space (not just blades).

For later use, we just give the rules by which to compute the resulting inner
product for arbitrary blades, omitting their derivation. Then we will do some ex-
amples to convince you that it does what we want it to do. In the following �, �
are scalars, a and b vectors and A, B, C blades of arbitrary order. We give the
rules in a slightly redundant form, for convenience in evaluating expressions.

scalars � � � = � ^ � (8)
2The resulting inner product differs slightly from the inner product commonly used in the geo-

metric algebra literature. Our inner product has a cleaner geometric semantics, and more compact
mathematical properties, and that makes it better suited to computer science. It is sometimes called
the contraction, and denoted as BcC rather than B � C. The two inner products can be expressed
in terms of each other, so this is not a severely divisive issue. They ‘algebraify’ the same geometric
concepts, in just slightly different ways.

12 Leo Dorst and Stephen Mann

A

x �A
x

x ^A

Figure 3: The definition of the inner product of blades XXX where referred?.

vector and scalar a � � = 0 (9)

scalar and vector � � b = � ^ b (10)

vectors a � b is the usual inner product in V m (11)

vector and blade a � (b ^B) = (a � b) ^B� b ^ (a �B) (12)

blades (A ^B) �C = A � (B �C) (13)

distributivity 1 A � (B+C) = A �B+A �C (14)

distributivity 2 (A+B) �C = A �C+B �C (15)

It should be emphasized that the inner product is not associative. For instance,
a � (b � c) = 0 since the second argument is a scalar; but (a � b) � c = �c (with
� = a �b) is a vector. Neither is the inner product symmetrical, as the scalar/vector
rules show.

3.3 Perpendicularity and duality

Having the inner product expands our capabilities in geometric computations. It
enables manipulation of expressions involving ‘spanning’ to being about ‘perpen-
dicularity’ and vice versa. Such ‘dual’ formulations turn out to be very convenient.
We briefly develop intuition and basic conversion expressions for these manipula-
tions.

� perpendicularity
We define the concept of perpendicularity through the inner product:

a perpendicular to A () a �A = 0;

It is then easy to prove that, for general blades A, the construction A �B is
indeed perpendicular to A, as we suggested in the previous section. For any

Geometric Algebra: a Computational Framework (DRAFT) 13

vector a satisfies a �(A �B) = (a^A) �B. But if a is inA it must be linearly
dependent on the spanning vectors, so a^A = 0. Therefore a � (A �B) = 0
for any a in A. So any vector in A is perpendicular to A �B.

� orthogonal complement and dual
If we take the inner product of a blade relative to the volume element of the
space it resides in (i.e. relative to the pseudoscalar of the space), we get the
whole subspace perpendicular to it. This is how duality sits in geometric
algebra: it is simply taking an orthogonal complement. A good example
in a 3-dimensional Euclidean space is the dual of a 2-blade (or bivector).
Using an orthonormal basis feig3i=1 and the corresponding bivector basis,
we write: B = b1e2 ^ e3 + b2e3 ^ e1 + b3e3 ^ e2. We take the dual relative
to the space with volume element I3 � e1 ^ e2 ^ e3 (i.e. the ‘right-handed
volume’ formed by using a right-handed basis). Any scalar multiple would
do, but it turns out that the best definition is to use the reverse of I3 to define
the dual (since that generalizes to higher dimensions; here eI3 = �I3). The
subspace of I3 dual to B is then:

B � eI3 = (b1e2 ^ e3 + b2e3 ^ e1 + b3e1 ^ e2) � (e3 ^ e2 ^ e1)
= b1e1 + b2e2 + b3e3: (16)

This is a vector, and we recognize it (in this Euclidean space) as the normal
vector to the planar subspace represented by B. So we have normal vectors
in geometric algebra as the duals of 2-blades, if we would want them (but
we will see in Section 7.3 why we prefer the direct representation of a pla-
nar subspace by a 2-blade rather than the indirect representation by normal
vectors).

If it is clear from context relative to which pseudoscalar I the dual is taken,
we will use the convenient shorthand B� for B � eI.

� duality relationships
Going over to a dual representation involves translating formulas given in
terms of spanning to formulas using perpendicularity. An example is the
specification of a plane in 3-space given its 2-blade B. On the one hand,
all vectors in the plane satisfy x ^ B = 0 (zero volume spanned with the
2-blade); but dually they satisfy x � B� = 0 (perpendicular to the normal
vector). This is an example of a more general duality relationship between
blades, which we state without proof. Let A, B and I be blades, with A
contained in I (this is essential). Then:

(A �B) � I = A ^ (B � I) if A � I: (17)

14 Leo Dorst and Stephen Mann

Remember also the universally valid eq.(13)

(A ^B) � I = A � (B � I): (18)

Together, these equations allow the change to a ‘dual perspective’ converting
spanning to orthogonality and vice versa, permitting more flexible interpre-
tation of equations.

Let us use these to verify the motivating example above in full detail. In a
3-dimensional space with pseudoscalar I3, the equation x^B = 0 (meaning
that x is in the 2-dimensional subspace determined by B) can be dualized to
0 = (x ^ B) � eI3 = x � (B � eI3). This characterizes the vectors in the B-
plane through its normal vector n � B � eI3 = B

�. It is the familiar ‘normal
equation’ of the plane, and identical to the common way to represent a plane
by its normal vector n.

In general, we will say that a blade B represents a subspace B of vectors x
if

x 2 B () x ^B = 0 (19)

and that a blade B� dually represents the subspace B if

x 2 B () x �B� = 0: (20)

Switching between the two standpoints is done by the duality relations above.

� the cross product
Classical computations with vectors in 3-space often use the cross product,
which produces from two vectors a and b a new vector a�����b perpendicular
to both (by the right-hand rule), proportional to the area they span. We can
make this in geometric algebra as the dual of the 2-blade spanned by the
vectors:

a�����b � (a ^ b) � eI3: (21)

This shows a number of things explicitly which one always needs to remem-
ber about the cross product: there is a convention involved on handedness
(this is coded in the sign of I3); there are metric aspects since it is perpen-
dicular to a plane (this is coded in the usage of the inner product ‘ � ’); and
the construction really only works in three dimensions, since only then is the
dual of a 2-blade a vector (this is coded in the 3-gradedness of I3). The vec-
tor relationship a^b does not depend on any of these embedding properties,
yet characterizes the (a;b)-plane just as well.

Geometric Algebra: a Computational Framework (DRAFT) 15

You may verify that computing eq.(21) explicitly using eq.(1) and eq.(16)
indeed retrieves the usual expression:

a�����b = (a2b3 � a3b2) e1 + (a3b1 � a1b3) e2 + (a1b2 � a2b1) e3 (22)

In geometric algebra, we have the possibility of replacing the cross product
by more elementary constructions. In Section 7.3 we discuss the advantages
of doing so.

4 Intersecting subspaces

So far, we can span subspaces and consider their containment and orthogonality.
Geometric algebra also contains operations to determine the union and intersection
of subspaces. These are the join and meet operations. Several notations exist for
these in literature, causing some confusion. For this paper, we will simply use the
set notations [and \ to make the formulas more easily readable.3

4.1 Union of subspaces

The join of two subspaces is their smallest superspace, i.e. the smallest space
containing them both. Representing the spaces by blades A and B, the join is
denoted A [B. If the subspaces of A and B are disjoint, their join is obviously
proportional to A ^B. But a problem is that if A and B are not disjoint (which is
precisely the case we are interested in), then A [B contains an unknown scaling
factor which is fundamentally unresolvable due to the reshapable nature of the
blades discussed in Section 2.3 (see Figure 4; this ambiguity was also observed
by [13][Stolfi]). Fortunately, it appears that in all geometrically relevant entities
which we compute this scalar ambiguity cancels.

