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Geometric Algorithms for Digitized Pictures on a
Mesh-Connected Computer
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Abstract-Although mesh-connected computers are used almost ex-
clusively for low-level local image processing, they are also suitable for
higher level image processing tasks. We illustrate this by presenting new
optimal (in the 0-notational sense) algorithms for computing several
geometric properties of figures. For example, given a black/white pic-
ture stored one pixel per processing element in an n X n mesh-connected
computer, we give 0(n) time algorithms for determining the extreme
points of the convex hull of each component, for deciding if the convex
hull of each component contains pixels that are not members of the
component, for deciding if two sets of processors are linearly separable,
for deciding if each component is convex, for determining the distance
to the nearest neighboring component of each component, for deter-
mining internal distances in each component, for counting and marking
minimal internal paths in each component, for computing the external
diameter of each component, for solving the largest empty circle prob-
lem, for determining internal diameters of components without holes,
and for solving the all-points farthest point problem. Previous mesh-
connected computer algorithms for these problems were either nonex-
istent or had worst case times of 0 (n 2). Since any serial computer has
a best case time of 0(n 2) when processing an n X n image, our algo-
rithms show that the mesh-connected computer provides significantly
better solutions to these problems.

Index Terms- Computational geometry, convexity, image processing,
mesh-connected computer.

I. INTRODUCTION
MXESH-connected computers (MCC's) have long been

proposed for image processing. Images can be naturally
mapped onto an MCC so that neighboring pixels are mapped
onto neighboring (or the same) processing elements. Because
of this, local operations on the image, such as edge detection
or median filtering, can be performed by local operations on
the mesh, enabling such algorithms to efficiently exploit the
massive parallelism available. Many discussions of actual MCC's,
such as the SOLOMON, ILLIAC III, CLIP4, or MPP, emphasize
their speed on local operations [4], [11], [18], [20] ,and most
of the early papers on MCC's, such as those of Unger [30] -
[32] and Golay [8], similarly emphasized local operations.
In this paper we consider higher level image processing and

pattern recognition tasks which require combining information
globally. We concentrate on geometric problems involving
convexity, internal distance, and external distance. For some
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problems, notably the Euler number [9], [15], connectivity
[3 ], [13 ], and skeletization [23 ] , it is possible to iterate local
operations to achieve an optimal solution to a global problem.
However, this approach seems to work only in isolated prob-
lems. (For example, the Beyer and Levialdi "shrinking" ap-
proach to connectivity problems of digitized pictures [3],
[ 1 3 ] does not extend to higher dimensions. A solution strategy
similar to ones presented in this paper was needed for optimal
algorithms in dimensions greater than two [24].) Instead of
local operations, our algorithms emphasize the use of sorting
and graph-theoretic algorithms. The same approach was used
by Nassimi and Sahni [17] in their optimal MCC algorithm for
labeling the connected components of digitized pictures. The
algorithms presented in this paper are always optimal in the
0-notational sense, and we have tried to make them as general
as possible.
The paper is organized as follows. In Section II, we define

the MCC model and review standard MCC algorithms that will
be used throughout the paper. In Section III, given an n X n
black/white picture stored one pixel (picture element) per
processing element in an n X n MCC, we give 0(n) time algo-
rithms for computing internal distances, marking minimal
internal paths, and counting the number of these paths for
each component of the picture. These problems arose in an
image processing task considered in [10], and our algorithms
are faster than their 0(n2) algorithms. In Section IV, we give
a 0(n) time algorithm for marking the extreme points of the
convex hull for every labeled set of processors. We also give
0(n) time algorithms for deciding if the convex hull of each
component contains pixels that are not members of the com-
ponent, for deciding if two sets of processors are linearly
separable, for solving the smallest box problem, and for decid-
ing if each black figure is convex [21], [29]. Previously, [5]
and [12] described algorithms that decided convexity of fig-
ures, but their algorithms require 0(n2) time in the worst case.
In Section V, we show how to compute the distance between
components in 0(n) time, where the distance can be measured
by almost any metric. A 0(n) solution also appears in Dyer
and Rosenfeld [5], but their solution can only be used with
the 11 ("taxicab" or "city block") and lo. ("chessboard")
metrics. Section V also contains optimal solutions to nearest
neighbor, radius query, and farthest point problems [21].

II. PRELIMINARIES
A. Notation

We use Q to mean "order at least," 0 to mean "order no
greater," and 0 to mean "order exactly."
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Fig. 1. An n X n MCC.

B. Definition ofMCC
The mesh-connected computer (MCC) is a single instruction

stream-multiple data stream (SIMD) computer. It consists of
n2 processing elements (PE's) arranged in an n X n grid. To
simplify exposition, we assume that n = 2' for some integer
c. PE(i, j) will represent the processing element in row i,
column j. The mesh is oriented so that PE(O, 0) is situated in
the northwest corner of the MCC, while PE(n- 1, n - 1)
resides in the southeast corner. (See Fig. 1.) For all i, j in
{0, * *, n- 1 }, PE(i, j) is connected via unit-time communi-
cation links to its four neighbors, PE's(i ± 1, j ± 1), assuming
that they exist. Each PE has a fixed number of registers (words),
each of size 0(log (n)), and each PE can perform standard arith-
metic and Boolean operations on the contents of its registers
in 0(1) time. Each PE can send or receive a word of data from
a neighbor in 0(1) time. Each PE contains a unique identifica-
tion register (ID) whose contents correspond to that PE's row-

major index (i.e., PE(i,j) has an ID of n * i +j). This model is
the same as that used in [1 ], [5], [17], and [28] and is some-
times called a memory-augmented cellular array.
There are some variations on the MCC which deserve mention.

Early studies considered other interconnection schemes, such
as Moore's pattern of connecting each PE to its eight nearest
neighbors [16] or Golay's use of a hexagonal decomposition
of two-dimensional space where each PE communicates with
its six nearest neighbors [8]. In an 0-notational sense, such
differences are easily seen to be irrelevant. A more significant
change is to require that the word size be 0(1) instead of
0(log (n)). This model is known as a mesh automata, iterative
array, parallel processing array, or cellular array. It is equiva-
lent to requiring that all PE's be copies of some fixed finite
state automaton. For any fixed automaton, once n is suffi-
ciently large, a PE does not have enough memory to store its
ID or coordinates, which seriously complicates matters. Mesh
automata have been widely studied (e.g., [3], [8], [9] , [13],
[16], [24], [25], [31] - [33]), but currently there seems tobe
much greater interest in the more powerful MCC. To the best
of the authors' knowledge, all real mesh-connected computers
have PE's capable of storing their coordinates, so it seems that
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Fig. 2. Snake-like ordering of a 4 X 4 MCC.

the MCC is the more realistic model. There are also more
powerful variations, such as the mesh-connected computer
augmented with broadcasting [27], but their study is outside
the bounds of this paper.

