
Geometric and Combinatorial Tiles in 0–1 Data

Aristides Gionis, Heikki Mannila, and Jouni K. Seppänen

Helsinki Institute for Information Technology,
University of Helsinki and Helsinki University of Technology, Finland

Abstract. In this paper we introduce a simple probabilistic model, hierarchical
tiles, for 0–1 data. A basic tile (X, Y, p) specifies a subset X of the rows and a
subset Y of the columns of the data, i.e., a rectangle, and gives a probability p
for the occurrence of 1s in the cells of X × Y . A hierarchical tile has addition-
ally a set of exception tiles that specify the probabilities for subrectangles of the
original rectangle. If the rows and columns are ordered and X and Y consist of
consecutive elements in those orderings, then the tile is geometric; otherwise it
is combinatorial. We give a simple randomized algorithm for finding good geo-
metric tiles. Our main result shows that using spectral ordering techniques one
can find good orderings that turn combinatorial tiles into geometric tiles. We give
empirical results on the performance of the methods.

1 Introduction

The analysis of large 0–1 data sets is an important area in data mining. Several tech-
niques have been developed for analysing and understanding binary data; association
rules [3] and clustering [15] are among the most well-studied. Typical problems in
association rules is that the correlation between items is defined with respect to arbi-
trarily chosen thresholds, and that the large size of the output makes the results difficult
to interpret. On the other hand, clustering algorithms define distances between points
with respect to all data dimensions, making it possible to ignore correlations among
subsets of dimensions – an issue that has been addressed with subspace-clustering ap-
proaches [1, 2, 7, 8, 12].

One of the crucial issues in data analysis is finding good and understandable models
for the data. In the analysis of 0–1 data sets, one of the key questions can be formulated
simply as “Where are the ones?”. That is, one would like to have a simple, understand-
able, and reasonably accurate description of where the ones (or zeros) in the data occur.

We introduce a simple probabilistic model, hierarchical tiles, for 0–1 data. Infor-
mally, the model is as follows. A basic tile τ = (X, Y, p) specifies a subset X of the
rows and a subset Y of the columns of the data, i.e., a rectangle, and gives a probability
p for the occurrence of 1 in the cells of X × Y . A hierarchical tile τ consists of a basic
tile plus a set of exception tiles, i.e., τ = (τ0, {τ1, . . . , τk}), where each τi is a tile. The
tiles τ1, . . . , τk are assumed to be defined on disjoint subrectangles of τ0. For an illus-
trative example, actually computed by our algorithm on one of our real data sets, see
Figure 1. Given a point (x, y) ∈ X × Y , the tile τ predicts the probability associated
with τ0, unless (x, y) belongs to the subset defined by an exception tile τi, for some
i ≥ 1; in this case the prediction is the prediction given by that particular τi. Thus a

J.-F. Boulicaut et al. (Eds.): PKDD 2004, LNAI 3202, pp. 173–184, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



174 Aristides Gionis, Heikki Mannila, and Jouni K. Seppänen

Fig. 1. Hierarchical tiling obtained for one of the data sets, Paleo2. The darkness of each rect-
angle depicts the associated probability.

hierarchical tile for which τ0 covers the whole set X × Y defines a probability model
for the set1.

There are two types of tiles. If the rows and columns are ordered and X and Y
are ranges on those orderings, then the tile is geometric; if X and Y are arbitrary sub-
sets then the tile is combinatorial. Given a data set with n rows and m columns, there
are Θ(n2m2) possible geometric basic tiles, but Θ(2n2m) possible combinatorial ba-
sic tiles. Thus combinatorial tiles are a much stronger concept, and finding the best
combinatorial tiles is much harder than finding the best geometric tiles.

In this paper we first give a simple randomized algorithm for finding geometric tiles.
We show that the algorithm finds with high probability the tiles in the data. We then
move to the question of finding combinatorial tiles. Our main tool is spectral ordering,
based on eigenvector techniques [9]. We prove that using spectral ordering methods one
can find orderings on which good combinatorial tiles become geometric. We evaluate
the algorithms on real data, and indicate how the tiling model gives accurate and inter-
pretable results. The rest of the paper is organized as follows. In Section 2 we define
formally the problem of hierarchical tiling, and in Section 3 we describe our algorithms.
We present our experiments in Section 4, and in Section 5 we discuss the related work.
Finally, Section 6 is a short conclusion.