The join is a more complicated product of subspaces than the outer product
and inner product; we can give no simple formula for the grade of the result (like
eq.(3)), and it cannot be characterized by a list of algebraic computation rules.
Although computation of the join may appear to require some optimization process,
finding the smallest superspace can actually be done in virtually constant time.

3We should also say that there are some issues currently being resolved to make meet and join

a properly embedded part of geometric algebra since they produces blades modulo a multiplicative
scaling factor rather than actual blades. Most literature now uses them only in projective geometry,
in which there is no problem.

16 Leo Dorst and Stephen Mann

M

B

A

B
J

M

A

J

Figure 4: The ambiguity of scale for meet M and join J of two blades A and B.
Both figures are examples of acceptable solutions.

4.2 Intersection of subspaces

The meet of two subspaces A and B is their largest common subspace. If this is
the blade M, then A can be factorized as A = A

0 ^M and B as B = M ^ B0,
and their join is a multiple of A0 ^M ^B0 = A ^B0 = A

0 ^B. This gives the
relationship between meet and join.

Given the join J � A [B of A and B, we can compute their meet by the
property that its dual (with respect to the join) is the outer product of their duals
(this is a not-so-obvious consequence of the required ‘containment in both’). In
formula, this is:

(A \B) � eJ = (B � eJ) ^ (A � eJ) or (A \B)� = B
� ^A�

with the dual taken with respect to the join J. (The somewhat strange order is
a consequence of the factorization chosen above, and it corresponds to [13] for
vectors). This leads to a formula for the meet of A and B relative to the chosen
join (use eq.(18)) :

A \B = (B � eJ) �A: (23)

Let us do an example: the intersection of two planes represented by the 2-blades
A = 1

2
(e1+e2)^ (e2+e3) and B = e1^e2. Note that we have normalized them

(this is not necessary, but convenient for a point we want to make later). These are
planes in general position in 3-dimensional space, so their join is proportional to
I3. It makes sense to take J = I3. This gives for the meet:

A \B = 1
2
((e1 ^ e2) � (e3 ^ e2 ^ e1)) � ((e1 + e2) ^ (e2 + e3))

= 1
2
e3 � ((e1 + e2) ^ e3)

= �1
2
(e1 + e2) = � 1p

2
(
e1 + e2p

2
) (24)

(the last step expresses the result in normalized form). Figure 5 shows the answer;
as in [13] the sign of A \ B is the right-hand rule applied to the turn required to
make A coincide with B, in the correct orientation.

Geometric Algebra: a Computational Framework (DRAFT) 17

e3

A

e2e1

B

A \B

Figure 5: An example of the meet

Classically, one computes the intersection of two planes in 3-space by first
converting them to normal vectors, and then taking the cross product. We can see
that this gives the same answer in this non-degenerate case in 3-space, using our
previous equations eq.(17), eq.(18), and noting that eI3 = �I3:

(A � eI3)�����(B � eI3) =
�
(A � eI3) ^ (B � eI3)� � eI3

=
�
(B � eI3) ^ (A � eI3)� � I3

= (B � eI3) � �(A � eI3) � I3�
= (B � eI3) � �A ^ (eI3 � I3)�
= (B � eI3) �A:

So the classical result is a special case of eq.(23), but that formula is much more
general: it applies to the intersection of subspaces of any grade, within a space of
any dimension. With it, we begin to see some of the potential power of geometric
algebra.

When the meet is a scalar, the two subspaces intersect in the point at the origin.
This is in agreement with our geometrical interpretation in Section 2.7 of scalars
as the weighted point at the origin. Scalars are geometrical objects, too!

The norm of the meet gives an impression of the ‘strength’ of the intersection.
Between normalized subspaces in Euclidean space, the magnitude of the meet is
the sine of the angle between them. From numerical analysis, this is a well-known
measure for the ‘distance’ between subspaces in terms of their orthogonality: it is
1 if the spaces are orthogonal, and decays gracefully to 0 as the spaces get more
parallel, before changing sign. This numerical significance is very useful in appli-

18 Leo Dorst and Stephen Mann

b

a

c

x

Figure 6: Ratios of vectors

cations.

5 Ratios of subspaces

With subspaces as basic elements of computation, we would really like to com-
plete our algebra by the ability to solve equations in similarity problems such as
indicated in Figure 6:

Given two vectors a and b, and a third vector c, determine x so
that x is to c as b is to a, i.e. solve (in a symbolic notation which we
will soon make exact):

x

c
=
b

a
(25)

Such equations require a division of subspaces (here vectors), and so, really, an
invertible product of subspaces. This geometric product is at the core of geometric
algebra, and it is a rather amazing construction, at first sight.

5.1 The geometric product

For vectors, the geometric product is defined in terms of the inner and outer product
as:

ab � a � b+ a ^ b (26)

So the geometric product of two vectors is an element of mixed grade: it has a
scalar (0-blade) part a � b and a 2-blade part a ^ b. It is therefore not a blade;
rather, it is an operator on blades (as we will soon show). Changing the order of a
and b gives:

ba � b � a+ b ^ a = a � b� a ^ b
The geometric product of two vectors is therefore neither fully symmetric (or
rather: commutative), nor fully anti-symmetric.

Geometric Algebra: a Computational Framework (DRAFT) 19

x

a

x ^ a fixed

x � a fixed

Figure 7: Invertibility of the geometric products.

A simple drawing may convince you that the geometric product is indeed in-
vertible, whereas the inner and outer product separately are not. In Figure 7, we
have a given vector a. We denote the set of vectors x with the same value of the
inner product x � a – this is a plane perpendicular to a. The set of all vectors with
the same value of the outer product x ^ a is also denoted – this is the line of all
points which span the same directed area with a. Neither of these sets is a sin-
gleton (in spaces of more than 1 dimension), so the inner and outer products are
not fully invertible. The geometric product provides both the plane and the line,
and therefore permits determining their unique intersection x, as illustrated in the
figure. Therefore it is invertible.

Note that the geometric product is sensitive to the relative directions of the
vectors: for parallel vectors a and b, the outer product contribution is zero, and
ab is a scalar and commutative in its factors; for perpendicular vectors, ab is a
2-blade, and anti-commutative. In general, if the angle between a and b is � in
their common plane with unit 2-blade I, we can write (in a Euclidean space):

ab = jaj jbj (cos �+ I sin�) (27)

We will see below that I I = �1, so this is very reminiscent of complex numbers.
More about that later, we mention it here to make the construction of the different
grade elements in eq.(26) somewhat less outrageous than it may appear at first.