C. Standard MCCAlgorithms
We now describe well-known MCC algorithms that will be

used throughout this paper.
1) Rotating Data Within a Row (Column): For each row

(column), every PE can transmit a fixed number of pieces of
information to all other PE's in its row (column) in 0(n) time.
Copies of the necessary pieces of information from each PE
move towards the easternmost (northernmost) PE of their
row (column). Once there, the copies of information reverse
themselves until they reach the westernmost (southernmost)
PE of the row (column) where they reverse themselves again.
The algorithm terminates when all PE's simultaneously receive
copies of their original data.
2) Passing a Row (Column) Through the MCC: In 0(n) time,

every PE of the MCC can view all of the data from every PE of
a given row (column). For the given row (column), rotate all
columns (rows) simultaneously so that there is a copy of the
row's (column's) data in every row (column) of the MCC.
Now, simply rotate all of the rows (columns) simultaneously.
Besides organizing data in rows or columns, we will often

order it via the snake-like ordering, illustrated in Fig. 2. Notice
that in the snake-like ordering, each PE is adjacent to its pre-
decessor and its successor. Other orderings, such as the prox-
imity ordering in [25], also have this property, but the snake-
like ordering seems to be the simplest.
3) Rotating Data in Snake-Like Order: Suppose that each

PE contains a record with a key and data part, and suppose
that all PE's with the same key form an interval in the snake-
like ordering. If it is known that there are no more than D PE's
with the same key, then in 6(D) time, each PE can pass its
data to all other PE's with the same key. This can be done by
first having each PE check the keys of its neighbors to deter-
mine if it is the first or last PE with its key (according to the
snake-like ordering). Then the data are rotated just as in rotat-
ing data within a row, with each PE passing data to adjacent
PE's, where the first PE with a given key actsjust as the western-
most PE of a row, and the last PE with a given key acts just as
the easternmost PE of a row. Notice that the data may traverse
more than a single row.
4) Sorting: Thompson and Kung [28] have shown that n2

elements, distributed one element per PE, can be sorted in 0(n)
time by using a recursive merging procedure. In particular, the
elements can be sorted into snake-like order in 0(n) time.
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Two other common data movement operations for the MCC
are the random access read (RAR) and random access write
(RAW). These operations involve two sets of PE's, the sources
and the destinations. Source PE's send a record consisting of a
key and one or more data parts. (A record may also be null.)
Destination PE's receive a record sent by a source PE, or else
receive a null record. We allow the possibility that a PE is
both a source and a destination.
5) Random Access Read (RAR): In a RAR, we require that

no two records sent by source PE's have the same key. Each
destination PE specifies the key of the record it wishes to re-
ceive, or it specifies a null key, in which case it receives nothing.
Several destination PE's can request the same key. A destina-
tion PE may specify a key for which there is no source record,
in which case it receives a null message.
6) Random Access Write (RAW). In a RAW, the destina-

tion PE's do not specify the keys they want to receive. They
merely indicate their willingness to receive. At the end of the
RAW, each destination PE receives either a null record or a
record sent by a source PE. Each key is received by exactly
one destination PE. If two or more source PE's send records
with the same key, then a destination PE will receive the record
with the minimum data field. (In other circumstances, one
could replace minimum with any other commutative, associa-
tive, binary operation.)
Both the RAR and RAW can be completed in 0(n) time by

using the algorithms in [ 17]. The RAR (RAW) could be per-
formed by a straightforward sort-like step if it were not for
the possibility that several destination PE's (source PE's) re-
quest (send) the same key. To overcome this problem, sorting
into snake-like order is used to bring all the requests (records
sent) with the same key together. Next, a single representative
of each key is chosen. A second sort-like step allows each
representative to complete its operation, and then, for the
RAR, each representative must return to the others, distribute
the value obtained to them, and then a sort step returns all
records to their destination PE's.
For the algorithms presented in this paper, it is assumed that

a digitized picture initially exists in the MCC. The picture con-
sists of n' pixels distributed one per PE. The pixels are in one
of two states: black or white. It is helpful to think of this
digitization as being a black picture on a white background.
Two black pixels in neighboring PE's are said to be connected.
Given a black PE A, the connected component that A is a
member of is the set of PE's that can be reached from A via
a connected path.

7) Conoponent Labeling: Nassimi and Sahni [17] have
shown that the black connected components of a digitized
picture can be labeled in 0(n) time. Upon completion of the
labeling algorithm, each PE will contain the label of its pixel's
component, where the label of a component is chosen to be the
minimum ID of any PE containing a pixel in the component.
Many of our algorithms consist of labeling the components of
a picture and then having each component decide some
property, where by a component deciding we mean that each
PE of the component has the answer to the query.
8) Transitive Closure: Let G = (V, E) be a directed graph,

where V = {1, .., n} is the set of vertices and E is the set of

edges. G can be represented by its adjacency matrix A, where
A(i, j) is 1 if there is an edge from vertex i to vertex j, and is 0
otherwise. A related matrix is the connectivity matrix A*,
where A *(i, j) is 1 if there is a path in G from vertex i to ver-
tex j, and is 0 otherwise. A * is sometimes called the transitive
closure of A. Warshall's algorithm to compute the transitive
closure ofA is [19], [35]

for k :=1 to n do

for i :=1 to n do

forl := I to n do

Ak(i, j) :=Ak 1(i, j) or

[Ak-i(i,k) and Ak-(k,I)]
where Ao is A and An is A*. The interpretation of Ak(i, j) is
quite simple: Ak(i, j) is 1 if there is a path from vertex i to
vertex j using no intermediate vertex greater than k, and is 0
otherwise. Given this interpretation, the assignment state-
ment in Warshall's algorithm merely states that there is a path
from vertex i to vertex j using no intermediate vertex greater
than k if and only if either there is a path from i to j using no
intermediate vertex greater than k - 1, or there is a path from i
to k using no intermediate vertex greater than k - 1 and there
is a path from k to j using no intermediate vertex greater than
k - 1.
Van Scoy [33] showed that if PE(i, j) initially stores A(i, j),

then in 0(n) time one can compute An, where PE(i, j) con-
tains An (i, j) when the algorithm terminates. For us, the im-
portance of this result is that Van Scoy's algorithm easily ex-
tends to show that any recurrence of the form

fk (i, i) = g(fk -1 (i, i), fk -1 (i, k), fk -2 (k, j))
can be solved for all fn (i, j) in 0(n) time if the function g can
be computed in 0(1) time by a single PE and if f0(i, j) is ini-
tially stored in PE(i, j). Upon termination of the algorithm,
fn (i, j) will be stored in PE(i, j).

