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GEOMETRIC, ALGEBRAIC, AND ANALYTIC DESCENDANTS

OF NASH ISOMETRIC EMBEDDING THEOREMS

MISHA GROMOV

Abstract. Is there anything interesting left in isometric embeddings after
the problem had been solved by John Nash? We do not venture a definite
answer, but we outline the boundary of our knowledge and indicate conjectural
directions one may pursue further.

Our presentation is by no means comprehensive. The terrain of isomet-
ric embeddings and the fields surrounding this terrain are vast and craggy
with valleys separated by ridges of unreachable mountains; people cultivating
their personal gardens in these “valleys” only vaguely aware of what happens

away from their domains and the authors of general accounts on isometric
embeddings have a limited acquaintance with the original papers. Even the
highly cited articles by Nash have been carefully read only by a handful of
mathematicians.

In order not to mislead the reader, we try be open about what we do and
what we do not know firsthand and to provide references to what is missing
from the present paper.
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1. Isometric Embeddings Xn → Rq
According to John Nash

In 1954–1966 Nash discovered several new constructions of isometric embed-
dings1 from Riemannian n-manifolds X = (X,g) to the Euclidean spaces Rq for
some universal q = q(n).

Using these constructions, he proved the following.

1.1. Three Isometric Embedding Theorems.

C1-Theorem. C0-Riemannian n-manifolds (i.e., with continuous Riemannian
metrics) admit isometric C1-embeddings into the Euclidean space R2n.
(C1

-isometric imbeddings. Ann. Math. 60 (1954), 383–396 [62]).

Smooth Embedding Theorem. Compact Cr-Riemannian n-manifolds for r =
3, 4, . . . ,∞ admit isometric Cr-embeddings to Rq for q = 3sn+4n, where sn = n(n+1)

2
,

and non-compact ones admit such embeddings to Rq for q = (n + 1)(3sn + 4n).
(The imbedding problem for Riemannian manifolds. Ann. Math. 63 (1956),
20–63 [63]).

1“Isometric” here means preserving the lengths of the curves. If such an isometric map f ∶X →
Y is C1-smooth, then it is necessarily a smooth immersion, i.e., its differential Df is injective on
all tangents spaces Tx(X).

Equivalently, an isometric immersion between Riemannian manifolds, f ∶ (X,g) → (Y,h), is a
C1-smooth map, such that the (quadratic differential) form (Df)⋆(h) on X induced from h by
the differential of f equals g.

The relation (Df)⋆(h) = g written in local coordinates becomes a system of sn =
n(n+1)

2
,

n = dim(X), first order partial differential equations in q = dim(Y ) unknown functions on X; being
a topological embedding, i.e., beng a homeomorpism onto its image, is of secondary importance for
these f .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DESCENDANTS OF NASH ISOMETRIC EMBEDDING THEOREMS 175

Can-Embedding Theorem.2 Compact real analytic Riemannian n-manifolds
admit isometric real analytic embeddings to Rq for the same q = 3sn + 4n.
(Analyticity of the solutions of implicit function problems with an-

alytic data. Ann. Math. 84 (1966), 345–355 [64]).

Nash’s solution of the long-standing isometric embedding problem had galvanised
the mathematical community, but the reaction to the new concepts and ideas behind
these theorems was far from uniform.

The general principles underlying Nash’s constructions suggested a transplanta-
tion of isometric immersions to a land of a new kind of mathematics positioned far
away from classical differential geometry and analysis, and foreign to most mathe-
maticians of 1950s.

Unsurprisingly, it took about 15 years for the global geometry and geometric
topology community to achieve the level of maturity needed to absorb and to al-
low a development of the most profound and innovative ideas ingrained in Nash’s
constructions.

On the other hand analytically trained mathematicians, who regarded Nash’s
paper to be “difficult” (some insist on this until the present day), have focused on
Nash’s technical—let them be amazingly fecund and versatile—lemmas, notably on
his perturbation, also called implicit function, theorem, and kept rewriting Nash’s
proofs (often incomplete fragments of these) in the traditional language.3

But if you read Nash’s writings in earnest, the mirage of difficulties disappears
and new vistas open before your eyes; much of what was dark and obscure becomes
obvious, e.g., the beautifully transparent logic of his proof of the implicit func-
tion/perturbation theorem that is better adapted to geometric applications than
its later renditions.

The main goal of the present article is a general introduction to remaining open

problems, where, to be self-contained, we reproduce all background definitions,
propositions and non-technical arguments. For more general results and detailed
proofs, we refer to the corresponding sections in [35], my 1986 Springer book Partial
Differential Relations, which contains an extended account on the work of Nash.

Many of these problems can, probably, be solved following in the steps of Nash,
but the most intresting among them need an influx of new ideas.

1.2. Twelve Sample Questions and Conjectures.
Nash’s dimensions q > 3sn and especially his q > (n + 1)sn for non-compact

manifolds are extravagantly large if compared with the local case, where one has
the following

Can-Local Theorem of Janet, Cartan, and Burstin. Can-Riemannian n-
manifolds admit local4 isometric Can-embeddings to Rsn .

1It still remains problematic, even for n = 2, whether a similar result holds for
C∞-metrics—this is called the C∞-local Schläfli conjecture—but definitely one
cannot go below q = sn.

2Can stands for real analytic.
3Contrary to what you often hear, nobody has managed to improve or to simplify the analytic

results obtained by Nash. But Nash’s style smoothing techniques were remarkably applied by
Jürgen Moser to the KAM theory of Hamiltonian systems—subject matter I am not qualified to
discuss.

4“Local” means in a small neighbourhood of a given point.
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176 MISHA GROMOV

Generically (and rather obviously), real analytic Riemannian n-manifolds admit
no sufficiently smooth5 local isometric immersions to Rq for q < sn.

But if q > sn, one expects (isn’t it too “optimistic”?) that smooth isometric
immersions Xn → Rq are (almost) as abundant as in the much larger dimensions
where they were constructed by Nash.

For instance, taking some topological precautions (that may or may not be nec-
essary), we suggest the following

2 (sn + 1)-Conjecture.6 Cr-smooth parallelisable (e.g., diffeomorphic to the n-
tori) Riemannian n-manifolds, n ≥ 2, admit isometric Cr-immersions to Rq for
q = sn + 1 and all r = 1, 2, 3, . . . ,∞, an.

Moreover, there is a stronger version of this conjecture that does not even need
the concept of a Riemannian manifold which is formulated below in the real analytic
case.

Let {τi}i=1,...,n be a frame of linearly independent Can-vector fields on an N -
dimensional manifold X.

3 Orthogonal Frame Conjecture. There exists a real analytic map f ∶ X → Rq

for q = sn + 1 = n(n+1)
2

+ 1, such that the images of these fields under the differential
Df ∶ T (X) → T (Rq) are orthonormal at all x ∈X.

The smallest q available today for 2 is q = (n+1)(n+2)
2

+ 4 = sn + n + 5 for C∞-

and Can-manifolds, due to Mattias Günther (1989) [41] [42],7 while “addition of
dφ2 by Nash twist” from 3.12 applies in the context of 3 and delivers the proof for
q = sn+2 = sn + 2n + 3.

Although no obstruction for isometric Can-immersions of parallelisable Can-
Riemannian n-manifolds to Rsn for n > 2 is anywhere in sight yet, it seems probable
that

4 generic analytic perturbations of the standard flat metric on the n-torus Tn

admit no isometric Can-immersions to Rsn .
Yet, at the present day, one can neither rule out the possibility that small analytic

perturbations gε of the flat metric on T3 can be induced by analytic perturbations of
the standard embedding T3 ⊂ R6 nor show that gε can be induced by perturbations
of this embedding in the ambient space R7 ⊃ R6 ⊃ T3.

(The former is an analytic problem lying beyond our present means, while the
latter, probably, may be resolved by purely algebraic means; see section 3.6.2.)

5A rough counting-parameters argument shows that Cr for r > (sn − 1)n+ 1 is smooth enough
for this purpose, where a better bound on r follows from the Gauss formula.

6The existence of smooth isometric immersions of (compact?) surfaces to R4 was proposed as
a conjecture by Chern around 1950.

7In general, with no parallelisability assumption, Günther constructs his isometric C∞-

embeddings Xn → Rq for q = qgun = sn + 2n =
n(n+1)

2
+ 2n. But since I failed to penetrate

Günther’s analytic writing, the best I can vouch is q = sn+2 = sn + 2n + 3 (see 3.1.7 in [35] 1986).
Notice also, that Günther carries out his construction only for C∞-metrics, while the construc-

tion from [35] allows Cr,α-Hölder embedding of Cr,α-metrics for all r ≥ 4 and α > 0 (including
plain Cr for r ≥ 5 and Can). But (Xn, g) ↦ Rq embedding of Cr,α-metrics g with 2 < r + α ≤ 4
(including C3 and C4) are available by perturbation+embedding theorems from [35], only for
q = (sn +2n)+(sn +2n+3) = n2 +5n+3 where “3” can be removed with qgun = sn +2n and where

one can go down to q = (sn + n + 1) + (sn + n + 5) for parallellisable manifolds X.
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DESCENDANTS OF NASH ISOMETRIC EMBEDDING THEOREMS 177

Amazingly,
5the minimal q is unknown even for smooth isometric immersions of

(non-split!) flat n-tori to Rq.
(Compact flat n-manifolds X admit no isometric C2-immersions X → R2n−1,

while the smallest known q where all such manifolds X embed is q = sn + int[ 1
2
n];

see 3.12.)

Outrageous C2-Immersion Conjecture. By his construction of isometric
C1-embeddings, Nash demonstrated, contrary to conventional wisdom, that regu-
larity required of an isometric embedding is an essential condition rather than a
technicality.

But does something of the kind happen for regularity classes (significantly)
above C1?8

For example:
6do there exist, for a given r = 2, 3, 4, . . . , real analytic or C∞-smooth Riemannian

manifolds X of dimension n that admit isometric Cr-immersions to Rqr for some
qr = qr(X) but no isometric Can- or C∞-immersions to Rq for q ≤ (1 + cr)qr for
some cr > 0 and all sufficiently large n?

7Are generic Can-manifolds like that?
If so, then they would be isometrically Cr-immersible to Rq for q significantly

smaller than sn for large n.
But how could it be, for instance, no matter what n is, that

8all (at least “reasonably generic”) Can-manifolds would admit isometric (let them
be local) C2-immersions to Rq for q < sn?

If this is impossible, then the gap discussion for general metrics collapses to
nothing, but. . .

there are no known obstructions to local isometric C2-immersions (X,g) → Rq

except those implied by the Gauss formula expressing the (intrinsic) curvature of g
by the (extrinsic) curvature of f .

Now, the curvature of g has n2(n2−1)
12

≈ s2n
3

components, while the (extrinsic)
curvature of f that is the (second) quadratic form on X with values in the normal
bundle of X ⊂

f
Rq has sn(q − n) components.

Since the Gauss formula is invariant under orthogonal transformations of
the normal spaces of X ⊂

f
Rq, the number of relevant parameters reduces to

sn(q − n) − (q−n)(q−n+1)
2

.

This shows that if sn(q−n)− (q−n)(q−n+1)2
< n2(n2−1)

12
, then generic smooth (or real

analytic, if you wish) Riemannian n-manifolds admit no isometric C2-immersions
to Rq.

This also suggests that if snq − q2

2
is “significantly greater” than

s2n
3

(that is if

q >> sn(1− 1√
3
)), then all curvature tensors at a point x0 ∈X come from curvatures

of maps X → Rq. This seems an easy algebraic problem but, if true, it may (?)
lead to something more interesting.

8C1,α-Hölder maps for smallish α are studied from this angle in [7], [8], [52], [15] (we return
to this in 3.5.5); and see [1], [55], [56], [65] for less than C1-regular maps.
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9 Conjecture. If q >> (1 − 1√
3
)sn where, for safety’s sake, this relation is inter-

preted here as

q > (1 − 1

2
√
3
)sn + n ≈ 0.36n2 + 1.36n,

then all C∞-smooth (C2-smooth?) Riemannian n-manifolds admit local (global?)
isometric C2-immersions to Rq.

Of course, looking from the classical perspective, one would expect that, for all n,
only very special metrics on n-manifolds admit isometric C2-immersions to Rsn−1.

C2
-Immersions with Prescribed Curvatures

The Nash C1-embedding theorem has the following counterpart for C2-immer-
sions with prescribed curvatures (see 3.1.5 in [35]) that offers “non-classical evi-
dence” in favour of something even stronger than the outrageous C2-conjecture:

Let the extrinsic curvature of a C2-immersion X → Rq be defined as a function
on the tangent bundle of X, say K+ =K+(τ), τ ∈ Tx(X), x ∈X, such that

K+(τ) = ∣∣τ ∣∣4curv2(τ),

where curv2(τ) denotes the Euclidean curvature of the curve f(γ) ⊂ Rq at f(x) ∈ Rq

for a geodesic γ ⊂ X tangent to τ , and ∣∣τ ∣∣ stands for the Euclidean norm of the
vector Df(τ) ∈ Tf(x)(Rq).

Observe that this K+(τ) is a positive polynomial function of degree four on
the tangent spaces Tx(X) that can be regarded as a 4-form, that is a symmetric
differential form of degree four on X.

Let X = (X.g) be a C∞-smooth Riemannian n-manifold. Then there exists a
continuous 4-form K+0 on X that depends on g, such that

all continuous 4-forms K+ on X that are greater than K+0 , i.e., such that K(τ) ≥
K0(τ), τ ∈ T (X), are realisable as extrinsic curvatures of isometric C2-immersions

X→Rq for q = sn + 3n + 5 = (n+2)(n+5)
2

.
Observe that such immersions, which are given by q functions, satisfy a system

of

q+ = n(n + 1)
2

+ n(n + 1)(n + 2)(n + 3)
24

differential equations in q variables, where this system is grossly overdetermined for
large n.

The simplest instance of such a system can be seen for X = Rn, where “largeness
of K+” reduces to “strict positivity” where a symmetric 4-form on a linear space
T is called strictly positive if the corresponding quadratic form on the symmetric
square of T is positive definite.9

Namely let {Ki,j,k,l(x)}, x ∈ Rn, 1 ≤ i, j, k, l ≤ n, be an n4-tuple of continuous
functions that is symmetric under the permutations of the four indices and such
that the corresponding symmetric form K+x is strictly positive for all x ∈X. Then

9The extrinsic curvatures K+ of immersions f ∶ X → Rq are positive; such K+ are strictly
positive for free immersions f , i.e., such that the vectors of the first and second partial derivatives,
∂if(x), ∂ijf(x) ∈ Tf(x)(R

q), are linearly independent.
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there exists an isometric C2-immersion f ∶ Rn → Rq, q = sn + 3n + 5 = (n+2)(n+5)
2

,
such that the second partial derivatives of f satisfy

◻ ∑
symijkl

⟨∂ijf, ∂klf⟩ =Ki,j,k,l 1 ≤ j ≤ k ≤ l ≤ n,

where the summation is taken over the 24 permutations of the indices i, j, k, l.10

10Impossible Question. Do all sufficiently smooth Riemannian manifolds X
admit isometric C2-immersions f ∶ X → Rq with prescribed curvatures for

q < sn = n(n+1)
2

?11

Rigidity Problem. The study of “bending” of an X = Xn ⊂ Rq, which are
non-trivial12 deformations that preserve the induced Riemannian metrics in X,
goes back to Gauss and Cauchy. This preceded the very idea of an isometric im-
mersion of an “abstract” manifold (X,g) to Rq, but the following issue has remained
unsettled even in the local analytic category.

11Question. Under what assumptions on n, q and r do there exist a Cr-smooth
and Cr-rigid (i.e., unbendable) n-dimensional submanifold X in the q-dimensional
Euclidean space Rq.

Here, counting parameters tells you that if q < sn = n(n+1)
2

and r is large, say

r > n3

2
, then

generic Xn ⊂ Rq must be, locally as well as globally, rigid unless there is some
miraculous identity between high derivatives of the (extrinsic) curvatures of this
Xn.

On the other hand, generic Can-submanifolds X =Xn ⊂ Rq are never locally rigid
for q ≥ sn by the Janet (Burstin) Extension Lemma, which allows extension
of isometric Can-immersions f0 and their bendings from submanifolds X0 ⊂ X
to X under a certain Janet-Burstin genericity/regularity condition on immersions
f0 ∶ X0 → Rq.

But it is conceivable that
12some exceptional “non-Janet” Can-submanifolds Xn ⊂ Rq for q = sn

(for q > sn?) are locally rigid or, at least have “abnormally few” bendings.
(It is even less clear what to expect in the C∞-case.)
In fact this does happen for n = 2 and q = s2 = 3 by the following amazing

Hopf-Schilt-Efimov Local Rigidity Theorem. The space of germs of ana-
lytic surfaces X ⊂ R3 localised at a point x0 ⊂ X contains a finite codimensional
subspace of Can-rigid ones.

The essential feature (Hopf-Schilt, 1939) of these rigid X ⊂ R3 is that their Gauss
maps G ∶ X → S2 are local ramified coverings of degrees deg(GX) > 1 at G(x0) ∈ S2

where the Can-rigidity of generic X with deg(GX) = d is established (Efimov 1949)
for d = 8. (See 3.1.9 in [35] and references therein.)

Probably, rigidity persists for all d = 3, 4, . . . , but it is unknown if there are
locally C∞-rigid surfaces in the 3-space (which seems unlikely) and/or if there are

10This is a correction of the example following theorem (A) in 3.1.5 in [35].
11Since such an f cannot be free, one may need to impose some additional “degeneracy condi-

tion” on K+ realisable by curvatures of maps f or to relax the condition on f by prescribing not
the full curvature of f but only some function(s) of the curvature.

12“Trivial” here means coming from isometries of Rq .
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locally Can-rigid surfaces in R3 with different local topologies of their Gauss maps.
And it is hard to imagine Can-rigid surfaces in Rq for q ≥ 4.

2. Where Is the New Land?

One may continue with questions about relations between regularity classes and
the topology/geometry of the source manifolds with the dimensions q of the ambient
spaces, but the most compelling problems raised by Nash’s results are not about
these.

Nash, like Columbus, unintentionally discovered a new land. Refining and im-
proving Nash’s isometric imbedding results would be like building bigger and faster
ships than those in which Columbus had crossed the Atlantic.

But what is this new land? What is its geography, geology, ecology? How can
one explore and cultivate this land? What can one build on this land? What is its
future?

It may be hard to decide what this land is, but it is easy to say what it is not:
what Nash discovered is not any part of Riemannian geometry,
neither does it have much (if anything at all) to do with classical PDEs.

Nash’s theorems are only superficially similar to the existence (and non-existence)
results for isometric embeddings that rely on PDEs and/or on

relations between intrinsic, i.e., induced Riemannian, and
extrinsic geometries of submanifolds in Euclidean spaces.

(The primary instance of the latter is the proof of the existence of isometric im-
mersions of surfaces with positive curvatures to the Euclidean 3-space R3 by means
of elliptic a priori estimates, that are certain bounds on the extrinsic curvature of
a locally convex surface X ⊂ R3 in terms of the intrinsic Gauss curvature of X.)

Nash’s results point in the opposite direction:
typically, the geometry of a Riemannian manifold X
has no significant influence on its isometric embeddings to Rq.

In order to get an idea of what kind of mathematics may lie in this “opposite
direction”, we shall look at Nash’s theorems and his proofs from a variety of different
perspectives.

2.1. Waring Connection. “Isometric” for a C1-map f = (f1, f2, . . . , fq) ∶ (X,g) →
Rq can be written in terms of the differentials of the functions fj as

q

∑
j=1

df2
j = g.

(Here and below dfp stands for (df)p.)
By extending this to p > 2, we formulate the following

13 Differential Waring Problem.13 What is the minimal q such that all sym-
metric differential forms g of degree p = 2, 3, 4, . . . from a given “natural class” of
forms on a smooth manifold X admit decompositions to the sums of pth powers of
differentials of Cr-functions fi ∶X → R, j = 1, 2, . . . , q?

Almost all questions concerning isometric immersions of Riemannian manifolds
to Euclidean spaces have their obviously formulated counterparts for p > 2. But
available answers are less satisfactory mainly because of algebraic complications,

13The classical Diophantine Waring Problem is about decomposing integers to sums of pth
powers.
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e.g., due to various kinds of “positivity” for forms of even degrees. (Fully working
out these algebraic problems may be difficult, but achieving significant progress
seems feasible.)

The role of sn = sn,2 = n(n+1)
2

is taken here by

sn,p =
n(n + 1)⋯(n + p − 1)

p!
= np

p!
+O(np−1), n = dim(X),

that is the dimension of pth symmetric power of the linear n-space.
Thus, the representation ∑q

i=1 df
p
i = g amounts to a system of sn,p partial differ-

ential equations of the first order imposed on the functions fi on X, i = 1, . . . , q;
hence, the C∞-solution for general g is expected only for q ≥ sn,p.

But the q = q(n, p) available today for p > 2 are much bigger than sn,p.
For instance, Nash’s Cr-perturbation techniques, combined for even p ≥ 4 with

Hilbert’s decomposition (see below), shows14 that if r > 2 (including Hölder Cr,α for
r + α > 2 as well r = ∞, an), then

(⋆) Cr-forms g on (possibly non-compact) n-manifolds X are decomposable to
sums of pth powers of differentials of Cr-functions fi on X,

g =
q

∑
i=1

dfp
i

for

q = (2p + 1)sn,p + constp
sn
n
,

where the forms g for even p need to be positive definite when regarded as quadratic
forms on the symmetric square T (X) p

2 of the tangent bundle of X.
Turning to C1-decompositions for continuous forms g to sums g = ∑q

i=1 df
p
i ,

observe that the natural lower bound on q for p > 2 is

q = q
np
= snp/n

as explained below. (It is ≈ 2sn,2

n
for p = 2 due to the symmetries of quadratic

forms.)
But the known upper bounds on q remain poor:

(⋆⋆) q = 2pq
np

for odd p and something of order 4psnp = 4pnq
np

for (positive

definite) forms on X of even degrees p.

Polynomial Waring Problem. A decomposition g = ∑q
i=1 df

p
i , when restricted

to a tangent space of X at a point x ∈ X, amounts to a representation of the
algebraic form gx, which is a homogeneous polynomial of degree p on the tangent
space Tx(X), as the sum of pth powers of linear forms.

The topology of the spaces of such representations, in particular what is needed
for the analysis of decompositions g = ∑i df

p
i , is more complicated for p > 2 than

for p = 2.
One does not seem to know if the minimal q needed for the decomposition

σ(xi) =
q

∑
i=1

lj(xi)p

14See 10.2.3 in [34] and 3.1.4 in [35].
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for an arbitrary form (i.e., homogeneous polynomial) σ of degree p in n variables xi

is comparable with q
n,p

= sn,p/n, which is the lower bound for such decompositions

of generic σ.
(The space Σn,p of our forms σ has dimension sn,p, while the subset Σq ⊂ Σn,p

of forms induced from ∑q
1 y

p
j by linear maps Rn → Rq has dimension ≤ nq; hence,

Σq is nowhere dense in Σn,p for q < q
n,p

= sn,p/n.)
What is obvious however (Carathéodory theorem), is the existence of the decom-

position σ(xi) = ∑q
i=1 lj(xi)p with q = sn,p for the forms σ that are contained in the

convex cone Cn,p ⊂ Σn,p spanned by the forms l(xi)p.
(If p is even, then, obviously, Σn,p contains exactly two minimal non-zero closed

convex cones invariant under the action of the linear group GL(n), that are Cn,p

and −Cn,p. But if p is odd, the only non-zero convex GL(n)-invariant cone is Σn,p

itself.)

Example: Hilbert’s decomposition. Let Q = Q(xi) be a positive definite
quadratic form in variables x1, . . . , xi, . . . , xn, e.g., Q(xi) = x2

1 + ⋅ ⋅ ⋅ + x2
i + ⋅ ⋅ ⋅ + x2

n.
Then, for all even p = 2k, there exist linear forms lj = lj(xi), j = 1, 2, . . . , q ≤ sn,p,
such that

Qk =
q

∑
j=1

lpj .

Proof. The action of the orthogonal group OQ ⊂ GL(n) (of linear Q-isometries of
Rn) on Σn,p has a unique invariant line, say LQ ⊂ Σn,p; hence LQ must be equal

{λQk}, −∞ < λ < ∞.
It follows that the barycenters of the orbits o(lp), o ∈ OQ, equal λQ

p, for λ =
λ(l) > 0, for all non-zero linear forms l; thus, Qk is contained in the conical convex
hull of each such orbit. QED

(Since, clearly, Qk is contained in the interior of the convex hull of the forms lp,
obvious linear algebra shows that if the form Q is rational (i.e., with rational coef-
ficients), then the decomposition Qk = ∑j αil

p
j can be taken with rational numbers

αj and forms lj as well. This was used by Hilbert in his reduction of the Waring
problem from 2k to k.)

Questions

14 What is the minimal q needed for a representation Qk = ∑q
i l

p?
This may need a sharpening of the Carathéodory theorem to convex sets with

“large”, in particular of dimensions n > 0 (and symmetric? “well spread” on the
boundary of the convex set?), sets of extreme points.

15 What are, in general, homotopy properties of the space Fq(σ) ⊂ Hom(Rn,Rq) of
representations σ = ∑q

i l
p for a given form σ and of the non-singular locus in Fq(σ)?

