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Geometric aspects of robust testing for normality and sphericity

ABSTRACT
Stochastic Robustness of Control Systems under random excitation motivates chal-
lenging developments in geometric approach to robustness. The assumption of nor-
mality is rarely met when analyzing real data and thus the use of classic parametric
methods with violated assumptions can result in the inaccurate computation of p-
values, e↵ect sizes, and confidence intervals. Therefore, quite naturally, research on
robust testing for normality has become a new trend. Robust testing for normality
can have counter-intuitive behavior, some of the problems have been introduced in
[46]. Here we concentrate on explanation of small-sample e↵ects of normality testing
and its robust properties, and embedding these questions into the more general ques-
tion of testing for sphericity. We give geometric explanations for the critical tests. It
turns out that the tests are robust against changes of the density generating function
within the class of all continuous spherical sample distributions.

KEYWORDS
Huberization, trimming, Lehman-Bickel functional, Monte Carlo simulations,
power comparison, robust tests for normality, normality, sphericity

Classification codes: 62H15, 62H10

1. Introduction

Classic parametric statistical significance tests, such as analysis of variance and least
squares regression, are widely used by researchers in many disciplines of chemistry,
economics or social sciences. For classic parametric tests to produce accurate results,
the assumptions underlying them (e.g. normality and homoscedasticity) must be sat-
isfied. These assumptions are rarely met when analyzing real data. The use of classic
parametric methods with violated assumptions can result in the inaccurate computa-
tion of p-values, e↵ect sizes, and confidence intervals. This may lead to substantive
errors in the interpretation of data.

Recently, several articles on robust testing for normality have been written (see for
example [6], [9], [14], [15], [45] and [46]). However, deeper understanding of geometry
of normality tests, normality and deviations from normality is still ongoing problem.
To address these topics is the main objective of this paper. In particular we compare
the recently introduced robust tests on the base of RT class, thus justifying RT class
to be a good base for robust tests based on robustification of first four moments.
In particular we show that selected RT class of tests accommodate the alternatives
which are problematic for JB test: bimodal, Weibull and uniform alternatives – see
[49]. It is worth a note that since JB test has no finite exponential moments, there
were no asymptotical e�ciency assessment to the best knowledge of the authors. From
systematic study of RT class the superiority of Geary and Utho↵ tests has been found
for bimodal alternatives.

We emphasize that in this paper we use the assumption that possible contamination
is only due to outliers. Thus we use three techniques for outliers filtering: trimming,
huberization and functional approach introduced by [3]. For normality testing when
the whole distribution may be contaminated see e.g. [1].

Testing for normality is a very important issue, for example in chemometrics. It is
also notable that several books in the literature, e.g. in analytical chemistry, devote a
section to normality testing; see for example [27]. However, robust testing for normal-
ity is still not completely communicated to the community of chemometricians. In the
next section we illustrate necessity of robust testing for normality in chemometrics.
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In section 3 the M-estimates are discussed. In section 4 the general RT class of tests
is presented. We also list already known tests belonging to RT class, together with
the most significant new tests. We also show on convenient examples that tests from
RT class improve substantially the weaknesses of classical JB test. Sections 5, 6 and
7 contain theoretical explanation on geometrical behavior of tests and algebraic ma-
nipulations on main quadratic. In section 8 the comparative study of powers of robust
tests is conducted. Discussion concludes the paper. Therein also practical guidelines
for robust testing of normality are given. To maintain the continuity of explanation
proofs and technicalities are put into Appendix.

2. Illustrative examples – necessity of robust testing for normality in

chemometrics

In this section we illustrate the necessity of robust testing for normality in chemo-
metrics. We present a few illustrative examples where testing for normality plays an
important role.

2.1. Catalytic Isomerization: influence of truncation

In several chemical application truncation of normal distribution can have a severe
impact on statistical decision. For illustration, let us consider kinetics of catalytic
isomerization of n-Pentane (see [7]). Therein we have rates r1 = �K2(x2�x3|K)

1+K1x1+K2x2+K3x3

and r2 = �

0
K2(x2�x3|K)

(1+K1x1+K2x2+K3x3)2
, where K

i

are adsorption equilibrium constants, x
i

are
partial pressures, K is equilibrium constant, � is a constant dependent on catalyst
and temperature T and i = 1, 2, 3 are indices for hydrogen, n-pentane and isopentane,
respectively.

[7] introduced variables y1 =
⇣
x2�x3|K

ri

⌘
, y2 = (y1)

1
2 and tests for importance of

higher factors, later is this discussed in [22]. In [44] we pointed out that we should be
aware of the fact, that the values y

i

, which are realizations of y = �K2/(1 +
P

K
i

x0
i

),
are not only positive but strictly over some positive constant (see their measured values
in table III of [7] or realize their chemical meaning, i.e. k

i

are equilibrium adsorption
constants, x

i

particular pressures of hydrogen, n-pentane, isopentane, respectively).
Thus the proper test should be based on truncated normals. Therefore alongside the
”outlier importance” discussed in [29], there is a further issue concerning the distri-
butional deviations from F -distribution. For more discussion from point of view of
chemometrics see [46].

2.2. Example: Control Charts for Chemical processes (positive kurtosis)

Here, we suppose some alternative distributions with zero skewness and positive excess
(kurtosis). For the purpose of tests comparison we suppose the following alternatives
commonly used in chemometrics and related fields:

• Laplace (t, s) distribution, where t and s are the location and scale parameters,
respectively, defined as Laplace(0;1), with SK = 0 and K

exc

= 3 where SK is
skewness and K

exc

is excess (kurtosis).
• t-Student(⌫) distribution, where ⌫ is the number of degrees of freedom, with
SK = 0 for ⌫ > 3 and K

exc

= 6
⌫�4 for ⌫ > 4 where SK is skewness and K

exc

is

3



kurtosis.
• Logistic (t, s) distribution, where t and s are the location and scale parameters,
respectively, defined as Logistic(0;1), with SK = 0 and K

exc

= 6/5 where SK is
skewness and K

exc

is kurtosis.

Table 1 presents the power of selected classical and robust tests for normality against
the mentioned alternatives (note that these results are based on results presented in
[46]). Based on these results we can conclude that the best tests are SJ

dir

, RJB and
from RT class TTRT2 tests, which powerfull outperform the other tests. For example,
power of the SJ

dir

test against Laplace distribution with SK = 0 and K
exc

= 3 for
n = 20 is 0.391, RJB test has power 0.357 and finally the power of TTRT2 test is
0.345. On the other hand, commonly used the SW test has power only 0.260 and the
classical JB test 0.307. If we suppose large sample size n = 100 the power of mentioned
tests is following: SJ

dir

= 0.942, RJB = 0.889, TTRT2 = 0.862, SW = 0.796 and
finally JB = 0.802.

Similarly, if we suppose t-Student(⌫) distribution t(7) with SK = 0 and K
exc

= 2
and n = 100, the results are following: SW test has power 0.363, JB = 0.454, SJ

dir

=
0.445, TTRT2 = 0.468 and finally RJB test has power 0.477. Similar results are also
achieved for t-Student(⌫) distribution t(5) and logistic distribution.

