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Geometric Aspects of the Linear Complementarity Problem

by Richard E. Stone

ABSTRACT

A large part of the study of the Linear Complementarity Problem (LCP)

has been concerned with matrix classes. A classic result of Samelson, Thrall,

and Wesler is that the real square matrices with positive principal minors

(P-matrices) are exactly those matrices M for which the LCP (q, M) has a

unique solution for all real vectors q. Taking this geometrical characteriza-

tion of the P-matrices and weakening, in an appropriate manner, some of the

conditions, we obtain, and study other useful and broad matrix classes thus

enhancing our understanding of the LCP.

In Chapter 2, we consider a generalization of the P-matrices by defining

the class U as all real square matrices M where, if for all vectors z within

some open ball around the vector q the LCP (z, M) has a solution, then

(q, M) has a unique solution. We develop a characterization of U along with

more specialized conditions on a matrix for sufficiency or necessity of being

inU.

Chapter 3 is concerned with the introduction and characterization of the

class INS. The class INS is a generalization of U gotten by requiring that the

appropriate LCP's (q, M) have exactly k solutions, for some positive integer

k depending only on M. Hence, U is exactly those matrices belonging to

INS with k equal to one.
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Chapter 4 continues the study of the matrices in INS. The range of

values for k, the set of q where (q, M) does not have k solutions, and the

multiple partitioning structure of the complementary cones associated with

the problem are central topics discussed.

Chapter 5 discusses these new classes in light of known LCP theory, and

reviews its better known matrix classes.

Chapter 6 considers some problems which remain open.
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CHAPTER 1.

BACKGROUND TO THE LINEAR COMPLEMENTARITY PROBLEM

1.1 Introduction

The central topic with which this work is concerned is the linear com-

plementarity problem (LCP). The LCP is a nonlinear system of inequalities

where we are given as data an n X n real matrix M, a real n-vector q, and

are asked to find a real n-vector z such that

z > 0, (1.1)

Mz + q _ 0, (1.2)

zT(MZ + q) = 0. (1.3)

Although we shall not do so here, one can consider the more general com-

plementarity problem: given a closed convex cone K C ", -with positive

polar cone K ={Y E R" : yTZ > 0, for all z E K), and a function

F: K -R", find z E R" such that

z-K, (1.4)

F(s) E K, (1.5)

Tr'F(S) 0. (1.6)
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These problems may be thought of as the natural formulations to use in

situations where an equilibrium point is being sought. They arise in quite a

number of fields including engineering, economics, optimization, game theory

and control theory. For more on these applications see, for example, Lemke

and Howson (1964), Cottle and Dantzig (1968), Cohen (1975), Koehler (1979),

and Cottle, Giannessi and Lions (1980).

As the previous references would suggest, the LCP has been extensively

studied. Most of this research has emphasized the algebraic nature of the

problem. In the present work we study the LCP from a geometric view-

point. Other authors have also taken this direction, see Saigal (1970b, 1972a,

1972b), Murty (1972), Eaves (1979), Kelly and Watson (1979), Garcia and

Gould (1980), Howe (1980), Cottle, von Randow, and Stone (1981), and

Doverspike and Lemke (1981). This work studies the characterization and

general properties of matrices M for which (q, M) has the same number of

solutions "globally," and, as a special case, has a unique solution "globally."

(Here "globally" is used to mean "for all q E R'" for which (q, M) has a

solution, except possibly for a set of measure zero." This will bt explained

in more detail later.) Other works often are concerned with exhibiting algo-

rithms that "process" the LCP for a specified matrix class, and then, possibly,

using the algorithm to show various properties of that class. In this work we

are concerned with existence proofs and properties of matrix classes rather

than with algorithms. The questions studied do not seem to lend themselves

to algorithmic techniques.

In Chapter 2 we will study LCP's which have either no solutions or

unique solutions at almost every point. We will derive necessary and sufficient

conditions for a matrix M to have the property that if for some qo E R'

and some e > 0 the LCP (1.1)-(1.3) has a solution for all q E R" within

2
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a distance of c from qO, then the LCP has precisely one solution for q0.

Further results on matrices where the related LCP has this "global" unique-

ness property will be derived. A few papers show that some known matrix

classes are of this type. We will examine these papers more closely in Chap-

ter 5. In another direction, the question of local uniqueness in an LCP was

studied by Mangasarian (1980). That paper exhibits necessary and sufficient

conditions for a solution, z, to a given LCP to be within an open ball in

R' that contains no other solutions to the LCP. Aside from keeping an al-

gebraic outlook, these results are in a different vein from the questions we are

presently considering and do not appear to be helpful to the current study.

In Chapters 3 and 4 we relax the condition of global uniqueness. In

essence we replace the italicized word "one" in the previous paragraph with

k, where k is some fixed positive integer. We will derive characterizations

for these matrices and related results concerning the geometric structure of

LCP's with this property. There are a few papers that deal with the property

of an almost globally invariant number of solutions, see Murty (1972), Saigal

(1972b), Kojima and Saigal (1979), and Mohan (1978, 1980). These papers

deal with special matrix classes for which a specialized result is sought.

They do not attack the problem in full generality, and some do not look

for underlying geometric structure. Saigal (1972b) contains some errors -

inherited by Mohan (1978) - which will be discussed in Chapter 5. These

papers, along with some others, e.g., Saigal (1972a), discuss the property

of an almost globally invariant parity in the number of solutions. That

is, the number of solutions to (1.1)-(1.3) for a particular matrix, M, will

be either odd or even, not both, for almost all q. This is a much weaker

property than that of an invariant number of solutions, and will not be given

much consideration here. The interested reader should see Saigal (1972a)

3

e



for a complete geometric characterization of LCP's with this constant parity

property.

Chapters 5 and 6 discuss other matrix classes, related LCP theory and

some open questions. It is typical for dissertations in this field to begin with

one or two chapters reviewing the known classes of matrices and the history

of the area. In this work it seemed better to leave this to a later chapter. It

is Chapter 5 that contains such a summary.

The next section of this chapter will go over preliminary results that are

needed throughout this work. The last section of this chapter is a glossary of

the notation that is used. It is suggested that the reader first look over this

last section to see the basic style of notation used. It should be pointed out

that throughout this work the word interior is used to mean relative interior.

1.2 Background Material

As was stated before, the Linear Complementarity Problem is: Given

MER'xn and qE V,find zE R" such that

Z > 0, (1.1)

Mz + q > 0, (1.2)

ZT(Mz + q) = o. (1.3)

The LCP with M and q as the data will be denoted as: (q, M). For our

purposes it will be useful to define w = Mz+q.. Thus we can express (q, M)

as the problem, given M E W" x and q E R", of finding z, w E R" such

that

4



Iw - Mz q, (1.7)

Z,w > 0, (1.8)
zTw --o, (1.9)

where I is the n X n identity matrix. This formulation of the problem makes

it clear that we are just trying to find a nonnegative linear combination of

the column vectors of I and -M that equals 9, where we may not "use"

both I., and -M. for any i E W. This idea suggests making

DEFINITION 1.1 For M E W"" and a E (-n) define CM(a) E W""

as r i if
CM(cz)., -- --M., ,if iEa (.10)

where the subscript M will be dropped when it is clear to which M we are

referring. The CM(a). are called the complementary matrices associated with

M. There are 2" such matrices, not necessary distinct.

Associated with each complementary matrix is the finite convex cone

posCM(a)-{YE":y-CM(o)z, zO}.