Essential results here with an emphasis on rationality, e.g., Birch’s theorem, can
be found in Davenport’s book (1962) [22], and the geometry of these representations
is discussed in 2.4.9 and 3.1.4 in [35] and is advanced further by Dolnikov and
Karasev (2011) [25] in the ambience of Dvoretzky-type theorems.

Generalisations. One may replace functions fj on X in g = ∑j df
p
j by differ-

ential forms of degree m > 0, with g and dfp
j belonging to the pth symmetric power

of the bundle Λm+1(X) of the exterior (m + 1)-forms on X.
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And one may impose additional constraints on such representations of g by
requiring the forms dfj to be exterior products of exact forms φj,ν of degrees mν

with ∑ν mν = m + 1, e.g., where all mν = 1, where the unknown become functions
ψj,1, . . . , ψj,k, . . . , ψj,m on X for the equation

∑
j

(⋀
k

dψj,k)p = g.

Also, one may use non-linear differential operators between spaces of tensors
instead of the exterior differential d, e.g., the assignment of the curvature tensors
to positive definite quadratic differential forms g on X, say g ↦ K(G), where one
looks for decompositions of an arbitrary tensor R of the curvature type to the sum
R = ∑j K(gj).

Probably, general Nash-style methods from [35] can be applied here, but they
are unlikely to deliver the conjectural optimal solvability results.

Similarity and Dissimilarity of Geometry with Arithmetic

Is drawing parallels between differential and Diophantine decomposition prob-
lems justifiable?

The algebraic problems arising in both cases are rather similar, where, in the
differential case, algebra must be augmented by algebraic topology that may also
be present in the arithmetic category. Also the “analytic logic” of the Nash pertur-
bation techniques used for differential equations has something in common with the
circle method—the basic technical tool in this kind of Diophantine analysis. But
there are no (?) apparent number theoretic counterparts to the Nash-style direct
soft geometric constructions of solutions of PDEs.

The dream of bringing the two theories to a common ground may never come
true, but transporting formulations of problems from one domain to another may
bring along something new and interesting, e.g., the tensorial nature of the differ-
ential Waring problem suggests looking at the Waring problem in the semiring of
matrices with positive integer entries.

2.2. Infinite Dimensional Representations of Diff, Invariant Convex Cones
and Permutations of Primes. Riemannian metrics g on a smooth manifold X
that can be induced by Cr-maps from X to Euclidean spaces constitute a convex
cone, call it ConerEuc = ConerEuc(X) in the linear space of all quadratic forms on X.

Nash’s existence theorem for smooth embeddings X → Rq (the proof of which,
as given by Nash, relies on the addition of metrics in this cone) says, in effect, if
you are indifferent to a bound on the dimension q of the Euclidean space where X
goes, that

ConerEuc, at least for r = ∞, coincides with the cone of all positive definite
Cr-forms on X.

(This is also true for r = an; if 2 < r < ∞, then Nash’s theorem says that ConerEuc

is slightly larger than the cone of all Cr-forms.)

Let us formulate a version of this theorem by Nash for a rather general class
of cones, namely to those that are invariant under the natural action of the group
Diffr+1 = Diffr+1(X) of Cr+1-diffeomorphisms of X on quadratic differential Cr-
forms on X (compare 3.1.3 in [35]).
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If X is a compact C∞-manifold, then there is no non-trivial Diff∞-invariant cone
in the space of quadratic C∞-forms on X: every non-zero cone (e.g., Cone∞Euc) must
contain all quadratic C∞-forms on X.

Similarly, there are no non-trivial Diffan-invariant cones in the space of quadratic
Can-forms on compact manifolds X and/or no Diff1-invariant cones in the space of
continuous forms, but it is unclear what happens in the Cr-case for 2 ≤ r < ∞.

On the other hand, if X is non-compact, there are hordes of invariant cones as-
sociated with monotone geometric invariants of X at infinity, say inv∞(X), where
the cones are defined by inv∞(X) = ∞. Thus, complete metrics, metrics with in-
finite volumes and metrics with infinite diameters at infinity, metric with infinite
k-widths or k-waists at infinity, etc., make such cones.

16 Can one enlist convex Diff-invariant cones of Riemannian metrics on non-
compact manifolds?

The study of these cones belongs with what is called metric geometry which is
far removed from “Nash’s land”, while the relevant questions for the moment are
the following.

A. What are “natural” linear spaces acted upon by Diff = Diff∞(X)?
B. What are invariant linear subspaces in these spaces?

17 C. What are invariant convex cones in there?
D. What are other groups, semigroups, categories, Lie algebras, besides Diff

where A, B, and C make sense?
We shall address these questions later in this article, but we mention here that

there is an arithmetic counterpart to this “conical philosophy” where the role of
Diff(X) acting on X is played by the permutation group Π = Π(P(N)) of the set
P of prime numbers and where this Π acts on the set N of positive integers.

One knows, concerning this action, that
if a non-empty subset M ⊂ N is invariant under Π, then there are numbers

q = q(M) and k = k(M), such that every positive integer n ≥ k decomposes to the
sum of at most q numbers mi =mi(n) ∈M .

Example. Given d = 1, 2, 3, . . . , every sufficiently large integer n ≥ k = k(d) is
the sum of at most q = q(d) of dth powers of prime numbers.

2.3. Maps Between Manifolds, Induced Structures, Composability, and
Functoriality. An essential feature of isometric maps between Riemannian mani-
folds is that composition of isometric immersions (embeddings) X → Y and Y → Z
is an isometric immersion (embedding) X → Z.

However simple, this property is quite uncommon for solutions of classical PDEs
(with the notable exception of the Cauchy-Riemann equations).

The analytic manifestation of composability is that the systems of isometric
immersion equations are degenerate: an isometric map f ∶ (X,g) → (Y,h), that is
subject to the equation f⋆(h) = g, cannot be assumed arbitrary on any hypersuface
X0 ⊂X, since there it must satisfy the equation f⋆∣X0

(h) = g∣X0
.

On the other hand, composability allows one to formulate the concept of an
isometric immersion in functorial terms without direct reference to PDEs as follows.

In fact, Cr-Riemannian manifolds X can be represented by covariant functors
from the category I of intervals I ⊂ R and translations I1 → I2 to the category
of topological spaces. Namely, a manifold X is represented by the totality of the
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spaces of isometric Cr-immersions I →X, I ∈ I, say FX , and isometric immersions
X → Y correspond to natural transformations of the functors FX � FY .

Most problems concerning isometric immersions X→Rq are more naturally for-
mulated for general Riemannian manifolds instead of the Euclidean spaces Rq, and
many proofs work in this setting with obvious adjustments where they gain extra
power.

Thus, for instance,
the C1-theory effortlessly extends to isometric C1-immersions X → Y between

arbitrary manifolds with continuous Riemannian metrics, provided dimY > dimX.
This, in full generality, was proven by Nico Kuiper, who, in 1955, extended Nash’s
1954 theorem to the case dim(Y ) = dim(X) + 1.

Although Nash’s proof of his C∞-immersion theorem X → Rq does not directly
apply to immersions X → Y , the C∞-analytic techniques developed by Nash can
be combined with the geometric idea behind his C1-construction.

This allows
C∞- and Can-immersions Xn → Y q starting from q = sn + 2n + 3, sn = n(n+1)

2
,

according to [35] and, significantly better, for all q ≥ sn+n+5 according to Günther.
However, the situation with Cr-immersions for 2 ≤ r < ∞ remains unsatisfactory,

since Nash’s analytic perturbation techniques require excessive regularity assump-
tions on Y . (Possibly, these assumption can be relaxed with Günther’s modification
of Nash’s proof of the perturbation theorem.)

Now, as in A from the previous section (see p. 184), we ask ourselves
18What is the maximal natural class Gfunct of (differential?) geometric structures

with similar composability/functoriality properties?
In some respects Gfunct is more restricted than the class Ginv which makes Diff-

invariant cones.
For instance, Ginv contains all kind of tensors, while, as far as tensors are con-

cerned, the functoriality of Gfunct allows only contravariant ones—differential forms
of all degrees and all kinds of symmetries but nothing, say, as simple as (covariant)
vector fields.

On the other hand, Gfunct requires no additive structure of their members, thus,
for instance, allowing subbundles of the tangent bundle, e.g., contact structures.

First order structures, such as tensors and contact-like structures, are defined
via linear maps between tangent spaces of manifolds, where the maps of interest
are differentials (first derivatives) of smooth maps. With this is mind we make the
following

Definitions. Let Fr be the category where objects are germs of smooth
manifolds X at points x ∈ X with morphisms (X,x) → (Y, y) being r-jets, r =
0, 1, 2, 3, . . . , of smooth maps (X,x) → (Y, y) (of course, one does not need here
manifolds and smooth maps themselves but rather their “formal shadows”).

A (contravariant) rth order geometric structure type [g] is a contravariant func-
tor from Fr to the category of real algebraic varieties and regular morphisms. (To
feel comfortable, one must restrict all this to some small subcategory of F .)

Such a type [g] naturally defines a fibration, call it [G] over X, for all smooth
manifolds X, where sections g of these bundles are called structures of type [g]
and where Cr-smooth maps f ∶X → Y send such structures from Y to X, denoted
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h↦
f
g = (J(r)f )⋆(h), where J

(r)
f stands for the rth order jet of f which incorporates

all partial derivatives of f up to order r,

Observe, that f ↦ g = (J(r)f )⋆(h) is a (non-linear in most cases) differential

operator of order r.
Subcategories of Fr. This definition also makes sense for various subcate-

gories E of Fr.
For instance if one takes E ⊂ Fr which consists of the germs (X,x) of a single

manifold X for all x ∈ X, such that the morphisms in Fr come from local dif-
feomorphisms (X,x1) → (X,x2) and the type-defining functor takes values in the
category of vector spaces, then one arrives at a vector bundle naturally acted upon
by Diff(X), and the space of sections is where one may start speaking of invariant
cones as in the previous section.

Other interesting categories E (we shall return to them later on) are
● category of symplectic (contact) manifolds and symplectic (contact) maps be-

tween them;
● category of complex analytic manifolds;
● category of (smooth?) algebraic varieties over a field F of characteristic zero

(e.g., Q, R or C) and regular maps.

Examples. One may wonder if higher order structures ever come about in
geometry and if the general categorical setting is needed to encompass geometrically
attractive examples.

In fact one of the first theorems one encounters in differential geometry is that
of the existence of space curves with given curvature and torsion which are second
and, respectively, third order structures (see section 4.2).

These generalise to manifolds of dimensions n > 1 where they satisfy counterparts
to Nash’s embedding theorem, which allows us, in particular, to construct isometric
immersions with prescribed external curvatures.

And thinking categorically opens a road to the study of many similar geometric
phenomena.

19 Question. Do higher order “isometric embedding” problems have Diophantine
counterparts, e.g., along the lines of the Waring problem?

2.4. Homotopy Theoretic Perspective on PDE and PDR. An emphasis on
the existence theorems for (systems of partial) differential equations

D(f) = g

is justified in so far as their solutions are unique under certain well-shaped (e.g.,
initial or boundary) conditions or at least if the spaces of solutions are rigidly
structurally organised.

But the solutions of the isometric immersion equations

Dh(f) = (Df)⋆(h) = g

for maps between Riemannian manifolds, f ∶ (X,g) → (Y,h), that are delivered
by Nash’s theorems and their generalisations are nothing of the kind: the spaces
of these solutions are vast and, from the analytic point of view, amorphous; being
onto reflects only a tiny part of properties of the operator Dh.
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A more pertinent question concerning differential operators D = Dh ∶ F → G that
represent inducing geometric structures g on X (e.g., Riemannian metrics) from h
on Y by smooth maps f ∶X → Y = (Y,h) is not if they are onto, but as follows.

20What is the maximal domain Freg ⊂ F such that the restriction of D to Freg is a
Serre fibration Freg → G?

This question for isometric C1-immersions was fully resolved by Nash’s proof
(1954) [62] of his C1-theorem that was extended by Nicolas Kuiper (1955) [53] to
the case of immersions and embeddings Xn → Rq for q = n + 1 that was left open
by Nash. In fact, the Nash-Kuiper argument delivers the following

C1-Fibration Theorem. Let F be the space of C1-immersions or embeddings
from a smooth n-manifold X to a Riemannian manifold Y = (Y,h), and let G
denote the space of continuous Riemannian metrics on X.

If Y = (Y,h) is an n-dimensional Riemannian manifold such that the balls around
some point y0 ∈ Y are convex, e.g., (Y,h) = (Rq,∑q

1 dy
2
i ), if q ≥ n + 1 and if X is

compact, then the map Dh ∶ F → G is a Serre fibration.
Moreover, with no restriction on Y andX, the map Dh satisfies Serre’s homotopy

lifting property for “increasing paths” gt inG, i.e., paths such that gt2−gt1 is positive
definite for all t2 > t1.

This implies, for instance, the existence of C1-embeddings (Xn, g) → R2n for
all g since a Serre fibration of a non-empty space F over a path connected G is
necessarily (and obviously) onto.

The original Nash construction of isometric C∞-embeddings did not yield a
similar fibration theorem, but this can be achieved by combining the Nash C1-
construction with his C∞-techniques:

C∞-Fibration Theorem. The map Dh from the (sub)space F∞free ⊂ F of free15

C∞-immersions (or embeddings) X → Y to the space G∞ of smooth metrics on
X is a Serre fibration, provided X is compact and Y = (Y,h) is a C∞-smooth

manifold of dimension q = dim(Y ) ≥ sn+2n+3, sn = n(n+1)
2

, that satisfies the above
convexity property, where compactness of X and convexity of Y are unneeded for
Serre’s homotopy lifting property for “increasing paths” gt in G∞.

This, in the C∞ as well as in the Can-case, follows from the construction of
isometric immersions by adding dφ2 (see section 3.12).

21Conjecture. The C∞-fibration property holds for q ≥ sn + n + 1.16

On the other hand, the dimension q = sn + n—that is the minimal q that, lo-
cally, allows free maps Xn → Y q—seems beyond reach. For instance the following
question raised about half a century ago remains unanswered:

22Do the n-tori admit free (forget isometric!) immersions to Rsn+n for n ≥ 2?
But freedom is not indispensable for smooth isometric immersions. Probably,
there are subsets Freg ⊃ Ffree in the spaces of smooth maps f ∶ X → Y that do

fibre over G∞, for smaller q, possibly up to q = sn + 1.

15A map f ∶ X → (Y,h) is free if its first and second covariant partial derivatives in (Y,h) are
linearly independent at all points in X or, equivalently, if its (second) osculating spaces everywhere
have dimensions sn +n, n = dim(X). Observe, that if q = dimY ≥ sn + 2n, then generic C∞-maps
X → Y are free by Thom’s transversality theorem.

16Those who understand Günter’s construction would have no difficulty in proving it for
q ≥ sn + n + 3.
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Question. If B is a locally/infinitesimally partially ordered space, one can speak
of increasing/directed paths in B and of the homotopy lifting property of these paths
to A→ B.

Is the class of maps A→ B that admit such “directed homotopy liftings” worth
giving a name?

2.5. Stephen Smale and the h-Principle. The idea of using homotopy theory
in geometric problems goes back to Stephen Smale’s “turning the 2-sphere inside
out” (1958) [68].

This was followed by Smale’s 1959 paper on immersions of the n-spheres [69] that
was extended by Morris Hirsch (1959) [45] to general manifolds. This furnished the
fully fledged immersion theory, which is what is now-a-days called the h-principle
for differentiable immersions between smooth manifolds, Xn → Y q for q > n.

Amusingly, the basic geometric construction of “wrinkling”, invented by Smale
and adopted by Hirsch, was similar to that by Kuiper in the proof of the isometric
C1-embedding theorem.

In fact, albeit neither Kuiper nor Nash before him were thinking in homotopy
theoretic terms, a (simplified) version of the Nash-Kuiper construction allows a
half page proof (instead of the original 17 and 34 pages, respectively) of the 1959
immersion theorems of Smale and Hirsch.

On the other hand, the homotopy theoretic logic of Smale’s proof of the h-
principle for the (partial differential) relation rankDf = n, which is a discriminant
non-vanishing condition that characterises immersions f ∶ X → Y , is also central in
the study of the (partial differential) equations that define structure inducing maps,
including isometric immersions Xn → Rq.

Below is an example of an attractively simple existence/approximation theorem,
where the logic of the proof (by convex integration) is rooted in homotopy theory.

Euclidean Short Approximation Theorem. Let X be a smooth n-dimen-
sional manifold that admits a smooth immersion to Rq, let g be a Riemannian
metric on X, and let f0 ∶ (X,g) → Rq be a curve shortening map:

length
Rq(f0(C)) < lengthg(C) for all smooth curves C ⊂X.

Then, provided q > n, the map f0 can be uniformly approximated by isometric
C1-immersions (X,g) → Rq.

The novelty here is the approximation of f0 by curve shortening immersions
which does not follow either from Smale-Hirsch theory, which allows an approx-
imation of f0 by smooth immersions X → Rq with no shortness condition, nor
by the Nash-Kuiper construction, which needs a curve shortening immersion (or
embedding) as a starting point.

What goes to the proof of this short approximation theorem is convex integra-
tion—a common descendent of the ideas and methods that originated in the works
by Smale and by Nash (see 2.4 in [35], and [70], [27]).

3. Basic Constructions

The classical proofs of the existence theorems for geometric PDEs commonly
rely on a priori estimates that quantify the uniqueness properties of the solutions.

This approach fails for most equations characterising maps f that induce pre-
scribed geometric structures, where the solutions show no trace of uniqueness and
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where the success in the case of isometric immersions was achieved by Nash by
forfeiting classical PDEs and inventing several direct constructions of such maps.

In the following sections we shall present variants of these constructions which
are of interest in their own right regardless of their current roles in the solution of
the isometric immersion problem.

3.1. Kuratowski-Weyl Embeddings and Nash Spherical Decomposition.
Given a function in one positive variable d ↦ φ(d), define the map from a metric
space X to the space of functions ψ(x) on X by x′ ↦ φ(distX(x′, x)) for all x′ ∈X,
denoted

KWφ ∶ X → RX .

If φ(r) = r, then this map is distance preserving for the space of functions on X
with the sup-norm.

But we are more interested at the moment with the Hilbert space L2(X) that
is the space of functions on X with the L2-norm, where, following Hermann Weyl,
we observe that

if X is a complete Riemannian flat manifold and φ is a square integrable function
with the support in [0, ε] for a small positive ε (depending on X), then there exists
a unique (normalising) constant c = c(X,ε), such that the map KWcφ ∶ X → L2(X)
is an isometric immersion.

In general, if X is an arbitrary compact Riemannian manifold (X,g) and φε is
the characteristic function of the interval [0, ε], then there are constants cε such
that

the Riemannian metrics gε induced by the maps KWcεφε
∶ X → L2(X) uniformly

converge to g for ε→ 0.
By making the constants cε small, one may assume that the difference δε −

g − gε, besides being as small as you want, is also positive definite and thus, also
approximable by metrics induced by maps to a Hilbert space.

Hence, g is representable by a countable sum of Hilbert-induced metrics. There-
fore,

every positive definite quadratic differential form on a compact manifold g de-
composes into a convergent series

g =
∞
∑
i=1

df2
i ,

which defines an isometric immersion (X,g) → R∞.
Now, let X be a (possibly) non-compact manifold, and let Bj ⊂X, j = 1, 2, 3, . . . ,

be smooth compact n-balls, such that their interiors furnish a locally finite cover of
X (of multiplicity n + 1 if you wish).

Then, following Nash, let σj ∶ X → Sn be C∞-smooth maps, which are diffeo-
morphic on the interiors of the balls and which send their complements to the south
pole of the sphere Sn. It is obvious that

given a Riemannian metric g on X, there exist metrics gj on Sn such that

∑
j

(Dσj)⋆(gj) = g.
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This, along with the above decomposition of Riemannian metrics to sums ∑i df
2
i

on compact manifolds (where the ones we need here are diffeomorphic to Sn) shows
that

every Riemannian metric g on a smooth manifold X, be it compact or not,
decomposes to a convergent sum ∑i df

2
i where the functions fi have their supports

contained in given balls Bi ⊂X that cover X.
About Smoothness and Convergence. One sees instantaneously that this sum

uniformly (i.e., in the C0-topology) converges for all continuous metrics g; probably,
this convergence is (can be forced to be?) Cr for Cr-metrics.

On Weyl’s Operator. Given a (preferably) smooth measure dx on a smooth
compact manifoldX, every, say, continuous function in two variables, k(x, y) defines
a map from X to the Hilbert space L2(X) by x ↦ fx(y) = k(x, y) that induces a
Riemannian metric on X, call it W (k). What of interest may be said about this
map k ↦W (k)?

Historical Remark. Nash used such a “spherical decomposition” in his 1956 paper
[63] to show that the existence of isometric C∞-immersions of compact n-manifolds
(diffeomorphic to Sn) to Rq yields such immersions of possibly non-compact X to

R(n+1)q. Thus, he proved that all C∞-manifolds of dimension n admit isometric C∞-

immersions ofX to the Euclidean space of dimension qNash = (n+1) (3n(n+1)
2

+ 4n) =
3n3

2
+ 11n2

2
+ 11n

2
.

Later on, in 1969–1970, R. E. Greene [31], [32] and J. S. Clarke [14] modified
Nash’s decomposition and thus obtained immersions of non-compact X to the Eu-

clidean spaces of dimensions qGreene = 12n2+34n+14 and qClarke = n3

3
+ 5n2

2
+ 37n

6
+1.

Although these bounds on q have been superseded by later constructions of
isometric C∞-immersions/embeddings Xn → Y q non-discriminantly for all C∞-

Riemannian manifolds Xn and Y q with q ≥ sn+2 = n2

2
+ 5n

2
+ 3 (even better, for

q ≥ sn+1 + 4 = n2

2
+ 3n

2
+ 5 if you accept Günter’s construction), Nash’s spherical

decomposition and its variations remain useful for inducing geometric structures,
such as higher degree differential forms, where more refined constructions are still
unavailable.

Keeping this in mind and following in the steps of Greene and Clarke, we indicate
below yet another version of such a decomposition.

Cover a (non-compact) manifold X by three open subsets, where each of these
equals the union of disjoint relatively compact subsets, say Uj,k ⊂ X, j = 1, 2, . . . ,
k = 1, 2, 3, such that the boundaries of all Uj,k are smooth and mutually disjoint
and, moreover, such that each point x ∈ X is contained in at least two of Uj,k.
Observe, that

if smooth maps σj,k ∶ X → Sn that are constant outside Uj,k are chosen generi-
cally, then every “structure” g on X from a given “additive class” G can be decom-
posed as

g = ∑
j,k

(Dσj,k)⋆(gj,k) for some structures gj,k on Sn from the class G.

Thus,
the existence of “isometric immersions” of the manifolds diffeomorphic to n-

spheres to Rq implies the existence of such immersions of all n-manifolds X to
R3q.
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23Question. The above “3” can be, obviously, replaced by “2” if X is diffeomorphic
to Rn. But what is possible for other manifolds?

3.2. Adding dφ2 to Induced Riemannian Metrics g by C1-Twist and the
Proof of Nash’s C1-Immersion Theorem. Let f ∶ (X,g) → Y = (Y,h) be an
isometric Cr-immersion.

Extension f⨉2 and Condition [⨉D2(ε)]. Suppose f admits a Cr-extension
from X =X × 0 ⊂X ×R2 to X ×R2, such that

this extension, call it f⨉2 ∶ X×R2 → Y , is an isometric immersion for the product
metric g ⊕ (dr21 + dr22) on the ε-neighbourhood X ×D2(ε) ⊂X ×R2 of X ⊂X ×R2,
where D2(ε) ⊂ R2 denotes the ε-disc in the plane R2 around the origin 0 ∈ R2.

[+dφ2]-Lemma. Assume [⨉D2(ε)], and let φ ∶ X → R be a Cr-function on X.
Then there exists a Cr-immersion fε ∶ X → Y , such that

(1) distY (f(x), fε(x)) ≤ ε for all x ∈X;
(2) the metric induced by fε on X satisfies

(Dfε)⋆(h) = g + dφ2.

Proof. Let sε ∶ R → R2 be an isometric immersion with its image contained in the
disk D2(ε). (This sε can be seen as a long planar curve located ε-close to the origin.
The existence of such an sε, however simple, is not at all trivial, and it is pivotal
for the construction of isometric immersions.)

Let Φε ∶ X × R → Y be the composition of the immersion X × R → X ×D2(ε)
defined by (x, t) ↦ (x, s(t)) with the above isometric immersion f⨉2 ∶X ×D2(ε) →
Y .

Then take the composition of Φε with the graph Γφ ∶X → R for fε.
Since the metric on X induced by the map Γφ from g⊕dt2 on the cylinder X ×R

equals g + dφ2 and since Φε is an isometric immersion, the proof follows.
True isometric extensions from X to X × D2(ε) with the product metric

g⊕(dr21 +dr22) are hard to come by (we construct some in section 3.12), but smooth
extensions, call them f⨉′ 2 ∶ X ×R2 → Y , which are isometric on the tangent bundle
T (X ×R2)∣X, i.e., such that

the induced metrics (Df⨉′ 2)⋆(h) equal g ⊕ (dr21 + dr22) on the restriction of the
tangent bundle of X ×R2 ⊃X, to X
may be plentiful whenever q ≥ n + 2.

