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Abstract

Vision based mapping has become an important way to provide geospatial information for vision based navigation

especially when satellite signals are not available. When acting as an independent source for navigation, its quality will

affect that of navigation directly. However, geometry is one key component that affects the quality of vision-based

mapping including reliability, separability and accuracy. Analysing the geometry provides a reference for users to design

and judge the mapping strategy to meet the requirement in quality. This paper aims to explore the geometry’s influence

on accuracy, reliability and separability in reality based indoor 3D mapping. Firstly, an analytical analysis based on the

global redundancy number is conducted. Secondly, the geometric strength between the camera and ground control

points (GCPs) quantified by Dilution of Precision (DoP) is analysed under different indoor mapping scenarios. Thirdly, the

relationship between two geometric components including overlapping percentage and intersection angle and quality

including reliability and separability is analysed based on a simulation environment. Geometric analysis shows that three

images have the ability to provide enough global redundancy for reality based 3D mapping. GCPs with a good coverage

of the image and a shorter distance between the camera and the object will contribute to good geometry. Besides,

mapping simulation in the indoor environment based on two selected functional models shows that the number of

images is the key factor that influences Minimum Detectable Bias (MDB) and Minimum Separable Bias (MSB).

Keywords: Geometric analysis, Indoor environment, 3D map, MDB, MSB

Introduction

Vision-based indoor mapping has received increased

attention due to the growing demand for indoor naviga-

tion as satellite signals are not strong enough to be

tracked in indoor environment (Taylor, 2009, Milford

and Wyeth, 2008, Konolige and Agrawal, 2008). Re-

cently, reality based 3D mapping using a single camera

attracts researcher’s attention for its advantages such as

low cost, passive sensing, information richness and high

accuracy (Davison et al., 2007).

As a new type of map, reality-based 3D mapping pro-

vides an approach for a single camera to georeference

the surrounding environment (Li, 2013). The generation

of reality based 3D map is as follows. Firstly, indoor

environments are surveyed to obtain real world coordi-

nates of GCPs, and then after overlapping images are

captured by a single camera, GCP coordinates in the

world reference frame and image reference frame are both

known. With a calibrated camera, its poses at different

time can be initially determined based on the collinearity

equation. Then, the keypoints from the overlapping image

can be detected, described and matched. With the deter-

mined poses of multiple calibrated cameras, the real world

coordinates of keypoints can be initially obtained. Finally,

bundle adjustment using the above obtained initial values

is conducted to minimize the re-projection errors. This

process can be regarded as “space resection-intersection-

bundle adjustment”.

The essence of reality based 3D mapping is to geore-

ference keypoints using geospatial information trans-

ferred from GCPs. Geometry is one key factor that

affects mapping quality. This is analogous to satellite

navigation, where the geometry is the spatial relationship

between satellites and receivers. Similarly, geometry in

reality-based 3D mapping is related to four aspects: the

distribution and number of GCPs, the distance between

the camera and GCPs, the relative poses of cameras

which can be quantified by overlapping percentage and* Correspondence: zeyu.li@student.unsw.edu.au
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intersection number, as well as the number of the

images taken by the camera.

On the other hand, quality control theory in Global

Navigation Satellite System (GNSS) community has been

well developed to quantify the magnitude of error propa-

gation, detect possible outliers, and evaluate the per-

formance of outlier detection and separation. More

specifically, DoP values quantify the magnitude of error

propagation. Outlier statistic test such as w test (Baarda,

1968) can be utilized to detect and exclude outliers. The

performance evaluation is indicated by reliability and

separability. Reliability quantifies the minimum magni-

tude of outlier that can be detected (Baarda, 1968), while

separability determines the minimum bias that can be

separated for every pair of observations (Wang and

Knight, 2012).

It is well known in GNSS community that generally

better geometry will be beneficial for navigation qual-

ity. However, in reality based 3D mapping, the rela-

tionship between the geometry and the quality has

not been comprehensively analysed. More specifically,

a number of practical issues, including the relation-

ship between global redundancy and the number of

images and keypoints, the appropriate number and

distribution of GCPs, and GCPs’ appropriate distance

to the camera, the relationship between geometry and

reliability as well as separability, have not been ana-

lysed in detail.