The cone pos CM(a) is called a complementary cone of the matrix M, and

the subscript M is dropped when it is clear which M is meant. There are 2"

such cones, not necessarily geometrically distinct. Notice that two distinct

complementary matrices may be associated with complementary cones that

are geometrically identical. For example, the matrix

[00]
- (1.11)

[-1 0]

will have pos C({ 1 }) geometrically equal to pos C(2), even though C({ 1)

and C( ) are distinct matrices.

5
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If we have 0 E (ff) such that

dim(pos CM(Ca).p - r

then pos CM(a).,s is referred to as a r-dimensional facet of the complementary

cone pos CM(a). Furthermore, if 1#31 = n - 1 then pos CM(ci).p is referred

to as a face of the complementary cone pos CM().

Let sol(q, M) be the set of ordered pairs, (w, z), of solutions to the LCP

(q, M). If (w, z) E sol(q, M) then, letting z = w + z > 0 and a -supp z,

we have C(cr)x = q. Conversely, if we find for some ct E (-n) that there

is an x > 0 with C(a)x = q then with z. = x,,, za = 0, wa = 0

and w& = z, we have (w, z) E sol(q, M). In this way, each solution,

(w, z) E sol(q, M), will be associated with at least one complementary cone

of M. Also, in this way, each point in a complementary cone of M will be

associated with at least one solution. We can now state-

DEFINITION 1.2 For M E R"×' let

K(M) = U posCM(a).

OE(-n)

We then see from the previous discussion that

K(M) - {qER":sol(q,M)-$}.

In Figure 1.1 we show the complementary cones for the matrix in (1.11).

In Figures 1.2 and 1.3 we show the complementary cones, respectively, for

the matrices (1.12) and (1.13), where

[01
--1  

[0 1)

(1.12) (1.13)
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In these diagrams the column vector I., is indicated by an i and the column

vector -Mi is indicated by an i'.

Each solution of (q, M) must be associated with at least one complemen-

tary. cone containing q, and each complementary cone containing q must be

associated with at least one solution of (q, M). However, the exact relation-

ship between complementary cones and solutions is often not simple. For

example, consider the problem with M given by (1.12) and q = (1, 1)T.

Then q is contained in three complementary cones pos C(O), pos C({ 1 }) and

pos C(2). However, Isol(q, M)l = 2; where the solution (w, z) = (1, 1, 0, 0)

is associated with pos C(O), and the solution (w, z) = (0, 0, 1, 0) is associated

with the other two cones. With M given by (1.13) and q = (0, -1)r, we

find q is contained in the complementary cones: posC( ) associated. with

the solution (w, z) = (0, 0, 1, 0); pos C({ 2 }) associated with the solution

(w, z) = (1,0, 0, 1); and pos C({ 1 )) associated with the infinitely many solu-

tions (w, z) = (0,0, 1 + 0,0), where 0 ranges over all nonnegative reals. In

the first case we have have more complementary cones containing q than

solutions to (q, M); in the second case there are more solutions to (q, M)

than there are complementary cones containing q.

To help in our discussion, we make the

DEFINITION 1.3 For M E *nX, we say the complementary cone

pos Cm(a) is full or nondegenerate if and only if det CM(a) 4 0; otherwise

we say the cone is degenerate. Notice det CM(a) = (--1)1a det Maa. More

over a complementary cone is full if and only if it has positive n-dimensional

volume, and a complementary cone is full if and only if it is not contained in

an (n - 1)-dimensional hyperplane. In addition to the above, we say M itself

is nondegenerate if for all a E (-n) the cone pos CM(a) is nondegenerate, i.e.,

7
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all the principal minors of M are nonzero.

DEFINITION 1.4 For M E &,Xn, we say the degenerate complementary

cone pos CM() is strongly degenerate if and only if there exists a z E Rn

such that 0 = z > 0 and CM(a) z =. 0, i.e., if and only if for q = 0, which

is in every complementary cone, we find (q, M) has a non-trivial solution

(w, z) 3/ 0 associated with pos CM(a). Otherwise we say the cone is weakly

degenerate. We say M is weakly degenerate if not all of its complementary

cones are nondegenerate, but none of the complementary cones are strongly

degenerate. That is, M is weakly degenerate if it has a zero principal minor

and sol(0, M) {(0, 0).

DEFINITION 1.5 For M E R,,)", we say (w,z) E sol(q,M) is a

nondegenerate solution if and only if w + z > 0. Otherwise the solution is

said to be degenerate. We say a point q E lRn is nondegenerate with respect

to M if all solutions to (q, M) are nondegenerate. Otherwise q is said to

be degenerate.

Consider the matrix M as given by (1.11). M is a degenerate matrix

as all of its complementary cones are strongly degenerate, except for the

nondegenerate complementary cone pos C(0). The matrix M as given by

(1.13) is degenerate as it contains the weakly degenerate complementary

cone pos C({ 1 }). Finally, let M be the nondegenerate matrix given by

(1.12). If q - (1, I)T, then q is degenerate as (w, z) = (0,0, 1, 0) is a

degenerate solution to (q, M). If q - (3, 1)T, then q is nondegenerate

as (wi, z') _ (3, 1, 0, 0) and (W2, Z2) - (0, 0, 2, 1) are the only solutions

to (q, M) and both are nondegenerate. The reader should refer to Figures

1.1, 1.2, and 1.3, respectively, when considering the matrices given by (1.11),

(1.12), and (1.13).

8



Now, suppose q is contained in the interior of the degenerate complemen-

tary cone pos CM(a). Thus there is some 0 < z E Ot" such that C(a) z = q.

As this is a degenerate cone, there exists 0 y Y E W" such that C(a) y = 0.

Thus we may select some real number X 3 0 such that 0 -{ z + Xy > 0.

Hence, if we let z, = (z + Oy)a, z& = 0, w. - 0, and o& = (z + Oy)a,

then (w, z) is a solution to (q, M) for all 0 such that 101 IkX. Hence, if M

is degenerate then we have some q E 3 with Isol(q, M) = oo. Notice also

that (q, M) has a degenerate solution when we let 0 = X. In fact, this holds

even if we have q on the boundary of the degenerate complementary cone.

However, now we might have X = 0, and so we might not have infinitely

many solutions, but we will still have a degenerate solution.