From the mentioned results we can see that power between the most powerful RJB,
SJ

dir

= 0.445 and TTRT1 tests vanished for distributions with excess kurtosis close
to kurtosis of Gaussian normal distribution.

n = 20 n = 100
Laplace t5 t7 logistic Laplace t5 t7 logistic

AD 0.276 0.172 0.116 0.107 0.824 0.483 0.283 0.241
DT 0.290 0.223 0.160 0.142 0.725 0.587 0.394 0.332
JB 0.307 0.233 0.168 0.148 0.802 0.651 0.454 0.399
JBU 0.320 0.238 0.170 0.152 0.814 0.661 0.464 0.409
LT 0.232 0.139 0.093 0.083 0.699 0.329 0.173 0.154
MC

LR

0.058 0.051 0.052 0.049 0.130 0.058 0.054 0.050
RJB 0.357 0.241 0.169 0.153 0.889 0.678 0.477 0.424

SJ
dir

0.391 0.231 0.160 0.144 0.942 0.659 0.445 0.419
SW 0.260 0.186 0.133 0.116 0.796 0.569 0.363 0.301
MMRT1 0.268 0.208 0.148 0.130 0.790 0.631 0.436 0.375
MMRT2 0.263 0.204 0.142 0.126 0.787 0.626 0.429 0.368
TTRT1 0.099 0.068 0.064 0.063 0.341 0.306 0.156 0.107
TTRT2 0.345 0.235 0.165 0.151 0.862 0.667 0.468 0.413

Table 1. Power of the selected tests for normality against various heavy-tailed alternatives commonly used

in chemometrics and related fields for n = 20 and n = 100

3. M-estimator of location

First of all, the M-estimates are a generalisation of the maximum likelihood (ML)
estimates (see Maronna et al. 2006). Some popular robust M-estimates are Huber-
estimate, Hampel estimate, Andrews’ wave, Tukey’s biweight. A lot of literature is
available for robust M-estimates, for example, Huber (1981), Hampel et al. (1986),
Rousseeuw and Leroy (1987), Staudte and Sheather (1990), Wilcox (1997) and
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Maronna et al. (2006). We will use a function  (x,C) = x for |x| < C and
 (x,C) = Csign(x) for |x| � C.

We recall, that the most e�cient location estimator, i.e. MLE, corresponds typically
to the highest power at the alternative. Notice that MLE is a special form of M-estimate
for a location parameter (since it is obtained for  := lnf and  = f 0/f, where lnf
is log likelihood and the M-estimator can be expressed as argmin

P
n

i=1  (xi � M),
where M is the location parameter).

The robust inference emphasises the concepts of breakdown point and influence
function of an estimator. The latter is then used to explore the e�ciency and robustness
properties of the estimator. Pure location problems are rare in practice, there is at least
the need for simultaneous scale estimates to help in estimating the standard error of the
location estimate. For our purpose (robustification of JB test) we robustify empirical
variants of first four moments.

The reason so many classical procedures are nonrobust to outliers is that the param-
eters of the model are expressed in terms of moments, and their classical estimators are
expressed in terms of sample moments, which are very sensitive to outliers. Another
approach to robustness is to concentrate on the parameters of interest suggested by
the problem under study. It may well turn out that these parameters can be expressed
as functions of the underlying distribution independently of a particular parametric
model; that is as descriptive measures. If these descriptive measures are judiciously
chosen, their naturally induced estimators are robust to aberration in the data (see
e.g. [3]).

4. General RT class

The general RT class is based on robustification of the classical Jarque-Bera test
introduced by [4]. The general RT class test statistic is defined by [45] for purpose of
robust testing for normality against Pareto tails and has the following general form

RT =
k1(n)

C1

 
M↵1

j1
(r1, T(i1)(s1))

M↵2

j2
(r2, T(i2)(s2))

�K1

!2

+
k2(n)

C2

 
M↵3

j3
(r3, T(i3)(s3))

M↵4

j4
(r4, T(i4)(s4))

�K2

!2

, (1)

whereM
j

are jth theoretical central moment estimators of the random variable defined
as M

j

(r, T (F
n

, s)) = 1
n�2r

P
n�r

m=r+1 'j

(X(m) �T (F
n

, s)) for j 2 {0, 1, 2, 3, 4}, where '
j

is a tractable and continuous function, where '0(x) =
p
⇡/2|x| and '

j

(x) = xj for
j 2 {1, 2, 3, 4}, X(m) is the order statistic, T (F

n

, s) is a location functional applied
to the sample X1, X2, . . . , Xn

, r and s are the trimming constants for moments and
location, respectively, K1 and K2 are small-sample variants of mean corrections, C1

and C2 are asymptotic constants, ↵1, ↵2, ↵3 and ↵4 are exponents, and finally, k1(n)
and k2(n) are functions of sample size n.

Note, that for the construction of the general RT class test statistic it was used loca-
tion functional approach, which has been introduced by P. E. Bickel and E. L. Lehmann
in a series of papers (e.g. [3]) and as was shown in [45] and [46] it looks to be playing
a crucial role also by robust testing for normality. As it will be seen later, the power
of RT class test mimics the e↵ectiveness of location estimator in typical cases. Thus
trade o↵ between power and robustness is a typical issue here.

Definition 1. (Location Functional, see [3]) Let T (F ) be a function defined on the
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set of distribution functions. We say that T (F ) is a location functional if the following
conditions hold:

(1) if G is stochastically larger than F then T (G) � T (F ),
(2) T (F

aX+b

) = aT (F
X

) + b,
(3) T (F�X

) = �T (F
X

).

Then we will call ✓ = T (F ) a location parameter of F . Having a sample, we work
with its empirical variant ✓

n

= T (F
n

), F
n

being an empirical cdf of a sample.

In the general RT class we used the following four di↵erent location estimators:

• mean: T(0) =
1
n

P
n

i=1Xi

,
• median: T(1) = F�1(1/2),

• trimmed mean: T(2)(s) =
1

n�2s

P
n�s

i=s+1X(i), where X(i) is the i-th order statistic
of the sample and s is the trimming constant for location,

• pseudo-median: T(3) = median
ij

(X
i

+ X
j

)/2, i.e. the median of the set
{(X1 +X1)/2, (X1 +X2)/2, (X1 +X3)/2, . . . , (X1 +X

n

)/2, (X2 +X2)/2, (X2 +
X3)/2, . . . , (X2 +X

n

)/2, . . . , (X
n�1 +X

n

)/2, (X
n

+X
n

)/2}.

Note, that some theoretical results on consistency and asymptotic �2-distribution
of the general RT class test statistic can be found in [45] and [46].

In the RT class we have also a direct relation to M-estimation. From the classical
M-estimation ([19], page 6) is proposed the odd function  (x, c) = x, for |x| < c and
c signum(x) otherwise. Notice, that a special case of RT

JB

class fits to M-procedure
based on

a
n

"
nX

i=1

 3

✓
X

i

�M
n

�̂
, c

◆#2
+ b

n

"
nX

i=1

 4

✓
X

i

�M
n

�̂
, c

◆
� k

#2
(2)

for a well choice of censoring, function  and �̂ being a robust estimator of variance.
The form of (2) has been already studied by [16]. Furthermore, we can use also

variance functional construction given by Bickel-Lehman, similarly to the mean func-
tional.