In fact such an extension f⨉′ 2 ∶X ×R2 → Y exists if and only if the manifold X
admits two normal linearly independent vector fields in Y ⊂

f
X. Therefore,

if U ⊂ X is a contractible, e.g., homeomorphic to the n-ball, then isometric
immersions X → Y (restricted to U) extend to immersions

(fU)⨉′ 2 ∶ U ×R2 → Y

that are isometric on T (X ×R2)∣U .
Now let φ be a smooth (C1 will do) function on X with support contained in U

and observe that
the above construction of adding dφ2 to the metric g on X in the proof of

[+dφ2] with the use of the isometric immersion sε ∶ R → R2 makes sense with
(fU)⨉′ 2 instead of f⨉2.
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We cannot claim any longer that the resulting map fε ∶ X → Y exactly induces
the metric g + dφ2 (unless (fU)⨉′ 2 is isometric on U ×D2(ε)) but only that

the induced metrics (Dfε)⋆(h) uniformly converge to g + dφ2 on X for ε→ 0.

This, combined with the Kuratowski-Weyl-Nash decomposition, yields the fol-
lowing

[g0 + g′]δ-Corollary. Let f0 ∶ (X,g0) → (Y,h) be an isometric C1-immersion,
let ε(x), δ(x) > 0 be arbitrarily small positive functions on X (constant if X is
compact), and let g′ be a positive definite quadratic form on X.

Then there exits a C1-immersion fδ ∶ X → Y such that
(1′) distY (f0(x), fδ(x)) ≤ ε(x) for all x ∈X;
(2′) ∣∣(Dfδ)⋆(h) − (g0 + g′)∣∣(x) ≤ δ′(x) for all x ∈X,

where ∣∣ . . . ∣∣ stands for some norm on the space of quadratic forms, e.g., the one
defined with g itself. (Since the function δ′(x) may be chosen arbitrarily small, a
specific choice of such a norm plays no role.)

Nash [g0 + g′]-Theorem. Let f0 ∶ (X,g0) → (Y,h) be an isometric C1-immer-
sion, and let g′ be a continuous positive definite quadratic form on X.

If dim(Y ) ≥ dim(X) + 2, then there exits a C1-immersion, say f ′ ∶ X → (Y,h),
such that the induced metric satisfies

(Df ′)⋆(h) = g0 + g′.

Proof. One may (obviously) assume that the (δ-small) difference g′1 = g0 + g′ −
(Dfδ)⋆(h) in the above [g0 + g′]δ-corollary is positive definite. Then this corollary
applies to f1 = fδ and g′1 instead of f and g′, next it applies to f2 = (f1)δ1 and
g′2 = g′′1 , etc., such that the sequence of the induced metrics (Dfi)⋆(h) converges to
g0 + g′ in the fine C0-topology for i→∞.

(This is the strongest possible C0-topology on the space of continuous metrics
on X that coincides with the uniform topology for compact X.)

But, a priori, one can only claim that the maps fi ∶ X → Y converge to a
(g0 + g′)-isometric Lipschitz map rather than a C1-smooth one.

However, a little thought shows that the maps fi do C1-converge, since the
essential perturbations of our maps at all steps were obtained via graphs of certain
ε-small maps X → R2, where one has the following bound on the C1-sizes of these
perturbations.

Graphical C1-Estimate. Let Γ ∶ X →X ×Rk be a C1-map that equals the graph
of a map φ from X to an ε-ball Dk(ε) ⊂ Rk.

Then the C1-distance between Γ and (the graph of) the zero map x ↦ (x, 0) ∈
X ×Rk which equals the C1-norm of φ is, obviously, bounded by the norm of the
quadratic form induced on X by φ from the Euclidean metric dr21 + ⋅ ⋅ ⋅ + dr2k on Rk.

The proof of Nash’s C1-theorem is, thus, concluded.

Apology. One could condense the above proof of Nash’s theorem to twenty–
twenty-five lines—perhaps fewer—with the “conformal twist” that was originally
used by Nash instead of Kuratowski and Weyl.

On the other hand, writing the above proof in formulas would make it both long
and not truly rigorous, with the reason for this being twofold.

Formulas fare well only if they perfectly and unambiguously match the idea that
they intend to express. But since there is neither a preferred isometric immersion
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R → D2(ε) nor a preferred extension of a smooth map from a submanifold X to a
larger manifold (e.g., from X to X ×R2) with prescribed differential on X, writing
specific formulas for these kinds of constructions only serves to pollute mathematical
texts with irrelevant information.

Another reason is that formulas are not suitable for expressing category theoret-
ical concepts. For instance, a computational verification that the composition of
several isometric immersions encoded by formulas is isometric may run to a half
page computation that, being utterly trivial, would be unreadable.17

Question. Why, despite all this, do some authors regress to 18th century math-
ematical language in their exposition of 20th (and 21th) century ideas?

3.3. Kuiper’s C1-Stretch and Isometric C1-Immersions Xn → Y n+1. Let
us prove, following Kuiper (1955) [53], the above Nash [g + g′]-theorem with the
assumption dim(Y ) ≥ dim(X) + 2 relaxed to dim(Y ) ≥ dim(X) + 1.

Now instead of maps (fU)⨉′ 2 ∶ U ×R2 → Y , we deal with

(fU)⨉′ 1 ∶ U ×R→ Y

for small open (ball-like) sets U ⊂X as earlier and with the disc D2(ε) replaced by
the segment D1(ε) = [−ε, ε] ⊂ R.

The point where Nash’s proof stalls is non-existence of smooth isometric immer-
sions sε ∶ R→D1(ε) = [−ε, ε] ⊂ R and, generically, say for n ≥ 3, the metric g + dφ2

cannot be induced from the metric g ⊕ dr2 by a C2-smooth18 map X →X ×D1(ε)
for small ε > 0.

However, one has, for all ε > 0, and all C1-functions φ on X with compact
supports, the following

Kuiper’s Stretching Lemma. There exist C1-smooth maps (that are embed-
dings) Γε,ε ∶ X →X ×D1(ε), ε > 0, such that

∣∣(DΓε,ε)⋆(g ⊕ dr2) − (g + dφ2)∣∣ → 0 for ε→ 0,

where ∣∣ . . . ∣∣ denotes some norm in the space of continuous quadratic forms on X.

Granted this, the proof of the [g + g′]-theorem proceeds word for word as it was
with the [+dφ2]-lemma in the previous section. But, unlike anything we have
met so far, the proof of this lemma needs a bit of geometric reasoning, which is
presented below.

Smoothing the Corners. Let Z = Zn+1 be a Riemannian manifold with its metric
denoted by σ, and let X = Xn ⊂ Z be a hypersurface that is smooth except for a
corner C = Cn−1 ⊂X where two smooth parts of X meet transversally. (Technically
speaking, transversality is unnecessary, but it helps to make a clear picture in mind.)

Observe that, despite the corner, the Riemannian metric induced by σ on X is
continuous.

Given ε > 0 and δ > 0, let us smooth this corner by replacing the original piecewise
smooth embedding, say Γ ∶ X → Y by a C1-embedding Γε ∶ X → Y , by slightly

17It is worse for functoriality: this single word may expand to several pages of 99% meaningless
formulas.

18This, of course, makes sense only if g and φ are C2-smooth. On the other hand, there are
(non-generic) obstructions in the C1-category, e.g., where the levels of φ are minimal hypersurfaces
in (X,g).
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perturbing Γ in the ε-neighbourhood of C, such that
(1) Γε(x) = Γ(x) for distY (x,C) > ε;
(2) the metric induced by Γε remains close to the original one:

∣∣(DΓε)⋆(σ) − (DΓ)⋆(σ)∣∣ ≤ δ.

We start by observing that the existence of such Γε is obvious for curves in
surfaces, i.e., for n = 1, where the smoothing can be done smoothly depending on
variable curves.19 Then the general case follows by applying this curve smoothing
to the intersections of X with small smooth discs D2

c ⊂ Z normal to C at all points
c ∈ C.

The proof of Kuiper’s lemma is instantaneous now with a piecewise linear map
sε ∶ R → D1(ε) = [−ε, ε] ⊂ R that is isometric everywhere except for finitely many
break points where the derivative of sε switches from +1 to −1.

The graph Γε ∶X → (X,g) ×D1(ε) ⊂X ×R of φε is piecewise smooth with “cor-
ners” that correspond to the break points of sε, where these corners are smoothed
as above with (X ×R, g ⊕ dr2) in the role of (Z,σ).

The proof of Kuiper’s lemma, and his isometric C1-immersion theorem for Xn →
Y q and for all q ≥ n + 1, is concluded.

(We did not pay much attention to the C1-convergence of the sequence of maps
X → Y obtained with Kuiper’s lemma but this is (almost) obvious as in Nash’s
case. It is also obvious that if the original map X → Y was an embedding, then the
new one with g′ added to the induced metric remains an embedding.)

The above may seem shamefully easy; you may smile at the geometers who, for
years, tried to prove that isometric C1-immersions, say of surfaces with C∞-metrics
g with positive curvatures to the 3-space, must be C∞-smooth and, hence, convex.
Well, mathematics teaches us humility; another Nash may come up with something
equally “obvious” that you have believed all your life to be impossible.

3.4. The Proof of the Smale-Hirsch h-Principle by Nash-Kuiper Stretch-
ing. Unbelievable isometric C1-immersion theorems were followed by Smale’s
equally amazing turning sphere inside out (1958) [68] followed by the immersion
theory for Sn → Rq (Smale 1959, [69]), and for Xn → Y q, q ≥ n + 1, in general
(Hirsch 1959, [45]).20

It is also amazing how the homotopy theoretic way of thinking, introduced to the
immersion theory by Smale and combined with a most primitive version of Nash-
Kuiper stretching, delivers a short proof of all results of the smooth immersion
theory. In fact all of this theory can be painlessly derived from the following
procedure.

Turning X ⊂ Y Normally to a Subbundle θ ⊂ T (Y ). Let Y be a split Riemannian
manifold, let Y = (Y1 ×Y2, h1 ⊕h2), and let a submanifold X ⊂ Y be “transversal”,
meaning here nowhere tangent, to the subbundle θ2 ⊂ T (Y ) of the tangent spaces
to the Y2-“fibres” y1 × Y2 ⊂ Y .

Our transversality is equivalent to the projection f1 of X to Y1 being an im-
mersion, and if dim(Y1) ≥ dim(X), one can “strengthen” this transversality by
deforming f1 to another immersion, say f ′1 ∶ X → Y1 = (Y1, h1) that induces on Y1

a metric (Df ′1)∗(h1) = (Df1)∗(h1) + g′ where g′ is very large.

19Some corners can and some cannot be smoothed without moving such a corner [48].
20The history of this discovery is creatively laid out by David Spring in [71], where one finds

an extensive bibliography.
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Then, clearly the map f = (f ′1, f2) ∶ X → Y , for the projection f2 ∶X → Y2 which
has not been modified, becomes almost normal to the subbundle θ2.

(NeitherWeyl-Kuratowski-Nash nor the full strength of the Nash-Kuiper1 stretch-
ing construction is needed here, but only a possibility of unrestricted stretching
X ⊂ Y1 in all directions.)

Let, more generally, Y = (Y,h) be a Riemannian manifold, with a given nor-
mal splitting of its tangent bundle, T (X) = θ1 ⊕ θ2, and let X ⊂ Y be a smooth
submanifold transversal to θ2.

If rank(θ1) > dim(Y ), then there exists a smooth isotopy of embeddings ft ∶X →
Y , 0 ≤ t ≤ 1, such that f0 = f and—

1. distY (ft(x), x) is bounded by a given positive continuous function ε(x) on
X for all 0 ≤ t ≤ 1;

2. the embeddings ft ∶X → Y are transversal to θ2 for all 0 ≤ t ≤ 1;
3. the embedding ft=1 ∶X → Y is δ-normal to θ2 for a given positive continuous

function δ(x) on X, which means that the scalar products between the unit
tangent vectors to ft=1(X) ⊂ Y , that is to X embedded to Y by ft=1, at
the points f1(x) ∈ Y and such vectors in the (vector) fibres (θ2)f1(x) of θ2
are bounded by δ(x).

Proof. Given a point y ∈ Y and ε > 0, there exists a neighbourhood Uε(y) ⊂ Y of y
such that the Riemannian metric on Y and the splitting of the tangent bundle can
be ε-approximated by an actual splitting (Uε,1 ×Uε,2, h1 ⊕ h2) of Uε(y).

Since the Nash-Kuiper stretching can be (obviously by its construction) localised
near a given point x ∈ X ⊂ Y , the above Y = Y1 × Y2 case implies the general one.
(Alternatively, one could apply the Nash-Kuiper stretching directly in the directions
normal to θ2.)

Homotopy Lifting of Transversality. Let θt, t ≥ 0, be a continuous family of
subundles in the tangent bundle T (Y ) of a smooth manifold Y , and let f0 ∶ X → Y
be a smooth immersion (embedding) transversal to θ0, where X is another smooth
manifold.

If q = corank(θ0) = dim(X) − rank(θ0) ≥ dim(X) + 1, then there exists a C1-
continuous family of smooth immersions (embeddings) ft ∶ X → Y that are transver-
sal to θt for all t ≥ 0, where, moreover, one can have all ft arbitrarily close to f0 in
the uniform (fine C0 for non-compact X) topology,

distY (ft(x), x) ≤ ε(x).

Proof. Fix some Riemannian metric on Y , and keep turning X → Y at the moments
t almost normally to θt, where this θt with its orthogonal complement orthogonally
splits T (Y ) for all t.

Now we are able to prove the following

(Corollary to) Hirsch’s Approximation Theorem. Let the dimensions of smooth
manifolds X and Y satisfy dim(Y ) ≥ dim(X) + 1. Then

a continuous map f0 ∶ X → Y admits a uniform (fine C0 for non-compact X)
approximation by smooth immersions X → Y if and only if f0 is homotopic to an
immersion X → Y .
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For instance, such an approximation is possible for all ϕ0 if X is diffeomorphic
to the Euclidean space Rn for n < q = dim(Y ).21

Proof. Let us approximate the continuous homotopy of f0 to an immersion by a
smooth one and observe that the graph of this is a smooth isotopy Γt ∶ X →X × Y
of the graph Γ0 ∶ X → X × Y of f0 to an embedding Γ1 that is transversal to the
X-fibres of the projection p ∶ X × Y → Y .

Extend this isotopy to an isotopy, say Γ̃t ∶ U →X ×Y , for a small neighbourhood
U ⊂X × Y of Γ0(X) ⊂X × Y and pull back the X-fibres by Γt to U ⊃X.

Then by “homotopy lifting of transversality” applied to the subbundles θt ⊂ T (U)
that are tangent to these pull-backs, there exists an isotopy Γ′t ∶ X → U , 0 ≤ t ≤ 1,
for Γ′0 = Γ0 ∶ X → U that keeps as C0-close to Γ0 as one wishes and that brings
X for t = 1 to a position where it is transversal to the X-fibres of the projection
X × Y → Y .

Then the projection of Γ′1 to Y , that is the map p ○ Γ′1 ∶ X → Y , serves as the
required immersion approximating f0 ∶ X → Y .

Similarities and Dissimilarities Between the Two Proofs. The above argument
is not as much removed from the original idea by Smale as it may seem:

1. The “proof by stretching” fundamentally depends on lifting of homotopies,
that is the Serre fibration property for maps between certain function spaces, as
much as the Smale-Hirsch arguments rely on flexibility of the sheaf of immersions
{U → Y }U⊂X from open subsets U ⊂X to Y that (essentially) is the Serre fibration
property for the restriction maps between spaces of immersions,

Imm(X1 → Y ) → Imm(X2 → Y ), X2 ⊂X1 ⊂X, for dim(Y ) > dim(X).
This flexibility, proven by Smale, implies, by a homotopy theoretic argument of
Smale and Hirsch, the following property of

the differential D ∶ f ↦ Df of smooth maps f ∶ X → Y that, by the definition
of “immersion”, sends the space of immersions Imm = Imm(X → Y ) to the space
Inj = Inj(T (X) → T (Y )) of continuous fibrewise linear and fibrewise injective maps
between the tangent bundles.

The h-Principle for Immersions

If dim(Y ) ≥ dim(X) + 1, then the map

D ∶ Imm→ Inj

is a homotopy equivalence.
In fact Smale and, following him, Hirsch prove the weak homotopy equivalence

property of D, which means that the induced homomorphisms between the homo-
topy groups, denotedDi ∶ πi(Imm) → πi(Inj), are isomorphisms for all i = 0, 1, 2, . . . ,
where this “weak” is as good as “strong” for the present discussion.

This is derived from flexibility by induction on dimension, where the isomorphism
property of Di, i = 0, 1, . . . .k, for immersions of m-dimensional (sub)manifolds X1 ⊂
X follows from this property for immersions of (m−1)-dimensional (sub)manifolds
X2 ⊂ X1 and i = 0, 1, . . . , k + 1 by the exactness of the homotopy sequence for the
restriction maps

Imm(X1 → Y ) → Imm(X2 → Y ).
21The latter statement is beautiful in its simplicity. I challenge anybody to find an independent

proof of this, where a non-trivial point that makes a truly direct construction impossible is the
condition diffeomorphic to Rn.
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Thus—this is the essence of Smale’s approach to immersions—his argument when
applied, for instance, to the proof of the existence of immersions relies on a use of
higher homotopy groups of spaces of immersions of lower dimensional manifolds.
But the proof by the Nash-Kuiper stretching directly applies to all homotopies
simultaneously with no k ↦ k + 1 shift.

2. The proofs of the flexibility of immersions by Smale as well as of the homotopy
lifting by Nash-Kuiper stretching are established not with the use of some specific
geometric features of immersions but, on the contrary, by wiping out all traces of
such properties by “massively bending and wrinkling” these immersions, where the
wrinkling performed with stretching is more extensive than the more economical
wrinkling used by Smale to the point that stretched submanifolds X ⊂ Y start
looking kind of “fractal” on a certain scale.22

3. The original C1-arguments by Nash and Kuiper as well as those by Smale and
Hirsch have been overshadowed by simpler and more general proofs of the results
these methods were originally designed for.23 But these arguments may fare better
than more advanced ones in certain cases.

For instance,
● a Smale-Hirsch style argument, in conjunction with Nash’s perturbation/impli-

cit function theorem, yields, under certain restrictions on dimensions, flexibility,
hence, the h-principle, for the sheafs of C∞-smooth free isometric immersions be-
tween pseudo-Riemannian manifolds (see 3.3.2 in [35]));
● Nash’s twist applies to symplectic imbedding (3.4.2 in [35]), to symplectic iso-

metric C1-embeddings and immersions [19] to contact and to Cartnot-Carathéodory
isometric C1-immersions [17], where the convex integration in its present form is
inapplicable.

3.5. Convex Integration. The logic of the Nash-Kuiper construction of isometric
C1-immersions by successive stretchings and the issuing h-principle become fully
transparent in the general setting of the so-called convex integration as follows.

Regard C1-maps X =X ×R→ Y as curves that are maps from R to the space of
C1-maps X → Y , and visualise the Nash-Kuiper stretchings in the R-direction as
certain modifications of these curves.

What is most essential is that this modification by stretching may be performed,
speaking in terms of curves, by arbitrarily small perturbations of these curves with
respect to the C1-distance in the space of C1-maps X → Y .

C
-Topology. This, now in terms of maps X → Y , signifies that the correspond-
ingly modified (by stretching) mapsX =X×R→ Y (may be chosen to) stay arbitrar-
ily C1-close to the original unstretched ones on the hypersurfaces X×t ⊂X =X×R.

This is called approximation in C
-topology (here C
 = C

0
1) that is C0 in the

R-directions, i.e., on the lines x ×R ⊂X ×R, x ∈X, and it is C1 on X × t.

22This fractality of isometric C1-immersions is made visible in [10]. Possibly, one can rigidify
the C1-theory by replacing, say, C1,α-regularity conditions by some kind of self-similarity of the
differentials of isometric maps.

23The conceptual approach to isometric C1-immersion proceeds via convex integration, while
the shortest known proof of the Hirsch immersion theorem for Xn → Rq , q > n is delivered by
removal of singularities introduced in 1971 by Eliashberg and the author. This method uses
a minimal amount of “wrinkling” and allows approximation of smooth maps by immersions in
certain Sobolev W r,p-topologies. See 2.1.1 in [35] and references therein.
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Splitting and Localisation. Stretchings of maps f ∶ X → Y , as it is done by
Nash and Kuiper, are supported in small neighbourhoods U ⊂ X. These U may
be assumed diffeomorphic to balls, and the restricted maps f∣U ∶ U → Y can be
interpreted as curves with splittings U = U ×R adapted to required modifications
of maps f ∶ X → Y on U .

In the following sections 3.5.1–3.5.4 we describe the essential constituents of such
modifications in a simplified form.

3.5.1. Oscillatory Curve Approximation. Let Υ be a Banach space, e.g., Υ = Rq,
let E ⊂ Υ be a path connected subset, and let intconv(E) ⊂ Υ denote the interior of

the convex hull of E.
[∧∨∧∨∧∨] If the derivative df0(t)

dt
∈ Υ of a C1-map f0 ∶ R → Υ is contained in

intconv(Υ) for all t ∈ R, then f0 can be finely C0-approximated by C1-maps
f ∶ R→ Υ with their derivatives contained in E,

df(t)
dt

∈ E for all t ∈ R.
Almost Proof. Such approximation by piecewise smooth, in fact, by piecewise

linear, maps f̌ ∶ R→ Υ is immediate without the connectivity condition for Υ.

And if the two values, ěleft, ěright ∈ E of the one-sided derivatives df̌(t)
dt

of such

an f̌ at some t0 ∈ R are joined by a continuous path P0 ⊂ Υ, then one can easily
approximate f̌ by a smooth f that equals f̌ outside a small interval [t0−ε0, t0+ε0] ⊂
R and such that

df(t)
dt

∈ P0 for t0 − ε0 ≤ t ≤ t0 + ε0,

where the path P0 joining the two points must be taken in E which is possible
under our connectivity assumption.

Why Oscillatory? If, for instance, f0 ∶ R → Υ is a linear map with a constant

derivative, say df0(t)
dt

∈ conv(E) ⊂ Υ that is not contained in E, then in order to
keep close to f0, maps f ∶ R → Υ with derivatives in E, must go back and forth

frequently changing direction of motion without ever coming close to df0(t)
dt

.

Looking Two Steps Ahead. The above looks childishly simple, yet in conjunction
with another (almost as) simple fact—convex decomposition—it leads to rather
paradoxical solvability of generic underdetermined systems of equations and of a
class of determined and overdetermined systems including those satisfied by iso-

metric immersions Xn → Y q, q > n, which are overdetermined for q < sn = n(n+1)
2

.

Broken and Unbroken Convex Integration: Analysis Versus Topology. An ana-
lyst would regard “connectivity” in the formulation of the lemma as a mere nuisance
and would attribute the term “convex integration” to whatever follows from the
piecewise smooth version of the approximation lemma, e.g., the existence of Lips-
chitz isometric maps of all Riemannian n-manifolds to Rn.

(See 2.4.11 in [35] and [59] for applicantions of this “broken convex integration”
to the classical PDE.)

But from a topologist’s point of view, this “disconnected stuff” is of little interest
since all h-principles collapse when the continuity of the derivatives is broken.

Of course, the mere existence theorems remain valid; every continuous map X →
Y can be approximated by piecewise smooth immersions for dim(Y ) ≥ dimX, but
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no self-respecting topologist would give the status of “theorem” to anything that
is, homotopy theoretically speaking, 99% vacuous and—this is a minor point—
technically trivial.

To avoid confusion, we reserve the name “convex integration” for its contin-
uous version that came up in the ambience of homotopy theory, and we call its
discontinuous rendition(s) broken convex integration.

Differential Inclusions. The curve approximation regarded as “convexification”
of discontinuous/multivalued ordinary differential equations, apparently, goes back
to A. F. Filippov, but the path differential inclusions followed afterwards has di-
verged in a direction far removed from convex integration.24 In fact, the latter
is predominantly concerned with partial rather than ordinary differential relations
and the overlap between the two theories is limited to a single, essentially obvious,
lemma. (But this may (?) change in the future.)

3.5.2. Convex Decomposition. Let E ⊂ Rq be a connected Cr-submanifold, r ≥ 1,
and let f0 ∶ X → intconv(E) ⊂ Rq be a Cr-map of a compact manifold X to the
interior of the convex hull of E. Then

[� � �] the map f0 equal to the convex combination of Cr-maps X → E,

f0 = ∑
l

piϕl, l = 1, 2, 3, . . . ,m,

where ϕl ∶ X → E are Cr, and pl are positive numbers, such that ∑l pl = 1.
(Nothing of the kind is true for disconnected subsets E, e.g., for finite ones.)

Proof. It is obvious (by partition of unity, where no connectedness of E is required)
that there exist Cr-maps φi and positive Cr-functions πi(x) (rather than constants
pi) such that f0 = ∑i πiφi.

Since E is path-connected, there exists a Cr-smooth map Φ ∶ X × [0, 1] → E,
such that Φ(x, ti) = φi(x) for some ti ∈ [0, 1].

Regard the sets of points {ti} ⊂ [0, 1] with the weights πi(x) assigned to ti as
probability measures on the segments x × [0, 1] ⊂ X × [0, 1], denoted dπxt, where,
clearly,

∫
1

0
Φ(x, t)dπxt = ∑

i

πi(x)φi(x) = f0(x).