The earliest work on analysing the geometric aspects

in photogrammetry can be traced back to Gruen (1978).

The accuracy and reliability of self-calibrating bundle ad-

justment system for mapping were analyzed by statistic

test, which included significance tests for additional

parameters, residuals at check points and control points,

as well as coordinate differences in deformation mea-

surements. The analysis demonstrated the feasibility and

importance of quality control in vision based mapping

system. Then, Förstner (1987) further evaluated preci-

sion, controllability and robustness for planning purpose

in vision based measurement problems, which included

template matching, absolute orientation and relative

orientation. More recently, Alsadik et al. (2014) put

forward two automatic filtering methods, namely object

accuracy based method and fuzzy function based

method, for camera network design considering coverage

and accuracy, and demonstrated that the optimal network

design was accurate and efficient in completeness and

time complexity. Nocerino et al. (2014) evaluated the

accuracy of image based 3D model reconstruction with

ground truth data, and showed that convergent image

could ensure the accuracy. However, all the aforemen-

tioned papers still lack the comprehensive analysis in the

relationship between geometry and quality including glo-

bal redundancy number, DoP, MDB and MSB in reality

based 3D mapping. Therefore, as a major contribution,

this paper explored the influence of geometry on global

redundancy number, DoP, reliability and separability in

various reality-based 3D indoor mapping scenarios.

Functional model section presents a brief introduction on

the functional modelling using collinearity equation for

reality based 3D mapping. DoP values in space resection

and Reliability and separability sections discuss the con-

cept of DoP, MDB and MSB. Analysis and experiments

section conducts an empirical analysis including global

redundancy number, DoP values, accuracy, reliability and

separability. Concluding Remarks section summarizes the

geometry’s influence on quality in reality-based 3D indoor

mapping and points out the problems that need to be

explored further.

Functional model

The fundamental components in reality based 3D map-

ping come from collinearity equation, which can be

expressed in the following form:

Fx ¼ x−x0 ¼ −f
a1 X−Xcð Þ þ b1 Y−Y cð Þ þ c1 Z−Zcð Þ
a3 X−Xcð Þ þ b3 Y−Y cð Þ þ c3 Z−Zcð Þ

Fy ¼ y−y0 ¼ −f
a2 X−Xcð Þ þ b2 Y−Y cð Þ þ c2 Z−Zcð Þ
a3 X−Xcð Þ þ b3 Y−Y cð Þ þ c3 Z−Zcð Þ

ð1Þ

where x and y are image coordinates respectively, and

X, Y and Z are the corresponding coordinates in the world

frame. x0, y0 and f are the interior parameters. Xc, Yc and

Zc are the position of camera. ai, bi and ci (i = 1, 2, 3) are

the factors in the rotation matrix from ω, φ and K.

Four elements exist in Eq. (1), namely objects’ image

coordinates, objects’ corresponding world coordinates,

exterior parameter and interior parameter. As men-

tioned, initial position and orientation of the camera for

the image for mapping can be obtained by space resec-

tion using GCPs. For each GCP, the collinearity equation

can be linearized as illustrated in Eqs. (2, 3, 4 and 5),

where AEO and δEO are design matrix and correction for

the pose of camera respectively, and LGCPi is the obser-

vation from GCPs’ image coordinates.

AEO ¼

∂Fx

∂Xc

∂Fx

∂Y c

∂Fx

∂Zc

∂Fx
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∂Fx
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∂ĸ
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∂Xc

∂Fy

∂Y c

∂Fy

∂Zc

∂Fy

∂ω

∂Fy
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∂Fy
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0
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B

@

1

C

C
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ð2Þ

δEO ¼ dXc dY c dZc dω dφ dĸð Þ ð3Þ

LGCP ¼ −Fx; −Fy

� �T ð4Þ

AEOδEO ¼ LGCPi ð5Þ

Usually one image contains a number of GCPs, and key-

points that need to be georeferenced. The initial values of

keypoints’ world coordinates are obtained using space

intersection with the cameras’ initial pose from space
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resection. For each keypoint, its corresponding compo-

nents in bundle adjustment can be constructed as Eqs.