2 Problem Description

The input to the problem consists of a 0–1 data matrix A with m rows R and n columns
C. For row i and column j, the (i, j) entry of A is denoted by A(i, j).

Rectangles. As we already mentioned, we distinguish between combinatorial and geo-
metric rectangles. A combinatorial rectangle rc(A, X, Y ) of the matrix A, defined for

1 Our model can easily be extended to the case where each basic tile has a probability param-
eter for each column in Y ; this leads the model to the direction of subspace clustering. For
simplicity of exposition we use the formulation of one parameter per basic tile.



Geometric and Combinatorial Tiles in 0–1 Data 175

a subset of rows X ⊆ R and a subset of columns Y ⊆ C, is a submatrix of A on X
and Y . Geometric rectangles are defined assuming that the rows R and columns C of
A are ordered. We denote such ordering by R = 〈r1, . . . , rm〉 with r1 < . . . < rm,
where ‘<’ is an ordering relationship. Given an ordering on R, a range X of R is a
subset of consecutive rows of R. A geometric rectangle rg(A, X, Y ) is now defined as
the submatrix of A over the rows X and columns Y , where X and Y are ranges of R
and C, respectively.

Tiles. To make the definition of hierarchical tiles noncircular we use a concept of the
level, which tells how deep the nesting is. Given the data matrix A, a basic tile, or level-
0 tile τ0 is a rectangle r of A with an associated probability p, i.e., τ0 = (r, p). Entries
of A inside the rectangle r take value 1 with probability p and value 0 with probability
1− p. A level-k tile τk consists of a basic tile and a set of exception tiles; the exception
tiles are of level at most k−1. We write τk = (τ0, {τ1, . . . , τm}), where τ0 = (r, p) and
each τi is a tile of level at most k− 1. We require that the exception tiles τ1, . . . , τm are
disjoint and they are contained in τ0. Finally, with each tile we associate a domain. The
domain Dom(τ0) of a basic tile τ0 = (r, p) is the rectangle r. The domain Dom(τk)
of a level-k tile τk = (τ0, {τ1, . . . , τm}) is the domain of τ0.

Prediction and likelihood. Given a position (i, j) in the data matrix A, the prediction
q(τk, i, j) of a tile τk for (i, j) is defined recursively. For a basic tile τ0 = (r, p) the pre-
diction q(τ0, i, j) is p (a basic tile predicts what it says). If τk = ((r, p), {τ1, . . . , τm}),
then q(τk, i, j) = p, if (i, j) �∈ ⋃m

l=1 Dom(τl) (if (i, j) is outside all exception tiles
of τk). Otherwise, let t be the index such that (i, j) ∈ Dom(τt); then q(τk, i, j) =
q(τt, i, j) (the prediction of the tile is the prediction of its exception that contains (i, j)).
Let A(r) = {A(i, j) | (i, j) ∈ r} be the restriction of data matrix A on the rectangle r.
Given a tile τk = ((r, p), {τ1, . . . , τm}) the likelihood of data A(r) given τk is defined
in the normal way:

L(A(r) | τk) =
∏

i,j

q(τk, i, j)A(i,j)(1 − q(τk, i, j))1−A(i,j).

Hierarchical tiling problem. The problem of finding hierarchical tiles that explain the
data matrix as well as possible can now be formulated as finding the tile τ = ((A, p),
{τ1, . . . , τm}) that maximizes the likelihood L(A | τ). However, in order to avoid
overfitting the data (very complex tiles that fit the data perfectly, e.g., using tiles at the
level of single matrix entries) one needs to penalize for solutions with high complexity.
Using Minimum Description Length (MDL) arguments, we define the score of A(r)
with respect to τ as s(A(r) | τ) = cK − log L(A(r) | τ), where K is a measure of
total complexity of τ , and c is a scaling constant between complexity and minus log-
likelihood. The complexity measure K is a function of the total number of tiles in τ
– counting τ itself, its exceptions, the exceptions of its exceptions, and so on. If we
denote the total number of tiles of τ by |τ | then K is defined to be K = |τ | log |A(r)|.
The factor log |A(r)| is due to the fact that as the size of the data grows we need more
information bits to specify the tiles, accounting to more complex models. The problem
of finding hierarchical tiles can now be defined as follows: Given data matrix A, find
the tile τ with the lowest score s(A | τ). The tile τ can be of any level, but it is required
that Dom(τ) = A, i.e., it should cover the whole data matrix.