Eq.(26) defines the geometric product only for vectors. For arbitrary elements
of our algebra it is defined using linearity and associativity, and making it coincide
with the usual scalar product in the vector space, as the notation already suggests.
That gives the following axioms (where � and � are scalars, x is a vector, A is a

20 Leo Dorst and Stephen Mann

general element of the algebra):

scalars �� and �x have their usual meaning in V m (28)

scalars commute �A = A� (29)

vectors xA = x �A+ x ^A (30)

associativity A (BC) = (AB)C (31)

distributivity 1 A (B + C) = AB +AC (32)

distributivity 2 (A+B)C = AC +BC (33)

(One can avoid the reference to the inner and outer product through replacing
eq.(30) by ‘the square of a vector x must be equal to the scalar Q(x;x)’, with
Q the bilinear form of the vector space. Then one can re-introduce inner and outer
product through the commutative properties of the geometric product:

a � b = 1
2
(ab+ ba) and a ^ b = 1

2
(ab� ba): (34)

This is mathematically cleaner, but too indirect for our purpose here.)
It may not be obvious that these equations give enough information to compute

the geometric product of arbitrary elements. Rather than show this abstractly, let us
show by example how the rules can be used to develop the geometric algebra of 3-
dimensional Euclidean space. We introduce, for convenience only, an orthonormal
basis feig3i=1. Since this implies that ei � ej = Æij , we get the commutation rules:

eiej =

(
�ejei if i 6= j

1 if i = j
(35)

In fact, the former is equal to ei ^ ej , whereas the latter equals ei � ei. Considering
the unit 2-blade e1 ^ e2, we find for its square:

(ei ^ ej)2 = (ei ^ ej) (ei ^ ej) = (ei ej) (ei ej)

= ei ej ei ej = �ei ei ej ej = �1 (36)

So a unit 2-blade squares to �1 (we just computed for e1 ^ e2 for convenience,
but there is nothing exceptional about that particular unit 2-blade, since the basis
was arbitrary). Continued application of eq.(35) gives the full multiplication for
all basis elements in the Clifford algebra of 3-dimensional space. The resulting
multiplication table is given in Figure 8. Arbitrary elements are expressible as a
linear combination of these basis elements, so this table determines the full algebra.

Geometric Algebra: a Computational Framework (DRAFT) 21

C̀ 3 1 e1 e2 e3 e12 e31 e23 e123

1 1 e1 e2 e3 e12 e31 e23 e123

e1 e1 1 e12 �e31 e2 �e3 e123 e23

e2 e2 �e12 1 e23 �e1 e123 e3 e31

e3 e3 e31 �e23 1 e123 e1 �e2 e12

e12 e12 �e2 e1 e123 �1 e23 �e31 �e3
e31 e31 e3 e123 �e1 �e23 �1 e12 �e2
e23 e23 e123 �e3 e2 e31 �e12 �1 �e1
e123 e123 e23 e31 e12 �e3 �e2 �e1 �1

Figure 8: The multiplication table of the geometric algebra of 3-dimensional Eu-
clidean space, on an orthonormal basis. Shorthand: e12 = e1 ^ e2, etcetera.

5.2 Invertibility of the geometric product

The geometric product is invertible, so ‘dividing by a vector’ has a unique meaning.
We will usually do this through ‘multiplication by the inverse of the vector’. Since
multiplication is not necessarily commutative, we have to be a bit careful: there is
a ‘left division’ and a ‘right division’.

As you may verify, the unique inverse of a vector a is:

a
�1 =

a

a � a =
a

jaj2

since that is the unique element that satisfies: a�1 a = 1 = aa
�1. Similarly, a

blade A (of which the norm should not be zero) has the inverse

A
�1 =

eA
A � eA =

eA
jAj2

(the reverse is due to the definition of the norm in eq.(6)).

5.3 Projection of subspaces

The availability of an inverse gives us an interesting of way of decomposing a
vector x relative to a given blade A using the geometric product:

x = (xA)A�1 = (x �A)A�1 + (x ^A)A�1 (37)

The first term is a blade fully inside A: it is the projection of x ontoA. The second
term is a vector perpendicular toA, sometimes called the rejection of x by A. The

22 Leo Dorst and Stephen Mann

x

a

(x � a)=a

x

a

(a) (b)

(x ^ a)=a

axa
�1

Figure 9: (a) Projection and rejection of x relative to a. (b) Reflection of x in a.

projection of a blade X onto a blade A is given by the extension of the above, as:

projection of X onto A: X 7! (X �A)A�1

Again geometric algebra has allowed a straightforward extension to arbitrary di-
mensions of subspaces, without additional computational complexity.

5.4 Reflection of subspaces

The reflection of a vector x relative to a fixed vector a can be constructed from
the decomposition of eq.(37) (used for a vector a), by changing the sign of the
rejection (see Figure 9b). This can be rewritten in terms of the geometric product:

(x � a)a�1 � (x ^ a)a�1 = (a � x+ a ^ x)a�1 = axa
�1:

So the reflection of x in a is the expression axa�1, see Figure 9b; the reflection
in a plane perpendicular to a is then �axa�1,

We can extend this formula to the reflection of a blade X relative to the vector
a, this is simply:

reflection in vector a: X 7! aXa
�1:

and even to the reflection of a blade X in a k-blade A, which turns out to be:

general reflection: X 7! � (�1)kAXA
�1:

Note that these formulas permit you to do reflections of subspaces without first
decomposing them in constituent vectors. It gives the possibility of reflection a
polyhedral object by directly using a facet representation, rather than acting on
individual vertices.

Geometric Algebra: a Computational Framework (DRAFT) 23

5.5 Angles as geometrical objects

We have found in eq.(36) that any unit 2-blade I in a Euclidean space satisfies
I
2 = �1, so this is also true for the unit 2-blade occurring in eq.(27). Therefore,

using the usual definition of the exponential as a converging series of terms, we are
actually permitted to write the geometric product in an exponential form:

ab = jaj jbj (cos �+ I sin�) = jaj jbj eI� (38)

with I the unit 2-blade containing a and b, oriented from a to b. This exponential
form will be very convenient when we do rotations. Note that all elements occur-
ring in this equation have a straightforward geometrical interpretation, we are not
doing complex numbers here! (Really, we aren’t: I is not a complex scalar, since
then it would have to commute with all elements of the algebra by eq.(29), but it
instead satisfies a I = �Ia for vectors a in the I-plane.)

The combination I� is a full indication of the angle between the two vectors: it
denotes not only the magnitude, but also the plane in which the angle is measured,
and even the orientation of the angle. If you ask for the scalar magnitude of the
geometrical quantity I� in the plane �I (the plane ‘from b to a’ rather than ‘from
a to b’), it is ��; so the scalar value of the angle automatically gets the right
sign. The fact that the angle as expressed by I� is now a geometrical quantity
independent of the convention used in its definition removes a major headache
from many geometrical computations involving angles. We call this true geometric
quantity the bivector angle (it is just a 2-blade, of course, not a new kind of element
– but we use it as an angle, hence the name).

5.6 Rotations in the plane

Using the inverse of a vector, we can now solve the motivating problem of eq.(25),
to find a vector x that is to c as b is to a. Denoting the 2-blade of the (a^b)-plane
by I, we obtain:

xc
�1 = ba

�1

so that

x = (ba�1) c =
jbj
jaj e

�I�
c (39)

Here I� is the angle in the I plane from a to b, as in eq.(38), so �I� is the angle
from b to a. If we happen to have jaj = jbj, we get x = e�I�c; apparently we
should interpret ‘pre-multiplying by e�I�’ as a rotation operator in the I-plane.
The full expression of eq.(39) denotes a rotation/dilation in the I-plane.

24 Leo Dorst and Stephen Mann

c=I

c

Rc = e�I� c = c eI�

I-plane

Figure 10: Coordinate-free specification of rotation.