Suppose q is contained in the nondegenerate complementary cone

pos CM(a). Thus there is some 0 < x E R" with C(a)z = q. But now

C(a) - ' exists and z = C(a)- 1 q. So with za = za, = 0, 0 = 0,

and w& = x&, we have ([W,, Wal, [z., z&]) is the only solution to (q, M)

associated with the complementary cone pos CM(a). In fact, if the solution

(w, z) is nondegenerate, i.e., if z, > 0 and w& > 0, then this solution is

associated with no other complementary cone. For if it were associated with

posCM(13), 03 E (W), then we would need zo = 0 and wp = 0 which, with

the previous, would imply a - /3. We now have

9



PROPOSITION 1.6 Given M E WRfX":

(i) (q, M) has finitely many solutions for all q E R' if and only if M is

nondegenerate;

(ii) if q E N' is in the interior of a degenerate complementary cone then

(q, M) has infinitely many solutions;

(iii) each degenerate complementary cone is associated with exactly one

solution of (q, M) for each q E W that it contains (and, of course, it

is associated with no solutions for the q it doesn't contain);

(iv) if q E 3V is nondegenerate then there is a bijective correspondence

between solutions of (q, M) and complementary cones containing q.

0

The concept of complementary cones is first seen in Samelson, Thrall

and Wesler (1958), and was later given a comprehensive treatment by Murty

(1972). Proposition 1.6 is an expansion of theorems proved in Murty (1972).

Before moving on to discuss other areas of LCP background material, it is

important to bring up the following

DEFrNITION 1.7 For M E 9nxn, we say the two complementary cones

posC(a) and posC(,8), with a, fl E (W), are adjacent if and only if

Ja A fi3 = 1. That is, two distinct complementary cones are adjacent if

they share a common face. If a A# = { i }, then that common face is

pos C(a).1 = pos C(3).j.

DEFINITION 1.8 For M E Wxn, we say the common face

pos CW(a)., between the complementary cones pos CM(a) and pos CM(fp),

where a 6 /3 ={i }, is proper if and only if (det CM(a))(det CM(f)) < 0.

As det CM() - (--1)IaI det Maa, we have

10



pos CM(6).i is proper if and only if (det M 0,)(det Mpp) > 0.

Geometrically, pos CM(a).t is proper if and only if it is (n - 1) -dimensional

and the vectors .i and -Mi lie on strictly opposite sides of span CM(a).t.

DEFINITION 1.9 For M E RnX?, we say the common face

pos CM(a).; between the complementary cones pos CM(a) and pos CM(P),

where a A 6 = { i }, is reflecting if and only if (det CM(a))(det CM(3)) > 0.

Similar to the above we have

pos CM(a).j is reflecting if and only if (det Maa)(det Mpp) < 0.

Geometrically, pos CM(a).I is reflecting if and only if it is (n-1)-dimensional

and the vectors I., and -Mi lie on the same side of span CM(a).,.

DEFINITION 1.10 For M E Rn"x,, we say the common face

pos CM(a).t between the complementary cones pos CM(a) and pos CM(/),

where aal3 = { i ), is degenerate if and only if (det CM(a))(det CM(3)) = 0.

As above, it can be shown that pos CM(a).; is degenerate if and only if

(det Maa)(det Mop) = 0, if and only if pos CM(a).j is a face of a degenerate

complementary cone.

For examples of the preceding definitions see to Figure 1.3, which shows

K(M) for the matrix (1.13). Here pos C(0).j is proper, pos C(2).2 is reflect-

ing, and pos C(M., and pos C(O). 2 are degenerate.

We now move on to consider the algebraic concept of principal transforms

of the matrix M. For a more detailed discussion see Tucker (1960, 1963),

Cottle and Dantzig (1968), and also Cottle (1974). Suppose we are given a

matrix M E RXn which is not necessarily square and can be permuted to

11



look like

M Mao [ Ma

Moreover, suppose a E (M), P E (ff), jiH = 1,1, and det Ma. -2 0. We then

say the matrix

M-1 -M-1 Mco

map, M-1, Mo - Ma, MC, M,.

(1.14)

is a pivotal transform of M. We also say ? is gotten from M by block

pivoting on Mc.#. If a - fl, we then say M is a principal transform of

M. Notice from (1.14) that if a C -f E (W) then the principal transform of

M., resulting from a block pivot on M.. is just ( ') . In other words,

the principal transform of a submatrix will be the submatrix of a principal

transform. (The converse is not necessarily true.) The following two theorems

are straightforward algebraic consequences of the definition of V?. They can

be found, for example, in Cottle (1974) and Parsons (1970).

THEORFEM 1.11 Given M E !- xn with V E &-x n being the trans-

form of M obtained by block pivoting on Ma., then for all x E Mn and

y E R " we have

[Map M.A X Y

Map MA] 4 [z]
12



1,1m -I I

if and only if

0

THEOREM 1.12 (Tucker (1960)) Given M E N"lx and a E (N). If

? E ' ' is the principal transform of M obtained by block pivoting on

Maa, then for all 1P E (w)

detPP - det Ma 0,,p,
det M..

0

We will now obtain a few facts concerning principal transforms and their

relation to the LCP.

THEOREM 1.13 Given M E N'× and q E NR", consider the matrix

M I q ] E !nRx(n+l) and let [ M J q J E Rix(n+) be its principal

transform obtained by blocking pivoting on Ma. for some a E (W). Then

Isol(q, M)l = Isol( , M-)I.

Proof. From Theorem 1.11 we have for any w,z E R'n that[ Mci M0  11 [ I 0]
M., M,& q* . wo

]----- (1.15)

M I M&& qa[

13



if and only if

J i zJ =i I. (1.16)

Hence, if ((to., w&I, (z., z&]) E sol(q, M) then (fz0 , wa], (W.a? z&]) E sol( , M),

and vice versa. This gives us a bijective correspondence between solutions to

(q, M) and solutions to ( , --). Thus, the number of solutions must be the

same for the two LCP's.

0

THEOREM 1.14 Given M E *nXn, q E W and a E (n), let

[ I 1 1 E nx(n+1) be the principal transform of [ M I q I E Rntx"

obtained by block pivoting on M... Then q E int K(M) if and only if

? E int K(M).

Proof. For any z, w, z E N"r, Theorem 1.11 implies that

Za

Ma Ma q. 1.a _ 1[M&* M&& q& 0 4a] X0  J&

(1.17)

if and only if

14
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w/a

"1a. o

0 1&& X, W]

(1.18)•

Notice that, as the columns of M-1 are linearly independent, the columns

of

0 a

span R". Suppose q E K(M). We then have an e > 0 such that z E B(q, c)
implies sol(q+ x, M) 3- 0. Let 7 = (-M-'I z, z 6 )T E 31". Thus, by (1.17)

and (1.18) we see that sol(q+z, M) 760 implies sol(V+YM) 3 0. As (1.19)

spans R", the set of 7 corresponding to all z E B(q, c) contains an open ball

around q. Thus ? E int K(M). This proves one direction of the theorem.

The other direction is proved by the same argument.