Remark 1. Constants C1 and C2 used in general RT class test statistic

As was noted in [46] choosing of appropriate constants C1 and C2 is the hardest aspect
of the variants of RT class tests, because to obtain the constants C1 and C2 we need to
find the expressions for E(Mk

n1,n2
) for a finite sample size. Such calculations are very

tedious and therefore we obtained these constants from Monte Carlo simulations (see
[45]). As was also mentioned in [46] the critical constant (for small and mid samples)
under the trimming of moments (r > 0) are di↵erent from critical constants without
trimming (r = 0), since only asymptotical distribution is normal (see [48]) in this case.

Remark 2. Trimming

Notice that two levels of trimming enter RT class test statistic: first trimming (with
trimming constant s) enters trimming in the location estimator T (F

n

), the latter on
trimming (with trimming constant r) enters M

j

(r, T (s)). Amazing property of RT
class and robust tests in general is, that power of RT class mimics the e↵ectiveness
of location estimator. Thus practitioner can tune how much of robustness is needed,
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of course at price of the power. One should be really careful here: mechanical down-
weighting of peculiar observations may divert attention from important clues to new
discovery. Based on our simulation study we can suggest the suitable choosing of these
constants: s = r = 0.05n.

Remark 3. Robustness of RT class

A statistical procedure is called robust, if its performance is insensitive to small de-
viations of the actual situation from the idealized theoretical model (see [20]). In
particular, a robust procedure should be insensitive to the presence of a few ”bad”
observations (but at the same time the discordant minority of the observations might
be prime source of information for improving the theoretical model). Here we assume
that possible contamination is due to presence of outliers. Based on our research, we
would like to point out the following robust aspects of RT class of tests:

• The classical JB test is not robust: it has a 0-breakdown point (see [6]).
• Note, that our tests are constructed on the robust Bickel-Lehman construction
of location ([3]).

• The 2nd ”version” of robust estimation is trimming of location with trimming
constant s (so called ”trimmed-mean tests”) and moments with trimming con-
stant r (so called ”trim-trim tests”). Note that selected trim-trim tests have the
same power level as Medcouple tests introduced by [6], so they are very robust.

• Normality testing procedure is typically a pre-test preceding some further testing
or inference. Therefore one interesting issue is robustness with respect to other
procedures, assuming that RT tests did not rejected normality. The influence of
di↵erent shapes of distribution with the same first 4 moments on robustness has
been discussed for sequential t-test by [30].

Remark 4. Trade o↵ between power and robustness

Two typical extremal behaviors occur in robust testing: the tests which are more ro-
bust have smaller power (since they are not a↵ected by single outliers) and tests with
higher power are typically less robust (because they are a↵ected by single outliers).
An example of the first extreme case are the Medcouple tests and selected RT class
tests based on trimming and an example of the second extreme case are the RT tests
based on mean-median combination. To be more precise, for instance the robust test
of normality could be also obtained by removing the outliers from the data, using
and outlier detection rule such as provided by the boxplot or a rule based on robust
estimators of location and scale. When the majority of the data are instead normally
distributed, this is a valuable alternative to the robust tests based on medcouple as
both the boxplot and the most popular robust estimators of location and scale (such as
M-estimators) are based on this normal assumptions and thus will indicate the correct
set of outliers. However it becomes more complicated when even majority of the data
points do not come from a normal distribution (see [6]). However, probably it will be
in many practical situations more worth to conduct test with clear outliers adaptively,
i.e. recognizing and deleting in the first step and then using the zero breakdown robust
version of JB for normality testing. To illustrate this general framework, we use the
right-location-standard normal distribution based on mixture of two normal distribu-
tions with various parameters. For this purpose we assume the right-contamination
with distribution function: F = (1 � p)N(µ1,�

2
1) + pN(µ2,�

2
2) for p = 0.05, µ1 = 0,

µ2 = 3, �21 = �22 = 1, i.e. F = 0.95N(0, 1)+0.05N(3, 1), for large sample size n = 100.
For mentioned contamination and sample size the power of the classsical Jarque-Bera
test is 0.744, power of SW test is 0.685 and MMRT1 has power 0.686. On the other
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hand the TTRT1 test has power only 0.190, MC
LR

test only 0.076, the Jarque-Bera
and Shapiro-Wilk tests with deleting outliers based on boxplot in the first step have
power 0.110 and 0.055, respectively. For complete comparison for right and central
contamination see Table 1 in [46].

4.1. A special known tests of RT class

As can be seen from (1) there exist a vast amount of RT class tests, which we can
obtain for a di↵erent settings of r

i

, T(i)(si) etc. Next we refer to the RT class tests
which has been studied already in the literature. These are i) classical JB test, ii) test
of Urzua, iii) robust JB (RJB) test, iv) skewness test b1, v) the kurtosis test

p
b2, vi)

the Geary test a, vii) the Utho↵ test U , and viii) the SJ test.

i) The classical Jarque-Bera test is a special case of RT test without trimming for
K1 = 0, K2 = 3, k1(n) = n, k2(n) = n, C1 = 6, C2 = 24, ↵1 = 1, ↵2 = 3/2, ↵3 = 1,
↵4 = 2, T(i1) = T(i2) = T(i3) = T(i4) = T(0), j1 = 3, j2 = 2, j3 = 4, j4 = 2. The
Jarque-Bera test statistic JB is defined as

JB =
n

6

 
µ̂3

µ̂
3/2
2

!2

+
n

24

✓
µ̂4

µ̂2
2

� 3

◆2

.

As pointed out by several authors (see for example [51]) the classical JB test behaves
well in comparison with some other tests for normality if the alternatives belong to
the Pearson family. However, the JB test behaves very badly for distributions with
short tails and bimodal shape, sometimes it is even biased (see [49]).

ii) Test of Urzua (see [51]) is a special case of RT test without trimming for K1 = 0,
K2 = 3, k1(n) = ((n + 1)(n + 3))/(n � 2), k2(n) = ((n + 1)2(n + 3)(n + 5))/(n(n �
2)(n� 3)), C1 = 6, C2 = 24, ↵1 = 1, ↵2 = 3/2, ↵3 = 1, ↵4 = 2, T(i1) = T(i2) = T(i3) =
T(i4) = T(0), j1 = 3, j2 = 2, j3 = 4, j4 = 2. The Urzua’s Jarque-Bera test statistic
JBU is defined as

JBU =
(n+1)(n+3)

n�2

6

 
µ̂3

µ̂
3/2
2

!2

+

(n+1)2(n+3)(n+5)
n(n�2)(n�3)

24

✓
µ̂4

µ̂2
2

� 3

◆2

.

iii) The robust Jarque-Bera test (see [14]) is a special case of RT test without trimming
for K1 = 0, K2 = 3, k1(n) = n, k2(n) = n, C1 = 6, C2 = 64, ↵1 = 1, ↵2 = 3, ↵3 = 1,
↵4 = 4, T(i1) = T(i3) = T(0), T(i2) = T(i4) = T(1), j1 = 3, j2 = 0, j3 = 4, j4 = 0. The
robust Jarque-Bera test statistic RJB is defined as

RJB =
n

C1

✓
µ̂3

J3
n

◆2

+
n

C2

✓
µ̂4

J4
n

� 3

◆2

.

iv) The skewness test b1 is a special case of RT test without trimming for K1 = 0,