Let us write this out, to get familiar with the geometric algebra way of looking
at rotations:

e�I� c = c cos �� Ic sin� = c cos �+ cI sin�

What is cI? Introduce orthonormal coordinates fe1; e2g in the I-plane, with e1
along c, so that c � c e1. Then I = e1 ^ e2 = e1 e2. Therefore cI = c e1 e1e2 =
c e2: it is c turned over a right angle, following the orientation of the 2-blade I
(here anti-clockwise). So c cos � + cI sin� is ‘a bit of c plus a bit of its anti-
clockwise perpendicular’ – and those amounts are precisely right to make it equal
to the rotation by �, see Figure 10.

If you use a classical rotation matrix in 2 dimensions, it does precisely this con-
struction, but in a coordinate system that is adapted to an arbitrary basis fe1; e2g,
rather than to c. That is why you then need 4 coefficients, to describe how each
of those 2 basis vectors turns. Geometric algebra is coordinate-free in this sense:
orthogonal directions can be made from the vectors for which you need them in
a coordinate-free manner. Then a specification of the rotation requires only 2
trigonometric functions, just for the scaling of those 2 components.

5.7 Rotations in 3 dimensions

Two subsequent reflections in lines which make an angle of �=2 in a plane with
unit 2-blade I constitute a rotation over � in the I-plane. In 2-dimensional space,
this is obvious, but it also works in 3-dimensional space, see Figure 11 (and even in
m-dimensional space). It gives us the way to express general rotations in geometric
algebra.

Two successive reflections of a vector x in vectors u and v give

v (uxu�1)v�1 =
v

jvj
u

juj x
u

juj
v

jvj = e�I�=2 x eI�=2

Geometric Algebra: a Computational Framework (DRAFT) 25

x

�=2

u

v

�

I

e�I�=2xeI�=2 = v
�1(u�1xu)v

u
�1
xu

IeI3I3

Figure 11: A rotation as 2 reflections in vectors u and v, making an angle of I�=2.

where we used the exponential notation for the geometric product of two unit vec-
tors (I is the unit 2-blade from u to v). The expression for the rotation is therefore
directly given by the bivector angle, i.e. by angle and rotation plane. An operator
e�I�=2, used in this way, is called a rotor. Writing out this expression in terms of
the perpendicular component x? (rejection) and the parallel component xk (pro-
jection) of x relative to the I plane gives

rotation over I�: x 7! e�I�=2 x eI�=2 = x? + e�I� xk (40)

(this is a good exercise, it requires I x? = x? I and I xk = �xk I; why do these
hold?). So the perpendicular component to the rotation plane is unchanged (as it
should!), and the parallel component becomes pre-multiplied by e�I�. We have
seen in eq.(39) that this is a rotation in the I-plane. (In fact, we could have defined
the higher dimensional rotation by the right hand side of eq.(40) and then derived
the left hand side.)

26 Leo Dorst and Stephen Mann

5.8 Combining rotations

Two successive rotations R1 and R2 are equivalent to a single new rotation R of
which the rotor R is the geometric product of the rotors R1 and R2, since

R2R1 xR
�1
1 R�1

2 = (R2R1)x (R2 R1)
�1 � RxR�1:

This applies in 3-dimensional space as well as in 2-dimensional space. Therefore
the combination of rotations is a simple consequence of the definition of the geo-
metric product on rotors, i.e. elements of the form e�I�=2 = cos�=2 � I sin�=2,
with I2 = �1. (We could allow a scalar factor in the rotor, since the inverse divides
it out; yet it is common to restrict rotor to be normalized to unity – then one can
replace R�1 by eR, defining the rotation by Rx eR. Reversion is a simpler (cheaper)
operation than inversion, though the normalization may add some additional com-
putational cost.)

Let’s see how it works in 3-space. In 3 dimensions, we are used to specifying
rotations by a rotation axis a rather than by a rotation plane I. The relationship
between axis and plane is given by duality: a � I � eI3 = �I I3 (check that this
indeed gives the correct orientation). Given the axis a, we therefore find the plane
as the 2-blade I = �a I�13 = aI3 = I3a. A rotation over an angle � around an
axis with unit vector a is therefore represented by the rotor e�I3a�=2.

To compose, say, a rotation R1 around the e1 axis of �=2 with a subsequent
rotation R2 over the e2 axis over �=2, we write out their rotors:

R1 = e�I3e1�=4 =
1� e23p

2
and R2 = e�I3e2�=4 =

1� e31p
2

The total rotor is their product, and we rewrite it back to the exponential form to
find the axis:

R � R2R1 = 1
2
(1� e23) (1 � e31) = 1

2
(1� e23 � e31 � e12)

= 1
2
� 1

2

p
3 I3

e1 + e2 + e3p
3

= e�I3a�=3

Therefore the total rotation is over the axis a = (e1 + e2+ e3)=
p
3, over the angle

2�=3. But of course you do not need to decompose the resulting rotor into those
geometrical constituents: you can apply it immediately to a vector x as RxR�1,
or even to an arbitrary blade through the formula:

general rotation: X 7! RXR�1

This enables you to rotate a plane in one operation, for instance:

R(e1 ^ e2)R�1 = 1
4
(1� e23 � e31 � e12) e12 (1 + e23 + e31 + e12) = e23

No need to decompose the plane into its spanning vectors first!

Geometric Algebra: a Computational Framework (DRAFT) 27

5.9 Quaternions: based on bivectors

You may have recognized the example above as strongly similar to quaternion
computations. Quaternions are indeed part of geometric algebra, in the following
straightforward manner.

Choose an orthonormal basis feig3i=1. Construct out of that a bivector basis
with elements e12 � e1^e2(= e1 e2) and cyclic. Note that these elements satisfy:
e
2
12 = e

2
23 = e

2
31 = �1, and e12 e23 = e13 (and cyclic) and also e12 e23 e31 = 1.

In fact, setting i � e23, j � �e31 and k � e12, we find i2 = j2 = k2 = i j k = �1
and j i = k and cyclic. Algebraically these objects are the quaternions obeying the
quaternion product, commonly interpreted as some kind of ‘4-D complex number
system’. There is nothing ‘complex’ about quaternions; but they are not really vec-
tors either (as some still think) – they are just real 2-blades in 3-space, denoting
elementary rotation planes, and multiplying through the geometric product. Visu-
alizing quaternions is therefore straightforward: each is just a rotation plane with
a rotation angle, and the ‘bivector angle’ concept represents that well (the corre-
sponding quaternion is simply its exponential, elevating the bivector angle to a
rotation operator).

5.10 Constructing rotors

For a 2-dimensional rotation, if you know for certain that a vector e has been
rotated to become a vector f (which therefore necessarily has the same norm) by a
rotation in the e ^ f -plane, it is easy to find a rotor that does that:

R = 1 + fe

(if you want the unit rotor, you need to normalize this). For a 3-dimensional ro-
tation, if you know an orthonormal frame feig3i=1 which has rotated to the frame
ffig3i=1, then a rotor doing that is:

R = 1 + f1e1 + f2e2 + f3e3

(which needs to be normalized if you want a unit rotor). This formula can be
generalized simply to non-orthonormal frames, see [11]. Warning: the formulas
do not work for rotations over � (there is then no unique rotation plane!) – but are
very useful elsewhere.

6 Differentiation

Geometric algebra also has a much extended operation of differentiation, which
contains the classical vector calculus, and much more. It is possible to differentiate

28 Leo Dorst and Stephen Mann

with respect to a scalar or a vector, as before, but now also with respect to k-
blades. This enables efficient encoding of differential geometry, in a coordinate-
free manner, and gives an alternative look at differential shape descriptors like the
‘second fundamental form’ (it becomes an immediate indication of how the tangent
plane changes when we slide along the surface).