THEOREM 1.15 Given M E It×', q E W" and a E (W), let

[ I ? I E 1 X(,+1) be the principal transform of [ M I q I E i×("+')

obtained by block pivoting on M 8 8 . Then q E int pos CM (#) if and only if

I qEint pos CV(aA/3O).

Proof. Suppose q E intposCM(p). Then there is an e > 0 such that

z E B(q, e) implies q + z E pos CM(13), the latter thing implies there is

a (to,z) E sol(q + z,M) such that wp = 0 and zo = 0. As before,

let 7 = (-M-1 X., 6 )T E R". By (1.17) and (1.18) we see that (w, ) -

([z., wa, [w.,zal) E sol(4+-, T). Hence, with y a- ei, we have W. - 0

15

t a

4



and j = 0. This means V + 7 E pos C-(-y). Thus for the set of Y

corresponding to all z E B(q, e), which as before will contain an open ball

around ?, we have ? + E pos C M-A &). Hence, V E int pos C(a A B).

The other direction of the theorem is proved by the same argument.

The preceding theorems show that, from the standpoint of combinatorial

topology, the structure of K(M) is identical to the structure of K(X7). The

positive orthant in K(V') identified with pos C(a) in K(M). Pivoting on

Maa is, in essence, "swoping" the vectors I.a with the vectors -M.a.

As our last topic, t, turn to look at some classes of matrices that we

will need. We will We discussing many more matrix classes in Chapter 5, but

for now we will mentio? only the classes P, Po, Q, Qo, and E0 .

We say a matrix M E .R"X is in P (PO) if and only if all its principal

minors are positive (nonnegative). It is clear that membership in P or Po

is an inherited property, i.e., if a matrix is in P (P 0 ) then all its principal

submatrices are in P (P 0 ). We also see, from Theorem 1.12, that if a matrix

is in P (P 0 ) then all its principal transforms are in P (P 0 ). (This was

first proved in Tucker (1963).) The main theorem concerning the geometric

structure of P-matrices comes from Samelson, Thrall and Wesler (1958) and

states

THEOREM 1.16 For M E Wn", M E P if and only if Isol(q, M)l - 1

for all q E &n.

Another pair of matrix classes that are defined by the LCP are Q and

Q0. A matrix M E YiXU× is said to be in Q if and only if sol(q, M) 0 0 for

all q E Sn, i.e., K(M) W" W. It is clear that P C Q. However, the zero
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matrix in any dimension is in P0 but not in Q. Also, the matrix

[ 2] (1.20)

is not in Po, so not in P, but it is in Q, as can be seen in Figure 1.4.

The definition of Qo requires the concept of being "feasible" with respect

to a LCP. We say z E R" is feasible with respect to (q, M) if and only if z

satisfies

z > 0, (1.1)

Mz+q > 0. (1.2)

We now can define M E R-x- to be in Qo if and only if for all q E R", for

which there is a z E R which is feasible for (q, M), we have sol(q, M) 0.

Clearly Q g Qo . Notice that the negative of the identity matrix in any

dimension is not in Po, but is in Qo as then (q, -I) has a feasible z if and

only if q 0, in which case (q, 0) E sol(q, M). Also the matrix

M 
(1.21)

0 1

is in P0 but not in Q0, for when q = (-1,0)T we find sol(q,M)30

although z = (0, 1)T is feasible. From Eaves (1971), we have the following

geometric result pertaining to Qo-matrices.

THEOREM 1.17 Given M E 3"", M E Qo if and only if K(M) is a

convex set in R".

Before leaving this section, we mention the matrix class E0 . A matrix

M E R" x is said to be semi-monotone, denoted M E E 0 , if and only if

17



for all z E R, where 0 z 0, there is an index k E W for which ZX > 0

and (MxZ)k > 0. (This class was introduced in Eaves (1969).) Consider the

matrices

[o ,] [_1 ,J01 0-1 2

(1.22) (1.23)

Notice that the matrix (1.22) is in Eo but not in P0 . It isn't in Qo since

z = (1, O)T is feasible for q = (1, -1)T, yet there is no solution to the LCP

with this q and matrix (1.22). Also, matrix (1.23) is in Q, as can be seen in

Figure 1.5, but is not in E0 . It is fairly obvious that

M>0 MEE 0 . (1.24)

It is also fairly obvious that being in E0 is an inherited property, i.e., if a

matrix is in E0 then. so are all its principal submatrices. For if the vector

z E Rn with 0 ,,, > 0 is such that (Maa xa)k < 0 for all k E a where

zX > 0, then letting z& = 0 we have 03z > 0 with (Mz)k < 0 for all

k E (W) where Zk > 0. A is less obvious fact is the following (see Fiedler

and Pt~k (1966), Lemke (1970) and Eaves (1971)).

THEOREM 1.18 P0 C Eo .

1.3 Notation

For easy reference, this section lists the notation that will be used in this

work and specifically the notation which is not standard.

18



Itm Explanation

The set {1,2,3,...,n).

a, f3, 1/, etc. Index sets. Example: the ordered k -tuple a -

(al,...,a) with I < al < ... < ak n.

() The collection of all index sets formed from ff (in-

cluding the empty set, 0).

& The index set "complementary" to a (relative to

W). & is obtained from (1,2,...,n) by deleting

the components in a.

i& for a= (i}.

WnV& The class of all real m X n matrices.

Z+ The class of all positive integers.

MaP The submatrix of M with rows indexed by a and

columns indexed by 8. If a = 8 we say then call

Maa a principal submatriz of M. The determinant

of a principal submatrix of M is called a principal

minor of M. By convention det M#$ 1.

M -1# -1

M. The 01 row of M.

M.j The jI column of M.

Ma. The rows of M indexed by a.

M. The columns or M indexed by .

19
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z2 The entries of the vector z indexed by a.

CM(a) or C(c) A complementary matrix relative to M and the

index set a. If C = C(a), then

= if jE a

ILj if j 0 a

The subscript M is normally dropped when it is

clear from the context.

span C The column space of the matrix C.

aff X The affine hull of the set X. This is the set

{z-+ (y-z):z,y EX, and 0E3R}.

dim X The dimension of the affine hull of the set X. This

is the minimum number of columns needed in a

matrix C so that, given some q E X, we have

aff X = {q + z z E spanC}.

posC The set {Cx : x > 0} where C is a matrix

(not necessarily square). If C is a complemen-

tary matrix relative to M and some a E

then pos C is called a complementary cone. A com-

plementary cone is said to be full or nondegenerate

if det C - 0. Otherwise, it is called degenerate.

K(M) The set

U POS CM(a).

0E(W)

20



K(M) The set

U pos CM(a).,

B(q, e) The open ball centered at q with radius E. This is

the set { x E !R': jj -qlI < e }.

int X The relative interior of the set X with respect to

aft X. This is the set of all q E X such that there

is some e > 0 such that affXOnB(q,c) g X.