(6, 7, and 8), where AS and δS are design matrix and cor-

rection for objects’ world coordinates respectively, and

LKPi is the observation from keypoints’ image coordinates.

AS ¼
∂Fx

∂X

∂Fx

∂Y

∂Fx

∂Z
∂Fy

∂X

∂Fy

∂Y

∂Fy

∂Z

0

B

@

1

C

A
ð6Þ

δS ¼ dX dY dZð Þ ð7Þ

AEO ASð Þ δ
EO

δS

 !

¼ LKPi ð8Þ

Finally, as illustrated in Eq. (9) (Case I), Eqs. (5)

and (8) for all the images are combined, and then

bundle adjustment is conducted to refine cameras’

pose and objects’ world coordinates. In this case,

GCPs’ world coordinates are fixed as error free

values.

AEOc 0

AEOk ASk

0

@

1

A

δEO

δS

 !

¼ LGCPi
LKPi

� �

ð9Þ

When some GCPs lie in the overlapping areas of mul-

tiple images, they can be treated as observed points with

their image coordinates be so-called “pseudo-observa-

tions”. Therefore another type of bundle adjustment can

be formulated in Eq. (10) (Case II), where LKPi, LGCPi
and LGCPw are the observations for keypoints’ image

coordinates and GCPs’ image coordinates and world

coordinates respectively. In this case, GCPs’ world coor-

dinates are considered to be estimated in the presence of

errors.

AEOk 0 ASk

AEOc As 0
0 0 I

 !

δEO
δS
δG

0

@

1

A ¼
LKPi

LGCPi
LGCPw

0

@

1

A ð10Þ

To sum up, the observation and unknown parameters

in mapping for both cases are illustrated in Table 1.

DoP values in space resection
DoP (Dilution of Precision), which is also referred as geo-

metric strength, is the indicator that illustrates the error

propagation from observations to estimated parameters.

Further, in space resection for determining the initial

values for camera pose, DoP shows the coefficient for

error propagation from image coordinates of GCP to cam-

era pose (position and orientation). The lower DoP means

stronger geometric strength. DoP can be calculated by

using the design matrix as illustrated in Eq. (11).

ATA
� �−1
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D2
Y c
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ð11Þ

Among them, DoP for position and orientation can be

calculated as follows (Li and Wang, 2012):

XDOP ¼ DXc
YDOP ¼ DY c

ZDOP ¼ DZc
ð12Þ

PDOP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2
Xc

þ D2
Y c

þ D2
Zc

q

ð13Þ

ωDOP ¼ Dω φDOP ¼ Dφ ĸDOP ¼ Dĸ ð14Þ

ADOP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2
ω þ D2

φ þ D2
ĸ

q

ð15Þ

where PDOP is the DoP values for camera position,

and ADOP is the DoP values for camera orientation.

Reliability and separability

As mentioned above, MDB (minimum detectable bias)

refers to lower bounds of detectable outliers in observa-

tion which can be illustrated according to Baarda (1968):

MDB ¼ δ0σ i
ffiffiffiffi

ri
p ð16Þ

where δ0 and σi are the non-centrality parameter de-

fined by Type I and II error, and observation’s prior

standard deviation respectively, ri is redundancy number

of the ith observation, which can be expressed by the di-

agonal number of Eq. (17).

R ¼ I−A ATPA
� �−1

ATP ð17Þ

Further, MDB is related to a variety of factors includ-

ing stochastic model, functional model, geometry and

testing parameters (Salzmann, 1991). However, MDB

can be analyzed in the planning stage of mapping.

In Eq. (16), δ0 is the function of type I and II error

which depends on the user’s predefined probability,

and σi is the precision of observation which needs to

reflect the practical situation. ri can be analysed by

users as it is related to mapping configuration.