Somebody should rewrite classical differential geometry texts into geometric
algebra; but this has not been done yet and it would lead too far to do so in this
introductory paper. Let us just briefly show the scalar differentiation of a rotor, to
demonstrate how the commutation rules of geometric algebra naturally group to a
well-known classical result, which is then automatically extended beyond vectors.

So, suppose we have a rotor R = e�I�=2, and use it to produce a rotated version
X = RX0

eR of some constant blade X0. Scalar differentiation with respect to
time gives (using chain rule and commutation rules):

d

dt
X = d

dt
(e�I�=2X0e

I�=2)

= �1
2
d

dt
(I�)(e�I�=2X0e

I�=2) + 1
2
(e�I�=2X0e

I�=2) d

dt
(I�)

= 1
2
(X d

dt
(I�)� d

dt
(I�)X)

= X� d

dt
(I�)

using the commutator product � defined in geometric algebra as the shorthand
A � B � 1

2
(AB � BA); this product often crops up in computations with Lie

groups such as the rotations. This simple expression which results assumes a more
familiar form when X is a vector x in 3-space, the rotation plane is fixed so that
d

dt
I = 0, and we introduce a scalar angular velocity ! � d

dt
�. It is then common

practice to introduce the vector dual to the plane as the angular velocity vector !!!!,
so !!!! � !I � eI3 = !I=I3. We then obtain:

d

dt
x = x � d

dt
(I�) = x � (!!!! I3) = (x ^!!!!) I3 = !!!!�����x

where ����� is the vector cross product. As before when we treated the meet and other
operations, we find that an equally simple geometric algebra expression is much
more general; here it describes the differential rotation of k-dimensional subspaces
in n-dimensional space, rather than merely of vectors in 3-D.

Similar generalizations result for differentiation relative to blades; the inter-
ested reader is referred to the tutorial of [2], which introduces these differentiations
using examples from physics.

7 Linear algebra

In the classical ways of using vector spaces, linear algebra is an important tool.
In geometric algebra, this remains true: linear transformations are of interest in

Geometric Algebra: a Computational Framework (DRAFT) 29

their own right, or as first order approximations to more complicated mappings.
Indeed, linear algebra is an integral part of geometric algebra, and acquires much
extended coordinate-free methods through this inclusion. We show some of the
basic principles; much more may be found in [2] or [10].

7.1 Outermorphisms: spanning is linear

When vectors are transformed by a linear transformation on the vector space, the
blades they span can be viewed to transform as well, simply by the rule: ‘the
transform of a span of vectors is the span of the transformed vectors’. This means
that a linear transformation f : V n ! V n on a vector space has a natural extension
to the whole geometric algebra of that vector space, as an outermorphism, i.e. a
mapping that preserves the outer product structure:

f(a1 ^ a2 ^ � � � ^ ak) � f(a1) ^ f(a2) ^ � � � ^ f(ak):

Note that this is grade-preserving: a k-blade transforms to a k-blade. To this we
have to add what the extension does to scalars, which is simply: f(�) = �.

This outermorphism definition has immediate consequences. Apply it to a
pseudoscalar Im, which is an m-blade: it must produce another m-blade. But
the linear space of m-blades in m-dimensional vector space is 1-dimensional, so
this must again be a multiple of Im. That multiple is precisely the determinant of f
in m-dimensional space:

det(f) = f(Im)I�1m :

The determinant is thus simply the change of hypervolume under f. This is nothing
new, but it is satisfying that all the usual properties of the determinant, including its
expression in terms of coordinates, follow immediately from this straightforward,
coordinate-free definition.

7.2 Linear transformation of the inner product

The transformation rule for the inner product now follows automatically from the
definition through eq.(7), and is found to be rather more involved:

f(A � B) = f
�1(A) � f(B);

where f is the adjoint of f, defined by

f(A) � B = A � f(B) for all A and B:

(In terms of matrices on an orthonormal basis, f is the mapping represented by the
transpose of the matrix representing f.)

30 Leo Dorst and Stephen Mann

7.3 No normal vectors or cross products!

Since the inner product transformation under a linear mapping is so involved, one
should steer clear of any constructions that involve the inner product, especially in
the characterization of basic properties of one’s objects. Therefore the practice of
characterizing a plane by its normal vector – which contains the inner product in
its duality, see Section 3.3 – should be avoided. Under linear transformations, the
normal vector of a transformed plane is not the transform of the normal vector of
the plane! (this is a well known fact, but always a shock to novices). The normal
vector is in fact a cross product of vectors, which (as you may verify from eq.(21)
and the above) transforms as:

f(a�����b) = f
�1(a)�����f

�1(b)=det(f)

and that is usually not equal to f(a)�����f(b). It is therefore much better to char-
acterize the plane by a 2-blade, now that we can. The 2-blade of the transformed
plane is the transform of the 2-blade of the plane, since linear transformations are
outermorphisms preserving the 2-blade construction. Especially when the planes
are tangent planes constructed by differentiation, 2-blades are appropriate: under
any transformation f , the construction of the tangent plane is only dependent on
the first order linear approximation mapping f of f . Therefore a tangent plane rep-
resented as a 2-blade transforms simply under any transformation (and the same
applies of course to tangent k-blades in higher dimensions). Using blades for those
tangent spaces should enormously simplify the treatment of object through differ-
ential geometry, especially in the context of affine transformations – but this has
not yet been done.

8 All you need is blades: models of geometries

So far we have been treating only homogeneous subspaces of the vector spaces,
i.e. subspaces containing the origin. We have spanned them, projected them, and
rotated them, but we have not moved them out of the origin to make more interest-
ing geometrical structures such as lines floating in space.

There is a very nice way of making such basic primitives in geometric alge-
bra. At first it looks like a straightforward embedding of the classical ideas behind
‘homogeneous coordinates’, but it rapidly becomes much more powerful than that.
It creates an algebra of points (rather than vectors). We present three models of
Euclidean space, all useful to computer graphics, and show how the geometric al-
gebra of those models implements totally different semantics using the same basic
products (but in different spaces). This goes much beyond resolving the issues
raised in the classical papers by Goldman [6, 7].

Geometric Algebra: a Computational Framework (DRAFT) 31

8.1 The vector space model

The most straightforward model of Euclidean space represents its points by the
translation vectors required to get there. We call those position vectors. This rep-
resentation strongly depends on the location of the origin. It is well known [6] that
this easily leads to bad representations and software which depend heavily on the
chosen origin. It is inappropriate to take the position vectors a and b as ‘being’
the points A and B, and then form new points by addition of their vectors. The
construction a + b cannot represent a geometrical point, for its value changes as
the origin changes, and no geometrically relevant objects should depend on that.

Still, the vector space model of a Euclidean space is appropriate for translation
vectors (the null translation is special: it is the identity operation) and for tangent
planes to a manifold (again, the origin is special since it is where the tangent space
is attached to the manifold). For those, a+b has a clear meaning: it is the resultant
translation or resultant velocity, of a point. Beyond these applications, one has to
be careful with the vector space model.