176 Aristides Gionis, Heikki Mannila, and Jouni K. Seppänen

3 Algorithms

3.1 Geometric Tiles

We start describing our algorithm for discovering geometric tiles by first considering
very simple cases, and then we discuss how to extend the ideas for the more complex
situations. The simplest case is when we consider finding only one tile. Given a specific
geometric rectangle r = (A, 〈a, b〉, 〈c, d〉) of A to be used as the domain of the tile,
the only choice to be made is the tile probability. As one can see easily, the maximum
likelihood estimate for the tile probability is the frequency of the ones f(r) in r. The
frequency f(r) can be computed in constant time, assuming that accumulating sums
have been computed for all entries of the matrix: if Ac(i, j) denotes the sum of 1s
inside the rectangle (A, 〈1, 1〉, 〈i, j〉) then

f(r) =
Ac(b, d) − Ac(b, c − 1) − Ac(a − 1, d) + Ac(a − 1, c − 1)

(b − a + 1)(d − c + 1)
.

When the domain of the tile is not given, in principle one can try all possible rectangles
r, evaluate the likelihood L(A(r) | τ(f(r), r)) for each r, and select the tile that max-
imizes the likelihood. However, considering all rectangles is prohibitively expensive,
since there are Θ(m2n2) different choices.

Designing an efficient algorithm to find a tile whose likelihood is provably not much
worse than the likelihood of the best tile is a very interesting problem. However, it ap-
pears quite challenging: the likelihood function is not monotone with respect to tile
containment, so there are no obvious ways to prune away potential tiles. Here we sug-
gest a local-search algorithm for finding good tiles. The idea is to start with a random
rectangle, and try to expand it or shrink it in each of the four directions. Expanding a
rectangle r0 in one direction, say to the right, is done in a sequence of geometric steps:
for r0 = (〈a, b〉, 〈c, d〉), we try all rectangles (〈a, b〉, 〈c, d + 1〉), (〈a, b〉, 〈c, d + 2〉),
(〈a, b〉, 〈c, d + 4〉), and so on, until the right boundary of the matrix is reached. The
same expansion technique performed for other directions, and shrinking is done in a
similar way. Out of all rectangles tried, the one with the largest likelihood is selected,
call it r1. If the likelihood of r1 is larger than the likelihood of r0, then a new expan-
sion/shrinking phase starts from r1. The process continues until a rectangle is found
whose likelihood does not increase in an expansion/shrinking phase. A total of T ran-
dom trials with different starting rectangles r0 is performed, and the rectangle with the
largest likelihood over all trials is given as the result.

Lemma 1. Assume that the data matrix A contains i.i.d. bits with probability q, with
the exception of one geometric rectangle R, which contains i.i.d. bits with probability
p �= q and whose number of rows and columns is a constant fraction of the number of
rows and columns (resp.) of the matrix A. Then, the local search method with random
restarts will find R with high probability, i.e., probability bounded away from zero in
the limit of infinite data.

Due to space limitations the proof of all our claims is deferred to the full version of the
paper.



Geometric and Combinatorial Tiles in 0–1 Data 177

Next we discuss how to find a larger collection of tiles with large likelihood. Our
method employs the algorithm for finding one tile in a greedy fashion: Find the (k+1)-
st tile with the best likelihood, given the k tiles that have been found so far. When
searching for the next best tile, tiles that overlap existing tiles are not considered. This
is checked during the expansion phase. To decide the number of tiles to be selected, the
MDL score function s(A | τ) is used. When s(A | τ) stops decreasing, no more tiles are
selected. For constructing the tile hierarchies, we have implemented and experimented
with four different strategies:

Top down: At each step, the next tile is selected to be only at the same level, or in-
cluded in already existing tiles.