8



K2 = 0, k1(n) = n, k2(n) = 0, C1 = 6, ↵1 = 1, ↵2 = 3/2, T(i1) = T(i2) = T(0), j1 = 3
and j2 = 2. The skewness test statistic b1 is defined as

b1 =
n

6

 
µ̂3

µ̂
3/2
2

!2

.

v) The kurtosis test
p
b2 is a special case of RT test without trimming for K1 = 3,

K2 = 0, k1(n) = n, k2(n) = 0, C1 = 24, ↵1 = 1, ↵2 = 2, T(i1) = T(i2) = T(0), j1 = 4

and j2 = 2. The kurtosis test statistic
p
b2 is defined as

p
b2 =

n

24

✓
µ̂4

µ̂2
2

� 3

◆2

.

vi) The Geary’s test a (see [13]) is a special case of RT test without trimming for
K1 = 0, K2 = 0, k1(n) = 1/n, k2(n) = 0, C1 = 1, ↵1 = 1/2, ↵2 = 1/4, T(i1) = T(i2) =
T(0), '0(x) = |x|, j1 = 0, j2 = 2 as an alternative to b2, because the small sample
properties where more tractable for a. The Geary’s test statistic a (originally denoted
w0
n

) is defined as

a =
1

n

nX

i=1

|X
i

� X̄|p
m2

.

vii) The Utho↵’s test U (see [52]) is a special case of RT test without trimming for
K1 = 0, K2 = 0, k1(n) = 1/n, k2(n) = 0, C1 = 1, ↵1 = 1/2, ↵2 = 1/4, T(i1) = T(i2) =
T(1), '0(x) = |x|, j1 = 0 and j2 = 2. The Utho↵’s test statistic U is defined as

U =
1

n

nX

i=1

|X
i

�M
n

|p
m2

.

viii) SJ test (see [15]) is a special case of RT test without trimming for K1 = 0,
K2 = 0, k1(n) =

p
⇡/2/n, k2(n) = 0, C1 = 1, ↵1 = 1/4, ↵2 = 1/2, T(i1) = T(0),

T(i2) = T(1), '0(x) = |x|, j1 = 2 a j2 = 0. The SJ test statistic SJ is defined as

SJ =

p
⇡/2

n

nX

i=1

p
m2

|X
i

�M
n

| .

4.2. Tractable approach to RT class

In [45] we introduced general RT class test statistic (see (1)) as well as RT
JB

and
RT

RJB

subclasses. The RT
JB

subclass test statistic is defined as follows
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RT
JB

=
n

C1

 
M3(r1, T(i1)(s1))

M
3/2
2 (r2, T(i2)(s2))

�K1

!2

+
n

C2

 
M4(r3, T(i3)(s3))

M2
2 (r4, T(i4)(s4))

�K2

!2

, (3)

which is a special case of RT test statistics for k1(n) = n, k2(n) = n, ↵1 = 1, ↵2 = 3/2,
↵3 = 1, ↵4 = 2, j1 = 3, j2 = 2, j3 = 4, j4 = 2.

Similarly, RT
RJB

subclass test statistic is based on robustification of the robust
Jarque-Bera test introduced by [15] and is defined as follows

RT
RJB

=
n

C1

 
M3(r1, T(i1)(s1))

M3
0 (r2, T(i2)(s2))

�K1

!2

+
n

C2

 
M4(r3, T(i3)(s3))

M4
0 (r4, T(i4)(s4))

�K2

!2

, (4)

which is a special case of RT test statistics for k1(n) = n, k2(n) = n, ↵1 = 1, ↵2 = 3,
↵3 = 1, ↵4 = 4, j1 = 3, j2 = 0, j3 = 4, j4 = 0.

By clustering based on power values from all analyzed tests of RT class the follow-
ing representatives with good properties against most common alternatives has been
obtained (for more details of these test statistics see section 3.2 in [46]:

• The mean-medianMMRT1 test which is suitable for testing of normality against
heavy- and light-tailed asymmetric alternatives.

• The mean-medianMMRT2 test which is suitable for testing of normality against
heavy- and light-tailed asymmetric alternatives as well as bimodal and short-
tailed symmetric alternatives.

• The trim-trim TTRT1 test with trimming s = r = 0.05n which is suitable for
testing of normality against short-tailed symmetric alternatives and which is also
more robust than most other tests of normality.

• The trim-trim TTRT2 test with trimming s = r = 0.05n which is suitable for
testing of normality against heavy-tailed symmetric alternatives and has good
robust properties.

Our pilot simulation study showed that mean-median MMRT1 and MMRT2 tests
have comparable power with the most powerful tests (SW and AD) against heavy-
and light-tailed asymmetric alternatives like one side Cauchy, Weibull and exponential.
Similarly, TTRT2 test has comparable power with the most powerful tests (SJ

dir

and
RJB) against heavy-tailed symmetric alternatives like Cauchy and t5. Consequently,
MMRT2 and TTRT1 tests have comparable power with the most powerful tests
(SW , AD and DT ) against short-tailed symmetric alternatives like beta and uniform.
Finally, MMRT2 test is also suitable for bimodal alternatives. Note that especially
TTRT1 test has good robustness properties – this test is more robust than most other
tests of normality.

Power of analyzed normality tests against symmetric and asymmetric heavy-, light-
and short-tailed alternatives was presented in [46]. We found that SJ

dir

, RJB and
TTRT2 tests are the best tests against symmetric heavy-tailed alternatives like
Cauchy, Laplace and t3. For moderately heavy-tailed symmetric alternatives like t5, t7
and logistic the RJB and TTRT2 test are most powerful. If we suppose the light-tailed
asymmetric alternatives like lognormal, exponential, Burr and Weibull, the SW , AD,
MMRT1 andMMRT2 tests perform well. For the short-tailed symmetric alternatives

10



like beta and uniform, the SW , AD, MMRT2 and TTRT1 tests have reasonably high
power. On the other hand, the JB, JBU , RJB and SJ

dir

tests are mostly biased for
small sample size n = 20 (SJ

dir

is biased even for large sample size n = 100).

5. Geometric interpretation of skewness and kurtosis based test

statistics

This section is aimed to prepare the reader for the derivation of the exact cumulative
distribution functions (cdfs) of skewness and kurtosis based statistics which will be
given in the next section.

Let us recall that if x1, ..., xn is a concrete sample of size n then the skewness test
statistic based upon this sample allows the representation

b1 =
n

6

 
µ̂3

µ̂
3/2
2

!2

=
n

6

"
1
n

P
n

i=1(xi � x̄
n

)2

1
n

(
P

n

i=1(xi � x̄
n

)2)3/2

#2
. (5)

Replacing the sample mean in nominator and denominator of this ratio with di↵erent
location estimations of Lehman-Bickel type, we consider in the following statistic

b̃1 =
n

6

"
1
n

P
n

i=1(xi � x̃
z

)3

1
n

(
P

n

i=1(xi � x̃
n

)2)3/2

#2
, x̃

z

=
nX

i=1

w
i

x
i

, w
i

� 0,
nX

i=1

w
i

= 1, x̃
n

=
nX

i=1

a
i

x
i

.