The products between vectors are just as much part of the model as the em-
bedding of the points themselves (this is a point which Goldman [6, 7] neglects
somewhat in his discussion of representations). In the vector space model, they
simply have the meaning we have used throughout this paper: the outer product
constructs the higher-dimensional proper subspaces; the inner product constructs
the orthogonal complement of subspaces; and the geometric product gives us the
rotation/dilation operator between subspaces. Elementary combinations of these
give us projection and reflection. Note that all these operations are origin-centered
in this model: rotations are around an axis through the origin, reflections are in
planes through the origin, etcetera. It is simple to shift them out of the origin of
course, but algebraically, that is a ‘hack’ – it would be much more tidy if we could
find a representation in which those operations are all elementary relationships be-
tween blades (and we will). Even an basic concept like the Euclidean distance
between two points P and Q is a fairly involved expression – we have to formp

(p� q) � (p� q) to obtain this geometric invariant. It would be much nicer if
this elementary concept were one of the elementary products.

The vector space model, then, contains a lot of the basic elements to do Eu-
clidean geometry, especially when we consider its full geometric algebra of higher
dimensional subspaces. But we can do better, tidying up the algebra by embedding
Euclidean geometry of Em in a space of more than m dimensions and using the
geometric algebra of that space to describe the Euclidean objects and operators of
interest.

32 Leo Dorst and Stephen Mann

8.2 The homogeneous model

We can get rid of the special nature of the origin, by (paradoxically!) introducing a
vector representing it. To represent an m-dimensional Euclidean space Em in this
way, we must introduce an extra dimension and obtain an (m + 1)-dimensional
representation space. This is the familiar homogeneous model or affine model of
the vector space.

8.2.1 Points as vectors

Let the unit vector for the extra dimension be denoted by e0. This vector must be
perpendicular to all regular vectors in the Euclidean space Em, so e0 �x = 0 for all
x 2 Em. We let e0 denote ‘the point at the origin’. A point at any other location p
is made by translation of the point at the origin over p. This is done by adding p
to e0. This construction therefore gives the representation of the point at location
p as the vector p in (m+ 1)-dimensional space:

p = e0 + p

This is no more than the usual homogeneous coordinates; we have extended the
m-dimensional vector by an e0-coordinate to make an (m+1)-dimensional vector
capable of representing a point in m-dimensional space.

We will denote vectors in the m-dimensional Euclidean space in bold, and vec-
tors in the (m+1)-dimensional model in italic. You can visualize this construction
as in Figure 12a (necessarily drawn for m = 2).

8.2.2 Off-set flats as blades

Now let us look at how we can interpret the higher grade elements of the geometric
algebra of this (m+1)-dimensional space. A vector in (m+1)-space is apparently
the representation of a point in Em, i.e. a 0-dimensional affine subspace element.
What does a 2-blade p^q formed by two vectors p and q represent, in other words,
what is the semantics of the outer product in this homogeneous model? We com-
pute

p ^ q = (e0 + p) ^ (e0 + q) = e0 ^ (q� p) + p ^ q

We recognize the vector q�p, and the area spanned by p and q. Both are elements
which we need to describe an element of the directed line through the points p and
q. The former is the direction vector of the directed line, the latter is an area which
we will call the moment of the line through p and q. It denotes the distance to the
origin, for we can rewrite it to a rectangle spanned by the direction (q � p) and

Geometric Algebra: a Computational Framework (DRAFT) 33

p
p ^ a

e0 e0e0

(a) (b) (c)

Emp Emp

v

q
Em

p

v

p ^ q

Figure 12: Representing offset subspaces of Em in m+ 1-dimensional space.

any vector on the line, such as p or 1
2
(p+ q) or the perpendicular support vector

d:

p ^ q = p ^ (q� p) = 1
2
(p+ q) ^ (q� p) = d ^ (q� p) (41)

where d is defined by d^ (q�p) = p^q and d � (q�p) = 0. (These equations
can be solved using the geometric product to give: d = (p ^ q)(q � p)�1, a nice
example of the use of division by vectors.)

So the outer product p ^ q can be used to represent a directed line element of
the line pq. However, note that p ^ q is not a line segment: neither p nor q can be
retrieved from p ^ q. The 2-blade is just a line element of specified direction and
length, somewhere along the line through p and q (in that order).

As a blade, we can use p ^ q to give an equation for the whole line: a point x
is on the line through p and q if and only if x ^ (p ^ q) = 0. Let’s verify that:

x ^ p ^ q = e0 ^ (p ^ q� x ^ (q� p)) + x ^ p ^ q (42)

This is zero if and only if two conditions hold: (1) x ^ (q � p) = p ^ q =
p ^ (q � p), so that x = p + �(q � p) which is indeed the usual line equation;
and (2) x ^ p ^ q = 0 – but this holds when we have satisfied the first condition.

Geometrically, a point x lies on the line through p and q if the vector x in the
homogeneous model lies in the plane spanned by p and q: eq.(42) is the state-
ment that they span no volume. This is depicted in Figure 12b or c. You see
that the geometry of homogeneous subspaces of 3-space is a faithful representa-
tion of the geometry of offset subspaces in 2-space. In the classical homogeneous
model, one can only use this fact for the representation of points, since with vec-
tors one can only span 1-dimensional subspaces representing 0-dimensional offset
subspace. With geometric algebra, we can suddenly use this idea to describe any
affine (i.e. offset) subspace. We simply continue this construction: an element of
the oriented plane through the points p, q and r is represented by p ^ q ^ r, and so
on for higher dimensional ‘offset’ subspaces – if the space has enough dimensions
to accommodate them.

34 Leo Dorst and Stephen Mann

8.2.3 Equivalence of alternative characterizations

A special and rather satisfying property of this construction is its insensitivity to
the kind of objects we use to construct the subspace. Of course the element of the
line through p and q is determined by two points, or by a point and a direction. We
would normally think of those as different constructions. However, in geometric
algebra

p ^ q = p ^ (q� p) (43)

(verify this!). So the two are exactly equal, they produce the same element by the
same operation of ‘taking the outer product’. Moreover, the intrinsic ‘sliding’ sym-
metry of the support vector (any of p+�(q�p) can be used) is also automatically
absorbed in the representation p^q due to the ‘sliding’ symmetry of the outer prod-
uct term p^q in it. For instance, we may rewrite it as p^q = 1

2
(p+q)^ (q�p),

showing that the midpoint 1
2
(p+q) is on the carrier line. We have in p^ q just the

right mixture of specificity and freedom to denote the desired geometric entity.
You may verify that in general, a k-dimensional subspace element B deter-

mined by the points at locations p0; � � �pk is represented in the homogeneous
model by the (k + 1)-blade

B = p0 ^ � � � ^ pk

and that this is equivalent, by the rules of computation for the outer product, to
specifying it by a point and k directions

B = p0 ^ (p1 � p0) ^ � � � ^ (pk � p0)

or any intermediate form specifying some positions and some directions. It is satis-
fying not to have to make different data-structures for those many ways of specify-
ing this single geometrical object; the ‘constructor’ ^ takes care of it automatically.
Testing of equivalence of various objects is therefore much simplified. The paper
[12] goes on to use this to develop a complete ‘simplicial calculus’ for simplices
specified in this manner, deriving advanced results in a highly compact algebraic
and computational manner.

8.2.4 Intersection and incidence

The meet and join operations can be applied immediately to blades in the homo-
geneous model, and return blades representing the intersection and union of the
corresponding Euclidean entities. Of course meet and join should be implemented
as basic operations, but it pays to look in a little more detail how the various ele-
ments of the Euclidean results are packaged in a single homogeneous result, to get

Geometric Algebra: a Computational Framework (DRAFT) 35

a feeling for the power of the representation. To do so we consider separate cases
– but we emphasize that the meet and join themselves do not show such a breakup
in cases explicitly: they are handled completely internally and automatically.