Then (this is obviously possible) approximate dπvt by Cr-smooth strictly positive
measures, such that also Cr-smoothly depend on x ∈ X, say dπ○xt, that satisfy the
same relation

∫
1

0
Φ(x, t)dπ○xt = f0(x).

Now—this is the crucial moment where we switch from functions πi(x) to con-
stants pl—let

A ∶ X×[0, 1] →X×[0, 1] be a Cr-map that sends the intervals x×[0, 1] ⊂X×[0, 1]
to themselves and that

pushes forward the Lebesgue measure dt from these intervals to dπ○xt.
25

24See http://link.springer.com/chapter/10.1007/978-3-540-44398-8_3#page-1. But I
must admit I have not looked closely at this subject matter.

25These A obviously exist for all connected manifolds in place of [0,1] and, back to [0,1], such
an A is uniquely, up to t↦ 1 − t, determined by the measures dπ○xt.
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Clearly, the composed map Ψ(x, t) = (Φ ○A)(x, t) ∶X × [0, 1] → E satisfies

∫
1

0
Ψ(x, t)dt = f0(x),

and approximation of this integral by Riemann sums, shows that
the convex combinations of Cr-maps X → E are Cr-dense in the space of
Cr-maps X → intconv(E).
Finally, since the Cr-submanifold E ⊂ Rq, r ≥ 1, is connected, its tangent spaces

(brought to the origin) linearly span Rq; therefore, by the elementary implicit func-
tion theorem,

the interior of the convex hull of Cr-maps X → E is open in the space of Cr-maps
X → intconv(E).

Hence,
all Cr-maps from X to the interior of the convex hull conv(E) ⊂ Rq are
convex combinations of Cr-maps X → E. QED

24 Questions. What are non-C1-smooth (connected) subsets E ⊂ Rq for which the
subset intconv(C0(X → E)) ⊂ C0(X → intconv(E)) is open?

25 Is there a reasonable bound on the number of summands in f0 = ∑l plφl?

3.5.3. C
-Approximation.

Notation. Given smooth manifolds X and Y , let H = hom(T (X) → T (Y )) be (the
total space of) the vector bundle over X × Y with the fibres

Hx,y = hom(Tx(X) → Ty(Y )) ⊂H, (x, y) ∈X × Y .

Suppose our manifold X splits, X =X ×R, and let
● T = T (X) be the (total space of) the bundle of subspaces T x ⊂ Tx(X) that are

tangent to the X-fibres X × t ⊂X ×R;

● T ∣ = T ∣(X) be the (total space of) the bundle of subspaces T ∣x = T
∣
x(X) ⊂ Tx(X)

that are tangent to the lines x ×R ⊂X ×R;
● Hx,y = hom(T x → Ty(Y ));
● H

∣
x,y = hom(T ∣x → Ty(Y )), where H

∣
x,y = Ty(Y ), since T

∣
x = Rx = R.

In these terms, Δx,y = Hx,y⊕H
∣
x,y and, accordingly, the differentials of maps

f ∶X → Y decompose to pairs

Df(x) = (Df(x), ∂f(x)
∂t

) ,

where Df ∈Hx,f(x) denotes the restriction of Df to T and

∂f(x)
∂t

∈H ∣
x,f(x) = Tf(x)(Y )

is the derivative in the t-direction.
Given a subset Ex,y ⊂Hx,y and a linear map h ∈Hx,y, define

E
∣
h ⊂H ∣x,y = Ty(Y )

by the following condition:
if f ∶ X → Y is a smooth map such that Df(x) = h, then

∂f(x)
∂t

∈ E ∣h ⇔Df(x) ∈ Ex,y for y = f(x).
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(In terms of linear algebra, E
∣
h ⊂H

∣
x,y is equal to the set of those homomorphisms

τ ∈ H ∣x,y for which the homomorphism Tx(X) → Ty(Y ) defined by the pair (h, τ)
is contained in Ex,y.)

Now we are ready to proceed with C
-approximation.

Let

E = ⋃
x,y

Ex,y ⊂H = ⋃
x,y

Hx,y

be a locally closed subset, let f0 ∶ X → Y be a C1-map, and suppose that the

subsets E
∣
Df(x) ⊂ Ty(Y ) “continuously depend” on x ∈X.

This means that the natural projection

E
∣
f0
=def ⋃

x∈X
E
∣
Df0(x) →X

is a topological fibration,26 where this projection comes from that of the (total
space of the) “f0-lift” of the bundle T (Y ) to X, for

E
∣
f0
⊂ f !

0(T (Y )) →X.

Let
(a) the subsets E

∣
Df(x) ⊂ Ty(Y ) be path-connected for all x ∈X and

(b) the derivatives ∂f0(x)
∂t

∈ Tf0(x)(Y ) be contained in the convex hulls

conv (E ∣
Df(x)) ⊂ Ty(Y ),

for all x ∈X.
[*] Then, for an arbitrary neighbourhood Ω = ΩH ⊂ H of the subset E ⊂ H,

there exists a fine C
-approximation of f0 by C1-maps f ∶ X → Y , the differentials
of which, Df(x) ∈Hx,y ⊂H, are contained in Ω for all x ∈X.

Almost Proof. Start by upgrading (b) to

∂f0(x)
∂t

∈ intconv (E ∣
Df(x))

by an arbitrarily small perturbation of E.

Then a generalised version of convex decomposition (see [� � �] in the pre-
vious section) goes along with a suitable generalisation of the oscillatory curve ap-
proximation (see [∧∨∧∨∧∨] in 3.5.1) to f0 ∶ X = X ×R → Y regarded as an “R-curve”
in the space of maps X → Y for t↦ f0∣X × t ∶ X =X × t→ Y .

(Formulation and application of the needed generalisations of [� � �] and
[∧∨∧∨∧∨] are quite apparent as well as the necessary modifications of their proofs.)

3.5.4. Convex Hull Rendition of Nash-Kuiper Stretching.
Gradient Splitting. Let Y = (Y, g̃) be a Riemannian manifold,27 let f0 ∶ X → Y

be an immersion, and let φ ∶ X → R be a C1-function that has no critical points.
Denote by g0 the Riemannian metric on X induced by f0 from g̃ and assume that
the gradient of φ splits X.

26In fact, one needs a weaker “continuity” than being a fibration; see 2.4 in [35].
27We use the notation “g̃” instead of “h” in order not to confuse it with homomorphisms

h ∶ T (X) → T (Y ).
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This means that X splits as X = X × R where the projection X → R equals φ
and where this splitting is g0-normal, that is the lines x ×R ⊂X are g0-orthogonal
to the hypersurfaces φ−1(t) =X × t ⊂X; thus, they are the gradient lines of φ.

Notice that if φ ∶ X → R has no critical points and if the submanifolds φ−1(t) ⊂X
are compact,28 then the gradient of φ splits X.

Let g′ be a semipositive definite quadratic differential form on X that vanishes
on the hypersurfaces X × t ⊂X, and let

E′x,y = E′x,y(f0, g′, g̃) ⊂Hx,y = hom(Tx(X) → Ty(Y )
be the set of isometric linear maps Tx(X) → Ty(Y ) with respect to the metrics
g0 + g′ on T (X) and g̃ on T (Y ).

Then the subset

E
′∣
h ⊂H ∣x,y = Ty(Y )

(as defined in the previous section) is either empty or it is equal to the (q − n)-
sphere of radius R′ = ∣∣τ ∣∣g′/∣∣τ)∣∣g̃, τ ∈ T ∣(x), positioned in the tangent space Ty(Y )
normally to the image of Df(T x) ∶ T x → Ty(Y ),

E
′∣
h = Sq−n(R′) ⊂ Ty(Y ) ⊖Df(T x), n = dim(X), q = dim(Y ),

where E
′∣
h is non-empty if and only if the linear map h ∶ T x → Ty(Y ) is isometric.

That is, the metric induced from g̃ on the subspace T x ⊂ Tx(X)—which is, we
recall, tangent to X × t at x = (x, t)—is equal to g0.

Since g0 = (Df0)⋆(g̃), the sets E
′∣
h are non-empty for h = Df0(x) for all x ∈ X

and, clearly, the t-derivative of f0 is contained in the convex hull of E
′∣
Df(x) for all

x ∈X,

Df0(x) ∈ conv (E′∣Df(x)) .

Therefore, if dim(Y ) ≥ dim(X)+1, then the spheres Sq−n(R) = E
∣
x have positive

dimension and, hence, are connected, and the C
approximation from the previous
section (see [*] in there) applies and shows that
[⋆] f0 admits a fine C
-approximation by C1-immersions f ∶ X → Y such that

the metrics (Df)⋆(g̃) induced by these immersions f finely C0-approximate g0 + g′
on X with an arbitrarily given small error.

Next we observe—this is in the category of “obvious”—that all continuous pos-
itive definite quadratic differential forms (Riemannian metrics) g′ on X can be
decomposed as follows.29

[◻′] ∑ψνdφ
2
ν-Decomposition. There exists a locally finite covering of X, that

depends on g′, by (arbitrarily small) smoothly split neighbourhoods Uν = Uν ×R,
where all Uν are diffeomorphic to the sphere Sn−1 and such that the metric g′

decomposes as

g′ =∑
ν

ψν(x)dφν(x)2,

where φ ∶ Uν = Uν ×R→ R are projections to the second coordinates and ψν(x) are
positive continuous functions on X with supports in Uν .

30

28“Compact” here means compact without a boundary.
29Open problems related to this are formulated in section 3.9.
30This goes back to Nash’s 1954 paper. It was used, instead of the Kuratowski-Weyl decompo-

sition, by Nash and Kuiper for construction of isometric C1-embeddings. Also this decomposition,
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Since addition of ψν(x)dφν(x)2 to g0 is the same as the stretching the map f0
on the split Uν as described by [⋆], the propositions [⋆] and [◻′] together imply
the following

[⋆+◻′] Approximately Isometric C1
-Immersion Proposition. Let g′ be

a continuous positive definite form on X, and let f0 ∶ X → Y = (Y, g̃) be a smooth
immersion. If dim(Y ) ≥ dim(X)+1, then f0 admits a fine C0-approximation by C1-
maps f1 ∶ X → Y , such that the induced metrics (Df)⋆(g̃) finely C0-approximate
g0 + g′.

This proposition, however, is not sufficient for proving the isometric immersion
theorem, since it guarantees no control over the C1-distances from the approxi-
mating maps f1 ∶ X → Y to f0 ∶ X → Y which is needed for C1-convergence of a
consecutive approximations sequence f0, f1, f2, . . . .

To regain this control in the general settings of convex hulls, etc., one needs to

bring forth the following nowhere flatness assumption on the sets E
∣
x = E

∣
Df(x) ⊂

Ty(Y ) that mimics the relevant property of the spheres Sq−n(R).
The points e in the convex hull of E

∣
x ⊂ Ty(Y ), y = f(x) that are close to E

∣
x are

representable by convex combinations of points in E
∣
x that are close e.

In other words,

the convex hull conv(E●) ⊂ Ty(Y ) of every open subset E● ⊂ E
∣
x contains some

neighbourhood V ⊂ conv(E ∣x) of E● ⊂ conv(E ∣x).
Then an application of [� � �] and [∧∨∧∨∧∨] to (small) open subsets E● ⊂ E

yields a version of [*] with a control over ∣∣f0−f ∣∣C1 that, in particular, is sufficient
for the proof of the Nash-Kuiper g0 + g′-theorem.

Defence of the Method. What is the point of replacing the half-page direct proof
of the Nash-Kuiper isometric C1-immersion theorem by several pages of general
arguments that do not even make a complete proof?

And the above was not even a derivation of Nash-Kuiper entirely from general
principles, since the ∑ψνdφ

2
ν-decomposition was borrowed from the original proofs

by Nash and by Kuiper,
However a full abstract scheme of the convex integration, that, in particular,

digests and incorporates ∑ψνdφ
2
ν-decomposition, has been worked out and an

abstract Nash-Kuiper [g0 + g′]-kind of h-principle for C1-maps f ∶ X → Y that
satisfy Df(x) ∈ Ex,y, y = f(x), x ∈ X, was proved for those subsets Ex,y ⊂
hom(Tx(X) → Ty(Y )) for which a certain partial convex hull is equal to the full
(i.e., ordinary) convex hull) (see 2.4 of [35] and also [27] and [70]).

Then the proof of the C1-immersion theorem is reduced to a trivial verification
of this property for the subset E = Iso(Rn → Rq) ⊂ hom(Rn → Rq).

But just defining “partial convex hulls”, formulating the relevant h-principle,
and listing down the properties of E = Iso(Rn → Rq) needed for the equality
partconv(E) = conv(E), even if considered to be quite obvious, takes longer than
proving the C1-immersion theorem directly.

However, the reason for the length of the proof of the Nash-Kuiper theorem
by convex integration is not its inherently mathematical complexity, but rather

with a bound on the number of terms in the sum, was used by Nash in his 1956 paper for con-
struction of isometric C∞-embeddings.
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the necessity of introducing specific terminology adapted to new concepts. Non-

accidentally, the formulation of the above [∧∨∧∨∧∨], [� � �], and [*] is significantly
longer than their proofs.

What attracts us in these general “convex concepts” is that once they are ac-
cepted and assimilated—with no regard for isometric immersions—all results of the
isometric C1-immersion theory become plainly obvious, without any reference to
their proof, obvious in the same way as, for example, vanishing of the gradient of a
smooth function at its maxima points is obvious.

The above justification of convex integration may not be so convincing as far
as isometric C1-immersions are concerned, but there are classes of maps where
convex integration is the only (or at least the simplest known) way of proving the
h-principle.

For instance (this is a version of the Euclidean short approximation theorem
mentioned earlier),

a strictly distance decreasing map between Riemannian manifolds, f0 ∶ Xn → Y q,
q > n, admits a uniform approximation by isometric C1-immersions if and only if
f0 is homotopic to a smooth immersion Xn → Y q.

Another instructive instance where convex integration (trivially!) applies and
where no alternative approach is available is in showing that

all parallelisable n-manifolds (e.g., all orientable 3-manifolds) with smooth pos-
itive volume forms on them admit n linearly independent divergence free (i.e.,
preserving their volume form) vector fields (see 2.4.3 in [35] and also [27]).

3.5.5. Open Problems in Convex Integration.
A. Induced Forms of Degree p ≥ 2, etc. Application of the convex integration
to C1-maps f ∶ X → Y that induce a given first order structure g on X from g̃ on
Y raises several questions, such as the following.

26 What is the weakest hyperregularity (see below) condition on the differentials
Df(x) ∶ Tx(X) → Tf(x)(Y ) that makes convex integration applicable to the equa-
tion (Df)⋆(g̃) = g?

27 Given a continuous map f0 ∶ X → Y , when does there exist a continuous family
of linear maps Tx(X) → Ty(Y ), y = f0(x), that induce gx on the tangent spaces
Tx(X) from g̃y on Ty(Y ) for all x ∈X?

28 What is the homotopy structure of the space of continuous fibrewise linear maps
T (X) → T (Y ) that induce gx from g̃y on all tangent space Tx(X)?

29 How does the hyperregularity condition on the homomorphisms Tx(X) → Ty(Y )
influence this structure?

For example, let g and g̃ be symmetric differential forms of degree p.
If p = 2 and the quadratic form g̃ on Y is non-singular of the type (q+, q−),

q+ + q− = q = dim(Y ), then hyperregularity of a linear map hx ∶ Tx(X) → Ty(Y )
says, in effect that

(a) hx is g̃-regular which amounts to injective for non-singular g̃;
(b) the type (q+, q−) of g̃ “strictly dominates” (n+, n−) = (n+, n−)x of gx (the

latter may depend on x for a singular form g) for all x ∈X,

q+ ≥ n − n+ + 1, and q− ≥ n − n− + 1, n = dim(X)

(where only the inequality q+ ≥ n+ + 1 is needed for positive definite g, i.e., if
n− = n = dim(X)).
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Also, the structure of space of the continuous fibrewise injective linear maps
T (X) → T (Y ) that induce gx from g̃y on all tangent spaces Tx(X) is fairly well
understood in this case, especially if g is non-singular or, more generally, if the type
(n+, n−)x does not depend on x, e.g., g is identically zero.

Thus, for instance, if X is homeomorphic to Rn and the type (n+, n−)x of g is
constant and is strictly dominated by that of g̃ (as in (b)), then

every continous map f0 ∶ X → Y can be C0-approximated by C1-maps f ∶ X → Y
that induce g from g̃.

But everything becomes more complicated for forms of degrees p ≥ 3, where the
concepts of g̃-regularity and hyperregularity conditions needed for present day con-
vex integration techniques to work becomes rather heavy and, possibly, unnecessary
in their present form (see 2.4.9 in [35]).

Besides, the solution of the algebraic and the homotopy theoretic problems to
which the h-principle reduces the solvability of the equation (Df)⋆(g̃) = g remains
problematic.

On the one hand, one does have some existence results for “sufficiently non-
degenerate” g̃.

For instance, let g̃ be a diagonal form of degree p on a smooth q-dimensional
manifold Y ,

g̃ =
q+

∑
i=1

lpi −
q−

∑
j=1

lpj ,

where q+ + q− = q = dim(Y ) and where {li, lj} is a q-tuple of everywhere linearly
independent degree 1 differential forms on Y , e.g., g̃ = ∑q+

i=1 dy
p
i −∑

q−
j=1 dy

p
j on Rq++q− .

One knows (see 2.4.9 in [35]) that

if q+, q− ≥ sn+1,p−1+n for n = dimX and sn,p = n(n+1)⋯(n+p−1)
p!

,31 then an arbitrary

continuous map X → Y admits a fine C0-approximation by C1-maps X → Y that
induce a given form g of degree p on X from g̃ on Y .

Questions

30Can one improve this estimate on q±?
For example,

31what is the minimal q such that every 3-form g on an n-manifold X
decomposes as g = ∑q

1 l
3
i for some C1-smooth exact32 linear forms li on X?

32What are the classes of non-symmetric differential forms g and g̃ where the
convex integration applies?33

33What are convex cone problems among those indicated and/or hinted at
in section 2.2 that are amenable to convex integration?

B. Isometric Immersion with External Constraints. Below is an instance
of a class of maps where convex integration fails but more direct constructions by
Nash and by Kuiper work fine.

Let F+m be a sheaf of C1-maps from open subsets U ⊂X ×Rm to Y , and let F
be a sheaf of maps Rn to Y with the following two properties.

31This sn,p is equal to the number of differential equations corresponding to the relation

(Df)⋆(g̃) = g.
32If you drop “exact” this becomes a problem in algebraic topology; yet, no satisifactory answer

seems available.
33Some cases were treated by Mahuya Datta with coauthors, where the references can be found

on http://www.isical.ac.in/∼mahuya/publications.html.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



206 MISHA GROMOV

1. If a map f ∶ U → Y , U ⊂ X, is contained in F(U), where U is “sufficiently
small”,34 then f extends from U = U × 0 ⊂ U × Rm to a map f+ ∶ U × Rm → Y in
F+m(U ×Rm), such that the composition of f+ with the graphs Γφ ∶ U → U ×Rm

of C∞ maps φ ∶ U → Rm is contained in F(U).
2. The space of C1-maps f ∶X → Y from F(X×Rm) is closed in the C1-topology.

[g0 + g′]-Approximation in F. Let f0 ∶ X → Y be a C1-immersion contained
in F(X), and let g′ and g̃ be continuous positive definite quadratic forms on X and
on Y , respectively. Then

if m ≥ 1, then f admits an arbitrarily fine C0-approximations by C1-maps f ′ ∶
X → Y such that f ′ ∈ F(X) and (Df ′)⋆(g̃) = (Df0)⋆(g̃) + g′.

Discouraging Remark. The above proposition tells us something new compared
to the Nash-Kuiper theorem only if f0 ∈ F(X) does not come from the restriction
of some f+ ∈ F(X ×Rm) to X =X × 0 ⊂X ×Rm.

Example. Let Y = (Y,ω) be a symplectic manifold, and let F be the sheaf of
ω-isotropic maps f ∶ U → Y , U ⊂X, i.e., (Df)⋆(ω) = 0.

[g0+g′]-Isotropic Approximation. Let g′ and g̃ be continuous positive definite
quadratic forms on X and Y , respectively, and let f0 ∶ X → Y be an ω-isotropic
C1-immersion. Then the above shows that

if dim(Y ) ≥ 2dim(X) + 2, then f0 admits arbitrarily fine C0-approximations by
ω-isotropic C1-immersions f ′ ∶X → Y such that (Df ′)⋆(g̃) = (Df0)⋆(g̃) + g′.

(If dim(Y ) ≥ 2dim(X) + 2 and the form g̃ is quasi-Hermitian, this follows from
[19].)

34 Question. Can one generalise convex integration to a point where it would
accomadate the above [g0 + g′]-approximation along with symplectic and contact
isometric embedding theorems from [17] and [19]?

[g0 + g′]-Questions. The above proof of the [g0 + g′]-approximation fails for
Lagrangian immersions, i.e., when dim(Y ) = 2dimX, but

35 the approximation statement itself, probably, remains true.

More generally, let Y be a smooth manifold, and let D be a pseudo-group of
diffeomorphisms acting on Y . For instance, Y may be symplectic and D may
consist of Hamiltonian diffeomorphisms.

Let Grn(Y ) denote the space of tangent n planes T ′y ⊂ Ty(Y ), y ∈ Y , and let
X ′ ⊂ Grn(Y ) be a closed subset the projection of which to Y is one-to-one. For

instance, X̃ may be equal to the tangential lift of a C1-submanifold X =Xn ⊂ Y .
Let g̃0 be a continuous family of positive definite quadratic forms induced from

g̃ on the linear n-spaces T ′y ∈X ′, and let g′ be another continuous family of positive
definite forms on these T ′y.

36 Under what circumstances does there exist a diffeomorphism δ′ ∈ D, such that
the form on X ′ induced from g̃ by the differential of δ′ satisfies

(Dδ′)⋆(g̃) = g̃0 + g′?

34This means that there exists a covering of X by open subsets Ui (this covering should be
independent of f), such that U is contained in some of these Ui.
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C. Hölder C1,α-Maps. Convex integration, applied to the first order systems
of differential equations, such as (Df)⋆(g̃) = g, can, in principle, deliver solutions
f that are more regular than C1, e.g., Hölder C1,α for some 0 < α < 1.

The first result of this kind goes back to Borisov ([7] 1965, [8] 2004) and was
then developed by Conti, De Lellis, and Székelyhidi [15] (2012), where these authors
refine Kuiper’s stretching argument and construct, in particular,

local isometric C1,α-immersions of Cβ-smooth Riemannain manifolds Xn to Rq,
q > n, for α <min( 1

1+(n(n+1) , β/2).
Also, according to Källen [52] (1978),
Cl,β-manifolds, l = 0, 1, 0 < β < 1, admit isometric C1,α-embeddings to Rq for

q = 3(n + 1)(n2 + n + 2) + 2n.
I must admit I have not studied the arguments by Borisov, Källen, and Conti-De

Lellis-Székelyhidi, and I do not know how to set them into the general framework
of convex integration, but, I guess, their methods may be applied to other struc-
ture inducing equations we meet in the present paper. In any case, the following
questions remains open.

37For which n and q = q(n,α), for a given 0 < α < 1, can strictly distance de-
creasing immersions between C2-smooth Riemannian manifolds, f0 ∶ Xn → Y q, be
approximated by isometric C1,α-smooth immersions?

38Is there a significant mutual dependence between q in the range n + 1 ≤ sn − 1
and α?

39Are there (local) C1,α-immersions of general sufficiently smooth metrics to Rq

for all α < 1/2 and some (most?) q < sn?
More generally, let

E = ⋃
x,y

Ex,y ⊂H = hom(T (X) → T (Y )

be a subset that is amenable to convex integration, e.g., the C
-approximation holds
for maps f ∶ X → Y that satisfy Df(x) ∈ Ex,f(x) with respect to some splitting
X =X ×R.

40What are the extra conditions, depending on a given 0 < α < 1, that one needs
to impose on E in order to guarantee the existence of C1,α-maps f ∶ X → Y that
satisfy Df(x) ∈ Ex,f(x) for all x ∈X?

(An apparently relevant condition is a quantified non-flatness of E.)
D. Differential Equations of Orders ≥ 2. Convex integration applies to Cr-
solutions of differential equations of all orders r ≥ 1, e.g., to those characterising
maps inducing rth order structures, but definite results are known only in a few
specific examples, such as construction of C2-maps X → Rq with prescribed (ex-
trinsic) curvatures. But even that was achieved by means of a direct Nash-style
construction rather than with the help of abstract convex integration (see 3.1.5 in
[35]).

Thus, besides extensions of the problems mentioned in this section to r ≥ 2,
one needs an understanding of possible examples where convex integration may be
applied.

3.6. Solving Differential Equations by Algebraic Formulas.
There exists no universal formula f = Ξ(g) that would express the components

f1, f2, . . . , fq ∶ X → R of a map f ∶ X → Rq as polynomials (or general algebraic
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functions) in the components of the Riemannian metric g, that would make the
map f isometric, i.e., such that (Df)⋆(∑j dy

2
j ) = g, or, equivalently, such that

the composition of the two (non-linear) differential operators

g ↦ f = Ξ(g) followed by f ↦ g = (Df)⋆(∑j dy
2
j )

is equal to the identity operator g ↦ g.
Amazingly, this can be done, and quite easily at that, if instead of the Euclidean

∑j dy
2
j we use an indefinite form ∑j dy

2
j −∑k dy

2
k as follows.