(6)
Let B̃1 the population based version of the sample based quantity b̃1. Because we are
interested in the probability P (B̃1 < t), we are interested in a geometric understanding
of the subset {x 2 Rn : b̃1 < t}, t 2 R of the n-dimensional sample space Rn. It turns
out that the set {x 2 Rn : b̃1 < t}, t 2 R is a cone having its vertex in the origin.
However, for making things as much visible as possible, our discussion of the exact
distribution of B̃1 is restricted here to the case

n = 2, w1 = ⇥, w2 = (1�⇥), 0 < ⇥ < 1, a1 = 1, a2 = a > 0 and x1 = x, x2 = y. (7)

The cone {x 2 R2 : b̃1 < t}, t 2 R can be closer described then in an easy way because
the statistic b̃1 can be reformulated then as follows

B̃1 =
1

3

"
1
2((x�⇥x� (1�⇥)y)3 + (y �⇥x� (1�⇥)y)3

(12((x� x� ay)2 + (y � x� ay)2))3/2

#2
=

=
2
3

⇥
(1�⇥)3(x� y)3 +⇥3(x� y)3

⇤2

[a2y2 + ((1� a)y � x)2]3

=
2
3(x� y)6

⇥
(1�⇥)3 �⇥3

⇤2

[a2y2 + ((1� a)y � x)2]3
=

2
3(1� z)6

⇥
(1�⇥)3 �⇥3

⇤2

[a2z2 + ((1� a)z � 1)2]3
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where z = y

x

. Analogously, the excess (or kurtosis) test statistic based upon the sample
x1, ..., xn allows the representations

p
b2 =

n

24

✓
µ̂4

µ̂2
2

� 3

◆2

=
n

24

"
1
n

P
n

i=1(xi � x̄
n

)4

1
n

(
P

n

i=1(xi � x̄
n

)2)2
� 3

#2
. (8)

Replacing the sample mean with x̃
z

and x̃
n

as before, we consider now the statistic

q
b̃2 =

n

24

"
1
n

P
n

i=1(xi � x̃
z

)4

1
n

(
P

n

i=1(xi � x̃
n

)2)2
� 3

#2
. (9)

Under the restrictions in (7), this statistic reads as

q
B̃2 =

1

12

"
1
2((x�⇥x� (1�⇥)y)4 + (y �⇥x� (1�⇥)y)4

(12((x� x� ay)2 + (y � x� ay)2))2
� 3

#2
=

=
1

12


2((1�⇥)4(x� y)4 +⇥4(y � x)4)

(a2y2 + ((1� a)y � x)2)2
� 3

�2
=

1

12


�(1� z)4

(a2z2 + ((1� a)z � 1)2)2
� 3

�2

where

� = 2
⇥
(1�⇥)4 +⇥4

⇤
, z =

y

x
.

The sets

C̃1(t) = {(x, y) 2 R2 : b̃1 < t} and C̃2(t) = {(x, y) 2 R2 :

q
b̃2 < t}, t > 0 (10)

can be proved to be cones in R2 having their vertex in the origin.
Let us remark the interesting fact that it is known that a value of Student’s distri-

bution can be interpreted as being the value of the standard Gaussian measure taken
at a suitably defined cone having vertex in the origin, see in [34]. Moreover, such a
value does not depend on the dgf of a spherical measure, and is therefore the same for
all spherical measures. We will follow this idea and represent the exact distribution of
B̃1 in Section 7. For a p-generalization of this observation, see [35].

We determine now the boundary lines of the cone C̃1(t). The points of these lines
satisfy the equation

(1� z)2 = 3

r
t

�

⇥
(a2z2 + ((1� a)z � 1)2

⇤
(11)

where � = 2
3 [(1� ✓)

3� ✓3]2. The points which belong the the inner of this cone satisfy
the corresponding inequality

(1� z)2 < 3

r
t

�

⇥
(a2z2 + ((1� a)z � 1)2

⇤
. (12)

12



Solving equation (11) leads to

1� 2z + z2 = 3

r
t

�

⇥
(a2z2 + ((1� a)2z2 � 2(1� a)z + 1)

⇤

and

z2

1� (a2 + (1� a)2) 3

r
t

�

�
+ z


�2 + 2(1� a) 3

r
t

�

�
+ 1� 3

r
t

�
= 0.

Before division by
h
1� (a2 + (1� a)2) 3

q
t

�

i
we need to take care that a 6=

3
q

t
�
+

r
�( 3

q
t
�
)2+2 3

q
t
�

2 3
q

t
�

and a 6= �
� 3
q

t
�
+

r
�( 3

q
t
�
)2+2 3

q
t
�

2 3
q

t
�

.

The solutions of the equation p1(z) = 0 where

p1(z) = z2 + z
�2 + 2(1� a) 3

q
t

�

1� (a2 + (1� a)2) 3

q
t

�

+
1� 3

q
t

�

1� (a2 + (1� a)2) 3

q
t

�

are

z1/2 = �p/2±
p

p2/4� q

where

p =
�2 + 2(1� a) 3

q
t

�

1� (a2 + (1� a)2) 3

q
t

�

and q =
1� 3

q
t

�

1� (a2 + (1� a)2) 3

q
t

�

. (13)

Thus the boundary lines of the cone C̃1(t) are

y1 = (�p/2 +
p

p2/4� q)x and y2 = (�p/2�
p

p2/4� q)x, (14)

and the points (x, y)T from the inner part of this cone satisfy the inequality p1(y/x) <
0. If we denote the angle between the boundary lines of the cone C̃1(t) by ↵1(t) then

↵1(t) = | arctan(�p/2 +
p

p2/4� q)� arctan(�p/2�
p

p2/4� q)|. (15)

The following Figure 1 displays the boundary lines of cone C̃1(t) for ✓ = 1/3, a =
1, t = 12250

59049 .

It can be shown in a similar manner that the boundary lines of the cone C̃2(t) are

13



Figure 1. the boundary lines of cone C̃1(t) for ✓ = 1/3, a = 1, t = 12250
59049 .

also given by (14) but where now

p =
�2 + 2(1� a)

q
(
p
12 · t+ 3)/�

1� (a2 + (1� a)2)
q

(
p
12 · t+ 3)/�

and q =
1�

q
(
p
12 · t+ 3)/�

1� (a2 + (1� a)2)
q

(
p
12 · t+ 3)/�

.

(16)
Thus, the angle between the boundary lines of C̃2(t) allows the representation (15),

but with p and q from (16). Notice, that for same values for parameters ✓, a and t
there is no real cone C̃2(t).

6. Exact distributions of the skewness and kurtosis based test statistics

Let us assume throughout this section that the sample vector follows a multivariate
Gaussian distribution. According to this assumption, the derivation of the exact dis-
tributions of the skewness and kurtosis based test statistics presented here is based
upon an application of the following geometric measure formula in [33]

�(A) =
21�n/2

�(n/2)

1Z

0

F(A, r)re�r

2
/2dr (17)

where the function

F(A, r) =
AL([1

r

A] \ C)

AL(C)
, r > 0
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is called the Euclidean intersection proportion function of the set A. Here, C denotes
the Euclidean unit circle and AL means Euclidean arc-length. Formula (17) has been
proved for the special case of Gaussian distribution in [32] and was used later on in a
series of subsequent papers.

If n = 2, A = C̃1(t) then

P (B̃1 < t) =

1Z

0

F(C̃1(t), r)re
�r

2
/2dr. (18)

We recall that, for arbitrary r > 0, C̃1(t) is a cone. Thus, the ipf of C̃1(t) does not
depend on the radius r. In consequence,

P (B̃1 < t) = F(C̃1(t), 1) = ↵1(t)/(2⇡) and similarly, P (

q
B̃2 < t) = F(C̃2(t), 1) = ↵2(t)/(2⇡)

(19)
where ↵1 and ↵2 are chosen according to (15) with(13) and (16), respectively.