� line and hyperplane
When intersecting a line with a hyperplane in general position (two lines
in 2-space, a line and a plane in 3-space), the meet produces the unique
intersection point, weighted by an ‘intersection strength’ denoting how per-
pendicular the intersection is, and hence how significant numerically.

Let the line be p ^ u, and the hyperplane q ^V, both in general position in
m-dimensional space with pseudoscalar I. Then their join is Im, and we get
for their meet after some rewriting:

(p ^ u) \ (q ^V) = e0u
� �V+ (p ^ u)� �V � u� � (V ^ q)

(duality relative to Im), and this therefore represents the point at location

(p ^ u)� �V � u� � (V ^ q)
u� �V

So we obtain a clear geometrical entity as a result of such a meet, as long
as u� � V 6= 0; which is the demand u ^ V 6= 0 equivalent to the linear
independence demand usually expressed as a determinant in the classical
treatment. Note how the point is fully expressible in closed form, using only
basic geometric operations.

� parallel lines
Geometric algebra still gives consistent results when we compute the meet

between subspaces that do not geometrically intersect in the classical sense.

For instance, between two parallel lines p ^ u and q ^ u, in a plane with
2-blade I determining their join and the corresponding duality, we get (after
some rewriting):

(p ^ u) \ (q ^ u) = ((p� q) ^ u)�u;

exhibiting the common directional part u, weighted by a scalar magnitude
proportional to the distance of the lines. This is still clearly interpretable, and
more importantly, one can continue to compute with it since it is a regular
element of the algebra. Its only unusual aspect is in its interpretation, not in
its computational properties.

36 Leo Dorst and Stephen Mann

� skew lines
Similarly, by a direct computation (see [4]), you may establish that two skew
lines p^u and q ^ v in 3-dimensional space (which therefore have a join of
e0 ^ I3 in the homogeneous model), have a meet of

(p ^ u) \ (q ^ v) = ((p� q) ^ u ^ v)�

(with duality relative to I3). This is a scalar, proportional to the perpendic-
ular signed distance between the two lines (weighted by the meet of their
directions u \ v = (u ^ v)=I2 in their common plane I2).

These examples suggest that the meet is not just an intersection operation: it is a
general incidence operation, which computes the highest order geometric object in
common between its arguments. That may be an actual offset subspace (as in the
first example), or the scalar distance, possibly as a factor for common directional
elements. All are legitimate outcomes in the full framework of geometric algebra,
and we have to learn how to write algorithms using this new and stronger notion of
incidence in its computation – it would prevent the splits into the different kinds of
incidence which are required in the classical approach, and which are the potential
source of so many errors.

8.3 The conformal model

A recently developed model of Euclidean space Em is the conformal model V n+1;1.
This is a true algebra of points, or rather, an algebra of spheres (with points be-
ing spheres of zero radius). Again, points at locations p and q are represented
by vectors p and q in the model, but now in a manner such that the inner product
represents their Euclidean distance:

p � q = �1
2
(p� q)2 (44)

In particular, p � p = 0, so that points are represented by vectors which have –
in their representative space – a zero norm! To do this and still have a complete
geometric algebra requires two extra dimensions, so an m-dimensional Euclidean
space is now represented using the geometric algebra of an (m + 2)-dimensional
space. Moreover, one of these extra dimensions is represented by a basis vector
which squares to �1 (such spaces are known as Minkowski spaces).

A useful basis for this space is: an orthonormal basis for the Euclidean space
embedded in it, and the vectors e0 and e1 to represent the point at the origin, and
the point at infinity, respectively. The two satisfy: e0 �e1 = 1, they are null vectors:
e0 � e0 = 0 and e1 � e1 = 0, and they are orthogonal to the Euclidean subspace,

Geometric Algebra: a Computational Framework (DRAFT) 37

so that e0 � x = 0 and e1 � x = 0 for any x 2 Em. The representation of a point p
of Euclidean space in this conformal model is the vector:

p = e0 + p� 1
2
p
2e1

(or a scalar multiple). You may verify that p2 = 0, and that

p �q = (e0+p� 1
2
p
2e1) �(e0+q� 1

2
q
2e1) = �1

2
q
2+p �q� 1

2
p
2 = �1

2
(q�p)2

as desired.
Any point x on the hyperplane perpendicularly bisecting the line segment pq

satisfies (x� p)2 = (x� q)2, and therefore:

x � (q � p) = 0:

It follows that q� p = (q�p)� 1
2
(q2�p2)e1 dually represents the midplane of

p and q, see eq.(20). In general, a hyperplane with orthogonal support vector d is
(dually) represented by the vector

d = d
�1 � e1

or any multiple of it, such as n � Æe1 with n its normal vector and Æ the support
along n of the hyperplane. You may verify that the equation x � d = 0 is indeed
equivalent to the normal hyperplane equation x � n = Æ.

8.3.1 Spheres are blades

The direct expression of the Euclidean distance by the inner product in eq.(44)
implies that the equation

x � c = �1
2
�2

is the equation of a sphere with radius � and center c. We rewrite this to

x on sphere with radius � and center c () x � (c+ 1
2
�2e1) = 0;

so this shows that the vector c + 1
2
�2 dually represents a sphere. Where the ho-

mogeneous model can be used to code a hyperplane by a homogeneous normal
vector, the conformal model (dually) represents a complete sphere by a single rep-
resentative vector! In the conformal model, (dual) spheres are basic elements of
computation. We get an algebra of spheres; a point is just a (dual) sphere of radius
zero.

The direct (rather than dual) representation of a sphere is through the wedge
product: spheres are blades in the conformal model. This is obvious since the

38 Leo Dorst and Stephen Mann

dual of the vector c + 1
2
�2e1 is an (m � 1)-blade in the (m + 2)-dimensional

representation space. So, we have:

x on sphere through p, q, r, s () x ^ (p ^ q ^ r ^ s) = 0:

Moreover, the two representations are exactly dual in the conformal representa-
tion, so we can compute the center and radius of a sphere given by four points
immediately through using:

p ^ q ^ r ^ s = (c+ 1
2
�2e1)

�

It is very satisfying that these two totally different specifications of a sphere should
be literally duals of each other, i.e. perpendicular to each other in the representative
space of the conformal model. It is also a very pleasant surprise that the very
complicated symmetries of four points determining the same sphere are simply
reduced to the anti-symmetry of the outer product (as were the symmetries of the
support vectors of hyperplanes in the homogeneous model). Spheres are not really
new objects requiring totally new products – as long as you treat them in their own
algebra, they behave just like subspaces.

We note that p ^ q is a 1-dimensional sphere, i.e. the computational represen-
tation of a point pair. In contrast to the homogeneous model, p ^ q now really has
the semantics of a localized line segment rather than merely a line element.

8.3.2 Intersection of spheres

In the homogeneous model we saw that a factorization like eq.(43) gave literal
equivalence of the same geometric object specified in different ways. Such simpli-
fications also occur in the conformal model. Indeed, the dual equivalence of the
sphere specifications just treated can be used in this way. Another example is the
intersection of two spheres, which should produce a circle in a well-defined plane.
Let us take a simple example, equal sized spheres of radius � at opposite sides �c
of the origin. The dual of their intersection is computed as the outer product of
their duals, which can then be rewritten in more convenient form:

(e0 � c� 1
2
(c2��2)e1) ^ (e0 + c� 1

2
(c2��2)e1) = 2c ^ (e0 + 1

2
(c2��2)e1)

The right hand side is immediately recognizable as the dual of the intersection of
a hyperplane with normal c through the origin (its dual representation is c) with a
sphere at the origin of radius c2��2. So these two alternative representations of the
intersection circle are just two factorizations of the element of geometric algebra
representing it (many other factorizations exist). Note how we can compute directly
with spheres and planes rather than with equations asserting properties of points
on it.