3.6.1. Algebraic Immersions to Pseudo-Euclidean Spaces.
To make the story 100% easy, assume that X is diffeomorphic to Rn and write

the isometric immersion equation for maps f ∶ (X,g) → Rq in local coordinates as

⟨∂if, ∂jf⟩ = gij ,

where ∂if(x) = ∂f(x)
∂xi

∈ Rq and gij = gij(x) are the components of g.

Let f ∶ X → Rq, q = sn + n, sn = n(n+1)
2

be a free C2-smooth map that is such

that its first and second partial derivatives ∂if(x), ∂2
ijf(x) ∈ Rq are linearly inde-

pendent at all x ∈X. For instance, one may take f = (x1, . . . , xn, x
2
1, x1x2, x1x3, . . . ,

xn−1xn, x
2
n).

Let g be the metric on X induced by f , let f ′ ∶ X → Rq be another smooth map,
and observe that
● the metric g′ induced by f + f ′ equals

g′
ij
= ⟨∂i(f + f ′), ∂j(f + f ′)⟩ = g

ij
+ 2⟨∂if ′, ∂jf⟩ + g′ij ,

where g′ij = ⟨∂if ′(x), ∂jf ′(x)⟩ is the quadratic form induced by f ′.
●● The partial derivatives of the scalar products φ′i = ⟨f ′, ∂if⟩ satisfy

∂jφ
′
i = ⟨∂if ′, ∂jf⟩ + ⟨f ′, ∂2

ijf⟩.

This allows us to rewrite ● as

g′
ij
= g

ij
+ψ′ij − 2⟨f ′, ∂2

ijf⟩ + g′ij ,

ψ′ij = ∂jφ
′
i + ∂iφ

′
j .

Finally, given an arbitrary quadratic differential form g on X, the freedom of f
guarantees the existence of an f ′ = f ′(g) (actually of a unique one) such that

2⟨f ′, ∂2
ij⟩ = −gij + g

ij
+ ψ′ij ;

hence, the metric g′
ij

induced by f + f ′ ∶ X→Rq is

g′ = g + g′,

and the metric induced by F = (f + f ′, f ′) ∶X → R2q = Rq+ ⊕Rq− from the form

q

∑
j=1

dy2j −
q

∑
k=1

dy2k for q+ = q− = q = n(n + 1)
2

+ n,

is equal to g. QED
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Two Technical Remarks. (a) The above scheme describes all generic isometric
maps F ∶ (X,g) → Rq+⊕Rq− , namely those for which the projections to Rq+ are free,
where these F depend on sn+2n arbitrary functions, namely the sn+n-components
of f and φ′i.

(b) The above trivially generalises to all n-manifolds X = Xn, where, a priori,
one needs q = sn + 2n to ensure free immersions f → Rq. But it seems not hard,
however, to do it with generic C∞-maps X → Rq for q = sn + n with some care
taken in solving the system of linear equations 2⟨f ′, ∂2

ij⟩ = ??? at the codimension
one subvariety where this system becomes singular. Moreover, it is plausible that
this works already for q = sn + 1 (see section 3.6.2)?

Questions

41Are isometric immersions Xn → Rq+ ⊕Rq− by universal algebraic formulas pos-
sible for min(q+, q−) ≤ sn?

In fact, there is neither construction nor obstruction in sight if min(q+, q−) ≥ 2n
and q+ + q− ≥ sn.

(The existence of an isometric C∞-immersion (X,g) → Rq+ ⊕ Rq− is known for
min(q+, q−) ≥ 2n and q+ + q− ≥ sn + 3n; see 3.3 in [35].)

42What are other instances of algebraic pseudo-Riemannian manifolds Y , besides
Rq+⊕Rq− , such that general manifolds (Xn, g) admit algebraic isometric immersions
to these Y ?

43Do spaces of (regular in some sense, e.g., free) algebraic isometric immersions
X → Y ever satisfy some h-principle?

Historical Remarks. Janet-Burstin’s argument was adapted by A. Friedman [28]
(1961), to

local isometric embeddings of pseudo-Riemannian Can-manifolds X of type
(n+, n−), n+ + n− = n = dim(X) to the pseudo-Euclidean space Rq+,q− with q± ≥ n±
and q+ + q− = q ≥ sn.

The C∞-case remains problematic; but it is not impossible, for instance, that the
existence of local isometric embeddings of Riemannian C∞-manifolds to a pseudo-
Euclidean space (q+, q− > 0) may be easier than such an embedding to the Euclidean
(q− = 0) space of the same dimension q.

It was observed by R. E. Greene ([31] 1969, [32] 1970) and C. J. S. Clarke
([14] 1970) that if a manifold X admits a proper smooth immersion to Rq+ , e.g.,
if q+ ≥ 2dim(X), then there exists a proper embedding, say f+ ∶ X → Rq+ , that
induces an arbitrary large form g+ on X.

(Such embeddings may be obtained with obvious self-maps Rq+ → Rq+ that ar-
bitrarily strongly stretch the Euclidean space Rq+ .)

Therefore, an arbitrary quadratic differential C∞-form g on X decomposes as
g+ − g− where g± are Riemannian C∞-metrics and where g+ is induced by a C∞-
embedding f+ ∶X → Rq+ .

Thus, Greene and Clarke conclude that

Riemannian isometric C∞-immersions (X,g−) → Rq− yield proper pseudo-Rie-
mannain isometric embeddings (X,g) ∶ Rq+,q− for q+ = 2n and all quadratic differ-
ential forms g on X.

Also, Greene observes that if X is compact, then Nash’s perturbation/implicit
function theorem, applied to free isotropic (i.e., inducing zero form) immersions
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F0 ∶ X → Rq+,q− , yields isometric C∞-immersions Fε ∶ (X,εg) → Rq+,q− for all C∞-
smooth g and small ε = ε(g) > 0.

Thus, departing from a (generic) free embedding f0 ∶X → Rq, q = sn+2n, Greene

obtains isometric C∞-embedding F = ε−
1
2Fε ∶ (X,εg) → Rq+,q− , q± = q, for Fε being

the above perturbation of

F0 = (f0, f0) ∶ X →
⎛
⎝
Rq+,q− ,

q

∑
j=1

dy2j −
q

∑
k=1

dy2k
⎞
⎠
.

Here, the perturbation theorem may be applied directly to f0 and, according to
Greene, the case of non-compact manifolds follows, albeit with a larger q±, namely,
for q± = (2n + l)(2n + 6).

(There are many papers on isometric embeddings in physics journals where some
references may be found in [29], [57], [40]. Unfortunately, most of these papers are
virtually non-existent, since they are not freely accessible on the web: they cannot
be read and referred to.)

3.6.2. Algebraic Solution of Linear PDE and Infinitesimal Inversion of Non-Linear
Differential Operators.

Let L be a linear differential operator, say with C∞-coefficients, of order r = rL
that sends q-tuples f of functions on Rn to s-tuples g, and let us address the
following questions:

Does L ∶ f ↦ g admit a left inverse differential operator of certain order r = rM ,
say M ∶ g ↦ f , i.e., such that M ○L(f) = f for all f?

Does L ∶ f ↦ g admit such a right inverse M , i.e., L ○M(g) = g for all g?
It may feel counterintuitive, but
a differential operator L with generic coefficients admits a left inverse if q < s

and a right inverse if q > s.
Justification. The relation

M ○L = id

is representable by a system of equations on the coefficients of M that are linear
algebraic equations, the coefficients of which are served by partial derivatives of the
coefficients of L.

The number uM of unknowns, which are coefficients of M in these equations, is
uM = qsPn(rM) for some universal polynomial Pn, while the number of equations
eL,M equals q2Pn(rL + rM).

If our unknown M is selected among operators of a sufficiently high order rM—
and we are free to try M of any order we like—then the inequality s > q imples
that uM > eL,M , which makes the algebraic system underdetermined. Therefore, it
is plausible (and easily provable, see 2.3.8 in [35]) that

if s > q, then the system of equations corresponding to M ○ L = id is solvable in
M , for generic operators L.

Corollary. A generic overdetermined system of linear differential equations
L(f) = g may have at most a single solution f .

Now we turn to the right inversion relation

L ○M = id,

which expands to a system of linear differential equations of order rL on the coef-
ficients of M .
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We are going to transform this differential system to an algebraic one by means
of a

universal differential operator(s) I, such that I ○ I = id.
The operators I we use here act on coefficients of differential operators by conju-

gation, that is taking formal adjoints, denoted L→ LI , M →M I , where LI ∶ g ↦ f ,
M I ∶ f ↦ g, and

(L ○M)I =M I ○LI .

This reduces the right inversion problem L○M = id to the left one for M I ○LI = id,
since

idI = id, (M I)I =M, and ((L ○M)I)I = L ○M.

Thus, assuming solvability of the “left problem”, we conclude that
if q > s, then the system of equations corresponding to L ○M = id is solvable in

M , for generic operators L.
Corollary. Generic underdetermined systems of linear differential equations

L(f) = g are algebraically solvable, i.e., by applying differential operators M =ML

to g.

Questions

44What is the structure of the group Dn,q of invertible elements in the semigroup
of differential operators that act on q tuples on functions f in n variables?

45IsDn,q generated by some kind of “elementary transformations” such as (f1, f2)↦
(f1, f2 + ∂if1).

(The conjugation operators I as well as automorphisms of supermanifolds are of
this nature.)

Infinitesimal Invertibility. A non-linear differential operator D between
spaces of functions/maps, say D ∶ F → G is called infinitesimally invertible at
functions f0 from some open subset F0 ⊂ F if the linearised operators between the
respective tangent spaces,

LD,f0 ∶ Tf0(F) → TF(f0)(G),
are algebraically invertible, namely, there exist differential operators

M =Mf0 ∶ TD(f0)(G) → Tf0(F), f0 ∈ F0,

such that
(LD,f0 ○Mf0)(g′) = g′, g′ ∈ TF(f0)(G),

where, moreover, Mf0(g′) is a differential operator in both variables, f0 ∈ F0 as well
as in g′ ∈ TF(f0)(G).

Example. Let Y = (Y, g̃) be a pseudo-Riemannian manifold, and D = Dg̃ sends
maps f ∶ X → Y to the induced forms g on X,

D(f) = g = (Df)⋆(g̃).
The operator D∶f↦(Df)⋆(g̃) is infinitesimally invertible at free maps f0 ∶X→Y .
In fact, we have already met the linearised system Lf0(f ′) = g′ in the previous

section, which now reads

[L] ⟨∂if ′, ∂jf0⟩g̃ + ⟨∂jf ′, ∂if0⟩g̃ = g′ij .

We augment this with the equation

[*] ⟨f ′, ∂if0⟩ = 0
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and, by covariantly differentiating these, obtain the relation

⟨∂if ′, ∂jf0⟩g̃ + ⟨∂jf ′, ∂if0⟩g̃ = −2⟨f,′ ∂2
ijf0, ⟩.

Thus [L] is reduced to the system of linear algebraic equations

[*], ⟨f ′, ∂if0⟩ = 0,

2⟨f,′ ∂2
ijf0, ⟩ = −gij ,

which, by the definition of freedom (see section 2.4), is non-singular; hence, solvable.

Pseudo-Historical Remark. Infinitesimal invertibility of the metric inducing op-
erators Dg̃ at free maps is a little cog in the algebra of reduction of the isometric
immersion equations to the Cauchy-Kovalevskaia form by Janet and Burstin. But
apparently nobody took it seriously prior to the 1956 paper by Nash, who combined
it with his perturbation/implicit function theorem and thus has proved that if X
is compact, then
Dg̃ is an open map from the space of free C∞-maps f ∶ X → Y = (Y, g̃) to the

space of C∞-smooth quadratic differential forms on X.

Conjecture. If q = dim(Y ) > sn = n(n+1)
2

, n = dim(X), then the operator Dg̃

is infinitesimally invertible on an open dense susbset F0 in the space of C∞-maps
f ∶X → Y .

If true, the operator Dg̃ will be open in the C∞-topology on this F0, by Nash’s
perturbation theorem. But since the order of the (potential) differential operator
M that would invert L must increase with n, Nash’s theorem would apply to Cr-
perturbations only for r = r(n) → ∞ as n→∞.

At the present moment, there is convincing (97%) evidence for this if q ≥
sn + n −

√
n/2 (see 2.3.8 in [35]) that was verified (100%) for n = 2 in [20] and

futher studied for n ≥ 2 in [23].
Besides, it is known that the operator f ↦ (Df)⋆(g̃) on maps X → (Y, g̃) is

infinitesimally invertible for forms g̃ of degree p > 2 at “sufficiently non-degenerate”
maps f0 ∶X → Y that can be called free relative to g̃.

Also similar relative freedom ensures infinitesimal invertibility of the operators
f ↦ (Df)⋆(g̃) for certain non-symmetric differential forms g̃ (see 3.4.1 in [35]).

But easily verifiable criteria for this freedom are yet to be explicitly worked out,
and, which is more difficult, freedom at generic maps is expected in most (all?)
cases where the structure inducing operator is underdetermined.

3.6.3. Algebraically Solvable and Unsolvable Polynomial PDEs.
The existence of algebraic isometric immersions to pseudo-Euclidean spaces from

section 3.6.1 can be also derived from the identity

y(dz)2 = 1

2
((d(zy + z))2 − (dz)2 − (d(zy))2 − (d(z2 + y))2 + (d(z2))2 + (dy)2)

that defines a polynomial isometric embedding

(R2, y(dz)2) → R3+,3− .

Since an arbitrary form ∑gijdxidxj on X is tautologically induced from the
universal quadratic form ∑yijdzidzj on the squared cotangent bundle of X and
since

dzidzj =
1

4
((d(zi + zj))2 − (d(zi − zj))2) ,
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the embedding (R2, y(dz)2) → R3+,3− yields a polynomial isometric embedding

(X = Rn,∑gijdxidxj) → Rq+,q− for q± = 6sn − 3n = 3n2.

But, contrary to what I stated in [34], it seems unlikely that the form y(dz)p
with p > 2 decomposes as

[?] y(dz)p =
l

∑
k=1

(dfk(y, z))p

with polynomials fk.

Questions

46What are, in general, non-linear differential operators that admit right (left in
the overdetermined case) inversions by differential operators?

47How representative in these respects are contact transformations, e.g., normal
equidistant moves of hypersurfaces in Riemannian manifolds, such as the geometric
Legendre transform?

48What is the minimal l needed for a decomposition y(dz)p = ∑l
k=1(dfk(y, z))2

with C∞- or with Can-functions fk?
49Does such a decomposition exist with entire holomorphic functions for y(dz)p

on C2?
50Is there a meaningful theory for structure inducing holomorphic maps from Stein

manifolds, e.g., from Cn, to simple (Oka?) spaces such as complex Euclidean spaces
Cq with translation invariant tensorial structures?35

51Are there working criteria for the existence and also for the non-existence of holo-
morphic solutions of general underdetermined polynomial differential equations?

52Is it true, for instance, that generic systems of s such equations of degree p in q
unknown functions have no entire holomorphic solutions if p ≥ p0(s, q)?

(If p = 0, this goes as the Kobayashi conjecture; see [74] and references therein.)
53What are systems of algebraic PDEs in n-variables solutions of which alge-

braically reduce to solutions of auxiliary PDEs in m-variables for some m < n?
An instance of this is the above reduction of decompositions g = ∑j(dfj)p on

n-dimensional manifolds to such a decomposition of a single form y(dz)p on the
two-plane R2 and this will be reduced to a solution of ODEs, i.e., of a differential
equation in a single variable (see [34]).

But probably,
54there is no such kind of reduction with positivity constraints: isometric immer-

sions of general Riemannian manifolds (X,g) to Euclidean spaces are unlikely to be
algebraically expressible by means of Φ(g), for solutions Φ of particular differential
equations.

3.7. Nash Implicit Function Theorem.
The Nash proof of the isometric Cr-embedding theorem for r > 2 of compact

manifolds X to Euclidean spaces is composed of two ingredients.
1. Geometry. The (convex, see section 2.2) (sub)cone ConerEuc of Cr-metrics

on X that are induced by Cr-maps to Euclidean spaces is dense in the space of all
Cr-metrics.

2. Analysis. The subcone ConerEuc contains a non-empty subset that is open
in the space of all Cr-metrics on X.

35I suggested something at the end of my article on the Oka principle [36], but apparently, I
was mistaken.
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Consequently—Nash argues—since the sums of inducible metrics are inducible,
all Cr-metrics on compact manifolds can be induced by Cr-embeddings X → Rq,
where the specific value of q obtained by Nash by quantifying this argument is as
follows:36

qNash = q1 + q2 for q1 = 2sn + 2n and q2 = sn + 2n.

More precisely, concerning 2, Nash proves that if f0 ∶ X → Rq is a free C∞-
immersion, then

[�] there exists a C3-neighbourhood G3
0 of the induced metric

g0 = (Df0)⋆(∑q
i=1 dy

2
i ) in the space of C3-metrics on X, such that all Cr-metrics

g ∈ G3
0 can be induced by Cr-maps f ∶ X → Rq.

This, Nash observes, applies to generic C∞-maps f0 ∶ X → Rq2 , since these are
free for q2 ≥ sn + 2n. (Generic linear projections of a “free” X from some huge RQ

to Rq2≥sn+2n are free for the same reason such projections to Rq≥2n are immersions.)

What is most significant here is Nash’s proof of [�] that relies on two points of
different nature.

[�] Infinitesimal invertibility of the metric inducing operator D ∶ f ↦ g at free
maps.

Indeed, if f0 ∶ X → Rq is free, then, as we saw in section 3.6.2, the linearisation
Lf0 ∶ f ′ ↦ g′ of D admits a right inverse Mf0 ∶ g′ ↦ f ′ where M is a differential
operator in (f0, g′) that is linear of order zero in f ′ and is non-linear of the second
order in f0.

However easy, this constitutes the essential “geometric” (algebraic?) element of

[�].

[�] Implicit function/perturbation theorem.
This is a general property of non-linear operators. Nash proves it using the

notations adapted to the specific problem he solves, but his argument does not
use anything particular about isometric immersions. (This feature of Nash’s proof
was brought to light by J. Schwartz in 1960, who christened this Nash’s implicit
functional theorem [67].)

But it turned out to be surprisingly difficult to properly reformulate what Nash
had actually proved in his 1956 paper in general terms. (This is witnessed by the
multiplicity of attempts by many authors at generalising Nash.)

It sounds easy enough in the language of infinitesimal invertibility.
Nash Inverse Function Theorem.
Let D ∶ f ↦ g be a C∞-smooth differential operator of order r between spaces of

functions, maps or sections of fibrations over a smooth manifold X, such that the
linearisation Lf ∶ f ′ → g′ of D is right invertible at all f in a Cd-neighbourhood of
some C∞-smooth f0 by a C∞-smooth differential operator Mf (g′) that has order
s in g′ and order d in f0.

36In fact, Nash proves the following weak version of 1:
1) the set G1 of Cr-metrics that are Cr-approximately inducible from Rq1=2sn+2n contains a

C1-open subset G′1 ⊂ G1.

This he compensates with a use of his C1-immersion theorem by
2) the set G2 of metrics that are Cr-inducible from Rq2=sn+2n contains a subset G′2 ⊂ G2 that

is Cr-open and C1-dense.
This suffices for decomposition g = g′1 + g

′
2 for all Cr-metrics g and some g′1 ∈ G

′
1 and g′2 ∈ G

′
2

depending on g.
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Then the operator D is right invertible by some D−1 = D−1f0 ∶ g ↦ f , i.e.,

D ○D−1(g) = g,

where D−1 is defined on some Cσ+s-neighbourhood Vσ+s
0 of g0 = D(f0) for σ =

1 +max(d, 2r + s) and where the regularity class of g goes down by s under D−1,
if g ∈ V = Vσ+s

0 is Cσ+s+κ-smooth, then f = D−1(g) is Cσ+κ-smooth.
Moreover—this was proved by Nash ten years later in 1966—if D, M , f0, and g

are real analytic, then D−1(g) is also real analytic.37

About Nash’s Proof. Think of D as a smooth fibration

U D→ V for U ∋ f0, V ∋ g0 and D(f0) = g0,

of some neighbourhood U of f0 in a relevant function space over V , and visualise
inversions Mf (g) of Lf , f ∈ U , as a field of horizontal tangent spaces Hf ⊂ Tf(U)
that are images of the tangent spaces Tg(V ) under Mf(g).

Given g1 ∈ V , take a path gθ in V from g0 = D(f0) to g1 and observe that the
final point of the horizontal lift fθ of this path to U solves the equation D(f1) = g1
and thus, furnishes inversion of D.

The construction of fθ formally amounts to solving ODEs defined by the line
field that is the restriction of H to the D pull-back of the path gθ. But when you try
to solve these ODEs, you observe that differentiations in L and in M take you out
of any particular (localised Banach) space Ck where solution of ODE is possible.

A seemingly absurd idea is to compensate for this loss of regularity by inserting
smoothing operators to these ODEs. Of course, the resulting “smoothed lift”, say
f○θ , will deviate from its goal f1 = D−1(g1), but you keep redirecting such f○θ all the
time to make it eventually arrive at f1 where D(f1) = g1.

“Obviously” this cannot work: the law of preservation of regularity seems as
unbreakable in analysis as the law of conservation of energy in physics.

But Nash has already broken this “law” in his C1-theorem (1954), then he has
done it in the C∞-case (1956), and he has repeated this feat in his Can-paper (1966)
once again.

Thus, Nash designed an ODE with properly θ-dependent smoothing built into
it, we call it the Nash process, and then showed—this is an unpleasant purely

mechanical computation
38—that

if g1 is sufficiently Cσ+s-close to g0 = D(f0), then Nash’s process converges to
the desired f1 for which D(f1) = g1.

(The detailed proof of all this takes two to three pages in the notation of section
2.3 in [35].)

Albeit certain properties of D−1, especially its continuity in f0 and locality,39

are essential for microflexibility, and the h-principle (see 2.3 in [35]) and the op-
erator M = Mf(g′), in general, need not be a differential operator, since Nash’s
construction of D−1 applies in a wider range of situations.

37The operator D−1 is by no means unique. The one constructed by Nash in his 1956 [63]
paper was not respectful of real analyticity; this was amended by Nash in 1966 [64].

38Part of the “mechanics” consists in evaluation of exponents of products of derivatives coming
from the chain rule and Leibniz’s formula in the course of differentiating non-linear operators
applied to functions. Possibly, a suitable algebraic formalism in the spirit of tropical geometry
may replace combinatorial fiddling involved in such evaluation.

39Nash’s process, as it stands, is non-local on the underlying manifold X, but its discretised
(in θ) version suggested by Hörmander (1976) (see [47] and 2.3 in [35]) is (quasi-)local.
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For instance Nash’s proof automatically extends to all M that satisfy the same
kind of estimates as differential operators do. However, just enlisting these estimates
takes as much space and effort as proving Nash’s theorem.

Also, Nash’s proof is not bound to Cr-spaces of functions and it can be executed
in terms of abstract graded Fréchet spaces. This was implemented by R. Hamilton
(1982, [43]), but the background needed just to formulate such an abstract implicit
function theorem spreads over 100 pages.

In truth, “spaces” play only notational roles in Nash’s proof that consists in
“processing numerical estimates”, and these do not have to be linked to any “space”
at all.

The fixed point property of this process established by Nash (this is where purely
mechanical computation comes in) was reformulated for abstract Nash processes
in [34].40 That was meant to imply all conceivable versions of Nash’s theorem; likely
it does, but it is too heavy to be usable in practice.41

Probabaly, the eventual general theorem, in order to be painlessly applicable to
concrete problems, should be even more “abstract” and go significantly beyond the
scope of Nash’s construction, including, in particular, the variation suggested by
Günther.

Analytic Perturbations. Since the inversion M of the linearised operator LD is a
differential operator algebraically depending on LD, what this M =Mf(g) actually
does is a representation of the perturbation equation

D(f0 + f ′ε) = D(f0) + g′ε

in the evolution form of first order with respect to ε. But since Mf(g) may (it
usually does) have order > 1 in f , it is not Cauchy-Kovalevskaya.

Sometimes (always?) differentiating such an equation and excluding undesirable
higher order derivatives, one may bring it to Cauchy-Kovalevskaya form and then

the solvability of this equation in the analytic case for g′ε = εg′ with real analytic
g′ follows from the Cauchy-Kovalevskaya theorem.42

For example, Gauss’s formula—Theorema egregium—furnishes such Cauchy-
Kovalevskaya reduction for the isometric imbedding equations and

the Cauchy-Kovalevskaya theorem + Nash’s approximate immersion theorem
(see section 3.8) imply the isometric imbedding theorem for compact Can-manifolds.

But, in fact, a fragment of the Cauchy-Kovalevskaya proof (e.g., in the form
of Newton iterations) applies to the perturbation equation in the Can-case in its
original (non-Cauchy-Kovalevskaya) form and delivers solution f ′ of the equation
D(f0 + f ′ε) = D(f0) + εg′ for small ε > 0. (This was pointed out in [33] and in [39].)

Approximation and Regularity. The continuity of the operator D−1 implied
by Nash’s estimates allows regularisation solutions of the equation D(f) = g by

40This was needed in [34] for construction of local isometric C∞-immersions Xn → Rsn−1,

where the obviouos inversion of LD comes by solution of ODE that is not a differential operator
M .