7. Representing the distribution of

˜B1 in terms of a Student distribution

As we have remarked in Section 5, the distribution of B̃1 may be represented in terms
of Student’s distribution. For seeing that, we transform the representation of the cone
into a representation which was used in [34]. Because the transformations T1,T2 where

T�1
1 =

1p
2

✓
1 1
�1 1

◆
and T2 =

✓
1 0
0 �1

◆

do not change the spherical measure of a set, it holds true that �(A) = �(T1T2A).
We note that

C0
1 (t) = T1T2C̃1(t) = {( , ⌫)T 2 R2 :

| |
| + ⌫| < �(t)} where �(t) =

p
a(a� 1)(t/�)1/6.

Thus

�(C0
1 (t)) = 2�({( , ⌫)T 2 R2 :

 

⌫
<

�(t)

1� �(t)
}).

Note that �({( , ⌫)T 2 R2 :  

⌫

< �(t)
1��(t)}) = F1(

�(t)
1��(t)) where F1 denotes the cdf of

the Student cdf with one dgf.

8. Truncated data

In Section 6, we assumed that the sample vector X follows the multivariate stan-
dard Gaussian law. Here, we assume that the distribution law of X is a multivariate
truncated Gaussian law having the pdf

f(x) =
1

�⇤
(

nY

1

'(x
i

))I
B

(x)
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where B is a truncation set, �⇤ = �(B), and I
B

denotes the indicator function of the
set B.

In the special case that B = [a, b)⇥n for some a < b this means that X has i.i.d.

marginal variables following the univariate truncated normal density h(x) = '(x)
Z

where Z = �(b)� �(a).
In the general truncation case it follows for the cdf of the test statistic B̃1(t) that

P (B̃1 < t) =
1

�⇤

1Z

0

F(C̃1(t) \B, r)re�r

2
/2dr, (20)

.

Note that

F(C̃1(t) \B, r)

8
><

>:

= F (C̃1(t), r) if 0 < r  b

< F (C̃1(t), r) if b < r 
p
b2 + a2

= 0 if
p
b2 + a2 < r

.

Thus the distribution of B̃1 is as in Section 6.
In the special case that B is an Euclidean ball of radius % having its center at the

origin it follows that F(C̃1(t) \B, r) = F (C̃1(t), r), r > 0. Thus the distribution of B̃1

di↵ers from that in Section 6.

9. Exact distributions under non-standard model assumptions

A well known more general assumption w.r.t. the distribution the sample vector follows
is that to assume it follows a spherical distribution. Recognize that a yet more general
assumption is to let the sample vector follow an l

n,p

-symmetric distribution.
A general method of deriving exact distributions of statistics under non-standard

model assumptions is outlined in [39]. Here, we follow the approach described there.
Let the random vector (X1, X2)T follow the l2,p-symmetric density

'
g,p

(x) = C
g,p

g(|x|p
p

), x 2 R2, p > 0

where |x|
p

= (|x1|p+|x2|p)1/p is a norm if p � 1 and an antinorm (see [28]) if 0 < p  1,
g : [0,1) ! [0,1) is a density generating function (dgf) which satisfies 0 < I

g,p

< 1

for I
g,p

=
1R

0

rg(rp)dr, and C
g,p

is a suitable normalizing constant making '
g,p

a density.

If �
g,p

denotes the probability law corresponding to the density '
g,p

,

�
g,p

(A) =

Z

A

'
g,p

(x)dx,A is a measurable subset of R2,

then formula(17) is a special case of the following geometric measure representation

�
g,p

(A) =
1

I
g,p

1Z

0

F
p

(A, r)rg(rp)dr (21)
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which was proved for the n-dimensional case in [38]. Note that

I
g,p

=
1

2⇡(p)C
g,p

where the constants ⇡(p) are generalizations of the famous circle number ⇡ which have
been introduced and studied for convex and radially concave p-generalized circles (or
l2,p-circles) in [36] and [37], respectively.

The function x ! |x|
p

is the Euclidean norm |x|2 =
p

x21 + x22 if p = 2, the taxi cap
norm |x|1 = |x1|+|x2| if p = 1, and, formally, the maximum norm |x| = max{|x1|, |x2|}
if p = 1.

The p-circles C
p

(r) = rC
p

, C
p

= {x 2 R2 : |x|
p

= r} are the level sets of the density
of the random vector (X1, X2)T . The function r ! F

p

(A, r) is a generalization of the
ipf r ! F

p

(A, r) considered in Section 6. It is defined as

F
p

(A, r) =
U
P

([1
r

A] \ C
p

)

2⇡(p)

where the p-generalized arc-length measure U
p

has been considered in [36, 37]. In the
easiest non-Euclidean case, i.e. if p = 1, it holds

F1(A, r) =
AL([1

r

A] \ C
p

)

2⇡
.

We restrict our consideration therefore here as in [24] to the two cases p = 2 and
p = 1.

Special density generating functions have been considered, e.g. in

[24]. If g(r) = rM�1e��r
�

with positive M,�, � then C
g,1 = ��

(M+1)/�

4�((M+1)/�) , and if

g(r2) = r2M�2e��r
2�

with positive M,�, � then C
g,2 = ��

M/�

⇡�(M/�) . Note, however, that

in the given cases of test statistics B̃1 and
p

B̃2, the distributions do not depend of
the dgf. This is due to the following much more general fact. If the ipf of a set A does
not depend on the radius variable r, F

p

(A, r) = F0 say, then it follows from (21) that
�
g,p

(A) = F0.
It is shown in Section 5, that the ipfs of the sets C̃

i

(t), i = 1, 2 generated by the

statistics B̃1 and
p

B̃2, respectively, do not depend on the variable r. Thus the dis-

tributions of the statistics B̃1 and
p

B̃2 do not depend on the dgf, and are therefore
the same as given in Section 6. Following a definition in [11], such statistics are called
g-robust in [23], and in a more general setting in [39].

10. Exact joint two-dimensional distribution of the skewness and

kurtosis based test statistics

Let us assume that the sample vector follows an n-dimensional spherical distribution
�
g,p

. According to the previous results,

F (t1, t2) = P (B̃1 < t1,

q
B̃2 < t2) = �g,p

(C̃1(t1) \ C̃2(t2))
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Note that the intersection of two cones is a cone. The density of

 
b̃1p
b̃2

!
is

f(t1, t2) =
@2

@t1@t2
F (t1, t2). (22)

On using this density, we are going now to derive the density of B̃1 +
p

B̃2. To this
end, let a map

' =

✓
'1

'2

◆
: R� ⇥R

+ ! R

2

be defined by

0

@
'1

⇣
B̃1,

p
B̃2

⌘

'2

⇣
B̃1,

p
B̃2

⌘

1

A =

✓
Y1
Y2

◆
=

 
B̃1 +

p
B̃2

B̃1

!
.

Note that ' is 1� 1 with inverse function  = '�1 given by

 
B̃1p
B̃2

!
=

✓
Y2

Y1 � Y2

◆
=

✓
 1(Y1, Y2)
 2(Y1, Y2)

◆
.