49X "The relative boundary of the set X with respect to

aff X. Thus X = X \int X.

The closure of the set X. This is the set of all

z E Rn? such that for all c > 0 there is a q E X

where q E B(z, c).

P Un{ M ER-X-n det Mc > 0, for all a E

P0  U,{ M E Rnxf: det M., 0, for all a E (f)

Q yU{ M E xn : K(M) = }.

Q0 U,,{ M E 'X X :K(M) = pos[ II -M}

Eo Un EME Rnxn: O z > 0=

3k X > 0 & (MX)k >0 o}.

Matrices in this class are said to be semi-monotone.

IXI The cardinality of the set X.

(q, M) The LCP given by (1.1), (1.2) and (1.3).
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sol(q, M) The set of all solutions of the LCP (q, M).

a AO The symmetric difference of a and P3. This is the

set (a\ P)UP \ a).

supp z The support of the vector x. This is the set

Sj: -7. 4 0 }

One last point before ending this list: we say a set X is star-shaped at

q if and only if for every z E X we have

{Xq + (1 - )z :0 < X < 1} CX.

This says that the line segment between q and z is contained in X.
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CHAPTER 2.

THE CLASS OF U-MATRICES

2.1 Preliminary Definitions and Results

In Chapter 1 we exhibited several matrix classes that are related to

the LCP. It is often the case that one useful class of matrices leads to

the consideration of other interesting matrix classes, gotten by weakening or

strengthening the conditions that define the original class. For example, the

class P suggests considering the more general class P 0 . The class P, viewed

as the class of all matrices M for which (q, M) has a uniquc solution for all

q, suggests defining the class Q by dropping the uniqueness requirement and

just requiring that for each q a solution to (q, M) must exist. The class Q,

in turn, gives rise to the class Q0 when we relax the definition to require only

that (q, M) have a solution whenever (1.1) and (1.2) alone are satisfiable.

We presently wish to understand the basic geometric structure which

gives rise to unique solutions to (q, M). With this in mind, we consider the

following class of matrices
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U M E R" :". Isol(q, M)I = 1, for all q E K(M).

This matrix class is obtained from P by relaxing the requirement that (q, M)

have a solution for all q, as Q was obtained by dropping the uniqueness

requirement. However, as we will see later, this "new" matrix class consists of

nothing but P. While this is an insightful result by itself, a subtler weakening

of the definition of P-matrices is needed to get an appropriate matrix class

for our analysis. We find that the appropriate class to study is embodied in

the following definition.

DEFINITION 2.1. A matrix A will be said to be a U-matrix, A E U, if

and only if

A E U { M E Rfl×" : Isol(q, M) = 1, for all q E int K(M) }.

The goal of the next section will be to develop a characterization for the

class U. Before embarking on this task, we give two examples which verify

that U consists of more than just P; we also discuss some needed definitions

and results.

EXAMPLE 2.2 Let

In this case,

K(M) qE R2 :q1+q2 O0}

as shown in Figure 2.1. Note here that (q, M) has a unique solution for all

q satisfying q1 + q2 > 0 including those of the form

0 (11 > 0 and q2 q2 > 0

27
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for which the solution to (q, M) is degenerate.

EXAMPLE 2.3 Let

M 1 0

In this case,

K(M) =Z2U *

as shown in Figure 2.2. Here the problem has a unique solution for all q

satisfying q > 0 or q < 0.

Notice that K(M) is convex in Example 2.2 and nonconvex in

Example 2.3. In both cases, Isol(q, M)l = co for all q E 19K(M).

Perhaps the most important fact underlying the study of uniqueness is

expressed by

LEMMA 2.4 If M E ">", the following are equivalent:

(i) M E E0 (that is, M is semi-monotone);

(ii) (q, M) has a unique solution for all q > 0;

(iii) for all a E (f), the system

Ma1Xa < 0, ze _> 0

has no solution.

The equivalence of (i) and (ii) was shown by Eaves (1971). The equiv-

alence of (i) and (iii) was shown by Lemke (1970).

Since int _ C int K(M) for any M E RfX,, it follows immediately

28
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from the definitions that

UC E0 . (2.1)

However, the inclusion is proper as shown by

M=[ E Eo
2 1

for which K(M) = R2. In this instance M E E0 as M> 0. MEQ,

as seen by Figure 2.3, so every point q E 92 is interior to K(M). But

some problems (q, M) do not have unique solutions, for otherwise M would

belong to P which it does not.

Let M E !R x' and q E R" be given. If the matrixI[MI ]

is a principal transform of [ M I q ] then, by Theorems 1.14 and 1.13,

respectively, we know that q E int K(M) if and only if V E int K(M), and

that Isol(q, M)I = Isol(4, )J. From this we find

MEU MEU.

This leads us to the following definition.

DEFINITION 2.5 If M E !Rx, we say M is fully semi-monotone if

and only if every principal transform of M is semi-monotone. We denote

the class of such matrices by Ef.

We remark that Er C E0 as the "empty pivot" is always legitimate:

M is always a principal transform of itself. Notice that being in E0 is an

inherited property of matrices. For, from Chapter 1, we know that being in

E0 is an inherited property, and also that a principal transform of a principal

submatrix will be a principal submatrix of a principal transform.

29
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The matrices used in Examples 2.2 and 2.3 show that Ef is a nonempty

class. As a matter of fact, Ef contains P0. This follows as any principal

transform of a P0 -matrix belongs to P 0 , and as P0 g E0 . The matrix

used in Example 2.3 shows that P0 C Et is a proper inclusion.

Our remarks above the definition imply that

UC E (2.2)

which strengthens (2.1). But, again, the inclusion is proper. Indeed,

M-----E E ,
0 0

but with q - (1, 0) the problem (q, M) has the solutions

(w1,Z') = (1,0,0,0)

(W2 , z 2 ) = (0,0,0,1).

The corresponding cone K(M), shown in Figure 2.3, is quite revealing. Notice

that int K(M) contains the interior of the degenerate complementary cone

posC({ 2}).

2.2 Characterization of U-matrices

We have seen in the last section that U C Er . The task now is to find

precise conditions under which a matrix in Ef will also be in U. It turns

out to be easier to state exact conditions for when an Ef -matrix is not in

U. The main result of this section is:

30
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THEOREM 2.6 Let. M E ,x, Then M 0 U if and only if either

M E or there exist a, /3 E (i) and i, " E ff such that

(ii) (det Maa)(det Mpp) 7/ 0 and there exists a nonzero vector

v E W such that vTC(a). - vTC(p).j = 0,

(iii) there exists x E *"-I with z > 0 and C(a).t z E Pos C(f3).3 .

Taken together, conditions (i), (ii), and (iii) say that there are two full

complementary cones which have an (n - 1) -dimensional intersection on two

differently-labelled faces.

To prove Theorem 2.6, we first prove two lemmas.

LEMMA 2.7 Let M E.R ' X . M E Et if and only if for all a,,O E (W)

with det Maz4 0 and ay$/ we have

int pos C(a) fn pos C(o) 0 0.