Table 1 Observations and unknowns for reality-based 3D

mapping

Observations Case I: Image coordinates of GCPs and keypoints

Case II: Image coordinates of GCPs and keypoints,
and world coordinates of GCPs

Unknown
Parameters

1. Exterior parameters (position and orientation
of reference image)

2. Objects’ 3D coordinates

Li et al. The Journal of Global Positioning Systems  (2016) 14:1 Page 3 of 10



Higher redundancy number will lead to lower MDB

if δ0 and σi are unchanged. According to Förstner

(1985), the rank of the redundancy number is illus-

trated in Eq. (18).

ri ¼
ri > 0:5 Good

0:1≤ri≤0:5 Acceptable

0:04 < ri < 0:1 Bad

ri≤0:04 Not Acceptable

8

>

>

<

>

>

:

ð18Þ

There are correlations between every two outlier

detection statistics, indicating that one observation’s

outlier statistic is affected by another one. Therefore,

to eliminate the influences of outliers, outlier should

not only be detected but also be separated. This in-

troduces minimum separable bias (MSB) that quanti-

fies the minimum bias that can be separated for every

two observations according to Wang and Knight

(2012) as shown in Eq. (19).

MSBij ¼
δsσ0

ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eTi PQvPei 1− ρij

�

�

�

�

�

�

� 	

r ð19Þ

where ei is the vector of zeros with the ith element

being equal to one, and Qv is the cofactor matrix of

the estimated residuals. σ0 is the observation’s prior

standard deviation. δs is the mean shift according to

Type I and II error. ρij is the correlation coefficient

between the outlier detection statistics for the ith and

jth measurements.

Analysis and experiments

Global redundancy analysis

Assume that totally there are m images and n tracked

keypoints in bundle adjustment. The number of un-

knowns for the pose of the camera is 6m, and the total

numbers of the unknowns of keypoints’ position are 3n.

Therefore the number of unknowns Munkown is 6m + 3n
in total. In Case I, observations of bundle adjustment in-

clude two parts: the observation from GCPs, and the

ones from keypoints. Each GCP or keypoints contributes

2 observations. In general, each image consists of more

than 4 GCPs to obtain the position and orientation of

the camera reliability as three GCPs will not guarantee

the unique solution (Thompson, 1966). Keypoints’ con-

tributions on the observation need to involve image

number and image’s keypoints. Each keypoint is at least

linked with 2 images. However, if all keypoints are

merely linked with two images, its corresponding num-

ber of observations will be 4n at least. In the best sce-

nario, all keypoints can be linked with all the images, the

number of observation will be 2mn. But the practical

situation is the number of images that keypoints linked

with may vary from 2 to m. Therefore keypoints’ corre-

sponding number of observation NKPi is:

NKPi ¼ 2
X

m

j¼2

jnj ð20Þ

where nj is the number of keypoint that are tracked in j

images, and n ¼
Pm

j¼2 nj as the sum of keypoints

tracked in j images equals to the total number of key-

points to be georeferenced.

Assume the functional model in Eq. (9) is used (Case

I), and the average number of GCP in each image is 5,

then the observation contributed by GCP NGCPi is 10m.

Therefore the total redundancy number will be:

NKPi þ NGCPi−Munkown ¼ 2
X

m

j¼2

jnj þ 10m− 6mþ 3nð Þ

¼ 4mþ 2
X

m

j¼2

jnj−3n

ð21Þ

The minimum number of the second component in

Eq. (21), which are the observations contributed by key-

points, is 4n. Therefore in this case the total redundancy

number will be 4m + n. This is consistent with the well-

known principle that, more images and keypoints will

have more total redundancy.