Bottom up: The next tile is selected to be at the same level, or to include already
existing tiles.

Mixed: The next tile is allowed to be anywhere as long as it does not overlap with
existing tiles.

Single level: Only tiles of level 0 are selected.

Notice that the search space of the mixed strategy is the union of the search spaces of
the other strategies, thus, one would expect the mixed strategy to outperform the others.
The single-level strategy finds non-hierarchical tilings.

3.2 Combinatorial Tiles

In many applications, the rows and columns of the data set are not ordered, so it is
important to be able to find combinatorial tiles. In this section we discuss our approach
for this task. The basic idea is to transform the problem of finding combinatorial tiles
to the previous case of finding geometric tiles. The transformation is done by ordering
the rows and the columns of the data set, so that the rows and columns that are involved
in combinatorial tiles become consecutive in the ordering. In this way, it is sufficient to
search for geometric tiles in the ordered data set.

As we will see, it is not always possible to find such an ordering, since a data set
might contain too many combinatorial tiles, and no single ordering can simultaneously
transform all of them into geometric tiles. However, we will show that if a good ordering
exists, our method will find it. The ordering method is based on the spectral properties
of the data set. We next give a brief overview of the spectral techniques [9].

Consider a set of objects W and a symmetric matrix S = (sij) that specifies the
similarity sij for each pair of objects (i, j). The Laplacian matrix of S is defined as the
symmetric and zero-sum matrix LS = DS −S, where DS is the diagonal matrix whose
(i, i)-th entry is the sum of the i-th row (or column) of S, that is, di =

∑
j sij . Let e

be the vector having value 1 in all its entries. Since all rows (and columns) of LS sum
to zero, we have LSe = 0, which means that e is an eigenvector of LS , corresponding
to the eigenvalue 0. Because LS is a symmetric positive semidefinite matrix, all of its
eigenvalues are real and nonnegative, and therefore 0 is the smallest eigenvalue. The
second smallest eigenvalue of LS is called the Fiedler value, and the corresponding
vector is called Fiedler vector [11]. One can show that the Fiedler value is given by

min
xT e=0
xT x=1

xT LSx = min
xT e=0
xT x=1

∑

i,j

sij(xi − xj)2 (1)



178 Aristides Gionis, Heikki Mannila, and Jouni K. Seppänen

and the Fiedler vector is a vector that achieves the minimum subject to the constraints
xT e = 0 and xT x = 1. A vector x can be viewed as mapping from objects in W to
real numbers. In particular, the object i in W is mapped to the i-th coordinate xi of x.
If we view Equation (1) as an energy function FS(x) = xT LSx, then the Fiedler vector
v has the property that it minimizes FS(x) over all vectors x that satisfy the constraints
xT e = 0 and xT x = 1. Intuitively, because of the terms sij(xi − xj)2, minimizing
FS(x) results to mapping “similar” objects to “near-by” values. The two constraints
have a simple interpretation: xT e = 0 requires the vector x to be orthogonal to the
trivial solution vector e, i.e., to have zero mean, and xT x = 1 amounts to fixing the
scale of the solution, i.e., the variance of x is 1.

Our method uses Fiedler vectors to order the rows and the columns of a data set
A. The idea is to consider each row as an “object” and define the similarity matrix
S = (sij) for pairs of rows. Two natural definitions of row similarity is the Hamming
similarity and dot-product similarity. The Hamming similarity hij between rows i and
j is the number of common values, while the dot-product similarity cij is defined to
be the number of common 1s. Both similarity definitions are used in our experiments.
The method computes the row-row similarity matrix S for the data matrix A, and then
it computes the Fiedler vector of the Laplacian LS . The rows are ordered on the basis
of their Fiedler-vector coordinates. The columns are ordered with the same method,
independently of the rows.