III. INTERNAL DISTANCES

For black PE's A and B, an A-B path is a sequence of con-
nected black PE's originating at A and terminating at B. A
minimal A-B path is an A-B path containing the minimum
number of PE's over all possible A-B paths. The internal
distance from A to B, denoted DIST(A, B), is defined to be
one less than the number of PE's in a minimal A-B path.
(Note: while the minimal A-B path may not be unique, the
internal distance between A and B is.)
Assume that the digitized picture has had its black compo-

nents labeled, in 0(n) time, as described in Section II. Given a
special marked black pixel M, it is clear that in 0(n) time, every
PE of the MCC can be informed as to M's component label.
The main problem of this section is to determine DIST(S,M)
for each pixel S in the same component as M. This problem
occurs in image processing [10], and from its solution one
can find an internal spanning tree in 0(1) additional time. (A
spanning tree of a graph G is a connected acyclic subgraph
containing every vertex of G. They are important to many
problems in graph theory [1 ] , and are also used in [5] to solve
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several image processing problems.) Reference [10] gives
0(n2) time algorithms for several of the problems considered
in this section.
Our internal distance algorithm is based on using the general-

ized transitive closure operation described in Section II. Given
a directed graph G of n vertices, if we define Ak (i, j) to be
the minimal length of a path from i to j using no intermediate
vertex greater than k, then we see that the Ak satisfy the
recurrence

Ak(i,i) = mnin {Ak- (i,j),Ak-J(i, k) +Ak-1(k,j)}
where AO(i, j) is 0 if i = j, 1 if there is an edge from i to j,
and otherwise. Notice that An (i,j) is DIST(i,j).
Unfortunately, we cannot just blindly use the transitive

closure operation to find internal distances since there may be
0(n2) black pibels (vertices), which would require a matrix
with 0(n4) entries. To reduce the matrix to 0(n2) entries,
we must make use of the underlying geometry of the digitized
picture. The solution to the all-points minimum distance prob-
lem will be described as a two-phase algorithm, with both
phases being implemented via a recursive divide-and-conquer
strategy.
At a given stage i of the divide and conquer, let k = 2i. The

outer border elements of a k X k square are defined to be those
PE's in rows and/or columns 0 and k- 1 of the square that
contain the same label as that of the marked PE. The inner
border elements of a k X k square are defined to be those
PE's in rows and/or columns (k + 1)/2 and (k + 1)/2 - 1 of
the square that contain the same label as that of the marked
PE. (That is, the outer border elements of the four (k/2) X
(k/2) subsquares that have neighbors in a different subsquare
of the square.) The term border elements shall be used to refer
to the collection of inner and outer border elements of a k X
k square. (See Fig. 3.) Note: we assume that the k X k squares
are aligned so that PE's (c * k, d * k), 1 < c, d < [n/k] , mark
the southeast PE of each k X k square.
The objective of the first phase of the algorithm is to obtain

the distance to the marked PE for all of the border elements
of the n X n MCC. This phase is implemented using a bottom-
up divide-and-conquer solution strategy. The objective of the
second phase of the algorithm is to obtain the distances to the
marked PE for the remaining PE's that are in the same compo-
nent as the marked PE. The second phase will be implemented
via a top-down divide-and- conquer solution strategy where each
iteration of the solution requires applications of phase 1.

Internal Distance Algorithm
We begin by describing the first phase of the algorithm at

an arbitrary stage i of the divide-and-conquer solution. Let
k = 2.
Phase 1 Description: At the conclusion of stage i- 1, each

(k/2) X (k/2) square contains a distance matrix, where the en-
tries of the matrix represent the restricted internal distances be-
tween the border elements of the (k/2) X (k/2) square. These
internal distances are measured using paths that are restricted
solely to the square in question. The matrix also contains en-
tries representing the restricted internal distances between these
border elements and the marked PE (if the marked PE is not

row 0

row k/ 2-1

row k/ 2

row k- 1

outer

m inner

column k/2-1 _J L. column k/2

Fig. 3. Possible border elements of a k X k subsquare.

contained in the (k/2) X (k/2) square, then these distances are
infinity).
At stage i, squares of size (k/2) X (k/2) are merged to form

squares of size k X k. Using the aforementioned matrices
from the four (k/2) X (k/2) subsquares, the restricted internal
distance from every border element of a k X k square to the
marked PE and all other border elements of that k X k square
can be computed.
After 0(log(n)) stages of the divide-and-conquer solution, a

minimum internal distance matrix containing the internal
distances among all of the border elements of the entire MCC
will exist. (In fact, this matrix will also contain information
pertaining to the outer border elements of the four (n/2) X
(n/2) subsquares of the MCC.) Furthermore, each of these
border elements will know its distance to the marked pixel.
Phase 1 Assumptions: Before performing computations at

stage i on a k X k square A, the following must hold for each
of the four (k/2) X (k/2) subsquares ofA at the completion of
stage i- 1.

1) A (4k - 15) X (4k - 15) matrix exists that contains the
restricted internal distances between the border elements and
the marked PE of the subsquare. By convention, we will let
the last row and column of the matrix be those distances per-
tinent to the marked PE.
2) Every entry in the matrix contains the unique ID's of

the PE's that the distance represents. Recall that the ID is the
row-major index of the PE.
3) Every border element has a register containing its restricted

internal distance to the marked PE. This can be obtained from
the last row or column of the matrix by performing a RAW.
Phase 1 Procedure: For all k X k squares A, set up the dis-

tance matrix for the border elements and the marked PE. Since
there must be a row and column for the marked PE and for each
one of the 2k - 4 border elements from the four subsquares
of square A, this matrix can be of size at most (8k - 15) X
(8k - 15). For simplicity, an (8k) X (8k) pseudomachine is
used to represent this matrix. (That is, each PE of the k X k
machine will simulate 64 PE's.)
In each of the four subsquares, compress the (4k - 15) X

(4k - 15) matrices to the northwest by logically deleting the
rows and columns that are not needed for the computations
in square A. Once each of the subsquares has compressed its
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Fig. 4. Rearranging distance matrices.

matrix, move the matrices to the regions as illustrated in Fig. 4.
This can be accomplished via a RAW in 0(k) time since the
only information necessary is the size of each of the four sub-
matrices, which can be computed in 0(k) time.
In each row and column, rotate the coordinates of the PE's

represented so that the new entries can know which PE's they
represent. If an entry detects that it represents the distance
between two inner border elements that were in different
squares at stage i - 1, then replace the entry of oo with a dis-
tance of 1.
We now use the generalized transitive closure operation to

determine, in 0(k) time, the minimal path lengths between
vertices. (Recall that the vertices in a square correspond to its
border elements and the marked PE.) Next, pass the row

representing the marked PE through the k X k subsquare so

that every border element can obtain and record its (per-
haps infinite) distance to the marked PE.
After O(log(n)) iterations, phase 1 will be complete and each

of the border elements of the n X n MCC will have its "correct"
internal distance to the marked PE.
Phqse 2 Description: To obtain the "correct" internal dis-

tances to the marked PE for the border elements of the (n/2) X
(n/2) subsquares, simply apply phase 1 to each of the (n/2) X
(n/2) subsquares of the MCC. The only difference in the re-

application of the algorithm to each of the subsquares is that
the distances just obtained from the outer border elements of
the (n/2) X (n/2) squares to the marked PE must be used in
order to obtain the "correct" internal distance for all of the
border elements of the subsquares. To obtain the correct
distance for every PE in the same component as the marked
PE, simply continue this process recursively for 0(log(n))
iterations.
Analysis: The time to initially label the picture and pass the

label of the marked PE to all PE's can be completed in 0(n)
time. The time to complete phase 1 is 0(n) since the time to
complete each phase i of the divide-and-conquer is 0(21).
The time to complete phase 2 is again 0(n) since the time to