Geometric Algebra: a Computational Framework (DRAFT) 39

8.3.3 Unification of translations and rotations

The conformal model unites rotations and translations in a satisfying manner: both
are representable as the exponent of a 2-blade. We have seen that the rotations
require a 2-blade I�=2 denoting a plane in the Euclidean space, and that a rotation
can then be represented as

rotation: x 7! e�I�=2xeI�=2:

A translation turns out to be representable as the exponent of a 2-blade e1 ^ p=2
containing the point at infinity and the translation vector p. Because e1 squares to
zero and commutes with p, we obtain

ee1p=2 = 1 + e1p=2:

You can now use this to verify that the translation of the point at the origin (repre-
sented by e0) indeed gives the point at p:

p = e�e1p=2e0e
e1p=2 = e0 + p� 1

2
p
2e1:

Having rotations and translations in the same form permits a concise treatment of
rigid body motions, presenting new unifying insights in traditional representations
such as screws [9]. This may well transfer them from theoretical mechanics to
practical computational geometry, as the next refinement after quaternions.

9 Conclusion

This introduction of geometric algebra intends to alert you to the existence of a
limited set of products that appears to generate all geometric constructions in one
consistent framework. Using this framework can simplify the set of data structures
representing objects since it inherently encodes all relationships and symmetries
of the geometrical primitives in those operators (an example was eq.(41)). Also,
it could serve as a straight-jacket for the specification of geometric algorithms,
preventing the unbridled invention of new operations and objects without clear
and clean geometrical meaning, or well-defined relationships to other objects in
the application. If our hopes are correct, this straight-jacket would actually not
be a limitation on what one can construct; rather it contains precisely the right
set of operations to provide a precise language for arbitrary constructions. The
basic operations even have the power to model the geometry of spheres and their
interactions; thus the same syntax admits of varied semantics.

That such a system exists is a happy surprise to all learning about it. Whether
it is also the way we should structure our programming is at the moment an open

40 Leo Dorst and Stephen Mann

question. Use of the conformal model would require representing the computa-
tions on the Euclidean geometry of a 3-dimensional space on a basis of 23+2 = 32
elements, rather than just 3 basis vectors (plus 1 scalar basis). It seems a hard sell.
But you often have to construct objects representing higher order relationships be-
tween points (such as lines, planes and spheres) anyway, even if you do not encode
them on such a ‘basis’. Also, our investigations show that perhaps all one needs
to do all of geometry are blades and operators composed of products of vectors;
the product combinations of this limited subset can be optimized in time and space
requirements, with very little overhead for their membership of the full geometric
algebra. That automatic membership would enable us to compute directly with
lines, planes, circles and spheres and their intersections without needing to worry
about special or degenerate cases, which should eliminate major headaches and
bugs. We also find the coordinate-free specification of the operations between ob-
jects very attractive; relegating the use of coordinates purely to the input and output
of geometric objects banishes them from the body of the programs and frees the
specification of algorithms from details of the data structures used to implement
them. Such properties makes geometric programs so much more easy to verify,
and – once we have learned to express ourselves fluently in this new language – to
construct.

We are currently investigating these possibilities, doing our best to make the
geometric algebra approach a reasonable alternative. The main delay now is that
the algebra dictates a new way of thinking about geometry which requires one to
revisit many old constructions. This takes time, but is worthwhile since it appears
to simplify the whole structure of geometric programming. At the very least, we
would hope geometric algebra to be a useful meta-language in which to specify
geometric programs; but the proven efficiency of quaternions, which are such a
natural part of geometric algebra, suggests that we might even want to do our low-
level computations in this new computational framework.

10 Further reading

There is a growing body of literature on geometric algebra. Unfortunately much
of the more readable writing is not very accessible, being found in books rather
than journals. Little has been written with computer science in mind, since the
initial applications have been to physics. No practical implementations in the form
of libraries with algorithms yet exist (though there are packages for Maple [1] and
Matlab [5] which can be used as a study-aid or for algorithm design). We would
recommend the following as natural follow-ups on this paper:

� GABLE: a Matlab package for geometric algebra, accompanied by a tutorial

Geometric Algebra: a Computational Framework (DRAFT) 41

[5].

� The introductory chapters of ‘New Foundations of Classical Mechanics’ [8].

� An introductory course intended for physicists [2].

� An application to a basic but involved geometry problem in computer vision,
with a brief introduction into geometric algebra [11].

� A paper showing how linear algebra becomes enriched by viewing it as a
part of geometric algebra: [10].

If you read them in approximately this order, you should be alright. We are work-
ing on texts more specifically suited for a computer graphics audience; these will
probably first appear as SIGGRAPH courses.

References

[1] A. Lasenby, M. Ashdown et al., GA package for Maple V, 1999, available at
http://www.mrao.cam.ac.uk/˜clifford/software/GA/

[2] C. Doran and A. Lasenby, Physical Applications of Geometric Algebra, 2001,
available at http://www.mrao.cam.ac.uk/˜clifford/ptIIIcourse/

[3] C. Doran, A. Lasenby, S. Gull, Chapter 6: Linear Algebra, in: Clifford (Geo-
metric) Algebras with applications in physics, mathematics and engineering,
W.E. Baylis (ed.), Birkhäuser, Boston, 1996.

[4] L. Dorst, Honing geometric algebra for its use in the computer sci-
ences, in: Geometric Computing with Clifford Algebra, G. Sommer, ed-
itor;, Springer ISBN 3-540-41198-4, expected 2000, Preprint available at
http://www.wins.uva.nl/˜leo/clifford/

[5] L.Dorst, S.Mann, T.A.Bouma, GABLE: a Geometric AlgeBra Learning En-
vironment, www.science.uva.nl/˜leo/clifford/gable.html

[6] R. Goldman, Illicit Expressions in Vector Algebra, ACM Transactions of
Graphics, vol.4, no.3, 1985, pp. 223—243.

[7] R. Goldman, The Ambient Spaces of Computer Graphics and Geometric
Modeling, IEEE Computer Graphics and Applications, vo.20, pp. 76–84,
2000.

42 Leo Dorst and Stephen Mann

[8] D. Hestenes, New foundations for classical mechanics, 2nd edition, D. Rei-
del, Dordrecht, 2000.

[9] D. Hestenes, Old wine in new bottles, in: Geometric Algebra: A Geometric
Approach to Computer Vision, Quantum and Neural Computing, Robotics
and Engineering, Bayro-Corrochano, Sobczyk, eds, Birkhäuser, to be pub-
lished 2000, Chapter 24, pp. 498-520.

[10] D. Hestenes, The design of linear algebra and geometry, Acta Applicandae
Mathematicae 23: 65-93, 1991.

[11] J. Lasenby, W. J. Fitzgerald, C. J. L. Doran and A. N. Lasenby. New Geo-
metric Methods for Computer Vision Int. J. Comp. Vision 36(3), p. 191-213
(1998).

[12] G. Sobczyk, Simplicial Calculus with Geometric Algebra, in: Clifford Alge-
bras and their Applications in Mathematical Physics, A. Micali et al. eds.,
Kluwer 1993.

[13] J. Stolfi, Oriented projective geometry, Academic Press, 1991.