Next we will show that for a data set generated from a simple combinatorial tiling
model, the spectral algorithm will discover the correct structure. We begin with some
definitions. An n×n matrix S has (k, d, s1, s2)-block structure if the n indices of S can
be partitioned in k blocks B1, . . . , Bk as follows: (i) the size of each block is greater
than d, (ii) for all i, j ∈ Bl we have sij = s̃l ≥ s1, i.e., the value sij for indices within
a block is a constant greater than s1, (iii) for all i ∈ Bl and j ∈ Bt with l �= t we have
sij = s̃lt ≤ s2, i.e., the value sij for indices in different blocks is a constant smaller
than s2. We say that a vector x respects the structure of a (k, d, s1, s2)-block matrix S if
for every triple of indices (i, j, h) with xi ≤ xj ≤ xh it cannot be the case that i ∈ Bl,
j ∈ Bt, h ∈ Bg, and l = g �= t.

Lemma 2. Let S be an n×n object-similarity matrix that has (2, d, s1, s2)-block struc-
ture. Consider S′ = S + E, where E is a symmetric matrix. Then the Fiedler vector of
LS′ respects the structure of S, provided that |LE | = o(d(s1 − s2)), where |LE | is the
norm of the matrix LE .

The situation is more complex when the similarity matrix has more than 2 blocks, as
the associated Fiedler vectors form a subspace of dimension greater than 1. For exam-
ple, consider a matrix with 3 blocks. A Fiedler solution is to assign all objects at three
distinct values: one value for all objects within the same block. A different Fiedler so-
lution uses only two distinct values: one value for objects in the first and second blocks
and one value for objects in the third block. Note that Lemma 2 does not hold for the
second solution, because if we break ties arbitrarily, most likely the objects of the first
two blocks will not respect the block structure of the matrix.

To address the problem that in a Fiedler solution more than one blocks might be
mapped to the same value, we have used a recursive application of the spectral algo-
rithm: we first divide the coordinates of the Fiedler vector in two groups so that the sum



Geometric and Combinatorial Tiles in 0–1 Data 179

i

j

l

n

m

k2k1

p1

p2

p0

Fig. 2. Illustrative example of a data set gener-
ated from a “simple” tiling model.

1 0 0 1
1 0 1 0
0 1 1 0
0 1 0 1

Fig. 3. A case in which no ordering can turn all
combinatorial rectangles into geometric rect-
angles.

of variances of the two groups is minimized, and then we apply recursively the spectral
method in each of the two groups. A recursive step is performed only if the sum of vari-
ances in the two groups is less than half of the variance of all coordinates. Since the two
groups that minimize the sum of variances cannot overlap, the groups can be determined
optimally by sorting the coordinates and searching for the best breakpoint. We believe
that using the recursive application of the spectral algorithm, Lemma 2 can be proven
for matrices with more than two blocks, and this was verified in our experiments.

We complete our argument by showing that for a data set generated from a “simple”
tiling model, the conditions of Lemma 2 hold. Consider, for example, the case of the
simple data set shown in Figure 2: a 1 is generated at each entry of the data set with
probability p0, except in the two tiles, where a 1 is generated with probabilities p1 and
p2, respectively. The tiles considered are combinatorial and the task is to reorder the
rows and columns so that the geometric tiles shown in the figure emerge.

Consider the row-row similarity matrix S, where the Hamming similarity is used;
a similar argument can be made for the dot-product similarity. A block is defined by
the set of rows that intersect the same tiles, for example, rows i and j in Figure 2
belong to the same block. If the probability of the data at the entry Aih is pih, then the
similarity sij between rows i and j can be written as a sum of independent Bernoulli
trials, i.e., sij =

∑n
h=1 Wijh, where Wijh is 1 with probability pijh = pihpjh + (1 −

pih)(1 − pjh) and 0 otherwise. Then, the expected similarity between rows i and j is
E[sij ] =

∑n
h=1 pijh. For example, the expected similarity between rows i and j in

Figure 2 is E[sij ] = (n − k1)(p2
0 + (1 − p0)2) + k1(p2

1 + (1 − p1)2). We define the
“simple” tiling model by making the following assumptions.