Similarly, if the functional model in Eq. (10) is applied

(Case II). Assume the number of GCP in the overlapping

areas is 5, and the number of measurements contributed

by GCPs’ world coordinates and image coordinates are 15

and 10m respectively, the total redundancy number is:

NKPi þ NGCPi þ NGCPw−Munkown

¼ 2
X

m

j¼2

jnj þ 15þ 10m− 6mþ 3nð Þ

¼ 2
X

m

j¼2

jnj þ 4mþ 15−3n

ð22Þ

The global redundancy for each observation is defined

as the ratio between the total redundancy number and

the number of total observations. In Case I, the total re-

dundancy number for the worst scenario is 4m + n, and

number of observation will be 10m + 4n, therefore the

global redundancy GRI
w in the worst scenario is:

GRI
W ¼ 4mþ n

10mþ 4n
ð23Þ

Similarly, GRI
B in the best scenario is:

GRI
B ¼ 4mþ 2mn−3n

10mþ 2mn
ð24Þ

Similarly, in Case II, the total redundancy numbers for

the worst scenario and best scenario are n + 4m + 15 and

2mn + 4m − 3n + 15 respectively. The numbers of
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unknowns for the two scenarios are 6m + 4n + 15 and

6m + 2mn + 15 respectively. Therefore their global re-

dundancy number GRII
W and GRII

B are formulated in Eqs.

(25) and (26) respectively:

GRII
W ¼ nþ 4mþ 15

6mþ 4nþ 15
ð25Þ

GRII
B ¼ 2mnþ 4m−3nþ 15

6mþ 2mnþ 15
ð26Þ

The variation of global redundancy number for the

four scenarios could be illustrated by Fig. 1. The range

of m was set from 3 to 8, and the range of n was set

from 20 to 200 with interval 20.

As shown in Fig. 1a for the worst scenario of Case

I, generally the global redundancy number lied be-

tween 0.25 and 0.32. Figure 1c for Case II showed

the similar tendency with that of Case II, Its mini-

mum global redundancy number was higher than that

of Case I, and the maximum one was larger than that

of Case I. It was interesting for the two cases that

though with the increase of keypoints’ number, the

global redundancy number decreased slightly instead

of increasing. Besides, even number of images in-

creased but each keypoint only existed in two images,

which meant that the keypoints were tracked on two

frames, the global redundancy number would not

increase significantly. However, the lowest global

redundancy numbers for Case I and II were larger

than 0.1, which was acceptable according to Eq. (18).

The best scenarios for Case I and II were also simi-

lar as shown in Fig. 1b and d. With the increase of

number of images, the global redundancy number ap-

proximately increased from 0.5 to 0.8. Contrary to

the worst scenario, there existed a slight increasing

trend when the number of keypoints increased for

Case II. However, for Case I, the global redundancy

number almost kept unchanged. Their global redun-

dancy numbers were all larger than 0.5, which meant

that even in the case that all keypoints were available

or tracked in three images. Therefore the global re-

dundancy number had the ability to provide enough

for better reliability according to Eq. (18).

According to the analytical analysis, the number of

images in reality based 3D mapping plays an import-

ant role in improving global redundancy. The correct-

ness of tracked keypoints in all the collected frames

will contribute to improving global redundancy. How-

ever, the increase on the number of keypoints is less

significant than the aforementioned two factors. The

redundancy number for each observation is related to

MDB in Eq. (16). Due to this, more mapping images

and better keypoint tracking algorithm would result

in lower MDB and better internal reliability if the

stochastic model and non-centrality parameter are

unchanged.

Fig. 1 Variation of global redundancy number with regarding to the number of images and keypoints
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Geometric analysis of space resection

GCPs in reality based 3D indoor mapping were utilized

as the input to obtain the initial value of camera pose

through space resection for both Case I and II. DoP

values in space resection based on the principle of error

propagation were evaluated as the accuracy indicator of

pose determination. As the real data contained random

noise that could not be well controlled, and might be

contaminated by outliers, a simulation environment

without noise and outliers including a single wall and

two types of corner with different patterns (convex type

and concave type) was set up to eliminate the effects of

noise and outliers, which were shown in Fig. 2a, 2b and

2c. The arranged red dots simulated GCPs with known

image and world coordinates, and the blue cube repre-

sents the pose of the camera.