41Also “locality”, which was used throughout the paper [34], was not properly incorporated
there to the abstract Nash process. The necessary (quite simple) adjustment of Nash’s process
needed for the sake of microflexibility and the h-principle, similar to what Hörmander does in his
paper, is provided in 2.3 of [35].

42Nash’s analytic perturbation theorem is significantly stronger: it delivers Can-solutions of
the perturbation equation for g′ε that are ε-small in Ck-norm for some finite k, namely k =
1 +max(d,2r + s) + s.
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approximation (see 2.3.2 in [35]). For instance, if g is a Riemannian C∞-metric on
a manifold X, then

free isometric Ck-immersions f ∶ (X,g) → Rq can be finely Cl-approximated by
C∞-smooth isometric immersions, provided

k > 3 and l < k

and the same remains true with the Can in place of C∞.

55Question. Can free isometric C3-immersions of C∞-manifolds be C2-approxi-
mated by isometric C∞-immersions?

Local Immersions by Perturbation + Scaling. Perturbations that are local
in the spaces of maps can be, albeit rarely, globalised in the presence of non-compact
groups of symmetries.

For instance, perturbation and scaling of free isotropic immersions X → Rq+,q−

yields isometric immersion of all compact (X,g) to this Rq+,q− (see section 3.6.1).
Now, let us use scaling in Rq to obtain

local free isometric C∞-immersions of C∞-manifolds to Rq for q = sn+n = n(n+1)
2

+n.
(Originally, this was proven by Robert Greene by applying Nash’s perturbation

to approximte solutions of Janet’s equations.)
Start by observing that the unit ball Bn ⊂ Rn with its induced flat Euclidean

metric g0 = ∑n
i=1 dx

2
i admits

a free isometric Can-embedding f0 ∶ (Bn, g0) → Rsn+n.

Proof. Generically isometrically bend Rn in Rn+1 ⊃ Rn, then similarly generically
bend Rn+1 in Rn+2, etc., with the final bending being that of Rsn+n−1 in Rsn+n.

It is easy to see that “genericity” guarantees freedom of the resulting composed
map Rn → Rsn+n in a small ball around 0 ∈ Rn that can be assumed to be of unit
size.43

Next, given an arbitrary Cr-metric g on X in a neighbourhood U0 ⊂ X of a
point, x0 ∈ X, take local coordinates that identify this U0 with a neighbourhood
of 0 in Rn such that g becomes g = g0 + g′, where g0 is the Euclidean metric and
where g′ is a Cr-smooth quadratic form that vanishes at 0.

The δ−1-scaling map x ↦ δ−1x from the δ-ball Bn(δ) ∈ Rn around 0 ∈ Rn to the
unit ball Bn ⊂ Rn sends g′ to the form g′δ on Bn ⊂ Rn, where obviously, g′δ converges
to zero on Bn in the Cr-topology,

∣∣g′δ ∣∣Cr → 0 for δ → 0.

It follows that
if r > 2, then by Nash’s theorem, f0 can be perturbed to f which induces g0 + g′δ

on Bn by a Cr-map f ′ ∶ Bn → Rsn+n, and by composing this f ′ with the map
y ↦ δy, y ∈ Rsn+n, we obtain the required free isometric map Bn(δ, g) → Rsn+n.

Immersions to non-Euclidean manifolds Y q =(Y q, g̃). If we scale Y q by (Y q, g̃) �
(Y q, λg̃), then, at each point y0 ∈ Y q, the geometry of Y q converges to that of
Rq = Ty0

(Y q) for λ→∞.

43Actually, it is not hard to arrange such a bending that would terminate with a free isometric
map from all of Rn to Rsn+n.
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Therefore, perturbation+scaling work here as well, and, more generally, this
argument shows that

an arbitrary (possibly singular) Cr-form g onX, where r > 2, of type (n+, n−, n0),
n++n−+n0 = n = dim(X), at a point x0 admits a local free isometric Cr-imbedding

to a given pseudo-Riemannian Can-manifold Y = (Y, g̃), provided
q± ≥ n± + n0 q = dim(Y ) = q+ = q− ≥ sn + n + n0.

Questions

56 What is the actual regularity class of g̃ needed for the validity of the Nash
perturbation theorem for these embeddings?

57 How well does the bending+scaling argument generalise to local “isometric im-
mersions” of forms of degrees p ≥ 3?

58 Is there any chance for globalisation of bending+scaling?

Elliptic Immersions of Surfaces with Codimensions ≥ 1. Call an immer-
sion of a surface to a Riemannian manifold f0 ∶ X → Y = Y (g̃) elliptic if it admits
a normal vector field on which the second fundamental form is positive, or, equiv-
alently, if f0 extends to X × [−ε, ε] → Y such that X =X × 0 ⊂X × [−ε, ε] is locally
convex in X with respect to the metric in X × [−ε, ε] induced from Y .

For example, all surfaces in the 3-sphere S3 ⊂ R4 are elliptic in R4.
If X = S2 or if X is compact connected with non-empty boundary, then Her-

man’s Weyl’s perturbation theorem says that the metric inducing operator f ↦ g =
(Df0)⋆(g̃) is open at f0, say, for C

∞-smooth f0 and g̃:
the metrics g that are C∞-close to the induced metric g0 = (Df0)⋆(g̃) are in-

ducible by C∞-maps f ∶ X → Y .
And it seems not hard to show that this remains true for all compact X if

dim(Y ) ≥ 4.
59 Question. Do all compact C∞-surfaces X = (X,g) admit isometric elliptic C∞-

immersions to R4?

3.8. Nash Decomposition, Conformal Twist, and C∞-Approximate Em-
beddings.

Let f0 ∶ X → (Rq,∑j dy
2
j ) be a smooth map with constant norm, ⟨f0, f0⟩Rqε2 > 0,

let g0 be the induced quadratic form on X written as g0 = ⟨df0, df0⟩, and let ψ(x)
be a C1-function on X. Then the quadratic form gε on X induced by the product
fε = ψf0 ∶ X → Rq satisfies

gε = ψ2g0 + ε2(dψ)2.
Indeed, since

⟨f0, f0⟩ = const(= ε) ⇒ ⟨df0, f0⟩ = 0,

the identity

⟨d(ψf0), d(φf0)⟩ = ψ2⟨df0, df0⟩ + ε2(dψ)2

follows by Leibniz’s formula.

[↻] Corollary: Nash’s Twist. Let φ(x) be a Cr-function on X, and let ψ(x) be
C1. Then, given ε > 0, the quadratic form g = ψ2(dφ)2 can be represented as

g = (dϕε)2 + (dχε)2 − ε2(dψ)2,
where ϕε and χε are Cr-functions on X.
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Proof. Compose f ∶ X → R with the isometric immersion of the line R onto the
ε-circle in the plane, and apply the above to the resulting map f0 = eε ○ f ∶ R →
S1(ε) ⊂ Rq=2. �
[◻+] ∑ψνdφ

2
ν-Decomposition Revisited (See [◻′] on p. 202). All Cr-metrics

g on n-dimensional manifolds X admit decompositions

g =
q1

∑
ν=1

ψ2
νdφ

2
ν , q1 = sn + n, sn =

n(n + 1)
2

,

where the functions φν = φν(x) are real analytic and ψν = ψν(x) are Cr.44

This is shown by an obvious reduction to the following h-principle that can be
proved by convex integration.45

Let an n-manifold X admit q1 linear differential forms lν , such that l2ν(x) linearly
span the fibres Gx(X) of the symmetric square G(X) of the cotangent bundle (that
has rank = sn) at all points x ∈X, and let g be a continuous Riemannian metric on
X that is a section of G(X) thought of as a family g(x) ∈ Gx(X).
[◻⋆] If q1 ≥ sn + 1, then there exists C1-functions φν such that g(x) ∈ Gx(X) is

contained in the interior of the convex hull of the set of vectors {(dφν(x))2} ⊂ Gx(X)
for all x ∈X.

With this we conclude to the following

[↻ +◻+] Nash’s Cr-Approximate Immersion Theorem. Let g be a Cr-metric
on a Can-manifold X. Then, for all ε > 0, there exist Cr-functions φν on X,
ν = 1, . . . , q1 = sn + n, and Can-immersions fε ∶ X → R2q1 such that the metrics
induced by these immersions satisfy

(Dfε)⋆
⎛
⎝

2q1

∑
j=1

dy2j
⎞
⎠
= g + ε2

q1

∑
ν=1

dφ2
ν .

Questions

60What is the minimal number q◇, such that all C∞-smooth Riemannian metrics
g on X admit decompositions g = ∑q◇

ν=1ψ
2
νdφ

2
ν with C∞-smooth φν and ψν?

The above stated h-principle [◻⋆] allows q◇ = sn + 1 for stably parallelisable
manifolds X, e.g., homeomorphic to Sn, and this seems not hard to prove for all X
with a special treatment of the locus of those x ∈X where the vectors (dφν(x))2 ∈ Gx

fail to span all of Gx.
But what we truly want is such a decomposition with 2q◇ ≈ sn.
More generally:

61What are q◇ and q○ such that all C∞-smooth g admit C∞-decompositions

g =
q◇

∑
ν=1

ψνdφ
2
ν +

q○

∑
j=1

df2
j ?

62Does the inequality 2q◇ + q○ ≥ sn, or at least 2q◇ + q○ = sn +O(n), suffice for this?
Notice in this regard that if n = 2, then
● geodesic coordinates provide such local decompositions with q◇, q○ = 1;
● decompositions with q◇ = 1 and q○ = 0 are possible for all open surfaces

44Strictly positive ψ and ψ2 are interchangeable for our purposes.
45This is easy, and if n ≥ 3, it may remain valid for q1 = sn, but I have not honestly checked

anything.
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by elementary conformal geometry;
● closed surfaces, obviously, need q◇ + q○ ≥ 3;
● the question is open for q◇ = 1 and q○ = 2.

3.9. Nash Twist in non-Riemannian Categories.
Nash decomposition makes sense for forms g of all degree p ≥ 2

[◻p] g =∑
ν

ψνdφ
p
ν ,

where we insist on φν > 0 for positive forms g.
Everything said in the previous section—results as well as questions—extend to

Cr-smooth ∑ν ψνdφ
p
ν-decompositions for all p, where, however, details need be to

worked out.
And much of this extends to convex cones of more general tensorial-like structures

(see section 4.2).
But one cannot freely replace ψ by ψp in such a decomposition if one works with

polynomial forms and maps.
For instance, the existence of a polynomial Nash twist depending on maps e from

R to the “unit sphere” in Rq+,q−—this sphere contains straight lines for q± ≥ 1 and
q+ + q− ≥ 3—does not directly lead to polynomial maps that would induce all forms
g from pseudo-Euclidean spaces.

63 Question. Which symmetric differential forms g of degree p ≥ 3 on Euclidean
spaces are decomposable as ∑ν ψ

p
νdφ

p
ν with polynomial or with entire holomorphic

functions ψν and φν?
If p ≥ 3, then “twisted” maps e ∶ R→ (Rm, h) that nicely behave under multipli-

cations by scalar functions, i.e., such that

(D(ψ ○ e))⋆(h) = ψp(Dψ)⋆(h) + (dψ)p,

must satisfy, besides the relations

h(e) = ε and (De)⋆(h) = dxp,

p − 2 additional differential equations.
For instance, if p = 3, the extra equation can be written as

⟨e, e, de
dx

⟩
h
= 0,

where ⟨., ., .⟩h denotes the 3-linear form associated with h, which, in the formula
h(e) = ε, was regarded as a homogeneous polynomial on Rm.

It follows that
differential forms g on Rn of an arbitrary degree p = 2, 3, . . . with polynomial

coefficients can be induced by maps to (Rq,∑j dy
p
j ) that are given by algebraic (but

not polynomial) expressions in solutions of a single (universal) ordinary differential
equation.

64 Question. Are the complexifications of these differential equations, e.g.,

h(e) = 1, (De)⋆(h) = dx3, and ⟨e, e, de
dx

⟩
h
= 0 for p = 3,

solvable by entire holomorphic maps e ∶ C→ Cm?
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3.10. Microflexibility, Flexibility, and the h-Principle.
We are mainly concerned here with the sheaf Φ of free isometric C∞-immersions

between pseudo-Riemannian, e.g., Riemannian, C∞-manifolds X = (X,g) → Y =
(Y, g̃). Thus Φ(U), for open U ⊂ X, stands for the space of such immersions from
U to Y .

Flexibility. Recall that an abstract topological, better to say continuous, sheaf Φ
on X is an assignment of topological spaces Φ(U) to all open subsets U ⊂ X and

of continuous maps Φ(I) ∶ Φ(U∼) → Φ(U) to all inclusions U
I⊂ U∼ between open

subsets in X.
If C ⊂X is a compact subset, then Φ(C) denotes the space of C-germs of sections

of Φ over arbitrarily small open subsets U ⊃ C. More precisely, Φ(C) is the inductive
limit of the spaces Φ(U) over all neighbourhoods U ⊃ C.

One calls φ ∈ Φ(U) sections of Φ over U , and Φ(I)(φ) for U
I⊂ U∼ are called

restrictions of φ from U∼ to U .
A sheaf Φ is called flexible if the restriction maps Φ(I) ∶ Φ(C∼) → Φ(C) are Serre

fibrations for all pairs of compact subsets C
I⊂ C∼ ⊂ X, i.e., if continuous paths φt

in Φ(C) can be (non-uniquely) lifted to paths in Φ(C∼) starting from a given point

φ̃ ∈ Φ(C∼) over φ0 ∈ Φ(C). Moreover, by the definition of fibration, such lifts must
exist for continuous families of paths φt,p parametrised by finite polyhedra P ∋ p.

Flexibility imitates the homotopy extension property (Borsuk Lemma) for the
sheaves of all smooth (or just continuous) maps.

Warning. Homotopies of sections over open subsets U that are not supported
strictly inside U usually do not extend outside U . This is why one needs to operate
with sections over neighbourhoods U ⊃ C of compact subsets C ⊂ X where the
actual domains of definitions U ⊃ C of homotopies over C may shrink, yet remaining
⊃ C, in the course of their extension to U∼ ⊂ C∼ ⊃ C.

Microflexibility. A sheaf Φ is called microflexible if the initial phases of paths
φt, 0 ≤ t ≤ 1, and of families of these are liftable, where “initial” means for 0 ≤ t ≤ ε
where ε > 0 may depend on the path.

For instance, the sheafs ΦImm of smooth immersions X → Y and Φfree of (non-
isometric!) free immersions X → Y are, obviously, microflexible.

But Φimm is flexible only if n = dim(Y ) > q = dim(X), and this property of
immersion, proven by Smale, is by no means at all obvious—it is, in fact, the key
geometric ingredient of the Smale-Hirsch immersion theory.

Also, one knows (see 2.2 in [35] and references therein) that the sheaf Φfree is

flexible for q > sn + n, sn = n(n+1)
2

, but
flexibility of Φfree for q = sn + n and n ≥ 2 is a long standing unsolved difficult

problem.
Flexibility is a strong property: according to Smale and Hirsch,

flexibility implies the h-principle for Φ.

Abstractly speaking, this means that every continuous in x ∈ X family ψx ∈
Φ(Ux) of sections of Φ over (arbitrarily small) neighbourhoods Ux ∋ x in X can
be deformed to an “integrable family” φx, where all these φx come by restrictions
from a single φ ∈ Φ(X).46

46Flexibility is no good for proving the h-principle in the context of real analytic maps and
even less so of complex analytic maps, since these are not microflexible. But a refined concept
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Microflexibilty, unlike flexibility, is cheap as far as differential topology is con-
cerned, but when it comes to sheaves of solutions of differential equations, microflex-
ibility may look, at least in the eye of an analyst, as improbable as flexibility.

Remarkably, Nash’s theorem delivers
microflexibility for the sheaves Φ = ΦD,g of C∞-solutions f of differential
equations D(f) = g for infinitesimally invertible differential operators D
on smooth manifolds X.
Then, under favourable circumstances, e.g., in the presence of strong symmetries

of Φ, one can prove flexibility and, hence, the h-principle for Φ that reduces the
solvability of the equation D(f) = g to the existence of a continuous section of some
auxiliary (possibly singular) fibration over X.

Below is an instance of where a combination of ideas of Nash and Smale directly
leads to a geometric result similar to Hirsch immersion theorem for open manifolds.

Let p ∶ X → X0 be a C∞-smooth submersion (i.e., the differential Dp(x) ∶
Tx(X) → Tp(x)(X0) is surjective for all x ∈ X), and let the pull-backs p−1(x0) ⊂ X
be open (i.e., no compact components) submanifolds (necessarily) of dimension
m = dim(X) − dim(X0) for all x0 in the image p(X) ⊂X0.

(Instructive examples are where X is an open manifold mapped to a single point
X0 = {x0} or X =X0 ×R projected to X0.)

Let g be the quadratic differential form on X that is induced by p ∶ X → X0

from some C∞-smooth form g0 on X0, and let Y = (Y, g̃) be a C∞ smooth pseudo-
Riemannian manifold.

Then free isometric C∞-immersions f ∶ (X,g) → (Y, g̃) satisfy the h-principle.

A Word about the Proof. Flexibility is derived here from microflexibility with
the use of the (quite large!) group of diffeomorphisms of X that preserve the fibres
p−1(x0) of the map p ∶ X → X0, where—this is the key—the action of this group
on X preserves g, and hence, our sheaf Φ of free isometric immersions (X,g) → Y .

Corollary. Let the form g0 on X0 be non-singular of type (n+, n−), n++n− = n0 =
dim(X0), and let the manifolds (X,g) and (Y, g̃) be globally diagonalisable.
(As far as (Y, g̃) is concerned, this means that Y admits a frame of q = dim(Y )

mutually g̃-orthogonal vector fields with g̃-norms ±1, namely q+ of them with norms
+1 and q− with norms −1. For example, open subsets Y in the pseudo-Euclidean
space Rq+,q− are globally diagonalisable. And for (X,g), such a diagonalisation is a
field of n = dim(X) linearly independent mutually g-orthogonal vector fields, where,
n0 = dim(X0) of them have g-norms ±1 and the remaining m = n − n0 have g-
norms zero. For instance, since our form g on X has constant rank = dim(X0), it
is diagonalisable if X is contractible.)

Then (X,g) admits a free C∞-smooth isometric immersion to (Y, g̃) in each
homotopy class of maps X → Y if and only if the type (q+, q−) of the form g̃ on Y
satisfies

q± ≥ n± +m, m = dim(X) − dim(X0), and q+ + q− ≥ sn + n +m, sn = n(n+1)
2

.

The above h-principle and the corollary remain valid for Can-immersions X → Y ,
if the forms g0 on X0 and g̃ on Y , and the map P ∶ X →X0 are Can.

that generalises flexibility and that is expressed in terms of Cartan pairs works equally well in the
analytic and in the smooth categories; see [36], [30] and references therein.
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Moreover, the following seems also within reach for m > 0. (The case m=0 needs
new ideas.)
Conjecture. If X is contractible, the form g0 is non-singular, and

q± ≥ n± +m, and q+ + q− ≥ sn +m,

then X admits a (non-free!) isometric Can-immersion to Y .
(See 3.3.5 in [35] for some results in this direction.)

3.11. Local Janet’s Equations and Semilocal Extension of Isometric Im-
mersions.

Semilocal Extension Problem. Let (X,g) be a smooth n-manifold with a
quadratic differential form on it, let X0 ⊂ X be a closed subset, and let g0 denote
the restriction of g to the tangent bundle of X over X0, denoted T (X)∣X0

.
Let Y = (Y, g̃) be a pseudo-Riemannian manifold that, for simplicity’s sake, is

assumed Can. Let f0 ∶ X → Y be a Cr0-map which is isometric over X0 and such
that the differential of Df0 ∶ T (X) → T (Y ) restricted to T (X)∣X0

⊂ T (X) induces
g0 from g̃.

(“Semilocal” stands for global along X0 while local normally to X0.)
When does there exist an isometric Cr-map f from some neighbourhood U ⊃X0

to Y , i.e., (Df)⋆(g̃)∣U = g∣U , such that the restriction of f to X0 equals that of f0,

f∣X0
= (f0)∣X0

?

If X0 is a Can-hypersurface and U ⊂ X is a split neighbourhood of X0 ⊂ X,
U =X×[ε, ε], then Janet (1926) showed in the Riemannian case (see below) that the

expression of the curvature of g in terms of the (extrinsic) curvature U
f⊂ Y (Gauss’s

Theorema egregium, 1827) brings the first order system of isometric immersion
equations ⟨∂if, ∂jf⟩g̃ = gij for f ∶ U → Y to a second order implicit evolution system
with the initial conditions defined via the Euler formula (1760) for the squared
extrinsic curvature of f ∶ X0 → Y that is the Pythagorean sum (500 B.C.E.) of the

squared curvature of X0 ⊂ X and the squared normal curvature of X0 ⊂ U
f⊂ X0.

(This normal curvature depends only on the second fundamental form of U
f⊂ X0

on T (X0) ⊂ T (U) by Meusnier’s theorem of 1776–1785.)
And the Gaussian expression can be turned to an explicit evolution system

amenable to the Cauchy-Kovalevskaya theorem by resolving the Gaussian rela-
tion in ∂tt(f), t ∈ [−ε, ε], provided—this was clarified by Burstin (1931)—the map
f0 ∶ X0 → Y is free.

In fact, such a resolution is possible, since (the relevant part of the left-hand side
of) the Gauss formula is linear in ∂tt, where it is composed of g̃-scalar products of
∂tt(f) with the vectors of the first and the second derivatives of f , except ∂tt itself.

On the other hand, the Pythagorean Euler-Meusnier relation for the curvatures

K2
f0(X0

f0⊂ Y ) =K2
I (X0

I⊂X) +K2
f (X

f⊂ Y )
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is solvable in Kf on X0 if the difference, K2
f0
(X0

f0⊂ Y ) −K2
I (X0

I⊂ X) regarded as

a symmetric form of degree four, is positive definite.47

Thus, Burstin shows that if X is a Riemannian Can-manifold and X0 ⊂ X is
a Can-hypersurface that is geodesic at some point x0 ∈ X0, i.e., the (relative or

extrinsic) curvature K2
I (X0

I⊂X) vanishes at x0, then
[�] every free isometric Can-immersion f0 ∶X0 → Y restricted to a (small) neigh-

bourhood U0 ⊂ X0 of x0 in X0, extends to an isometric Can-immersion f ∶ U → Y ,
where U ⊂X is a (small) neighbourhood of x0 in X.

Next, a closer look at the (resolved) Gauss expression shows that

[�] if q = dim(Y ) ≥ sn + n, sn = n(n+1)
2

, then this (isometric real analytic) map
f ∶ U → Y can be chosen free.

Then an obvious induction in dim(X) shows (Janet-Burstin) that
all Riemannian Can-manifolds are locally Cn-embeddable to Rsn .
By the same token,
pseudo-Riemannian Can-manifolds (X,g) of type (n+, n−),
n+ + n− = n = dim(X) are locally Can-embeddable to (Y, g̃) of type (q+, q−), if

q± ≥ n± and q+ + q− = q = dim(Y ) ≥ sn;

see [29].48

65 Question. What would be a Diophantine version of local isometric immersions?

Infinitesimal invertibility of (Df)⋆, Janet’s Equations,

and Hermann Weyl’s Tube Formula

Let us derive an infinitesimal inversion M = Mf0(g′) of the metric inducing
operator f ↦ g = (Df)⋆(g̃) at free maps f0 ∶ X → Y that was from section 3.6.2
as well as Janet’s equations from Weyl’s Tube Formulas combined with Gauss’s
Theorema egregium.

Let X = (X0 × [0, t1], g), t1 > 0, be a normally geodesically split Riemannian
manifold which means that the lines x × [0, t1] are geodesic that are normal to
X0 × t for all t ∈ [0, t1].

Then the first and the second t-derivatives of the metrics g(t) on X0, that is our
g on X restricted to X0 =Xt =X0 × t, satisfy the following

Weyl’s Tube Formulas

● The t-derivative of g(t) equals the relative curvature, that is the second fun-

damental form of X × t
It⊂ X denoted Kt =KIt ,

∂tg(t) =Kt.

Write the quadratic (second fundamental) form Kt as

Kt(τ, τ) = ⟨At(τ), τ ⟩g(t), τ ∈ T (Xt),
where At ∶ T (Xt) → T (Xt) is what is called the shape operator of Xt ⊂X.

47The essentiality of the Pythagorean inequality K2
f0
−K2

I > 0 for extensions of local isometric

immersions was emphasised in [49], where one can find references to older papers. Also this
inequality enters the h-principle for the semilocal extensions; see 3.1.6 in [35].

48Apparently, this, in the case of the 4D-spacetime, was known to physicists since ≈ 1920.
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Let Bt(τ, τ) be the sectional curvature of g(t) evaluated on the pairs (τ, ν),
where ν ∈ T (X) are unit vectors normal to Xt ⊂ X. Then the second derivative
∂ttg(t) is expressible in terms of this curvature and the square of the shape operator
as follows:

●● ∂ttg(t) = Bt −A2
t .

(See [37] for an elementary exposition of applications of these formulas in Riemann-
ian geometry.)