The absolute value of the Jacobian of this transformation is

I = |det

�����

@ 1

@y1

@ 1

@y2
@ 2

@y1

@ 2

@y2

����� | = |det
����
0 1
1 �1

���� | = 1.

As a consequence, the density of

 
B̃1 +

p
B̃2

B̃1

!
is

f0

@ B̃1 +
p

B̃2

B̃1

1

A
(y1, y2) = f ( 1(y1, y2), 2(y1, y2)) I = f(y2, y1 � y2)

where f is chosen according to (22). Integrating this joint density w.r.t. the variable
y2 results in the desired density

f
B̂1+

p
B̃2

(y1) =

Z 1

�1
f(y2, y1 � y2)dy2. (23)

11. Tests based upon higher order moments

In this section we study testing based upon higher order moments. Let
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b̃3 =
1
n

P
n

i=1(xi � x̃
z

)6

1
n

(
P

n

i=1(xi � x̃
N

)2)3

be the statistic considered in [26].
If n = 2, x̃

z

= ⇥x+ (1�⇥)y, x̃
N

= x+ ay then

B̃3 = 4

⇥
(1�⇥)6 �⇥6

⇤
(1� z)6

[a2z2 + ((1� a)z � 1)2]3
, z =

y

x
.

For every t > 0, the set

C̃3(t) = {(x, y) 2 R

2 : b̃3 < t3}

is a cone with vertex in the origin and boundary

@C̃3(t) = {(x, y) 2 R

2 :
⇥
(1�⇥)6 �⇥6

⇤1/3
(1� Z)2 = a2z2 + ((1� a)z � 1)2}.

Because the �
g,p

-value of such cones does not depend on the dgf g, the statistic b̃3

is g-robust just like b̃1, b̃2 and b̃1 +
p

b̃2 are g-robust. Note that the boundary lines of
C̃3(t) satisfy the equations (14) but where now p and q are

p =
�2C(✓) + 2(1� a)t

C(✓)� a2t� (1� a)2t
and q =

C(✓)� t

C(✓)� a2t� (1� a)2t
with C(✓) = ((1�✓)6�✓6)1/3.

(24)
We conclude this section with the following remark on a non-g-robust statistic. Let

b̃
k

=
1
2

⇥
(x� x+y

2 )k + (y � x+y

2 )k
⇤

⇥
1
2

⌦
(x� x+y

2 )2 + (y � x+y

2 )2
↵⇤

k/2
=

⇢ |x�y|
2k/2�1 , k is even
0, k is odd

.

Then, for even k, the critical test region is

H
k

(t) = {(x, y) 2 R

2 :

����
x� y

2

����
k/2

> t}

Denoting the acceptance region by Hc

k

(t), it turns out that �
g,p

(Hc

k

(t)) depends on g
and p, thus b

k

is not g-robust.

12. Algebraic manipulations on main quadric

Throughout, we denote the set of real numbers by R. As we can see from simulations,
the power depends on choice of location functionals in both numerator and denomina-
tor of RT class tests. We conducted large simulation study for n = 2 and location func-
tional in nominator given by weighted mean, i.e. m(X1, X2) = ✓X1 + (1 � ✓)X2, ✓ 2
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(0, 1). According to [31] weighted mean is an interesting class of location function-
als. However, for n = 2 in order not to get constant skewness, we chose estima-
tor m ⇤ (X1, X2) = X1 + aX2, a 2 (0, 1). Notice that m⇤ is biased for µ 6= 0,
X1, X2 ⇠ N(µ,�2). However it is an unbiased estimator of µ when X1, X2 ⇠ N(0,�2).
We can relate it here to concept of supere�ciency (see [8], page 515 and references
therein). This directly relates to Hodges’ estimator (see e.g. [54]). Of course, measure
of point µ = 0 is zero, interestingly, the rejection cone is also degenerated (in real ge-
ometry). Thus, we have one degenerated and one non-degenerated cone, as it is proven
in the next lines.

Large simulation study shows that most powerful test was given by ✓1 = 1/3 and
a 2 {1/2, 1}. After some algebra for B̃1 we receive the initial equation of the form

28(x3 � 3x2y + 3xy2 � y3) = 27a(y2 � 2xy + 2x2)
p

2y2 � 4xy + 4x2 (25)

We are interested in the set of real solutions to this equation. Below, we show that

for a in the interior of the interval I =
h
0, 14

p
2

27

i
this solution set is two lines passing

through the origin and it gives a degenerate answer, i.e. multiple line, on the boundary
of I. Moreover, there are no real solutions for a taken outside I. For simplicity we put
f = y2 � 2xy + 2x2. Taking the square of (25) we get

(x� y)6 = 2

✓
27a

28

◆2

f3 (26)

which factors through

((x� y)2 � ↵f)((x� y)4 + ↵f(x� y)2 + ↵2f2) = 0 (27)

where

↵ =
3

s

2

✓
27a

28

◆2

Lemma 1. The equation (x� y)4 +↵f(x� y)2 +↵2f2 = 0 has no nontrivial solution
in R for any nonzero value of ↵.

Proof. Note that if we substitute z = (x� y)2 and t = x2 in the equation we have

z2 + ↵(z + t)z + ↵2(z + t)2 = 0

Obviously x = y = 0, and consequently z = t = 0, satisfies the equation. Assume,
without loss of generality, that z 6= 0, and substitute r = z+t

z

. The aim is to find real
solutions to the quadratic equation

↵2r2 + ↵r + 1 = 0

The discriminant of this equation is � = �3↵2, which is never positive, and is zero if
and only if ↵ = 0. Clearly if ↵ = 0, the solution set is the line x = y.

Lemma 2. The real solutions to the quadratic form {(x�y)2�↵(y2�2xy+2x2) = 0}
for di↵erent values of ↵ is
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(1) two lines y = (1 +
q

↵

1�↵)x and y = (1�
q

↵

1�↵)x, when ↵ 2 (0, 1),

(2) the line x = y, when ↵ = 0,
(3) the line x = 0, when ↵ = 1,
(4) and it has no nontrivial real solution when ↵ /2 [0, 1].

Proof. For simplicity, consider the substitution z = x�y. The equation now becomes

z2 � ↵(z2 + x2) = 0

which solves to

z = ±
r

↵

1� ↵
x

The proof follows from this equality.

Corrollary 1. The real solutions to (25) depending on the value of the real parameter
a are

(1) two lines y = (1 +

s
3
q

2( 27a
28 )

2

1� 3
q

2( 27a
28 )

2
)x and y = (1�

s
3
q

2( 27a
28 )

2

1� 3
q

2( 27a
28 )

2
)x, when a 2 I,

(2) the line x = y, when a = 0,

(3) the line x = 0, when a = 14
p
2

27 ,
(4) and it has no nontrivial real solution when ↵ /2 I.

Note that when we solve a for ↵ for substitution we do not consider the negative values
of a. This is because we took the square of the equation (25) in the beginning.

13. Power comparisons – models for outliers

In this section we compare the power of the classical tests for normality and our
omnibus test for normality. We have checked by conducting the thorough simulation
study that all considered empirical tests hold the size for ↵ = 0.05 and for sample
sizes n = 20 and n = 100. The alternatives we have considered are models for outliers.
Here we consider two outlier models, as used in [2], i.e. location-outlier model and
scale-outlier model.