(i) Each block consists of a constant fraction of the total number of rows, i.e., Θ(m).
(ii) For each row i, the expected similarity E[sij ] is maximized for rows j in the same

block. This assumption is reasonable in many case, for example, in Figure 2 it holds
if, say, p0 is less than 1/2, and p1 and p2 are greater than p0. We assume that the
expected similarity of two rows i and j in the same block is E[sij ] ≥ s1, while
the expected similarity of two rows i and j in different blocks is E[sij ] ≤ s2.
Furthermore, we assume that s2 − s2 = Θ(n). Again this assumption holds for the
situation depicted in Figure 2 for, say, p0 = 0.2, p1 = 0.8, p2 = 0.7.



180 Aristides Gionis, Heikki Mannila, and Jouni K. Seppänen

Theorem 1. For a simple tiling model as described above, the spectral algorithm will
discover the correct ordering or rows and columns with high probability. The probabil-
ity is taken over the generation of particular data instances from the model.

In more complicated situations, it is possible that there is no ordering that turns
all combinatorial tiles in the data into geometric tiles simultaneously. For example, the
matrix in Figure 3 has four combinatorial tiles of 1s of size 2 × 1, but no reordering
can bring these tiles together as geometric tiles. A possible solution to this problem is
to first find the best tile in one ordering of the data, then reorder in a way that disre-
gards the tiles already found, and then continue finding tiles. We feel that this approach
would seriously detract from the interpretability of the results, so we restrict ourselves
to finding tiles in one ordering only.

4 Experimental Evaluation

We used four real data sets to test our tiling algorithms. The first two sets contain in-
formation about fossil findings: the rows correspond to sites and the columns to genera.
The first, Paleo1, contains 124 sites and 139 genera, and the second, Paleo2, 526
sites and 296 genera. The third data set, Course, contains information about Masters-
level course registrations at the University of Helsinki Department of Computer Sci-
ence. The set has 102 courses and 1739 students, with an average of 3.0 course reg-
istrations per student. For the fourth data set, Movie, we took the smaller of the two
MovieLens movie-rating data sets2, and turned it into a 0–1 matrix by mapping the high
ratings 4 and 5 to 1, and the lower ratings (and non-ratings) to 0. The resulting data set
contains ratings on 1682 movies by 943 users, with an average of 58.7 movies per user.

For each of the data sets, we first reordered both the rows and the columns by spec-
tral ordering as outlined in Section 3.2, using both cosine and Hamming similarity as the
similarity function. Then we ran the tiling algorithm described in Section 3 until it had
found 50 tiles, using 100 random restarts per tile. The algorithm has four alternatives
for the search strategy: top-down, bottom-up, mixed, and single-level.

Figure 4 shows how the log-likelihood behaves as a function of the number of tiles.
Plots are shown for all the data sets and all strategies applied, but only for the co-
sine similarity. We see that mixed and top-down strategies outperform bottom-up and
single-level. The reason that top-down is better than bottom-up and as good as mixed is
probably the following: since we start selecting tiles greedily so that the total likelihood
becomes as large as possible, we favor large tiles in the beginning, and it is thus more
beneficial to recurse into those tiles than combining them to form even larger tiles.

Figure 5 shows some examples of tilings found with the different strategies. The
top-down strategy found tilings very similar to those of the mixed strategy, and single-
level was very similar to bottom-up. The probabilities of the tiles are shown in shades of
grey, so that white corresponds to 0 and black to 1. The figure supports our hypothesis
of why top-down and mixed outperform bottom-up and single-level: all strategies have
found some large almost-empty tiles, but mixed and top-down can recurse into them
to find the exceptions, whereas bottom-up and single-level only keep tiling the untiled

2 http://www.grouplens.org



Geometric and Combinatorial Tiles in 0–1 Data 181

1 5 10 15 20 30 40 50
−3.5

−3

−2.5

−2

number of tiles

lo
g 

lik
el

ih
oo

d 
/ 1

04
Course data

1 5 10 15 20 30 40 50
−3.5

−3

−2.5

number of tiles

lo
g 

lik
el

ih
oo

d 
/ 1

05

Movie data

1 5 10 15 20 30 40 50
−9

−8

−7

−6

−5

number of tiles

lo
g 

lik
el

ih
oo

d 
/ 1

03

Paleo1 data

1 5 10 15 20 30 40 50
−3

−2.5

−2

number of tiles

lo
g 

lik
el

ih
oo

d 
/ 1

04

Paleo2 data

mixed
top down
bottom up
single level

Fig. 4. Log-likelihood of model as a function of the number of tiles.

area, which has fewer opportunities. The tilings found on the Hamming-sorted data
look somewhat more balanced than those of the cosine-sorted data, since the Hamming
measure has grouped dense subsets in two corners of the matrix.