compute the distances for the border elements of a k X k square

is the time to complete phase 1 on that k X k square, which is
0(k). Therefore, we have the following.
Theorem 1: Given an n X n digitized black/white picture

stored one pixel per processor in an n X n mesh-connected
computer, and given a marked processor M, in 0(n) time
each processor can compute its (possibly infinite) internal
distance to M. O
This improves upon the 0(n2) worst case time for algorithms

in [5] and [10].
In addition to knowing the internal distance between PE's,

it is sometimes desirable to mark minimal internal paths and to
count the number of such paths.
Theorem 2: Given an n X n black/white picture stored one

pixel per processor in an n X n mesh-connected computer, and
given marked processors A and B, if the distance from A to B
is finite, then in 0(n) time

a) all minimal A -B paths can be marked,
b) a single minimal A-B path can be marked, and
c) the number of minimalA-B paths can be determined.
Proof: For a), we perform the all-points internal distance

algorithm twice, first with A as the marked processor, and
then with B as the marked processor. Inform all PE's that are
in the same component as A and B of the distance from A to
B. (This distance is contained in both A and B.) Every PE C
such that DIST(A, C) + DIST(C, B) = DIST(A, B) is on some
minimal A-B path. If every such C now creates an edge (C, D)
to each neighbor D such that DIST(D, B) = DIST(C, B) - 1,
then all minimal A-B paths will be marked.
For b), first perform part a). Each PE now contains between

zero and four edges. In order to mark a single -minimal path,
each PE discards all but one of its edges. Now there exists ex-
actly one directed, minimal, A-B path. In order to mark this
path, perform part a) again using only the directed edges that
were just created.
For c), first mark all minimal A-B paths. Assume that for

some k, there exist k X k squares in the MCC, each containing
a (4k - 2) X (4k - 2) matrix M that represents the number of
minimal paths between A, B, and the border elements of each
k X k square, where only paths within the square are considered .

Entry M(i, j) represents the number of distinct minimal paths
from vertex i to vertex j.
Merge the appropriate four k X k squares to create an

(8k - 14) X (8k - 14) matrix. Place a "1'" in M(i, j) if the
(C, D) edge exits, where PE C is the ith row in the matrix, and
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PE D is the jth column of the matrix, and C and D are neigh-
bors from two of the different k X k squares that are merged.
Next, compute the number of minimal paths from each entry
of the matrix to each other by the following formula:

fk -1 (i,J) + fk -1 (i, k) * fk -1 (k,j),

fk (i, j) = if DIST(i, k) + DIST(k,j) = DIST(i,j).

fk- (i,j), otherwise.

This requires a slight modification of the transitive closure
algorithm as presented in [33]. When one PE must pass an
arbitrary fk -(i, j) to another PE, it must also pass to that PE
DIST(i, j), since this information is necessary in order to ensure
the proper evaluation of the function.
Compress the matrix by deleting the rows and columns

that do not represent border elements of the 2k X 2k square
or marked PE's. The result is a matrix of size (4(2k) - 2) X
(4(2k) - 2). Continue this merging, computing, and compress-
ing process until the computations have been performed on
the entire n X n MCC. The entry M(a, b), where A is the ath
row of the matrix and B is the bth column, contains the num-
ber of minimal paths from A to B. O

In the algorithms just presented, it is not necessary to restrict
A and B to single PE's. With only minor modifications to the
algorithms of this section, A and B can be arbitrary sets of PE's.
Given sets A and B of PE's, we define the internal distance
from A to B to be min {DIST(x,y): x E A, y E B}. The most
crucial modification is that of letting the last row and column
of the distance matrix represent the set B of PE's instead of
just a single marked PE. With this change, we obtain the fol-
lowing result.
Theorem 3: Given an n X n digitized black/white picture

stored one pixel per processor in an n X n mesh-connected
computer, and given (not necessarily disjoint) sets A and B of
marked processors, in 0(n) time each processor can compute its
(perhaps infinite) distance to the set B, and the distance from
A to B can be determined. Further, if the distance from A to
B in finite, then in 0(n) time

a) all minimal A-B paths can be marked,
b) a single minimal A-B path can be marked, and
c) the number of minimal A-B paths can be determined.

0
(If A and B overlap, then define DIST(A, B) to be 0, and de-

fine marking minimal paths to mean indicating which PE's are
in both sets.)
One application of Theorem 3 is where each black compo-

nent has exactly one of its pixels in A (for example, A may
contain the pixel whose ID is that of the component). Then
by applying part a), in 0(n) time one can construct a breadth-
first spanning tree of each component where a breadth-first
spanning tree of a graph is a spanning tree such that each vertex
is at the minimal possible distance from the root.
Another generalization comes from noting that all of the

above algorithms work equally well if the edges between pixels
are directed and have arbitrary positive weights. If negative
edge weights are allowed, then if there is a cycle with a negative
total weight, the cycle can be repeated arbitrarily often to
make distances as negative as desired. Therefore, any path

touching such a cycle should be given a total distance of - .

With a little work, we can accommodate negative weights.
Theorem 4: Given an n X n mesh-connected computer such

that each processor contains a directed weighted edge to each
of its neighbors, where the weights can be +±0 or any real num-
ber, and given (not necessarily disjoint) sets A and B of proces-
sors, in 0(n) time each processor can compute its (perhaps in-
finite) distance to B, DIST(A, B) can be determined, and it can
be decided if all cycles have a positive total distance. Further,
if all cycles have a positive total distance and DIST(A, B) is
finite, then in 0(n) time

a) all minimal A-B paths can be marked,
b) a single minimal A-B path can be marked, and
c) the number of minimal A-B paths can be determined.
Proof: If there is a cycle with negative total weight, then

the recurrence used to calculate internal distances is no longer
correct. To remedy this, when working in any square, first run
the algorithm as before, except that all diagonal entries are ini-
tialized to be +oo. The (i, i) entry of the resulting matrix is
negative if and only if vertex i is on a cycle of total negative
distance. (The entry is 0 if and only if the vertex is on a cycle
of zero total distance, and is not on any negative cycles.) If
the (i, i) entry is negative, it is replaced with -oo, as is any
entry, other than +oo, in the ith row and ith column. (This is
because any path leading into or out of a negative cycle should
have a path length of - o.) Now the generalized transitive clo-
sure algorithm is run again, where we define (-o) + (+oc) =