Proof. Let [TM I ] be the principal transform of [M I q I gotten by block

pivoting on M,,,. We know, by Proposition 1.15, that q E int pos CM(a)

if and only if i E int pos C7H(O) [if and only if V > 0]. If we assume that

M E E , then V E E 0 . Letting C = CM and using Proposition 1.13 with

Lemma 2.4 we conclude that

q E int pos C(a) = fsol(q, M) = 1. (2.3)

For q E int pos C(a), we have C(a)-' q = z > 0 giving the solution

(w, z) E sol(q, M), where z. = z > 0 and w - z& > 0. If q E pos C(P),

31

l__Ii



then there is a solution (ib, i) E sol(q, M) with i =- 0, and as a /3, we

have (w, z) i(, ) contradicting (2.3).

Conversely, if we knew that int posC(a) intersected no other com-

plementary cones, th-n, as above, z - C()-l q would give us a solution

to (q, M), and it would be the only solution. Thus (2.3) is valid; again by

Proposition 1.13 and Lemma 2.4, we have M E E0 . Since this holds for all

aE (W) for which det M 3/- 0, we have M E Ef .

0

The preceding lemma says that when M E Ef , no point in the interior

of a full complementary cone lies in any other complementary cone.

LEMMA 2.8 Let L be an n-dimensional linear subspace of RP, and let

A and B belong to RpXm' where m > n. If, for i,j" E ff ,

(i) span A = span B = L,

(ii) int pos A.t nint pos B.j ; 0,

(iii) span A.- = span B., 3  L,

(iv) A.1 and B.j lie on the same side of span B.j (relative to L),

then

int pos A f iit pos B 4 0.

Proof. From (ii), we have the existence of a positive vector z E R2n- 2 such

that

[A.1, -B.j] x = 0, x > 0. (2.4)

If the conclusion were false, there would be no vector 7 such that

A,-B]Y = 0, >0.
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Then, by Stiemke's alternative theorem (see Dantzig (1963)) there would exist

a vector U such that

_ UT[A,-B] > 0.

(Without loss of generality, we may assume U E L .) But, by the same alter-

native theorem, the existence of a solution to (2.4) implies the nonexistence

of a solution to

0 3 uTI[A., -B.,I 0.

From this we deduce that

UT A.; = UT B.1 = 0.

Thus U is orthogonal to the span of A.i (which equals the span of B. 3 ). Yet

UTA.j > 0 > UT B.j . Thus A., and B.j lie on opposite sides of span B.3

since by (iii) neither can lie in span B. 3 , a contradiction.
El

We remark that this lemma could be made stronger; e.g., we could allow

A E RPJ r, B E !RPX, i E F, j E 3 and replace (i) and (iii) with

(i') span A C span B L

(iii') spanA 3 spanA.t C spanB.j 34 L.

However, stronger results are not needed in what follows.

Proof of Theorem 2.6: SuMciency. As we have already noted, U C Ert

so M 0 Et implies M 0 U. Suppose then that M E E' and the three

conditions of Theorem 2.6 hold. Let a, 0, i, j, v, and x be as described

therein. Define

H= {q vTq= 0}.
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Then by (ii)

pos C(a)., U pos C(3). C H.

Clearly H is (n - 1)-dimensional. By (ii), posC(a).j and pos C(,3).j are

also (n - 1) -dimensional. Condition (iii) implies

int pos C(a).i n pos C(o).3 3 0. o

In fact, the stronger assertion

int pos C(a). nint pos C(3).3 e 0 (2.5)

must also hold. To see this, let q = C(a).j x . As q is interior to pos C(a).j,

the dimension statements above imply that for some c > 0, all points in H

within a distance c from q belong to int pos C(a).j . But clearly pos C(O).,

which lies in H, contains interior points within c of q ; hence (2.5) is valid.

Certainly C(c). and C(/3).j do not lie in H. If they lie on the same

side of H, then as pos C(a) and pos C(,3) are full cones, Lemma 2.8 implies

that int pos C(a) n int pos C(3) = 0, contradicting Lemma 2.7. So C(a).j

and C(13).j lie on opposite sides of H. Hence

int pos C()., f int pos C(fO).3 C int{ pos C(a) U pos C(8)} _ int K(M).

Let -=aA{i}. Then

C = C(a).g and C(y).i =

Since i 3 j, we have pos C(-y) C span C(a).j ; this implies pos C(-y) is a

degenerate cone. However,

int pos C(a)., nint pos C(P).3 C pos C(-).

34

-*,,,,m - nn ~ i im |- -- | i . . . . . .



As this intersection is nonempty, there exist points of pos C(Qy) in int K(M),

hence there are points 4 E int pos C(y) mint K(M) , and so (4, M) will have

more than one solution. That is, M 0 U.

Necessity. We assume M 0 U. Then [sol(q, M) > 1 for some q belonging

to int K(M). Considering what must be proved, we assume M'E Et and

show that the three conditions are satisfied. There are two cases.

Case 1: q is in the intersection of two full complementary cones. Assume

for the moment that one of the cones is pos C(0), i.e., the nonnegative

orthant. Let pos C(14) be the other cone where it =4 0. Then there exists

a unique vector x > 0 such that

C(u)x= q> 0.

If x/ = 0, i.e., the solution does not use any columns from -M but only

columns from I, then by the uniqueness of z, we have x = q, and the

solutions that arise from C(0) and C(IA) are the same. If x. 3 0, we may

assume Z > 0. (If it is not, we may replace 1 by a = supp x. Then

C(a)x = C(u) z. If pos C(a) is degenerate, the argument of Case 2 applies.)

Thus, as C(jA) = q, we have

-MlPxM, = q1 O, , > 0.

But det M, =4 0, and MA, E E as M E Et Therefore having

-M, x, > 0 with Z > 0 says, with respect to the LCP (q., M..), that

an interior point of a full complementary cone is contained in R"', another

complementary cone. This contradicts Lemma 2.7.

For two full complementary cones, say pos C(X) and pos C(1s), the ar-

gument just given can be made to apply by performing a principal pivot
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on M>,,. (Let the resulting matrix be 7 and use the cones posCG(0),

pos CjW(X A p), and the correspondence between the cone structures of K(M)

and K(f).) Either way, Case 1 cannot occur.

Case 2: q belongs to a degenerate cone. We now assume det M, = 0

and

q E pos C(m) hint K(M). (2.6)

Let

dim pos C(14) -- s, 0 < s < n.

Note that if s - 0, then C(i) -- -M = 0. But then M belongs to U.

From (2.6) we have

dim[pos C(u) n int K(M)] = s.

Thus

dim {UIPos C(u) fl mt K(m) nl jos C(>)] : det c(x) 34 0} a

as int K(M) is contained in the union of the full complementary cones. Since

the union is finite, there exists a /P E (ff) with det C(i3) ,4 0 and

dim(pos C(M) n int K(M) n pos c(/p)] = s.