One parameter in our algorithm is the number T of the number of random restarts
used when selecting each tile. To assess the effect of this parameter, we varied its value
and computed the total log-likelihood of 10-tile models for two data sets, Paleo2
and Course. The results are shown in Figure 6; each log-likelihood value shown is the
average from 200 runs. As is to be expected, there is a diminishing-returns phenomenon,
and after some point it helps very little to increase the number of restarts.

As an example of the interpretability of the results, we show one tile and its smaller
exception tile in the Course data. The larger tile has 308 students and the follow-
ing 11 courses, and its probability is 2.9% (which is relatively high compared to the
background tile’s 0.1%):

– User interface research
– Object architectures
– Simulation methods
– Implementation of the Linux system
– Object databases (*)
– Architectures of object systems (*)

– Research course in
object languages

– Computer-aided co-operation
– Mobile workstations
– Algorithm technology
– Object technology

The exception tile consists of 115 students and the two courses marked with (*)
above, and has probability 17.0%. Thus, there is a tight core of students interested in
object-oriented technologies, and around that core there are more students who study
object-oriented methodology, user interfaces, and some applications. (The probabilities



182 Aristides Gionis, Heikki Mannila, and Jouni K. Seppänen

20 40 60 80 100 120

20

40

60

80

100

120

Mixed strategy, cosine similarity

20 40 60 80 100 120

20

40

60

80

100

120

Bottom−up strategy, cosine similarity

20 40 60 80 100 120

20

40

60

80

100

120

Mixed strategy, Hamming similarity

20 40 60 80 100 120

20

40

60

80

100

120

Bottom−up strategy, Hamming similarity

Fig. 5. 25-tile models of the Paleo1 data found using two of the four different search strategies
and two different orderings of the matrix.

may seem low, but many of these courses are in fact small seminars that have only been
organized once.)

5 Related Work

Hierarchical tiles are partly motivated by the classical work of Rivest on finding de-
cision lists [22]. Related is also the work on ripple-down rules [13]. A PAC-learning
algorithm for finding hierarchical concepts was given in [16].

A lot of work on the analysis of 0–1 data has focused on finding frequent item
sets and association rules [3, 6, 14]. A tile can be viewed as a frequent itemset: the tile’s
columns are the the items and the rows are the supporting transactions. A key difference
with these approaches is that our method allows for errors, and also that a tile with many
items might be selected even if its support is low. In addition, the greedy nature of our
algorithm allows the user to look only at the first k tiles found, and interpret them as the
tiles that best explain the data set among all tilings of size k.

A related problem is that of finding maximal empty rectangles in data [10, 18]. The
crucial difference to our task is that we do not require tiles to be completely empty



Geometric and Combinatorial Tiles in 0–1 Data 183

1 5 10 20 30 50 80 100
−2.4

−2.38

−2.36

−2.34

−2.32

L
og

 li
ke

lih
oo

d 
/ 1

04
Paleo2 data

1 5 10 20 30 50 80 100
−3

−2.9

−2.8

−2.7

L
og

 li
ke

lih
oo

d 
/ 1

04

Course data

Fig. 6. Log-likelihood of 10-tile models for Paleo2 and Course data as a function of the
number of restarts. The circles denote the average of 200 runs, and the error bars indicate the
standard deviation. The strategy was always “mixed”, but different random numbers were used.

or completely full, although such tiles do have maximal likelihood among otherwise
similar tiles.

As mentioned in the introduction, our results generalize immediately to the case
where the tiles specify individual probabilities for each column. That is, define a gen-
eralized basic tile to be a triple (X, Y, p̄), where X is a subset of the columns, Y is a
subset of the rows, and p̄ associates a probability pA for each A ∈ Y . All other defini-
tions are changed in a straightforward manner. This extension brings our model quite
close to subspace clustering [1, 2, 7, 8, 12, 19].