+oo. It can be shown that the resulting matrix has the correct
distances, and is therefore ready for the next stage. O
We note that if there are cycles of nonpositive total distance,

then it is difficult to make sense of marking or counting all
minimal paths. We leave the questions of giving the proper
definitions and finding fast algorithms corresponding to the
definitions as open problems.
The internal diameter of a set A of processors is defined to

be max {DIST(x,y): x,y CA}. (External diameters appear in
Section V.) Fischler [6] shows how the internal diameter can
be used to classify cracks in an industrial inspection application.
For an arbitrary set A of PE's, we do not know of efficient al-
gorithms for determining the internal diameter. However, for
the important case where A is a component without holes, we
can rapidly determine its internal diameter. (This includes the
case of interest to Fischler.)
We only outline our solution, which is based on the algorithm

in Theorem 1. When working on finding distances in some
square, for each black PE (vertex) x on the border ofthe square,
we also have another black PE (vertex), denoted F(x), which is
one of the furthest PE's from x in the square, subject to the
condition that F(x) is connected to x in the square. (It may
be that F(x) is another border PE, in which case it was already
a vertex, and it may be that F(x) and F(y) are the same, even
though x and y are not. In these cases, the redundant vertices
are eliminated.) The important fact is that, in a component
with no holes, F(x) can be selected from among {F(y): y is a
border element of a subsquare}. Further, it can be shown that
the largest finite internal distance ever calculated during any
stage is the internal diameter. Incorporating these facts, we
obtain the following.
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Theorem 5. Given an n X n digitized black/white picture
stored one pixel per processor in an n X n mesh-connected
computer, then simultaneously for all components, in 0(n)
time each black component without a hole can determine its
internal diameter. O
We note that, using techniques from [3 ],[13], and [ 15 , in

0(n) time each component can decide if it has any holes.

IV. CONVEXITY

In this section we solve several convexity problems. Central
to our work is the identification of the PE at position (i, j)
with the integer lattice point (i, j). A set of PE's is said to be
convex if and only if the corresponding set of integer lattice
points is convex, i.e., the smallest convex polygon containing
them contains no other integer lattice points. While this is the
proper notion of convexity for integer lattice points, it does
have the annoying property that some disconnected sets of
points, such as {(0, 0), (2, 3)}, are convex.
The relationship between the convexity of PE's and the con-

vexity of the original figures is complicated by the digitization
process. If the integer lattice corresponding to the PE's is
placed atop a black/white picture, and each lattice point is
given the color of the point it covers, then a convex black
figure will yield a convex set of black lattice points. For each
convex set of black lattice points, there is a convex black figure
whose digitization is the given set, but this figure is never
unique. Further, there are nonconvex black figures which
also yield the given set. If, instead, each lattice point is thought
of as being at the center of a closed unit square (with adjacent
squares overlapping on their edges), and if a lattice point is
colored black when all of its square is black, then once again a
convex black figure will yield a convex set of black lattice
points, and for any convex set of black lattice points, there are
both convex and nonconvex black figures which yield the
given set.
For some other digitization schemes, the correspondence is

not quite as nice. For example, suppose that each lattice point
is again viewed as the center of a closed unit square, but now it
is colored black if any part of its square is black. Convex black
figures will yield convex connected sets of black lattice points,
but not all convex connected sets of black lattice points can
arise as the digitization of a black convex figure. (See Fig. 5.)
We can alter our definitions of lattice convexity and alter our
algorithms to decide this new convexity with the same time
bounds, but we will not do so here. Readers interested in
pursuing the relationship between convexity and digitization
should read [12] and the references therein.
Given a set S of PE's, the convex hull ofS, denoted hull (S),

is the smallest convex set of PE's containing S. Just as for stan-
dard planar convexity, it is easy to show that hull (S) is the
intersection of all convex sets containing S. A PE P in S is an
extreme point of S if P O hull (S - P). The extreme points of
S are the corners of the smallest convex polygon containing S.
We say that we have identified the extreme points of S if each
PE in S has decided whether or not it is an extreme point of S.
We will show that many queries concerning S can be reduced

to questions concerning the extreme points of S. On an n X n

* 0*

0 * *
0 * *

Fig. 5. A convex set of black lattice points which, in some digitization
schemes, cannot arise as the digitization of a convex black figure.

mesh, S may have 0(n2) points, but since S has at most two
extreme points in any row, it has O(n) extreme points. In fact,
by using a little number theory, one can show that S has only
0(n213) extreme points [34]. Since it takes Q(n) time to
move data across an n X n mesh, this latter bound does not help
in most algorithms, but it is crucial to the algorithm of Theorem
10. (See also [14] and [27].)
For the following theorem, we will use the fact that there

are constant time algorithms enabling a PE to decide if one
integer lattice point is on the line segment between two others,
if one integer lattice point is on the line determined by two
others, if one integer lattice point is in the angle determined
by three others (one of which is designated as the vertex),
and if one integer lattice point is in the closed triangle deter-
mined by three others. The theorem assumes that each PE has
some label, with used as a "DON'T CARE" label. The labels
may arise as the labels of connected components, but there is
no requirement that they do so.
Theorem 6. In an n X n mesh-connected computer, simul-

taneously for all labels A, in 0(n) time one can identify the ex-
treme points of the processors labeled A.

Proof. First, each PE determines if it is either the leftmost
or rightmost PE containing its label in its row. This is done in
0(n) time by rotating in each row the label and position of all
PE's in the row. When finished, each PE that is either a left-
most or rightmost PE for its label within its row places its
label and position into its sort field, while all other PE's put
infinity and their position into their sort field. These values
are sorted into snake-like order using the label as the key.
For all finite labels, we now rotate in snake-like fashion, as

described in Section II, the position information in the sort
field among all PE's with the same label in their sort field.
Since for each finite label there are at most 2n positions, this
can be done in 0(n) time. As the information rotates, each
PE determines whether or not the position in its sort field is
an extreme point. This is done as follows: suppose that X is
the position in the sort field. The positions of at most two
more PE's of the same label will be stored. As each new posi-
tion Y arrives, if no other position has been stored, then Y is
copied. If only one other position U has been stored, then the
PE checks ifX is on the line segment between Y and U. If it
is, then X is not an extreme point; otherwise, Y and U are
stored, unless Y is on the line determined by Xand U, in which
case only U is kept.

Finally, if two positions U and V are being stored when Y
arrives, then the PE checks if X is in the (perhaps degenerate)
closed triangle formed by Y, U, and V. If so, then X is not an
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extreme point. Otherwise, the PE needs to determine which
two of Y, U, and V are to be stored. One of these must be in
the angle formed by the other two with X at the vertex, and it
is this one which is eliminated. (If Ylies on the line determined
by X and one of the others, then Y is eliminated.)
There is some constant C such that after Cn time units, the

information is finished rotating. It is easy to show that at any
time in the computation, if a PE has not yet determined that
the position in its sort field is not an extreme point, then the
position is an extreme point of the set of points passing through
that PE so far. Using this fact, we see that when the informa-
tion is finished rotating, if a PE has not yet determined that
the position in its sort field is not an extreme point, then the
position must be an extreme point. A random access write
sends this information back to the position. E]
Corollary 1: Given an n X n digitized black/white picture

stored one pixel per processor in an n X n mesh-connected
computer, simultaneously for all components, in 0(n) time
each black connected component can decide if it is convex.