If we now rewrite the definition of f ′ = Mf0(g′) via the linear equations from
section 3.6.2 with ∂tf normal to Xt instead of f ′ for f ∶X =X0 × [0, t1] → Y as

⟨∂tf, ∂2
ijf⟩g̃ = −

1

2
∂tgij(t),

where ∂i and ∂ij denote the derivatives in coordinates xi on X0 = Xt, we shall see
that these directly follow from normality of ∂tf to Xt, that is ⟨∂tf, ∂if0⟩ = 0, and
item ● combined with the (Pythagorean) Euler-Meusnier formula.

Similarly, by confronting item ●● with the Gauss formula, we obtain a system of
linear equations for ∂ttf(t) expressed by the scalar products

⟨∂ttf(t), ∂ijf(t)⟩g̃ = B○ij(f, g(t)),
where B○ij are certain expressions in the first derivatives of f(t) and the first and
the second derivatives of g.

Since f0 is free, this system is non-singular for small t > 0 and solvable in ∂ttf(t)
for f(t) ∶ Xt → Y .

It follows that the infinitesimal inversion is representable by a true evolution
system of the second order which is solvable in the Can-case for small t > 0 by the
Cauchy-Kovalevskaya theorem, as was stated in section 3.7.

Finally, we differentiate the equations ⟨∂t, ∂t⟩g̃ = 1 and ⟨∂t, ∂i⟩g̃ = 0 that yield

⟨∂tt, ∂t⟩g̃ = 0

and

⟨∂tt, ∂i⟩g̃ = −⟨∂t, ∂it⟩g̃,
which together with ⟨∂ttf(t), ∂ijf(t)⟩g̃ = B○ij(f, g(t)) compose the full Janet system,

which, for free f0, is solvable in ∂ttf(t) for small t > 0 as we stated earlier in this
section.

A more detailed analysis of Janet’s equations yields the semilocal h-principle for
free isometric Cr-extensions from smooth submanifolds X0 ⊂ X to X, where the
corresponding Nash process needs r > 5 (see 3.1.6 in [35]), but it remains unclear
what happens for 2 < r ≤ 5.49

Another unsettled, seemingly easier, issue is to establish a sufficiently general
semilocal h-principle for extensions of isometric immersions from singular, e.g.,
semianalytic, subsets X0 ⊂ X to X where (formulation of the problem in) the
Can-case needs a bit of attention.

Why do we need the semilocal h-principle? Even if an isometric Can-immersion
f0 ∶ X0 → Y isometrically extends to (small) neighbourhoods Ux ⊂ X of all x ∈ X0,
there may exist a topological obstruction for isometric C2-extensions to open U ⊃X0.

49Possibly, Günther’s perturbation scheme can lead to better r. But most apparently natural
modifications of Nash do not fare well. For instance, the implicit function theorem used in [49]
needs r ≥ 17.
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The very formulation of the h-principle automatically incorporates all such ob-
structions and if it holds—and this is a big if—this “principle” guarantees the
existence of isometric extensions whenever such obstructions vanish.

For instance if a Can-submanifold X0 ⊂ X is homeomorphic to the m-ball, then
there is no such obstruction, and the corresponding h-principle (see 3.1.6. in [35])
tells you that

if q ≥ sn = n(n+1)
2

, n = dim(X), then free isometric Can-immersions f0 ∶X0 → Y q

do extend to isometric Can-immersions U → Y q of some open U ⊃X0.
On the other hand, if X is the flat Möbius strip and X0 ⊂X is the central closed

geodesic in it, then—this is obvious—free isometric immersions f0 ∶ X0 → R3, i.e.,
with non-vanishing curvatures, do not extend to neighbourhoods U ⊂ X of X0

unless the (one-dimensional) binormal bundle of X0 ⊂
f0

R3 is non-orientable.

More generally, let X0 = Sn−1/{±1} be the projective (n − 1)-space, and let
X = Sn−1×R/{±1} be the total space of the canonical flat line bundle over X0 with
X0 imbedded to X as the zero section.

Let f0 ∶ X0 → Rq0 for q0 = sn−1, sn = n(n+1)
2

, be the Veronese embedding, which is
an isometric imbedding such that every isometry of X0 extends to a linear isometry
of Rq0 ⊃

f0
X0. Compose f0 with the standard embedding Rq0 ⊂ Rq for q = q0+m and

keep the same notation f0 for the resulting composed map X0 → Rq.
If m ≥ 1, then, obviously, f0 locally Can-extends to isometric maps Ux → Rq, for

small open Ux ∋ x at all points x ∈X0. Also
all (moderately) C2-small isometric Can-perturbations of f0 ∶ X0 → Rq, q > q0,

are also extendable from X0 to Ux by the Janet-Burstin theorem.
But if q = q0 +m ≤ sn + n − 1, then
no isometric C2-extension of f0 from X0 to any neighbourhood U ⊃X0 exists.
Indeed, such an extension would send the R-fibres inX normally to the osculating

spaces of X0 ⊂
f0

Rq, which is—this is topologically obvious—impossible for q =
q0 +m ≤ sn +n− 1, where this non-extendability is stable under (moderately) small
C2-perturbations of f0 and of the Riemannian metric in X.

On the other hand, by the semilocal version of Janet-Burstin, (moderately) small
isometric Can-perturbations f ′0 ∶ X0 → Rq of f0 admit isometric Can-extensions to

certain neighbourhoods U ⊃ X0 in X, provided q = q0 +m ≥ sn + n, sn = n(n+1)
2

,
n = dim(X).

Questions

66 What are “maximally general” (robust?) sufficient conditions for extendability
of not necessarily free isometric Can-immersions from submanifolds X0 ⊂X to some
neighbourhoods U ⊃X0?

Non-Extendability Example. The real analytic local Hopf-Schilt-Efimov immer-
sions (see 3 in section 1.2) from surfaces X to the 3-space are “very flat” at x0 ∈X.
Albeit they are uniquely determined by their restrictions to curves X0 ⊂ X that
contain x0, these are far from being free and Janet’s extension lemma does not
apply. In fact,

no bending of such a curve extends to a bending of X in R3.
67 Can anything comparable happen to (local germs of) manifolds X ⊂ Rq, q = sn =

n(n+1)
2

, of dimensions n > 2 and their submanifolds X0 ⊂X?
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68What, on the contrary, is the full set of (semi)algebraic constraints on the rth
derivatives of an isometric Can-immersion f0 ∶ X0 → Rq at a point x0 ∈ X0, such
that f0 isometrically Can-extends to a neighbourhood of x0 ∈X?

(Such a condition may be easier to identify if one requires that also all small
isometric perturbations f ′0 of f0 extend to X.)

For instance,
69what are conditions for an isometric Can-immersion X0 → Rq to be locally ex-

tendable to an isometric Can-immersion of the Riemannian product X =X0 ×Rk?
It is plausible that such an extension of isometric Can-immersions f0 ∶ X0 → Rq

from X0 to the ambient X =X0 ×Rk is always (very often?) possible if dimX0 = 1

and q ≥ sn = n(n+1)
2

, n = dim(X), (isometric C∞-immersions X0 → Rq do not always

admit local isometric C2-extensions to X), but there may be robust obstructions
for extensibility of f0 from X0 to X ⊃X0 for dim(X0) ≥ 2.

In fact, the differential Df of an isometric C2-map f ∶ X = X0 ×Rk → Rq sends
the the tangent spaces of the Rk-fibres of X normally to the (second) osculating
spaces of X0 = X0 × 0 ⊂

f
Rq. If dim(X) ≥ 2 and if the dimension of the osculating

space drops down at a point x0 ∈X0, then the (rational-like) map Df may undergo
a blow-up at x0 ∈X0.

3.12. Addition of dφ2 by C∞-Twist, Semilocal Immersions, and Global
Cylinders.

The existence of isometric Cr-extensions of immersions f ∶ X → Y from X =
X × 0 ⊂ X ×D2(ε) to X ×D2(ε), where D2(ε) is the ε-disk with arbitarily small,
yet positive radius, allows addition of differentials of Cr-functions φ ∶ X → R to the
metrics induced by f by means of isometric maps R→D2(ε).

In fact, one only needs such extensions on small neighbourhoods U ⊂X and also
Cr-approximately isometric extensions often suffice (see 3.1.2 and 3.1.7 in [35]).
Thus one shows that

[�] Cr-smooth free isometric immersions f ∶ Xn → Y q for r > 4 and q ≥ sn+2 =
(n+2)(n+3)

2
satisfy the h-principle,

where, we recall, sn+2 is the minimal dimension allowing C∞-immersions of (n+
2)-dimensional manifolds, such as X ×D2(ε).

70Conjectures. It is plausible that this kind of construction works for free maps
Xn → Y q for all q ≥ sn+1 = sn + n.50

If so then, most likely, one will be able to construct strata-wise free, with respect
some stratification of Xn, isometric C∞- and Can-immersions of all Xn to Rsn+1 .

On the other hand, there is not even a hint of a possible construction if q < sn+1.
Turning Semilocal. The lower bound q ≥ sn+2 can be improved for semilocal

isometric immersions that are isometric immersions U → Y from a (possibly very
small) neighbourhood U ⊂X of a given X0 ⊂X.

If X0 is a C∞-submanifold with codim(X0) ≥ 2, then such free isometric maps
U → Y from a unspecifiably small U ⊃ X0 satisfy the h-principle with no restric-
tion on q = dim(Y ). This follows from the above h-principles for free isometric
immersions X0 → Y and that for semilocal extensions from the previous section.

Moreover, in the Can-case there is a version of the semilocal h-principle for not
necessarily free isometric immersions.

50Günther succeeds in doing this for q ≥ sn+1 +4 but, alas, I am unable to follow his argument.
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For instance, let the manifolds Xn and Y q be parallelisable, and let X0 have
trivial normal bundle in Xn.

[�] If q ≥ sn = n(n+1)
2

, then every strictly curve-shortening map f0 ∶ X0 → Y q can
be approximated by free isometric Can-maps f1 ∶ X0 → Y q that admit isometric
Can-extensions to small neighbourhoods U ⊃X0 in X (that depend on f1).

71 Conjecture. Probably it is not hard to extend this result to a large class of
(all?) semianalytic subsets X0 ⊂ X, e.g., m-skeleta of analytic triangulations of X
and m < n = dimX.

But it seems harder to do this for codim(X0) = 1 without an additional lower
bound on q or of strong restriction on the induced metric on X0, since isometric
immersions Xn → Y q, say for q = sn+1, remain unavailable for general manifolds
X0.

Cylinders and Tori. There are particular classes of metrics on Xn that go to Y q

starting from q = sn+1.
For instance, let X0 = (X0, g) and Y = (Y, g̃) be compact Riemannian Can-

manifolds, and let f0, f2 = 1 ∶ X0 → Y be free isometric C∞-immersions that can be
joined by a homotopy of C1-maps ft ∶ X0 → Y that strictly decreases the lengths
of all curves in X0. Then a “fold+twist” construction from 3.1.8 in [35] in the
spirit of Kuiper’s “smoothing the corners” (see section 3.3) delivers the following
immersions F of (parts of) m-dimensional cylinders X = X0 ×R (m = n + 1) to Y q

for q = sm+1 = (m+1)(m+2)2
= sm +m + 1.

If Y is parallelisable and q = dim(Y ) ≥ sn+2 for n = dim(X0), then there exits an
isometric C∞-map F ∶ (X0 × [0, t2], g + dt2) → Y for some (large) t2 > 0, such that
F∣X0×0 = f0 and F∣X0×t2 = f2.

For example, two C∞-smooth free (i.e., with non-vanishing curvatures) closed
curves in Rq of equal length can be joined by an isometrically immersed C∞-
cylinder, provided q ≥ 6, but this is unknown for q = 4, 5. (The constructions
of isometric immersions of closed surfaces to R5 in 3.2.4 in [35] may apply to here
for q = 5.)

Similarly to cylinders, one constructs isometric immersions of manifolds that
locally split along some submanifolds in them. For example

every strictly curve-shortening map from a flat (not necessarily split!) n-torus
to a parallelisable51 Riemannian Can-manifold Y q, q ≥ sn+1, can be approximated
by isometric Can-immersions.

Probably, generic Riemannian C∞-manifolds Y q with q < sn receive no isometric
C∞-immersions f from flat manifolds Xn, but one may expect plenty of such f if
Y q is also flat even for relatively small q << sn, where “plenty” means density of
these f in the space of strictly curve-shortening maps X → Y .

Apparently, there is no known obstruction for this if q ≥ 2n and not even any
conceivable one for q ≥ 3n.

And one has not the vaguest idea concerning minimal q, such that every flat
(non-split) n-torus Cr-isometrically, r ≥ 2, embeds to Rq.

72 What is the full range of “twist constructions” where the global existence problem
for structure inducing maps is reduced to a semilocal extension problem?

73 When can the “twist” be replaced by “stretching+smoothing the corners”, thus
improving the bound on the dimensions of ambient spaces?

51I am uncertain if this is truly needed here.
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Stretching Tori in Euclidean Spaces. Let us construct isometric real analytic
immersions of flat n-tori X = Xn to Rq for q = sn + n

2
for n even and q = sn + n−1

2
for n odd.

This is achieved by performing q−2n consecutive stretchings Xi � Xi+1 applied
to flat tori Xi ⊂ R2n+i, i = 0, 1, . . . , q−2n−1, starting from X0 ⊂ R2n and terminating
with Xq−2n =X ⊂ Rq, where
● each Xi+1 lies over Xi,

Xi+1 ⊂Xi ×R = p−1i (Xi) ⊂ R2n+i+1 = R2n+i ×R
pi→ R2n+i ⊃Xi;

● the submanifold Xi+1 ⊂ Xi × R is equal to the graph of a Can-function
φi ∶ Xi → R all levels φ−1(y) ⊂ Xi, y ∈ R, of which are flat subtori in Xi of co-
dimension one.

By linear algebra, an arbitrary flat metric on the torus can be obtained by sn−n
such stretchings from a split metric and, since split n tori embed to R2n, all flat
tori embed to Rq for q = sn − n + 2n = sn + n.

Now, to gain n/2, we observe (this goes back to Blanus̆a) that all flat 2-tori X2

isometrically immerse to the r-spheres S3(r) ⊂ R4, r = r(X) > 0, as pull-backs of
immersed closed curves in S2 under the Hopf fibration S3(r) → S2(r).

And if we start with a torus X0 split to arbitrary, non-split(!) 2-subtori (and a
circle if n is odd), we shall need sn − 3n/2, rather than sn − n stretchings to bring
X0 � X, since non-split 2-tori depend on three independent parameters rather than
two as split 2-tori do, where this parameter counting argument is easily justifiable
by linear algebra. The odd case is handled similarly and the proof follows.

4. Production of Problems and Classification of Structures

Formulating problems is, probabaly, the most essential aspect of human mathe-
matics; for this reason, mathematicians have been shying away from a mathematical
study of this process. Breaking the tradition, let us try to do this in the context of
induced geometric structures.

There are three essential “parameters” that structure inducing problems depend
on.

1. Geometric Categories X . Objects of our geometric categories are “spaces”
X where morphisms f ∈ X are maps f ∶ X → Y .

2. Classes G of Structures. Objects from X may be endowed with “geometric
structures” from a certain class G.

Then morphisms, f ∈ X that are maps f ∶ X → Y , (may) induce such structures
g on X from structures h on Y , written as g = f⋆(h).

The spaces from X augmented with structures from G and the structure preserv-
ing maps f ∶ (X,g) → (Y,h) make a new category, say G[X], the morphisms that
we call G-isometric maps. Such maps and categories G[X] of these are the primary
subject matter of our study.

Abstractly, classes G can be defined as transformations of categories

X � G[X].
3. Classes I of Invariants of Structures, of Spaces of Maps, and of

Structure Inducing Operators. Such invariants express the properties of spaces,
maps, and structures under study. They may be used for classification of categories
X and classes G.

Also, isolating/defining such invariants serves to articulate the questions we ask.
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For instance an analyst would ask what is the topology of the subspace Mg→h of
structure inducing maps (X,g) → (Y,h) in the space MX→Y of all maps X → Y in
X :

under what conditions is Mg→h non-empty? When is it closed, open, or dense
in MX→Y ? When is the structure inducing operator f ↦ g = f⋆(h) injective,
surjective, or open?

And an algebraic topologist will be concerned with the homotopy types of these
spaces:

under what conditions is the inclusion

Mg→h ⊂MX→Y

k-connected? What, in general, is the (co)homology homomorphism induced by
this inclusion? When does the structure inducing operator have the Serre (or a
weaker one) homotopy lifting property?

Since 1, 2, and 3 above are essentially independent, they serve as coordinates
in the “space of questions”: by picking up particular X , G, I at will, we generate
questions of the following kind.

A. What are the “values” of the I-invariants of G[X]?
B. What are the cases where suitably generalised Nash methods enable one to,

at least partially, answer A?
C. What are the conjectural answers to questions from A and the conceivable

approaches to prove/disprove such conjectures when the Nash-style methods refuse
to apply?

With all this in the back of one’s mind, the study of induced structures must be
preceded by the description/enlisting of relevant categories and their invariants.

Besides, one has to account for the cases that do not fit to the above framework.
For instance, the tensorial equation g = ∑i(dψi)p, where the unknowns are exte-

rior differential forms ψi of degrees l > 0 on a manifold X, is not directly associated
with maps between manifolds. Yet, the corresponding

differential operator {ψi} ↦ g = ∑i(dψi)p does commute with smooth maps
X1 →X2.

4.1. Categories, Sheaves, Jets, and h-Principles.
In analysis of non-linear PDEs the basic categories are those of Cr-maps f ∶X →

Y between smooth manifolds where r may stand for Hölder (r, α).
Categories of this kind carry extra structures within themselves. For instance,

sets of morphisms map(X → Y ) are topological spaces. Thus one may speak of
continuous families of maps fp ∶ X → Y parametrised by some P ∋ p.

Continuous Subpolyhedral Spaces. In fact, we often do not care about the topo-
logical structure in map(X → Y ) per se but only in such families fp for polyhedral
spaces P .

The structure defined in an “abstract space”M by such families that satisfy a list
of obvious properties is sometimes called a “quasi-topology” which is essentially the
same as the semisimplicial structure. We prefer to call it a continuous subpolyhedral
structure.

This structure, unlike the topological one, survives inductive limits.
For instance, if X0 ⊂ X is a closed subset, then the space of germs of Cr-maps

X → Y atX0 (that is, the inductive limit of the spaces of maps U → Y for arbitrarily
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small neighbourhoods U ⊂X of X0) come with a natural continuous subpolyhedral
structure.

We assign such continuous subpolyhedral structures to the (topological) spaces
of maps, map(U → Y ) for all open subsets U ⊂X, and we observe that these spaces
and the obvious arrows

map(U1 → Y ) ↣map(U2 → Y ), U2 ⊂ U1,

define a sheaf over X, called a continous subpolyhedral sheaf of maps X → Y ,
denoted Φ = sheaf(X → Y ), where Φ(U) =map(U → Y ), U ⊂X.

This allows continuous disassembly of categories of structure preserving maps
by introducing new “disassembled” morphisms as continuous families of germs of
maps (Ux, x) → (Vy, y) for “infinitely small” neighbourhoods Ux ⊂X and Vy ⊂ Y of
points x ∈X and y ∈ Y .

The disassembly defines a continuous, obviously injective, morphism between
sheafs over X,

disas ∶ Φ9→ Ψ = Φgerm,

where in the present case Φ = sheaf(X → Y ) and Ψ = sheafgerm(X → Y ) and
where, we recall, morphisms between sheaves over X are given by continous maps
Φ(U) → Ψ(U), U ⊂X.

“Abstract h-Principle”. A property of continuous disassembly (disas) we are
particularly intersted in is it being a weak homotopy equivalence, which means weak
homotopy equivalence of the maps Φ(U) → Ψ(U) for all open U ⊂X, where “weak”
signifies that “topology” is downgraded to continuous subpolyhedral structure.

Intuitively, this means that, on the homotopy level, true maps X → Y can be
assembled from continuous families of germs, Ux → Vy.

Such a weak homotopy equivalence is obvious as far as all maps X → Y are
concerned, but it is by no means automatic in the categories of G-isometric maps:
if it holds at all, it constitutes the essential geometric core of what we call the
h-principle for these maps.

One can restrict categories of Cr-maps without changing G, e.g., by taking sym-
plectic or contact immersion that additionally is required to be G isometric.

But algebraically defined classes G of structures, e.g., of quadratic differential
(forget “positive definite”), adapt to different categories in a chameleon-like fashion
by changing their “colours” but keeping their “souls” intact.

Thus, one may speak of G-isometric maps in the following categories:

(an) complex analytic manifolds (spaces?) and holomorphic maps;
(alg) algebraic manifolds over some field F and regular maps;
(c∞) linear spaces over F and “formal maps” between them defined with formal

power series on these spaces;
(cr) linear spaces over F and non-homogeneous polynomial maps of degree r

that send 0↦ 0.

These (cr), in the case F = R, can be coupled with topological categories, where
an instance of such coupling is the category of vector bundles and fibre preserving
and fibrewise linear maps.

This category, call it VB1, goes along with the category, C1germ of smooth man-

ifolds and continuous families of germs of C1-maps, where the differentials at the
points x ∈X transform VB1 � C1germ by reducing C1-germs Ux → Uy to linear maps
between tangent spaces Tx → Ty.
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Similarly, the r-jets of Cr-maps f ∶ Ux → Uy for r = 1, 2, . . . ,∞, transform/reduce
Cr-germs to r-jets of maps that can be represented, albeit non-canonically,52 by
polynomial maps Tx(X) → Ty(Y ) of degree r for r < ∞ and by such “formal maps”
for r = ∞.

To be canonical, one defines the rth tangent bundle T [r](X) similarly to the

tangent bundle T (X) = T [1](X) as the linear dual to the vector bundle of r-jets of
germs of smooth functions on X modulo constants.

Notice that the fibre T
[r]
x (X) at x ∈ X is equal to the linear span of the cones

Vx ⊂ T
[r]
x (X) of r-jets of of smooth curves issuing from h which are smooth maps

R→X, 0↦ x.

Filtration on the Jets. The bundle T
[r]
x (X) is naturally filtered by the inclusions

T (X) = T [1](X) ⊂ T [2](X) ⊂ ⋅ ⋅ ⋅ ⊂ T [r](X) ⊂ ⋯,

where the quotient bundle T [r](X)/T [r−1](X) is, for all r, canonically isomorphic
to the rth symmetric power of the tangent bundle T (X).

And, thinking of the r-jet as “the full differential of order r”, one denotes the
r-jets of smooth maps X → Y by

D[r] ∶ T [r](X) → T [r](Y )
that are fibrewise linear maps between the bundles of jets.53

Jets and the h-Principle. Identification of the spaces T
[r]
x (X) with the dual

to the spaces of polynomials on Tx(X) allows one to speak of the h-principle for
G-isometric Cr-maps as the weak homotopy equivalence property of the rth jet
regarded as a map from the space of G-isometric Cr-maps X → Y to the space of
continuous fibrewise polynomial G-isometric maps T (X) → T (Y ).

Here, a priori, the validity of this property depends on how one identifies lin-

ear maps T
[r]
x (X) → T

[r]
y (Y ) with polynomial maps Tx(X) → Ty(Y ). But since

the space of such identifications is, clearly, contractible, this does not affect the
homotopy types of our spaces.

Also there is an uncertainty in the definition of G-isometric r-jets for r < ∞, since
high derivatives of G-isometric maps may influence the lower ones, as happens in
the Gauss curvature formula in the case of Riemannian isometric immersions.

An obvious space between sheaf(X → Y ) and sheaf jet(T [r](X) → T [r](Y )) is
that of continuous families of germs sheafgerm(X → Y ). Thus the proof of the h-
principle would follows from the above abstract h-principle and the local h-principle
that the homotopy equivalence of the jet-map for germs,

JET ∶ sheafgerm(X → Y ) → sheaf jet(T [r](X) → T [r](Y )).
Proving or disproving this local h-principle may be difficult, but unlike the “ab-

stract h-principle”,54 this is a matter of local analysis of the differential equations
imposed on germs of maps by the G-isometry condition.

52The r-jet at the origin 0 ∈ Rn of a smooth function Rn → R is represented by its rth Taylor
polynomial. But non-linear changes of coordinates preserve only the filtration by degree, not the
polynomial grading of the Taylor polynomials.

53Another possible device to keep the track of all derivatives of orders ≤ r is the iterated

tangent bundle T (T (. . . (T (X) . . . ))), but this is more wasteful than T [r].
54The proof of this “abstract principle” in all known cases has been obtained by means of

geometric constructions. Also, the rare significant successes in disproving it (only in three cases?)
have also been achieved by introducing geometric ideas.
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Amazingly, in contrast with examples of formally solvable but unsolvable linear
PDEs with polynomial coefficients and with C∞-smooth right-hand sides that go
back to Hans Lewy,

?there is no single known counterexample to the local h-principle for (truly)
non-linear equations in the C∞-category.
(Saying “local h-principle” rather than “local solvability” rules out equations

that are formally unsolvable. But there also exist Can-equations that are formally
but not Can-solvable. Probably, the local solvability problem makes sense only for
“sufficiently generic” non-linear equations that harbor no algebraic singularities in
them.)

A particularly extensively studied case is that of local isometric immersions of
surfaces to 3-space, where there are many local solvability/non-solvability results
(see [46], [44], [61]).55 Also it is known [9] that generic C∞-metrics on 3-manifolds
are locally C∞-immersible to R6, but no high regularity counterexamples are known.