Spectral algorithms are important tools for many application areas and they have
been used in a wide range of problems, such as, solving linear systems [21], ordering
problems [4, 17], data clustering [20, 23], and other. One way to perform the sorting
more efficiently is to apply the spectral technique only to a subset of the data and then
to refine the ordering of the whole data. [5]

6 Concluding Remarks

We have defined the concept of hierarchical tiles, and shown how they give a natural
probabilistic model for 0–1 data. We gave a simple algorithm for finding geometric tiles,
and showed some of its properties. We discussed the use of spectral ordering methods
for finding good orderings. Our main theoretical result is that under certain assumptions
the orderings produced by spectral techniques are such that strong combinatorial tiles
become actually geometric tiles in the ordering. We demonstrated the applicability of
the notion of hierarchical tiles by giving example results on real data.

References

1. C. Aggarwal and P. Yu. Finding generalized projected clusters in high dimensional spaces.
In SIGMOD, 2000.

2. R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of
high dimensional data for data mining applications. In SIGMOD, 1998.

3. R. Agrawal, T. Imielinski, and A. Swami. Mining associations between sets of items in large
databases. In SIGMOD, 1993.



184 Aristides Gionis, Heikki Mannila, and Jouni K. Seppänen

4. J. Atkins, E. Boman, and B. Hendrickson. A spectral algorithm for seriation and the consec-
utive ones problem. SIAM Journal on Computing, 28(1), 1999.

5. A. Beygelzimer, C.-S. Perng, and S. Ma. Fast ordering of large categorical datasets for better
visualization. In SIGKDD, 2001.

6. T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In PKDD, 2002.
7. C. Cheng, A. Fu, and Y. Zhang. Entropy-based subspace clustering for mining numerical

data. In SIGKDD, 1999.
8. Y. Cheng and G. Church. Biclustering of expression data. In ISMB, 2000.
9. F. Chung. Spectral graph theory. American Mathematical Society, 1997.

10. J. Edmonds, J. Gryz, D. Liang, and R. J. Miller. Mining for empty spaces in large data sets.
Theor. Comput. Sci., 296(3):435–452, 2003.

11. M. Fiedler. Algebraic connectivity of graphs. Czech. Math. J., 23, 1973.
12. J. Friedman and J. Meulman. Clustering objects on subsets of attributes. JRSS B, 2004.
13. B. Gaines and P. Compton. Induction of ripple-down rules applied to modeling large

databases. JIIS, 5(3), 1993.
14. J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k frequent closed patterns without

minimum support. In ICDM, 2002.
15. A. Jain, M. Murty, and P. Flynn. Data clustering: A review. ACM Computing Surveys, 1999.
16. J. Kivinen, H. Mannila, and E. Ukkonen. Learning hierarchical rule sets. In COLT, 1992.
17. Y. Koren and D. Harel. Multi-scale algorithm for the linear arrangement problem. Technical

Report MCS02-04, The Weizmann Institute of Science, 2002.
18. B. Liu, L.-P. Ku, and W. Hsu. Discovering interesting holes in data. In IJCAI, 1997.
19. T. Murali and S. Kasif. Extracting conserved gene expression motifs from gene expression

data. In Pac. Symp. Biocomp., volume 8, 2003.
20. A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In NIPS,

2001.
21. A. Pothen, H. Simon, and L. Wang. Spectral nested dissection. Technical Report CS-92-01,

Pennsylvania State University, Department of Computer Science, 1992.
22. R. Rivest. Learning decision lists. Machine Learning, 2(3), 1987.
23. H. Zha, X. He, C. Ding, M. Gu, and H. Simon. Bipartite graph partitioning and data cluster-

ing. In CIKM, 2001.


	1 Introduction
	2 Problem Description
	3 Algorithms
	3.1 Geometric Tiles
	3.2 Combinatorial Tiles

	4 Experimental Evaluation
	5 Related Work
	6 Concluding Remarks
	References