For each scenario, three factors that affected geometry

were involved: GCPs’ distribution, GCPs’ number and

the distance between the camera and GCPs. The distri-

bution of GCPs was changed from a centralized style to

a distributed style with the interval of 0.5 meter, and the

number of GCPs was set as 4, 8 and 12 respectively. The

distance from the camera and the object was set from

0.5 meter to 5 meters with the interval of 0.5 meter.

When comparing the three scenarios from Fig. 2,

PDoP and ADoP in the scenario of convex corner and

concave corner were similar with each other, but they

were much smaller than those of wall scenario when

GCPs were centralized. What the three scenarios had in

common was when the GCPs became more scattered,

DoP would decrease significantly. However, with the in-

crease of GCPs’ number, the DoP values including ADoP

and PDoP decreased slightly. Therefore its contribution

was not significant.

As shown in Fig. 3 about DoP variation with regarding

to distance in the three scenarios, the increased distance

Fig. 2 Simulated three scenarios and corresponding variation of PDoP and ADoP
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from the camera to the object would enlarge the DoP

values for position and orientation. However, the differ-

ence between wall scenario and the other two scenarios

could be one order of magnitude if the distance from

the camera’s position and the center of GCPs was large.

PDoP and ADoP in the scenario of convex corner and

concave corner were similar, but were much lower than

those of wall scenario.

In the normal condition of indoor environment, there

could be 4 GCPs with dispersive distribution. Besides,

the distance between the camera and object normally

should be around 3 meters. In this case, The DoP values

in space resection lied on 103 − 104 level, therefore, if the

size of pixel was 5.2 um, the variation of one pixel in the

observation would cause the variation of 0.0052 − 0.052

meter for camera position and 0.298 − 2.98 degrees for

camera orientation. In the extreme case, DoP values

could lie on 106 level, causing higher error propagation

for the position and orientation of camera. Therefore a

tiny change of the observation would result in large vari-

ation on the camera’s estimated position and orientation.

Based on the analysis from the simulation result, the di-

versity degree of the GCPs and distance played a more

important role for DoP values than the number of

GCPs.

Geometric analysis of bundle adjustment

The final mapping solution was generated by bundle ad-

justment mentioned in Functional model for reality

based 3D mapping section. However, the noise on GCP’s

image and world coordinates and keypoints’ image coor-

dinates in the real world could not be well controlled

and real data might contain outliers, causing bias in the

geometric analysis. Therefore a simulation environment

without noise and outliers was created to analyze the

relationship between geometry and reliability as well as

separability for both Case I and Case II.

Three mapping images were the input for mapping as

they were able to provide enough global redundancy

according to the analysis in global redundancy analysis

section. Overlapping percentage and intersection angle

were represented by two geometric components: dis-

tance from the object to the camera and the baseline

between every two images. This was because the less

distance would lead to higher intersection angle, and the

lower length for the baseline would lead to higher over-

lapping percentage. The focal length for the camera was

set as 50 mm.

The observations of Case I could be divided into two

parts: the image coordinates from GCPs and the ones

from keypoints. The latter one could be further classified

according to their corresponding number of overlapping

images. For example, some keypoints might only be

matched in two images, while others were matched in

three images. The MDBs from different types had differ-

ent characteristics. MDBs could be divided by three

groups: MDBs for the image coordinates of GCPs (Type

A), MDBs for the image coordinates of the keypoints that

were matched in three images (Type B), and MDBs for

the image coordinates of the keypoints that were matched

in two images (Type C). Mapping solutions were gener-

ated based on different overlapping percentage and base-

line length, and the corresponding MDBs and MSBs from

different types were compared for both Case I and II.

The MDB values for Type A from Case I was stable as

Table 2 showed. The range of variation was less than

1 pixel when the distance changed from 3.25 m to 4 m,

and the baseline changed from 0.3 m to 0.6 m. Similarly,

MDB values contributed by keypoints that were matched

in three images shown in Table 3 also did not have obvi-

ous change when the overlapping percentage and inter-

section angle changed. However, their MDB values were

all larger than those contributed by GCPs, indicating

that their corresponding measurements were less sensi-

tive for outliers than those from GCPs.