• For the p-location-outlier model we consider X1, . . . , Xn�p

to be iid from N(0, 1)
and X

n�p+1, . . . , Xn

to be iid from N(�, 1).
• For the p-scale-outlier model we consider X1, . . . , Xn�p

to be iid from N(0, 1)
and X

n�p+1, . . . , Xn

to be iid from N(0, ⌧2).

In this paper we consider only linear location estimators. In particular, median provides
best protection against the presence of outlier in term of bias ([2]), but it comes at
the cost of a higher MSE than some other estimators. The trimmed mean, linearly
weighted mean and modified MLE turn out to be quite robust and e�cient in general.
In this paper we consider only median T(1), trimmed mean T(2) and pseudomedian
T(3).

The results of our Monte Carlo simulations are summarized in Table 2. As it is shown
in mentioned tables, the most commonly used tests of normality, such as the SW and
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JB tests, are too strict in rejecting normality in the case of a small number of outliers,
even when the sample size is large enough. To illustrate this general framework, notice
that one of the most used SW test rejects the hypothesis of normality in 81% cases
if we suppose the p-location outlier model for p = 1, � = 5 and sample size n = 100.
Similarly, the JB and RJB tests are too strict in rejecting normality. If we suppose
the same p-location outlier model and sample size, the JB and RJB tests reject the
hypothesis of normality in 88% and 86% cases, respectively. In contrast, the TTRT1
and MC

LR

tests are more robust – TTRT1 test rejects normality in 29%, and MC
LR

test even in 5%, which is consistent with chosen significance level.

n = 20 n = 100
p = 1 p = 5 p = 1 p = 5

� = 3 � = 5 � = 3 � = 5 � = 3 � = 5 � = 3 � = 5
AD 0.173 0.630 0.273 0.922 0.086 0.374 0.546 1.000

DT 0.305 0.866 0.037 0.020 0.238 0.861 0.725 1.000

JB 0.314 0.872 0.056 0.115 0.269 0.884 0.754 1.000

JBU 0.319 0.878 0.033 0.016 0.273 0.886 0.751 1.000

LT 0.118 0.407 0.241 0.833 0.065 0.175 0.340 0.984
RJB 0.298 0.850 0.056 0.142 0.253 0.860 0.756 1.000

SJ
dir

0.234 0.728 0.051 0.190 0.160 0.630 0.550 0.998
SW 0.226 0.766 0.242 0.888 0.193 0.807 0.691 1.000

MC
LR

0.051 0.055 0.121 0.358 0.050 0.046 0.075 0.094
MMRT1 0.273 0.832 0.159 0.657 0.249 0.868 0.697 1.000

MMRT2 0.266 0.829 0.160 0.686 0.243 0.863 0.689 1.000

TTRT1 0.038 0.007 0.263 0.845 0.048 0.288 0.191 0.960
TTRT2 0.275 0.822 0.090 0.467 0.215 0.808 0.639 1.000

Table 2. Power of the selected tests for normality against outliers models for n = 20 and n = 100

Now, if we suppose a largest number of outliers in small sample size – e.g. the p-
location outlier model for p = 5, � = 5 and sample size n = 20 – we need the test
with high power, because the hypothesis of normality is not sustainable. Based on our
Monte Carlo simulations we can recommend the AD, SW and again TTRT1 tests –
these test reject the hypothesis of normality in 92%, 89% and 85% cases, respectively.
In contrast, the JB, JBU and RJB tests have small power against the mentioned
p-location outlier model – the classical JB test reject the hypothesis of normality only
in approximately 12% cases, the RJB test in 14% cases and finally the JBU reject
the hypothesis of normality only in approximately 2% cases.

Based on these simulations we can conclude that especially the TTRT1 test is more
robust against many di↵erent types of small numbers of outliers compared to sample
size, while the SW , JB and RJB tests generally are non-robust. In other words,
the TTRT1 test is more robust in case of small number of outliers than the classical
normality tests such as SW and JB, and simultaneously have comparable power with
the SW test in case of presence of large number of outliers compared to sample size.

14. Discussion and conclusions

This paper introduces the general RT class of robust tests for normality and discuss
their properties, especially geometric ones. The further theoretical considerations of
class RT will be of interest. In the simulation study we have focused on the power
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study of selected tests from RT class. We have compared these tests with the selected
tests for the normality on the large scale of alternatives. Some of the most important
results (observations) are:

• The RT class includes a large number of tests with di↵erent properties, especially
power and robustness.

• Some RT class tests (e.g. the classical JB test, RJB test, SJ test among others)
have already been studied in the literature – these tests are special cases of RT
class tests with/without trimming for the di↵erent settings of parameters of the
general RT class test statistic.

• Based on our pilot simulation study we recommend four tests with good prop-
erties for the general use – MMRT1, MMRT2, TTRT1 and TTRT2 tests.

• TTRT1 test is more robust against many di↵erent types of small numbers of
outliers.

• Many results of this paper are in the coherence or are extending the results of
previous studies, e.g. [49].
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[29] Müller W.G., and Stehĺık M. (2012). Discussion of the paper by Steven G. Gilmour and
Luzia A. Trinca. Journal of the Royal Statistical Society: Series C (Applied Statistics),
Vol. 61, No. 3, pp. 345–401.

[30] Nürnberg G., and Rasch D. (1983). The influence of di↵erent shapes of distributions
with the same first four moments on robustness. Robustness of statistical methods and
nonparametric statistics, Ed. by Dieter Rasch and Moti Lal Tiku, pp. 83–84

[31] Obenchein R.L. (1971). Multivariate Procedures Invariant under Linear transformations,
Ann.Math. Stats. 42 (5), 1569-1578.

[32] Richter, W.-D. (1985). Laplace-Gauß integrals, Gaussian measure asymptotic behaviour
and probabilities of moderate deviations. Z. Anal. Anw. Vol. 4, No. 3, pp. 257-267.

[33] Richter, W.-D. (1991). Eine geometrische Methode in der Stochastik.Rostock. Math.
Kolloqu., Vol. 44, pp. 63-72.

[34] Richter, W.-D. (1995). A geometric approach to the Gaussian law. In: Symposia Gaus-
siana, Conf. B, Eds: Mammitzsch/Schneeweiß. Walter de GruyterCo, Bln., pp. 25-45.

24



[35] Richter, W.-D. (2007). Generalized spherical and simplicial coordinates. J. Math. Anal.
Appl., Vol. 336, pp. 1187-1202.

[36] Richter, W.-D. (2008a). On l2,p-circle numbers. Lithuanian Math. J., Vol. 48, No. 2, pp.
228-234.

[37] Richter, W.-D. (2008b). On the ⇡-function for nonconvex l2,p-circles. Lithuanian Math.
J., Vol 48, No. 3, pp. 332-338.

[38] Richter, W.-D. (2009). Continuous ln,p-symmetric distributions. Lithuanian Math. J.,
Vol. 49, No. 1, pp. 93-108.

[39] Richter, W.-D. (2012). Exact distributions under non-standard model assumptions. AIP
Conf. Proc., Vol. 1479, pp. 442.

[40] Richter, W.-D. (2014). Geometric disintegration and star-shaped distributions. Journal
Statist. Distrib. Appl., Vol. 20, No. 1, 24 pages.
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