Lemma 2.7 says pos C(Az) n int pos C(/3) - 0, so

pos c(.u) l int K(M) n pos c(/P) g apos C(3).
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Since pos C(A) n pos C(1) is a convex cone and int pos C(O) C int K(M), it

follows that

pos C(,4) nint K(M) n pos C(o3) c pos C(3).3

for some j. As

dim pos C(1) s =-- dim[pos C(,) n pos C(o).j],

we have pos C(t) C span C(3).j. The (n - 1) -dimensional subspace

H - span C(/P).j

is the common boundary of the two closed half-spaces H+ and H-. Let

H + contain C(j3).j. Now

int K(M) n pos C(3).3 j 0,

whence

dim[int K(M) n pos C(3).3 ] = n - 1.

Suppose

detC(X) dim[posC(x)Nint K(M) nfpos C(3).3J < n-.

pos C(X) nint H- /= d

Then there exists q E int K(M) n pos C(/3).j contained in no full cone that

intersects H-. Thus, there exists a number co > 0 such that for all

C E (0, Col

B(e,q)nintH-hint K(M) =0
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since int K(M) is in the union of the full complementary cones. But as

q E H, we have B(f, q) nint H- A 0. Thus int K(M) does not contain an

open ball around q E int K(M), a contradiction. This implies there exists

a E (W) with detC(a)40, posC() nintH- 30, and

dim[pos C(a) nint K(M) n pos C(P).JI = n - 1.

Since pos C(fp) C H + , it is clear that a 3 43. Again

int pos C(a) n pos C()., =0

by Lemma 2.7, so

pos c(a) n pos C(,). 3 g a pos C(a).

As before (with pos C(,u)), we must have pos C(a) n pos C(,6)., lying in an

(n - 1)-face, say pos C(a). I , of pos C(a). But

dim[pos C(a)., n pos C(3).3J - n - 1 (2.7)

and

dim[pos C(a).] = dim[pos C(fl). 1-- n - 1, (2.8)

80

pos C(a)., U pos C(p).3 C H.

Pick v 3 0 orthogonal to H. Then

vTC(a). = vTC(p).j - 0.
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Notice that C(N).i E int H- (for otherwise, pos C(a) n int H- 0). Thus,

as C(13)., E int H + , and C().j E H, we have i j. In light of (2.7) and

(2.8), there exists a vector x E Rn- 1 such that

C(a).i x E posC(fl).3 , z > 0.

This completes the proof.

Notice, from the proof of sufficiency, that all degenerate cones of a

U-matrix must be in a K(M).

2.3 Variations on the Characterization and Further Results on U-matrices

In the previous section a set of necessary and sufficient conditions was

given for a matrix not to be in U. These conditions describe U as a subclass of

Et by stating exactly what "goes wrong" with an El -matrix when it is not

in U. It is of interest to look at other (sufficient) conditions on an Er -matrix

that would "force" it out of U vis-A-vis (necessary) conditions that would

have to hold were the matrix not in U. This will give us a better idea of the

structure of U-matrices, especially by looking at why other conditions are not

both necessary and sufficient. With this in mind, we have
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THEOREM 2.9 If M E Et l '
R

×  and there exist a, fl, - E (fi) such

that

(i) a#= {}3{j}=a -1,

(ii) - det Maa = 0 and (det Mpp)(det My) > 0,

(iii) C(3).j and C(yI).j are on opposite sides of span C(a)

[that is, with x = C(/O).i , y = C(y). 3 , and A = C(o).j,

the inequality zT(I - A(ATA)-AT)y < 0 holds],

then M 0 U.

The basic idea here is that if in K(M) we have two nondegenerate cones

"sandwiching in" a degenerate cone, then the matrix cannot be in U.

Proof. By (i) we have that C(3).j = C(a).j and C(-y).j = C(c).j.

Since det Maa = 0, we then have a vector v:/-0 such that

vTC(3).i = vTC(-y)., = 0. By Theorem 2.6 it remains to show that

int pos C(o).i nl int pos C(-y).j # 0. Suppose not. Since pos C(3).j and

posC(-y).j lie in the same (in - 1)-dimensional subspace, and since

pos C(#3)., = pos C(-y)., , it follows from Lemma 2.8 that C(3).j and C(-Y).i

lie on opposite sides of span C(g6).,- . (Notice that C(a). = C(/3)., -

C(-y).4 .) Thus there exists a positive number, 0, a nonzero vector

v E span C(a), and vectors z, 1 E !-2 for which

f = C(5).,! z + V

b) = c(-.17 - OV.

From (iii), there exists a positive number, *r, a nonzero vector w E R", and

vectors z, i E Vn-1 for which

M = C(I X + W

c(f). = C(,y). 3 X - Tw.
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Thus,

det C(P) - det[ G(P)., I C(#).,i z +, I C().,- + W

where the matrix is represented with column i on the right, column j in the

middle, and all other columns on the left. Hence

det C(3) -det[ C(/3).l I C(f3)., z + v w]

-det[ C(3)., J v I W ]

- det[ C(p). I w Iv ]

1
- CT det[ C('Y).' I -'-rW I -Ov IOr

- 1 detf C(h). I -rw I C(y)., T- Cv I

=--det[ C(-y), 3  C(-). 3 X - -rw J (j O v
Or

- det C(y).

This contradicts (ii), so our supposition was false and the theorem follows.

Recall that Po C EO,. If we apply Theorem 2.9 to a Po -matrix,

the inequality "> " in (ii) can be replaced by the symbol " " and the

condition more closely resembles that in Theorem 2.6. Notice, in the proof of

Theorem 2.6, that if we knew M E P0 and

C(a).j span C(P).,I,
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we could define

fi=/3

and then N, 3, and would satisfy the hypotheses of Theorem 2.9. All

we've done is verify that C(3).i and C(a).j together constitute a linearly

independent set of columns so that, when C(a). is adjoined, a nondeg Ate

complementary cone with the desired position is formed. Thus, we need to

have C(a).i E span C(P3).6 and C(3).1 E span C(a).,- to spoil this reasoning.

It seems plausible that the conditions of Theorem 2.9 are necessary as well

as sufficient for M E PO \ U. However, this is not the case.

EXAMPLE 2.10 Let

0 -1 0

M= 0 0 -1

1 0 0

It is easily checked that M E PO. The only full complementary cones

corresponding to it are posC(O) and posC(') - i.e., posI and pos-M.

The hypotheses of Theorem 2.9 cannot be satisfied by this matrix since the

index sets /3 and I can differ by only two elements. But M 0 U as, for

q = (1, 1, O)T E int K(M), the problem (q, M) has the solutions

(Wl z1) = (1, 1, 0, 0, 0, 0)

(W2 =Z2) (0,0,0,0, 1, 1).