Fig. 3 DoP variation with regarding to distance
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However, the images that were matched in two images

were much larger than the first two types as shown in

Table 4, which were caused by the lower redundancy

number. Besides, their variations for MDB were larger

than other two types with regarding to intersection angle

and overlapping percentage.

Since MSB was defined to quantify the bias that could

be separated for every two measurements. According to

the classification in MDB, the corresponding MSB could

be divided into: MSB (A, A), MSB (A, B), MSB (A, C),

MSB (B, B), MSB (B, C) and MSB (C, C), which repre-

sented the average value of MSBs. For example, MSB (A,

C) meant the average MSB between the image measure-

ments of GCPs and the ones of the keypoints that were

matched in two images.

As illustrated in Fig. 4, it was observed that MSB (A,

A), MSB (A, C), MSB (A, B) were around 7-9 pixels.

These MSB values were larger than their corresponding

MDBs as MSBs were always larger than MDB in value if

they have the same Type I and II error according to

Wang and Knight (2012).

However, MSB (B, B), MSB (B, C) and MSB (C, C)

were much higher than the other three groups, which

were at 105 or 109 pixel level. This meant that in these

groups, if one of the measurements was contaminated

by one outlier. The size of outlier should be at 105 or

109 pixel level to be separated. Practically it was actually

impossible to separate outliers. It was interesting to find

that the changes on the intersection angle and overlap-

ping percentage in indoor environment did not have a

significant influence on MDB and MSB. The main rea-

son for this was that compared with aerial mapping, the

variation of distance and baseline was much smaller in

indoor environment, reducing their influence on MDB

and MSB. Therefore the number of images became the

main factor that affected the quality of mapping.

Similarly, the MDBs in Case II could be divided into

four parts: the MDBs for GCPs’ image coordinates (Type

D), the ones for GCPs’ world coordinates (Type E), and

the ones contributed by keypoints. The last type could

be further classified as two parts: the MDBs for image

coordinates of keypoints that were matched in three im-

ages (Type F), and the MDBs for image coordinates of

keypoints that were matched in two images (Type G).

As illustrated in Table 5, the majority of average MDB

values for Type D lied between 6.919 and 8.602 pixels,

and their variation was around 2 pixels, which meant

that the bias on GCPs’ image coordinates at least needed

to be larger than 6.919 pixels to be detected.

The average MDB values for Type E with regarding to

baseline and distance were similar with each other,

which were all round 0.067 m, which meant the bias on

the GCPs’ world coordinates should be larger than

0.067 m to be detected as the observation of Type E

were world coordinates.

The overall size of MDB for Type F shown in Table 6

similar with that of Type D. It was interesting found that

with MDBs had a slight increasing trend when the

lengths of baselines increased and distances between the

object and camera decreased for both Type D and F.

The values of MDBs for Type G ranged from 108 pixels

to 109 pixels. This meant that it were nearly impossible

to detect the bias on the observation for Type G.

As shown in Fig. 5, the orders of magnitude for MSB

(D, D), MSB (D, E), MSB (D, F), MSB (D, G) approxi-

mately lied from 9 pixels to 18 pixels. However, MSB (E,

E), MSB (E, F) and MSB (E, G) were at 104 − 106 pixel

level, which means that if one observation for GCPs’

world coordinates was contaminated by one outlier, the

bias on world coordinates at least needed to range from

0.052 m to 5.20 m in order to be separated as the size of

one pixel in this simulation was 5.2 um. If the outlier

existed in the observation of keypoints’ image coordi-

nates, the large MSB indicated that it was almost impos-

sible to separate the contaminated observation from

GCPs’ world coordinates.