Topological Obstructions to Isometric Immersions. The h-principle for Cr-
smooth isometric immersionsX → Y says, in particular, that the only obstruction to
the existence of such an immersion is non-existence of a “fibrewise isometric” map
between the jet spaces T [r](X) → T [r](Y ) that represents the r-jet of a continuous
in x ∈X family of infinitesimally (of order r at x) isometric Cr-maps X ⊂ Ux → Uy ⊃
Y , where x ↦ y and where Ux and Uy are “infinitesimally small” neighbourhoods
of x ∈X and of y ∈ Y .

Unlike the h-principle, it is obvious that topological obstructions for the existence
of “fibrewise isometric” maps T [r](X) → T [r](Y ) automatically obstruct isometric
immersions X → Y . But the existence/non-existence of such an obstruction for
given X = (X,g) and Y = (Y,h) is a non-trivial problem in algebraic topology
that needs for its solution a preliminary algebraic analysis of individual spaces of

“isometric” maps (formal for r = ∞) T
[r]
x (X) → T

[r]
y (Y ) at all points x ∈X.

It is possible but improbable that there are these kinds of topological obstructions
that would be applicable to Cr-isometric immersionsXn → Rq for q ≥ sn = n(n + 1)2
and large n, say n > 3, but such obstructions must(?) be significant for higher
dimensional families of jets of local isometric immersions.

Namely, let X → B be a Can-vector bundle, where B is identified with the zero
section 0 ⊂ X and where the fibres are denoted Xb ⊂ X , b ∈ B.

Given a Riemannian C∞-metric G on X , a Cr+1-map F ∶ X → Rq is called r-
infinitesimally fibrewise isometric if the metrics induced on the fibres Xb at the
points b = 0b ∈Xb coincide with G∣Xb

with their derivatives up to order r.

74Question A. What is the minimal q = q(X , r) such that X admits fibrewise
r-infinitesimally isometric map X → Rq for all G on X ?

75Question B. What is the minimal q = q(n, d) such that all n-dimensional vector
bundles X over d-dimensional B admit fibrewise r-infinitesimally isometric maps
to Rq for all metrics G on X and all r?

The main difficulty in answering these questions is due to possible singularities
in the spaces of jets of isometric maps, such as those exhibited by the Hopf-Schilt
surfaces.

55This contains a corrected version of [60].
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But singularities are absent from the spaces of jets of free isometric maps, which
allow a satisfactory answer in this case and an upper bound on q in general (see
3.3.1 in [35]). For instance,

if the bundle X → B is trivial, then q = q(X , r) is bounded by sn = n(n+1)
2

,
n = dimXb for all r with the equality q = sn for all sufficiently large r ≥ r(n), and
in the case B the dimension q = q(n, d) is at most sn + n + d.

Then, whenever the h-principle holds, one obtains, say in the context of Ques-
tion A, an isometric immersion of parallelisable Riemannian n-manifolds to Rq. But
unfortunately, this h-principle is unknown for the most interesting q ≈ sn.

4.2. Trends in Structures.
Riemannian structures on manifolds X are (functorially) characterised by the

sets of isometric immersions [a, b] →X. In infinitesimal terms this reads as follows.
Inherently One Dimensional Structures. An inherently one dimensional structure

g of order l on a smooth manifold X is a locally closed subset in the lth jet bundle
of X, denoted

S(g) ⊂ T [l](X),

such that fibres

Sx(g) = S(g) ∩ T [l]x (X) ⊂ T [l]x (X) ⊂ T [l](X), x ∈X,

are semialgebraic subsets and where this S(g) is decomposed to a finite union of
semialgebraic subsets carrying “identification marks” on them.

Examples. (a) Riemannian structures g come this way via the associated unit
sphere subbundles

S(g) = {τ}∣∣τ ∣∣g=1 ⊂ T (X).

Here no marking is needed—there is only a single mark on S(g).56
But k-tuples of Riemannin metrics57 require k-different marks on the corre-

sponding subbundles spheres in T (X).
Also, if a single g is pseudo-Riemannin, then the set S(g) = {τ}∣∣τ ∣∣g=±1 naturally

caries two different ±marks on it.
And symmetric differential form g of all degrees p are similarly defined by triply

marked S(g) ⊂ T (X) that are the sets of vectors τ ∈ T (X), where g(τ, . . . , τ
;??????????@??????????A

r

) = 0,±1.

(b) One also finds among our structures (unmarked) vector subbundles Θ ⊂ T (X)
and also Θ accompanied by forms g, e.g., Riemannian metrics, on them, where the
latter are called Carnot-Carathéodory structures.58

(c) Riemannian metrics of order l > 1 are also pretty looking. These are families

g of Euclidean metrics gx in the fibres T
[l]
x (X), where particular instances of these

are associated to the ordinary Riemannian structures, as we shall see below.

56Whenever only one mark is involved, we do not mention marking at all.
57Isometric immersions of these for k = 2 were studied [18].
58Isometric immersions for these are studied in [17] and [18]. Also the Nash implicit function

theorem for Carnot-Carathéodory manifolds was used in [38] for an evaluation of Dehn functions
in nilpotent groups.
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Given a smooth map f ∶ X → (Y,h), one defines the induced structure g =
(D[l]f)⋆(h) on X, which is a subset S(g) ⊂ T [l](X), as the pull-back

S(g) = (D[l]f)−1(S(h)) for D[l]f ∶ T [l](X) → T [l](Y ) ⊃ S(h),
with the marks on S(g) coming from those on S(h).

“Isometry” for a Cl-map f ∶ (X,g) → (Y,h) may have two meanings:

● Isometric: the rth jet D[r]f ∶ T [l](X) → T [l](Y ) sends S(g) → S(h) ⊂ T [l](Y )
by a marking preserving map;
● Strictly Isometric: the structure g is induced by f from h that is S(g) =

(D[l]f)−1(S(h)).
In some cases, e.g., for Riemannian structures,

“isometric” ⇔ “strictly isometric”,
but, for instance, isometric immersions between Carnot-Carathéodory spaces are
not necessarily strictly isometric.

76Conjecture. Most (all?) inherently one dimensional structures are amenable
to the techniques presented in section 3, since our main constructions are “inher-
ently one dimensional”, such as oscillatory curves and by C
-approximation.

Isometric Immersions of Higher Order. The rth jets D[l](f) ∶ T [l](X) →
T [l](Y ) of Cr≥l-smooth maps f ∶ X → Y induce quadratic forms on the bundle

T [l](X), here we call them G, from quadratic forms H on T [l](Y ), where the

correspondence f ↦ G = (D[l]f)⋆(H) is a (quadratic) differential operator of order
r.

This operator for all l looks very much is similar to that for l = 1 corresponding
to the ordinary isometric immersions and some (all?) results have, probably, their
counterparts for all l.

Solutions of this general rth order isometric immersions equation can be, proba-
bly, obtained similarly to how Nash does it for r = 1, but we look below at a special
case of these.

Assume Y = Rq, and observe that the linear dual to the representation of the
cotangent bundle of X by linear functions on Rq defines a natural homomorphism
that depends on flat affine structure in Rq,

T [l](Rq) → T (Rq).
(Such a map can be constructed via covariant differentiation in an arbitrary Rie-
mannian manifold Y , but I feel uncomfortable with this definition for l > 2.)

Definition of H on Rq. Let H be the (positive semidefinite) form on T [l](Rq)
induced by this homomorphism from the form ∑j dy

2
j on Rq.

Symmetrisation of G on X. Recall the jet filtration from the previous section,

T (X) = T [1](X) ⊂ T [2](X) ⊂ ⋅ ⋅ ⋅ ⊂ T [k](X) ⊂ ⋅ ⋅ ⋅ ⊂ T [l](X),

where T k = T [k](X)/T [k−1](X) are canonically isomorphic to the kth symmetric
powers of the tangent bundle T (X).

Given a quadratic form G on T [l](X), define a “fully symmetric” quadratic form
on ⊕k T

k(X) that is associated to it as

sym⊕G =
l

⊕
k

symGk,
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where Gk are the quadratic forms on T k that are “push-forwards” of the form G

restricted to T [k](X) under the quotient homomorphisms T [k](X) → T k(X) and
where symGk are symmetrisations of this form under all permutations of the 2k
“indices”.

To make sense of this, regard the quadratic forms Gk on the symmetric powers
T k(X) as 2k-linear forms on X, Gk(τ1, . . . , τ2k) for τ1, . . . , τ2k ∈ T (X). These forms
are non-symmetric and symGk denotes the corresponding symmetric 2k-forms that
can be seen as homogeneous polynomials of degrees 2k on the tangent spaces Tx(X),
x ∈X.

In general, such “fully symmetric” graded forms G○ = ⊕k G
k on ⊕k T

k
x (X),

x ∈ X, are “the same” as polynomials of degrees 2l on the tangent space Tx(X)
with all monomials of even degrees 2k, k = 1, 2, . . . , l.

Higher Isometric Immersion Problem. Let G○ = {G○x}x∈X be a family of
“fully symmetric” graded forms G○x = ⊕k G

k
x on ⊕k T

k
x (X), x ∈ X, that can be

thought of as polynomials of degrees 2l on the tangent spaces Tx(X) with all
monomials of even degrees 2k, k = 1, 2, . . . , l.

A Cl-smooth map f ∶ X → Rq is called G○-isometric, if G○ equals the symmetri-
sation of the form on the jet bundle T [l](X) that is induced by the l-jet of f from

the above form H on T [l](Rq),

G○ = sym⊕(D[l]f)⋆(H) =
l

⊕
k

symGk.

Observe that G2 here equals the second fundamental form of the immersion

X
f↪ Rq; accordingly, G○-isometric immersions for l = 2 are exactly “immersions

with prescribed curvatures” of 2 on p. 176. Similarly, these f for l = 3 can be
christened isometric immersions with prescribed curvatures and torsions.

(Symmetrisation of the induced form (D[l]f)⋆(H) is needed to avoid a conflict
with the higher order Gauss formulas that express the non-symmetric part of Gk

in terms of derivatives of Gk−1, see 3.1.5 in [35] and references therein.)
Let Crk be the smoothness classes of Gk as functions on T k(X).

77 What are G○-isometric Cr-maps f ∶ X → Rq for a given r ≥ l?
78 In particular, what is the minimal q such that such an f exists for all G○

in a given (multi)regularity class {Crk}?
On Higher Dimensional Inheritance. One may define an inherently m-

dimensional structure of order l on a manifold X as a (marked) subset in the
space of l-jets at 0 ∈ Rm of smooth maps Rm → X or, more generally, as a subset
in the natural linear span of this space of jets as was done for m = 1.

The prominent examples of these for m = 2 and l = 1 are the symplectic structure
and the conformal Riemannian structure.

One knows in this respect that symplectic immersions between symplectic (nec-
essarily even dimensional) manifolds Xn → Y q satisfy the h-principle except for the
case q = n.

What is more significant is that the (suitably defined) h-principle for symplectic
embeddings, that holds for q < n + 2, is violated for q = n + 2.59

59Apparently, there is a hidden network of deep connections between “symplectically rigid”
and “symplectically flexible”, the currently available knowledge of which is exposed by Eliashberg
in his survey [26].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DESCENDANTS OF NASH ISOMETRIC EMBEDDING THEOREMS 237

The inherent 2-dimensionality is prominent for conformal structures on surfaces
but is less visible for Xn if n ≥ 3, where conformal immersions have been studied
in Riemannian geometry from a different perspective (see, e.g., [16] and references
therein).

It is known [50]60 that
Riemannian Can-manifolds Xn are locally conformally Can-immersible

to Rsn−1, sn = n(n+1)
2

.
On the other hand, the following question seems wide open:

79When can a C∞-Riemannian metric g on X be decomposed to a sum of
p conformally flat C∞-metrics gν , or, differently but in the same spirit, as

g =
p

∑
ν=1

ψ2
νgν ,

where ψν are C∞-functions and where gν are quadratic forms that are
induced by C∞-maps fν ∶X → Rqν for given p and dimensions qν?
(This generalises Nash’s ∑ψνdφ

2
ν-decomposition where qν = 1.)

What we know about symplectic immersions generalises, although perfuncto-
rily, to exterior m-forms (see 3.4.1 in [35]) that are are inherently m-dimensional
structures of degree 1; this may extend to “isometric immersions” of exterior forms
on T [l](X) as well. But we have no idea how to approach (or even to properly
mathematically formulate) the following:

?Semi-Philosophical Question. Are there inherently m-dimensional versions
of the inherently one-dimensional techniques that have been developed for Rie-
mannian isometric immersions?

4.3. Unclassified Problems and Conjectures.
1. Paradoxes of Low Regularity of Nash and of Kolmogorov and Arnold.

Simple counting of parameters gives a fair idea for (maybe conjectural) solvability
or rather non-solvability of differential equations in the C∞-category, but it may
break down at low regularity as it happens for isometric immersions produced by
Nash’s C1-construction.

Apparently, counting parameters also motivated Hilbert in his conjecture of non-
representability of general functions in n variables by superpositions of continuous
functions in (n − 1) variables that was disproved by Kolmogorov in 1956–1957.

?Can the constructions of C1-isometric maps by Nash and Kuiper and of su-
perpositions of C0-functions by Kolmogorov and Arnold be brought to a common
ground?

Hilbert’s vision was justified, up to some degree, by Vitushkin for superpositions
of Cr-functions for r > 0 (see the surveys [72] and [73]).

But neither in the case of non-linear PDEs, e.g., for isometric Cr-immersions
Xn → Rq(n,r), nor for superposition problems for functions has the following found
a comprehensive answer.

?Question. Where does, smoothness-wise versus dimension-wise, the demarca-
tion line lay that separates what counting parameters predict and what low regu-
larity constructions may deliver?
2. Genericity Problems. It is often, if not always, painfully difficult to show
that a particular “object” o0, e.g., a smooth function or a map between manifolds,

60I owe this reference to Deane Yang.
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satisfies certain property that is known to be satisfied by generic, in some sense, o
in the class O of o0.

For instance Hilbert’s conjecture remains open in the C∞-category.
? Can (branches of the) solutions x = x(ai) of algebraic equations ∑d

i=0 aix
i =

0 of high degree d be locally represented (away from their ramification loci) by
superpositions of C∞-smooth functions in two variables.

(This is also unknown for all Cr, r ≥ 1, where additional difficulty comes from
section 4.3 item 1 above.)

The two, mutually dual corresponding Riemannian problems are as follows:
80 Cartan Rigidity Conjecture. Local C∞-immersions f ∶Xn → Rq are gener-

ically C∞-rigid for q < sn = n(n+1)
2

.61

81 Microflexibility Conjecture. The metric inducing operator f ↦ g =
(Df)⋆(∑j dy

2
j ) is infinitesimally invertible at generic C∞-immersions f ∶ X → Rq

for q > sn. Consequently, the sheaves of isometric C∞-immersions are, generically,
microflexible. (Microflexibilty is a very strong violation of rigidity.)

3. Global Uniqueness Problems. The rigidity problem is accompanied by the
global, as well as local, uniqueness/non-uniqueness questions.

82 Under what conditions is a C∞-smooth (real analytic) isometric immersion
(X,g) → Rq unique, and when, on the contrary, are there many “drastically differ-
ent” smooth maps X → Rq that induce the same metric on X?

Counting parameters suggests that if q < k−1
k
sn, then k-tuples of C∞-maps

fi ∶ Xn → Rq, i = 1, . . . , k, that induce equal metrics on Xn must be rare, but

if q > k−1
k
sn, sn = n(n+1)

2
, then there must be lots of them.

A specific question here can be formulated as follows.
83 Under what assumptions on n, k, q, r, can all k-tuples of continuous maps from

all smooth n-manifolds, X → Rq, be approximated by k-tuples of Cr-maps that
induce equal metrics on X?

If r = 1, then the Nash-Kuiper theorem delivers such approximating maps start-
ing from q = n + 1 (see section 3.3) but this seems unlikely for large r and, if k = 2,
for q << sn

2
which, albeit looks easy, does not seem to be known even for q = n + 1.

On the other hand,
if q ≥ sn

2
+ 2n + 2, then the pairs of Can-maps f1, f2 ∶ X → Rq that induce equal

metrics on X are dense in the space of all pairs of continuous maps X → Rq.
(These questions are addressed in [34] and 3.3.4 in [35].)

4. Regularity and Approximation Problems. Riemannian metrics induced by
Cr-maps for r ≥ 2 are “nearly Cr” rather than mere Cr−1: in some local (harmonic)
coordinates they are in the Hölder class Cr−1,α for all α < 1 by a 1980–1982 theorem
of Nikolaev, Jost, and Karcher [51].

This suggests that smoothness of a metric must be defined in a coordinate free
manner and also leads to the following

84 C1,1
-Conjecture. Every Riemannian manifold X with bounded sectional cur-

vatures in the sense of Alexandrov admits an isometric C1,1-embedding (i.e., with
Lipschitz first derivatives) to some Euclidean (infinite dimensional Hilbertian?)
space.

61Known results and references can be found in the paper by Berger, Bryant and Griffiths
(1983, [4]).
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85Embeddings of Alexandrov Spaces Problem. Is there a class of isometric
embedding and of their regularity properties characteristic for Alexandrov spaces
with curvatures bounded from below?

(See [5] for an account of related regularity results.)
Let X be a closed simply connected Riemannian Can-manifold of dimension

n ≥ 1, and let f ∶ X → Rq be an isometric C∞-immersion.
86Under what conditions on X and on q do the following hold?

A. The map f is real analytic.
B. The map f can be C∞-approximated by real analytic maps.
C. The map f can be approximated by real analytic maps X → Rq+m ⊃ Rq for a

given m = 1, 2, . . . .
It seems easy—this must be in the literature—that A is valid for q = n + 1 and

n ≥ 3, but the case n = 2 is, probably, unknown.

In general, A is expected for q < sn = n(n+1)
2

and “generic” X and, possibly, even
for q = sn. But it is hard to formulate a smart genericity condition here. Yet, the
following properties may serve as guidelines for ruling out counterexamples, at least
for “smallish” q, say for q ≤ 2n − 1.
● X admits no smooth topological immersion to Rq−1;
● X admits no isometric Can-immersion to Rq−1;
● X admits no local isometric Can-immersion to Rq−1;
● X does not metrically split or, more generally, it does not split to a warped

product.
If q < sn, these conditions are also favourable for B. On the other hand, it is

not impossible that if q > sn, then B holds for all X. But this is unknown even for
q ≥ sn+2, where one exercises full control over free isometric immersions.

This leads us to C which is, for all q:

∗ easily provable, with no compactness assumption on X, for m = sn+n, with
the help of generic bendings of Rq in Rq+sn+n ⊃ Rq;

∗ a bit harder for m = sn;

∗ realistic for m ≥ sn −
√
n/2;

∗ plausible for m = sn − n + 1;
∗ not impossible for m = n.

?5. Elementary Isometric Embeddings. Do “simple” manifolds X admit
“elementary” isometric embeddings to Euclidean spaces, or is the “high transcen-
dence” inherent in Nash’s constructions unavoidable?

For instance, one counts symmetric Riemannian spaces as “simple” as well as
whatever one obtains from simple manifolds by “simple” constructions, e.g., by
warped products, conformal changes of metrics, Riemannian fibrations.

It is harder to say what elementary embeddings are. One cannot limit oneself—
at least not in the Riemannian category—to algebraically defined embeddings—
think of the hyperbolic metric algebraically expressed in the “projective model”
—but one may search for embeddings taken from a “small” (finite dimensional?)
pool of functions, e.g., solutions of integrable (non-linear) PDEs with algebraic
“coefficients”.62

62In his 2001 survey [5], Borisenko collects most known and many new results concerning such
immersions; see also [66], [3], [6] and [44].
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The oldest in this game are isometric immersions of the hyperbolic spaces Hn to
Rq that are known to admit “simple” local isometric Can-immersions to R2n−1 and
where the standing conjectures are as follows:

87 [A] Hn admits a proper isometric Can-embedding f ∶Hn → R2n

(but it is doubtful that there is a “simple” such f).
(For the moment, the existence of such isometric Can-immersions is proven only

for Hn → R6n−6, which is done in 3.2.2 of [35], by approximating Blanus̆a’s C∞-
embeddings with a use of a non-compact version of Nash’s Can-implicit function
theorem.)

88 [B] Hn admits no isometric C2-immersion to R2n−1.
The latter was proven by Hilbert (1901) for n = 2 and if n ≥ 3, where the

corresponding non-immersability result is known for complete non-simply connected
manifolds with constant negative curvatures by the work of Moore (1972), Xavie
(1985), and Nikolayevsky (1998).63

Hilbert’s theorem was generalised by Efimov for surfaces with negative curvatures
as follows.

The Jacobians of the Gauss maps G ∶ X2 → S2 of all complete64 non-compact
immersed C2-surfaces X2 ↪ R3 satisfy

inf
x∈X

∣Jac(G(x))∣ = 0.

89 Does this remain true for hypersurfaces Xn ↪ Rn+1 if n > 2?
See [2] for some results and conjectures in this direction.

90 What is the minimal q such that:

[a] the Euclidean space Rq (or the sphere Sq) contains an algebraic submanifold
of dimension n with the induced Riemannian metric of constant negative
curvature?

[b] some (all?) closed n-manifolds with constant negative curvature admit
isometric Can-immersions to Rq?

[c] the space Rq contains a closed C∞-submanifold of dimension n with strictly
negative curvature?

Is conformal flatness of (hyperbolic) manifolds relevant for their isometric im-
mersion?

In general,
91 do C∞-smooth conformally flat manifolds of dimension n admit local isometric

C∞-immersions to R2n+1?

“Flat” Questions

92 What is the minimal q depending on the topology of a flat manifold X and/or
on its holonomy group, such that X admits an isometric Cr-immersion to Rq?
For instance,

93 what is the minimal q, such that (Rn ∖ 0)/{±1} isometrically Cr-embeds
to Rq?

94 Does this q depend on r for r ≥ 2?

63Futher results and references can be found in [11].
64This means with complete induced Riemannian metric.
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There is no apparent geometric obstruction for isometric Can-immersions of flat
manifolds to Rq for q ≥ 2n,65 but there may be topological obstructions for q < 3n
for non-parallelisable manifolds. None is visible, however, for q ≥ 3n, and although
no general construction for immersion of flat manifolds is currently available for

q < sn+1 = (n+1)(n+2)2
, one may safely conjecture that

95if q ≥ 3n, then all strictly curve-shortening maps between Riemannian flat
manifolds, Xn → Y q, admit approximations by isometric real analytic ones.
On the other hand, strong constraints on the shape of C2-isometric immersions

Xn → Y q, in particular, lower bounds on their sizes do exist for q ≤ 2n − 1.66

For instance, the unit ball Bn
Euc ⊂ Rn admits no isometric C3-immersion (C2?)

to a ball of radius < 1 in R2n−1 by a 1952 theorem by Chern and Kuiper [13] (which,
as I recall, needs C3).

This seems to imply the similar result for C2-approximately isometric immersions
between arbitrary Riemananian manifolds.

More generally, let Y = (Y, g̃) be a compact C2-smooth Riemannian manifold of
dimension q ≤ 2n − 1, and let fi, be a sequence of C∞-immersions from the n-ball
Bn to Y , such that the induced metrics gi, i = 1, 2, . . . , on Bn satisfy the following:
● the sectional curvatures of gi are uniformly bounded,

∣κ(gi)∣ ≤ C0 < ∞ for all i;

● the distances ri from the center 0 ∈ Bn to its boundary measured in metrics gi
are separated from zero,

ri ≥ ρ0 > 0 for all i;

● the volumes of (B(n, gi)) are also separated from zero.

Then the diameters of the images fi(X) ⊂ Y measured with g̃ are also separated
from zero,

diamY (fi(X)) ≥ δ0 > 0 ∀ i = 1, 2, 3, . . . .

60% Proof. Let xi ∈X be a point that is “not too close” to the boundary where

the norm of the external curvature of X
fi↪ Y is “approximately maximal”,67 call

it Ki(xi), and rescale Y at the points y0 = f(xi) by (Y � Yi) = (Y,λig̃) for

some constants λi →∞ such that Ki/λ2
i , which are curvatures of X

fi↪ Y after the
rescaling, are very small, yet away from zero.

The manifolds Yi converge to Rq and the geometries of the λi-rescaled λ−1-balls
in (X,gi) converge to the standard Euclidean ball B = Bn

Euc, while a subsequence
of maps fi converges to an isometric C1-immersion f∞ ∶ B → Rq with bounded
extrinsic curvatures.

It is (almost) obvious that this map is C1,α, for all α < 1, probabaly even C1,1

and the proof reduces to the following

96Conjecture. The Chern-Kuiper theorem remains valid for isometric C1,α<1-
immersions Bn → Rq≤2n−1 with bounded extrinsic curvatures.

65Certain obstructions for q < 2n, some of which are applicable to compact flat n-manifolds
minus m ≤ n small balls are presented in 3.2.1 in [35] 1986; also see [5].

66The best result of this kind for n = 2 is Burago’s isoperimetric inequality; see [12] and 3.2.3
in [35].

67This a standard game in the rescaling game we play.
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97 Question. Are there instances of curvature related geometric constraints on
the shape of C2-approximately isometric immersions Xn → Y q for q ≥ 2n?

Are there instances of curvature related geometric constraints on the shape of
C2-approximately isometric immersions Xn → Y q for q ≥ 2n?
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