Proof: We use the observation that a connected set of PE's
S is convex if and only if for each PE P, such that P 0 S and P
is the right or left neighbor of a PE in S, P 0 hull (S). We will
check if P 0 hull (S) by checking if P is an extreme point of
S U {P} -

First use the labeling algorithm of [17] to uniquely label the
PE's in each connected component. Then, by rotating infor-
mation within rows, each component determines if its restric-
tion to each row is convex, e.g., an "O" shaped component
would find rows in which it is not convex, but a "Z" shaped
one would not. If each of its rows is convex, then we follow
the algorithm in Theorem 6 to identify the extreme points of
the component. As the information is rotating and the PE's
are determining if the position in their sort field is an extreme
point, they are also determining if the PE to the right of that
position (if the position is the rightmost PE with its label in
its row) or to the left of that position (if the position is the
leftmost PE) is an extreme point. That is, the coordinates of
these extra PE's are not rotated, but the algorithm of Theorem
6 is performed for them. When done, if any one of these extra
PE's is not an extreme point, then the component is not con-
vex, while otherwise it is. Finally, rotations can be used to en-
sure that each black PE knows if its component is convex
or not. O
More than 20 years ago, Unger [32] gave a 0(n) time algo-

rithm for detecting horizontal and vertical concavities, i.e.,
concavities detectable by traveling along a horizontal line or a
vertical line. Any figure with such concavities is not convex,
but there are nonconvex figures without such concavities, so
Unger's algorithm does not decide convexity. Convexity de-
cision algorithms for a single component appeared in [5] and
[12] , finishing in time proportional to the perimeter ofthe com-
ponent. (These algorithms are based on the work of Sklansky
[22].) Since a component may have a perimeter of 0(n2)
points, this gives a worst case time of 0(n2). No convex region
can have more than 4n - 4 PE's on its perimeter, and since the
size of the perimeter can be determined in 0(n) time, the algo-
rithms in [5] and [12] can easily be modified to decide con-
vexity of a single figure in 0(n) time. However, we see no easy

way to modify these algorithms to produce the extreme points
in 0(n) time.
Using ideas similar to those used in Corollary 1, the following

result on intersecting convex hulls follows routinely.
Corollary 2: Given an n X n digitized black/white picture

stored one pixel per processor in an n X n mesh-connected
computer, simultaneously for all components, in 0(n) time
each black component can decide if its convex hull contains
any black pixels not in the component. Further, simultaneously
for all components, in 0(n) time each black component can
decide if any processors in it are in the convex hull of another
black component. O
A closely related problem concerns linear separability [29].

Suppose that each PE has a label, with A and B as possible
labels (there may be additional possibilities). Then the PE's
labeled A are linearly separable from the PE's labeled B if
there exists a straight line in the plane such that all the lattice
points corresponding to PE's labeled A lie on one side of the
line, and all of the lattice points corresponding to PE's labeled
B lie on the other side. The crucial observation is that two sets
are linearly separable if and only if their convex hulls are dis-
joint. Using this fact, we easily obtain the following result.

Corollary 3: In an n X n mesh-connected computer, in
0(n) time it can be decided if the PE's labeled A are linearly
separable from the PE's labeled B. C
Given a set P of points in the plane, a smallest box [7], [29]

containing P is a rectangle of smallest area containing P. It can
be shown that the area of a smallest box is unique, that each
of its sides contains an extreme point of P, and that at least
one side contains two extreme points of P [7].
Corollary 4: In an n X n mesh-connected computer, simul-

taneously for all labels A, in 0(n) time each processor labeled
A can determine a smallest box containing all of the processors
labeled A. Further, in 0(n) time, simultaneously for all labels
A, every processor labeled A can determine the same smallest
box containing all of the processors labeled A, as every other
processor labeled A.

Proof: First perform the algorithm of Theorem 6, except
that the extreme values are not written back to the PE's. If a
PE P has position X in its sort field, and if X is an extreme
point, then at the conclusion of the algorithm, the other two
points being stored (call them Uand V) are also extreme points.
(If no other points are being stored, then only one PE has its
label, while if only one other point is being stored, then the
PE's with that label form a straight line segment.) By using
the angle UXV, P can determine whether traveling from X to
U or from X to V will produce a counterclockwise traversal
around the convex hull. For convenience, we will assume that
it is from X to U.
P now tries to determine the corners of the rectangle in Fig. 6.

It does this by finding R, S, and T, where R is the point furthest
from the line XU, S is the point whose projection onto the line
XU is the most negative (where X is the origin and U is at a
positive location), and T is the point whose projection onto
XU is the most positive. To enable each PE to find its R, S,
and T, rotate the position information again. When finished,
each PE having an extreme point in its sort field now knows
R,5S, and T, and hence can compute the corners of its box. Now
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Fig. 6. A smallest box.

the corners of these boxes are rotated in snake-like fashion
among the PE's with the same label in their sort field. When
finished, each PE knows a smallest box for the label in its sort
field. A RAR and row rotation informs each PE labeled A of
a smallest box containing all PE's labeled A. A final RAR will
allow all PE's labeled A to know the same smallest box as all
other PE's labeled A, simultaneously for all labels A. [1

V. EXTERNAL DISTANCES
In this section we will consider some problems involving (ex-

ternal) distances between PE's where again PE(i, j) is identified
with the integer lattice point (i, j). The most common distance
measures used are the Ip metrics, where for 1 < p < oo, the Ip
distance from (a, b) to (c, d) is [la - cIp+ lb - dlPI/P. (The
loo distance from (a, b) to (c, d) is max { a- c |, b - d!}.)
The connection scheme of the MCC is based on the 11 ("taxi
cab" or "city block") metric, so problems are usually easiest
when expressed in terms of this metric. Further, simple tricks
can also be used to solve problems in terms of the lo. metric.
However, for other metrics, such as the important 12 (Euclid-
ean) metric, slightly more sophisticated methods are needed.
We will assume that there is a function d(x, y) which com-

putes, in unit time, the distance between points x and y. d
cannot be completely arbitrary, for then there would be no
connection between the metric and the underlying geometry
of the mesh. For example, suppose that there is a special PE P,
and suppose d is such that d(P, Q) = 9 for all other PE's Q,
and d(Q, R) =10 whenever Q R, Q P, and R P. While
this gives a metric, problems like, "for each pixel, find the dis-
tance to the closest black pixel," must be answered by examin-
ing P alone, rather than having each PE look at the pixels stored
in nearby PE's. To avoid this, we will consider only monotone
metrics, where a metric d is said to be monotone if for all PE's P,
Q, and R, if Q and R are neighbors and the 11 distance from
P to R exceeds the 11 distance from P to Q, then d(P, R)>
d(P, Q). (See Fig. 7.) All Ip metrics are monotone, and it
seems that monotone metrics are the only ones ever encoun-
tered in practice.
Let P be a set of PE's. The external diameter ofP is defined

to be max {d(x,y): x,y CP}. Dyer and Rosenfeld [5] showed
how to compute the external diameter in O(n) time when d

R2

Fig. 7. For a monotone metric d, d(P, Q) S d(P, R1) and d(P, Q) <
d(P,R 2).

was either the 11 or loo metric, but their solution is unusable
for other metrics. Fischler [6] gives an image processing appli-
cation using external diameter measured with the Euclidean
metric.
Theorem 7. In an n X n mesh-connected computer, for any

monotone metric, simultaneously for all processors, in 0(n)
time each labeled processor can determine the external diam-
eter of the processors with its label.