MSB values among the keypoints were high except

MSBs between Type F and G. MSB (F, F) and MSB (G,

Table 2 The average values of MDBs for Type A

Baseline (m) 0.3 0.4 0.5 0.6

Distance (m)

4 5.208 5.286 5.289 5.615

3.75 5.208 5.286 5.289 5.615

3.5 5.280 5.286 5.601 5.615

3.25 5.360 5.365 5.827 5.841

(Unit: Pixel)

Table 3 The average values of MDBs for Type B

Baseline (m) 0.3 0.4 0.5 0.6

Distance (m)

4 7.351 7.524 7.544 7.891

3.75 7.351 7.524 7.544 7.891

3.5 7.501 7.524 7.858 7.891

3.25 8.088 8.137 8.868 8.933

(Unit: Pixel)

Table 4 The average values of MDBs for Type C

Baseline (m) 0.3 0.4 0.5 0.6

Distance (m)

4 2.449 4.354 4.898 4.082

3.75 3.266 2.450 4.354 4.735

3.5 2.178 1.633 2.123 1.635

3.25 2.178 2.541 0.219 0.872

(Unit: 109 Pixel)
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G) were at 104 and 109 pixel level, indicating it was diffi-

cult to separate the corresponding measurement if one

outlier existed in their own group. However, the separ-

ability between Type F and G was much lower than

MSB (F, F) and MSB (G, G) as its MSB values was

around 12 pixels.

The MDB values for image coordinates of keypoints

and GCPs in Case I and II were similar. MDB values for

GCPs were around 10 pixels, and MDB values for key-

points that were matched in three images were around

the same level, indicating that they had similar perform-

ance in outlier detectability. However, MDB values for

keypoints that are matched in two images were much

higher, and MDB values for GCP’s world coordinates in

Case II lied on meter level. The situations of MSB values

for Case I and II were complex as MSB values’ distribu-

tions inside each group were not uniform. In some cases,

the correlation among the measurement contributed by

keypoints were high (e.g. larger than 0.9), causing higher

MSB values. However, if the correlations among the meas-

urement were lower, MSB values would decrease. For both

cases, the measurements contributed by GCPs’ image

coordinates were easier to be separated with other mea-

surements as their MSBs were lower than others.

Conclusions
The geometry in reality-based 3D mapping is an import-

ant factor that affects mapping quality. The geometric

component is controllable and the functional model can

be designed when determining how to conduct indoor

mapping. Therefore geometric analysis provides refer-

ences for users about how to appropriately set up the

geometric components and functional model to meet

the requirement for mapping quality.

In general, better geometry will lead to better DoP,

reliability and separability. More specifically, to meet the

Fig. 4 The variation of average MSB with regarding to distance and baseline in Case I

Table 5 The average values of MDB values for Type D

Baseline (m) 0.3 0.4 0.5 0.6

Distance (m)

4 6.919 7.125 7.170 7.933

3.75 6.954 7.150 7.187 7.950

3.5 7.114 7.171 7.906 7.965

3.25 7.276 7.328 8.519 8.602

(Unit: pixel)

Table 6 The average MDB values for Type F

Baseline (m) 0.3 0.4 0.5 0.6

Distance (m)

4 7.354 7.532 7.553 7.938

3.75 7.354 7.532 7.553 7.938

3.5 7.508 7.532 7.894 7.938

3.25 8.129 8.187 9.157 9.283

(Unit: pixel)
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requirement of mapping quality in indoor environment,

the distribution of GCPs and distance between the cam-

era and GCPs need to be considered first. The second

factor is the number of them. Besides, the number of

images is one key factor that affects reliability and separ-

ability. Through the simulation for indoor environment,

intersection angle and overlapping percentage do not

have significant influence on reliability and separability.

Finally, through the analysis of reliability and separability

for the two functional models, they have similar per-

formance in outlier detection and separation.

In practice, the matching performance of keypoints

affects the available number of overlapping images.

However, matching performance is closely related to the

texture of the surrounding environment. In texture-less

areas, keypoints are more difficult to be detected,

described and matched. How to improve the keypoints’

matching performance in such region is still a question

that needs to be further explored.
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