Proof: Let S denote the set of all PE's with a given label.
If the metric were an Ip metric, then we could use the fact
that the external diameter of S is equal to

max {d(x,y): x,y are extreme points of S}.

For arbitrary monotone metrics this is no longer true, but it
is true that the external diameter of S is equal to

max {d(x, y): x, y are the rightmost or leftmost elements
of S in their rows}.

As in Theorem 6, we first have each PE determine if it is either
a leftmost or rightmost PE of its label in its row. Each such
PE puts its label and coordinates into its sort field and all other
PE's put infinity and their coordinates into their sort field.
These elements are then sorted with the label as primary key.
For each finite label, the coordinates are now rotated (in snake-
like fashion), and each PE keeps track of the maximum distance
from the coordinates in its sort field to the received coordinates.
When the coordinates are done rotating, these maxima are
rotated. The solution is the largest of the maxima. A RAR
then ensures that each labeled PE knows the external diameter
for its label. Lii
A closely related problem is the all-points farthest point

problem [21 ], in which for each labeled PE we are to find the
greatest distance to a PE with the same label. With a slight
change to the preceding algorithm, we obtain the following.
Corollary 5: In an n X n mesh-connected computer, for any

monotone metric, in 0(n) time the all-points farthest point
problem can be solved. O
Theorem 7 was concerned with finding distances among PE's

with the same labels, while the following theorem is concerned
with finding distances between PE's with different labels.
Theorem 8: In an n X n mesh-connected computer, for any

monotone metric, simultaneously for all processors, in 0(n)
time each processor can determine the distance to the nearest
processor with a different label, if such a processor exists.

Proof. Let P be an arbitrary PE and let Q be a closest
labeled PE with a label different from P's. Let R be the PE in
P's column and Q's row. Since d is monotone, it must be that
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R and all PE's between R and Q are either unlabeled or have
the same label as P. This forms the basis of a simple algorithm.
In each row, we rotate the labels, and as the labels rotate each
PE determines the closest (in the 11 sense) labeled PE on its
right. (If the PE is itself labeled, it is the closest labeled PE.)
Since this label might be the same as P's, each PE also finds the
closest labeled PE on the right with a label different from the
first found one. This procedure is also performed for the left
side. When finished, each PE has determined at most four label/
coordinate records, which are now rotated within the columns.
Each PE determines the minimal distance to a record with a
different label, completing the algorithm. O
One use of this theorem is to have a black/white image where

each white is unlabeled and each black is labeled by its coor-
dinates. In this case, the result is known as the all-points closest
point problem or the all-points nearest neighbor problem [21 ],
[29]. Another use of the theorem is to first label the compo-
nents, then apply Theorem 8, and then perform a RAW to
determine the distance between black components where by
the distance between components A and B we mean

min {d(P, Q): P EA, QE B}.

Corollary 6: In an n X n mesh-connected computer, for any
monotone metric, simultaneously for all components, in 0(n)
time each black component can find the distance to its nearest
black component. E
Yet another application of Theorem 8 is to the largest empty

circle problem [21 ], in which each PE is marked or unmarked
and we want to find a PE P which maximizes min {d(P, Q): Q
is marked}, subject to the additional constraint that P must lie
in the convex hull of the marked PE's. (Technically, we should
call this a circle problem only if the Euclidean metric is used.)
By combining Theorem 8 and the algorithm in Theorem 6,
we have the following.

Corollary 7: In an n X n mesh-connected computer, for any
monotone metric, the largest empty circle problem can be solved
in 0(n) time. D
Given a nonempty set S of PE's, there are several natural def-

initions of the center of S. If S is connected, then an internal
center of S is a PE P of S which minimizes max {DIST(P, Q):
Q E S}, where DIST is the internal distance. For any metric d,
a planar center of S is a point x in the real plane which min-
imizes max {d(x, Q): Q E S}, and a restricted planar center of
S is a PE P in S which minimizes max {d (P, Q): Q E S }. For
each definition of center, there is also a corresponding defini-
tion of radius. For any lp metric (1 <p < oo), the planar center
is unique, but the restricted planar center may not be. For ex-
ample, the four indicated points in Fig. 8 are restricted planar
centers, and all of the points of the figure are internal centers.
The proof of the following theorem is similar to that of

Theorem 7 and will be omitted.
Theorem 9: In an n X n mesh-connected computer, simulta-

neously for all labels, for any monotone metric, in 0(n) time
each processor can determine if it is a restricted planar center
among the processors with its label. Further, it can determine
the restricted planar radius of the processors with its label. El
The following theorem is proven only for the Euclidean

metric, contrary to our attempt to make the theorems as gen-

- restricted planar centers for any 1 metric.

Fig. 8. All black pixels are internal centers.

eral as possible. Our proof uses facts which are specific to the
Euclidean metric, and for which we have been unable to find a
usable generalization.
Theorem 1O: In an n X n mesh-connected computer, simulta-

neously for all components, in 0(n) time each black component
can determine its Euclidean planar center and Euclidean planar
radius.

Proof: For the Euclidean metric, this problem is known as
the smallest enclosing circle problem [21 1. The following facts
will be used to prove the theorem.

a) If a set has only one or two points, then the smallest en-
closing circle can be found in 0(1) time.

b) For a set of three points, either all three points are on
the boundary of the smallest enclosing circle or else two of the
points form a diameter of the circle. In either case, the center
and radius of the circle can be found in 0(1) time.

c) For a set S of three or more points, there is a three-
element subset T of S such that the smallest enclosing circle
of T is the smallest enclosing circle of S. The radius of the
smallest enclosing circle of T is the maximum radius of any
smallest enclosing circle of a three-element subset of S. Fur-
ther, T can be taken to be a subset of the extreme points of
S, except when all of S lies on a straight line, in which case T
contains the two endpoints and any third point.
These facts are straightforward and the proofs will be omitted.
Our strategy is quite simple: given a set, find its extreme

points, and then for each three-element subset of the extreme
points, find the smallest enclosing circle. However, if there are
e extreme points, there will be ( ) = 6(e3) calculations. As
was mentioned at the beginning of Section IV, on an n X n
mesh, the worst case value of e is 0(n213), requiring 0(n2)
calculations. If these calculations must be done in the e PE's,
they will require at least 2(n1/3) time. We have prevented
this by considering only connected components. If a com-
ponent has p PE's, then e = O(min (p, n)2/3), so at most
O(min(p, n)2) calculations are required. By suitably dividing
these calculations among the p PE's, they can be completed in
0(n) time. O
We should mention that finding the 11 and loo planar radii

and planar centers are particularly easy. For these two metrics,
the planar radius is half of the diameter, which we (and Dyer
and Rosenfeld [5]) have shown can be found in 0(n) time.
The 11 (and loo) planar centers form a straight line segment (see
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I planar centers

p

Fig. 9. Figures with nonunique planar centers.

Fig. 9) which may degenerate to a single point. We leave the
details of finding the endpoints of these segments to the reader.
Our final distance problem is called an all-points radius

query. (It is also known as an all-points fixed radius near neigh-
bor problem [2].) Given a radius r, for each pixel we are to
determine the number of black pixels at distance r or less. The
set of PE's at distance r or less from a PE P is called an r-ball
centered at P.
To perform the all-points radius query efficiently, we need

to impose an additional restriction on the metric. A metric is
a vector metric if it is monotone and if d(P, Q) is dependent
only on the vector from P's position to Q's position. Vector
metrics have the property that for any radius r and any PE's
P and Q, the r-ball centered at P is just a rigid translation (with
no rotation) of the r-ball centered at Q, i.e., the metric looks
the same everywhere. All lp metrics are vector metrics, and
it seems that all metrics encountered in practice are vector
metrics.
Theorem 11: In an n X n mesh-connected computer, for

any vector metric and for any radius, an all-points radius query
can be solved in 0(n) time.

Proof: Suppose that the radius r is sufficiently small so
that the r-ball centered at PE(n/2, n/2) lies entirely within the
n X n mesh. The monotonicity guarantees that to traverse the
perimeter of the r-ball, one will visit at most 4n PE's. (Fig. 10
shows a typical r-ball.) Suppose that each PE has a value, de-
noted B, which is the number of black pixels in its row to its
left. Consider a traversal of the perimeter of an r-ball during
which a running total will be kept. Initially the total is 0,
and as the traversal reaches a PE which is rightmost in its row
(among those in the r-ball), one adds the B value, plus 1 if the
pixel there is black. At each PE which is leftmost in its row
(among those in the r-ball), one subtracts the B value. The
total at the end of the traversal is the number of black pixels
in the r-ball.
Using the above procedure is quite simple. To ensure that

the traversal does not try to move off the n X n mesh, we
think of the n X n mesh as being in the center of a 3n X 3n
mesh, where all of the added pixels are white and each real PE
must simulate nine PE's. We redefine the r-ball centered at a
PEP to be

{Q: d(P, Q) Sr and the lo. distance fromPto Q is An}.

Notice that the new r-ball centered at a PE in the original
mesh lies entirely in the 3 n X 3 n mesh and contains the same

Fig. 10. A five-ball about P, using the Eucidean metric.

PE's of the original mesh as does the original r-ball. In particu-
lar, it contains exactly the same number of black pixels.
To start, use a row rotation to have each PE determine its B

value. Then all PE's in the original mesh create a record which
acts as their representative in the traversal. Since the r-balls
are identical, these representatives can be passed along in a
lockstep fashion as they perform the traversal and return to
their originating PE. No matter what the value of r, the modi-
fied r-ball has a perimeter of 0(n), so the algorithm is finished
in 0(n) time. O

VI. CONCLUSION
Good solutions to higher level tasks increase the usefulness

of mesh-connected computers. In a hybrid image processing
system in which a mesh-connected computer is connected to a
standard computer, much of the time is spent moving data from
one machine to the other. If more of the higher level process-
ing can be done in the mesh-connected computer, then its
massive parallelism will be better exploited and the total com-
putation time of the system will be significantly reduced.
Towards this end, we have shown that a large number of

geometric problems can be solved in 0(n) time on an n X n
mesh-connected computer. Many of these problems involve
combining information from PE's far apart, in which case the
use of sort-like data movements is crucial to the development
of optimal algorithms. Often, people performing image pro-
cessing try to avoid sorting, which may account for the pre-
vious 0(n2) solutions for these problems.

Since it takes 0(n) time for data to travel across an n X n
mesh, all of our algorithms have optimal worst case times.
However, there may be situations where the answer can be
found faster. For example, suppose that no black component
has an loo external diameter greater than D. Then by partition-
ing the mesh into subsquares of size 0(D), and sharing data be-
tween adjacent squares, in 0(D) time each black component
can determine its extreme points. In the appropriate situa-
tions, this technique can be used with all ofour results, reducing
them to 0(D) time. One particularly interesting application of
this technique occurs when we apply it to Theorem 11, when
the Ioo metric is used with a radius of D. In 0(D)time,eachPE
will known the number of blacks in a square centered at the
PE. If each PE then becomes black if and only if more than
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half of the PE's in its square were previously black, then we
have performed bilevel median filtering with a window of edge
length 2D + 1 in 0(D) time. Median filtering with a window
of edge length 2D + 1 on an arbitrary grey level picture can
also be accomplished in 0(D) time, but the algorithm is far
more complicated [26].
The results of this paper suggest many additional questions,

most of which are still open. Some obvious ones are whether
there is a 0(n) time algorithm for locating all internal centers,
and whether for any p there are 0(n) time algorithms for lo-
cating Ip planar centers and computing Ip planar radii. If one
considers three-dimensional "pictures," then almost all of the
questions are open. That is, suppose that there is an n X n X n
three-dimensional picture stored one pixel per processor in an
n X n X n three-dimensional mesh-connected computer. How
fast can one locate extreme points, determine internal distances,
compute diameters, etc.? Many of our convexity and external
distance algorithms reduce the amount of data by one dimen-
sion, reducing an n X n picture to 0(n) points, giving 0(n) time
algorithms. In three dimensions, this would give 0(n2) time,
which is not necessarily optimal. We have a 0(n) time algo-
rithm for finding the distance to the nearest processor with a
different label, but for most other three-dimensional problems,
we do not yet have 0(n) time algorithms.
For internal distances, the difficulty in extending to three

dimensions is particularly acute. Our two-dimensional algo-
rithms considered k X k subsquares, ignoring all of the square
except for the 0(k) border elements, and constructed a distance
matrix with 0(k2) entries. This matrix was able to fit in the
original square. In three dimensions, k X k X k subcubes have
0(k2) border elements, which would require a distance matrix
containing 0(k4) entries. This matrix will not fit in the original
cube, so the method fails. One could use the simple method
of having each marked processor tell its neighbors that they
are at distance one, each of them tells their neighbors they are
at distance two, and so on, but this has a worst case time of
0(n3).

Finally, we should mention connections to mesh automata.
As was noted in Section II, for any given finite state automaton,
once the mesh becomes large enough, the individual PE's do
not have enough memory to store their coordinates or, say,
distances to other PE's. This means that some of the problems
solved herein, such as determining the external diameter of each
component, must be modified if they are to have mesh autom-
ata solutions. For example, one may take a black/white pic-
ture and want to compute the external diameter of the black
pixels, where the answer is emitted by PE(O, 0) one bit at a
time. Except for problems involving internal distances, each
problem discussed herein, or an appropriately modified version,
can be solved in 0(n) time on a mesh automaton by using clerks
to simulate the solution given here. (Clerks appear in [24]
and [25] and can be viewed as a systematic use of counters.)
The problems involving internal distances cause difficulties
because our solutions create arrays having 0(n2 log (n)) bits of
information, which cannot be held in an n X n mesh auto-
maton. Beyer [3] considered the problem of having a mesh
automaton mark a minimal internal path between two given

PE's in the same component, and it is still an open question
whether there is a 0(n) time algorithm for this problem.
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