This example can be used to disprove the necessity of the conditions in

Theorem 2.9 because we can construct the two full cones, that "sandwich

in" the degenerate cone, so that their index sets differ by more than two
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elements. (Clearly they must differ by at least two elements.) Thus, we might

consider combining conditions (i) and (ii) from Theorem 2.6 with condition

(iii) of Theorem 2.9 to get

COROLLARY 2.11 If M E ES , ' x< and M 0 U then there exist

a, 0 E (W) and i, j E f such that

(ii) (det Ma)(det M~p) 34 0 and there exists a nonzero vector

v E 9 such that vTC(a). -" v0C ( ).j -- ,

(iii) C(a).j and C(3).j are on opposite sides of span C(a).; = span C(,8).)
[that is, (JTC(a). )(VTC(A).) < 0 1.

Proof. This follows immediately from Theorem 2.6, Lemma 2.7 and

Lemma 2.8. For (i) and (ii) are from Theorem 2.6, and if C(a)., and C(3).j

were on the same side of span C(a).j, then condition (iii) of Theorem 2.6 and

Lemma 2.8 together would imply that int pos C(a) f int pos C(,3) 74 0, which

would contradict Lemma 2.7.
0

To show that these conditions are not sufficient for M not being in U,

we have

EXAMPLE 2.12 Let

0 1 0

M= 0 0 1.

1 0 0

This matrix belongs to P0, and so is in E0. The only full complementary

cones are pos I and pos - M which, in this case, meet only at 0. Thus,

int K(M) int pos I U int pos -M
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and clearly M E U. Yet the three conditions mentioned above are satisfied

as

span C(0).. = span Cn3 .1

and C(O). 3 and C(S).1 lie on opposite sides of span C(0).j = span C(3-)..

Another possible variation of Theorem 2.6 would be to make condition

(iii) much stronger. This would clearly preserve the sufficiency of the condi-

tions, giving us

CORtOLLARY 2.13 Let M E Ef n R,,xn. If there there exist a, fE (ff)

and i, j E H such that

(i) aj

(ii) (det Mc)(det Mpp) '4 0 and there exists a nonzero vector

vE Rn such that vTC(a). - vTC(O).j = 0,

(iii) pos C(a).; C pos CG8).,

then MOU.

However, this new condition (iii) is too strong to be necessary, as is shown

by

EXAMPLE 2.14 Let

0 0 0 -11

M 0 0 0 -1

0 0 0 1

[i 0 0 0

Obviously M E Po C Et, and the only full complementary cones are

posC(0) and posC({ 1,4}). They intersect only on the respective races
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pos C(O).4 and pos C({ 1, 4 }).1 • (Notice that span C(0).4 - span C({ 1,4 }). .)

For = (1, 2, 1)T we have

C({ 1, 4 ))1 x - C(O1.4 xr

so the two faces do have (relative) interior points in common. Hence M U

by Theorem 2.6. Now

0 0 1

1 0 1
C ({ 1 , 4 } ). j 0 -

0 0 0-I

and
1 0 0

0 1 0

But

=]
Bt0 0 1J 1[ 0 0

1 0 1 0 1 0
0 pos

0 1 -I 0 0 1

0 0 0 0 0 0

and

10I 0 0 0 1

0 ] pos

0 0 1 0 1 -1

0 0 01 0 0 0

so neither face contains the other.

We now examine the state of affairs for vectors q E 1 int K(M) .

45



THEOREM 2.15 If M E Et nAfx'×  and q E aint K(M), then

Isol(q, M)I = 00. (In fact, sol(q, M) is unbounded.)

Proof. We know q must lie in some (n- 1) -dimensional face of a int K(M).

Since

q E aint K(M) C U {aposc(a) :detC(a)#},
aE(i1)

q must belong to an (n - 1)-dimensional face, C(a).j, of some full com-

plementary cone pos C(a) such that

dim[pos C(a)., n 1 K(M) J n - 1.

The union of all points in pos C(a).; n aK(M) that are contained in a

k-dimensional complementary cone with k < n - 2, that are contained in

the boundary of an (n - 1)-dimensional face of a complementary cone, or

that are contained in an (n - 1)-dimensional face, of a complementary cone,

not contained in span C(a).j is a finite union of sets of dimension n - 2 or

less. Hence, we can find a point E int pos C(a)., n a K(M) not in this union

that is arbitrarily close to q. If E Pos C(3).3 for some j E n, 3 34 a, with

det C(f3) 74 0, then pos C(3).3 C span C(a).j and 4 E int pos C(1).3. So we

have either C(a).j and C(3).j on the same side of span C(ct).j, which by

Lemma 2.8 implies that

pos c(a)n pos c(p) 340

contradicting the assumption that M E E, or else we have C(a).j and

'(l).j on opposite sides of span C(a).j which implies that

E int[pos C(a) U pos C()] C int K(M),
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contradicting the fact that .E 6 K(M). So is contained in only one

(n- 1) -dimensional face of one full cone. From Lemma 3.2 of Saigal (1972a),

we see that 4 must be contained in some complementary cone, pos C(,6),

where C(f6) x 0 for some nonzero x > 0. As there are finitely many such

cones, and as was arbitrarily close to q, we can find a sequence qu --* q

in some such cone. As all such cones are closed, we may assume without loss

of generality that q E pos C(fl). Thus q -= C(O) y for some y 0, and for

each X > 0, y + Xx will give us a different solution to (q, M).

0

Theorem 2.15 explains why we must define U with respect to the interior

of K(M), rather than all of K(M). If (q, M) has a unique solution for

q E K(M), then certainly M E U. But Theorem 2.15 then requires that

a int K(M) = 0. Thus we must have int K(M) = R thus M E Q.

However, U n Q = P which gives us nothing new. In fact, the proof of

Theorem 2.15 shows that if q E a int K(M) then q is in a strongly degenerate

cone. Thus we have

COROLLARY 2.16 If M E Er , then a int K(M) is contained in the

union of the strongly degenerate cones.

COROLLARY 2.17 If M E U and M is nondegenerate or weakly degen-

erate, then M E P.
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2.4 E, (1 Q0 -matrices and U n Qo -matrices

In this section we confine our attention to those matrices within Ef

and U which are also in Qo. (Recall that M E Qo if and only if K(M) is

convex.) We start off with a lemma used to prove the next (familiar) theorem.

It expresses the underlying structure of 8K(M) for U fn Q0 -matrices.

LEMMA 2.18 Suppose M E Un Qo n' R' nx and let posC(a) be a full

complementary cone relative to M. Define the index set /3 - a A{ i }. Then

span C(a).j is a supporting (boundary) hyperplane of K(M) if and only if

C(fl).j lies in span C(a).t

Proof. If C(#).i E C(a)., then pos C(3) is a degenerate cone. Therefore

pos C(fi) E aK(M) as M E U. Since pos C(,3) C span G(ci).;, we see that

dim(span C(a).i n a K(M) - n - 1.

Thus span C(a).g is a supporting hyperplane of the finite convex cone K(M).

Conversely, suppose C(/3).i 0 span C(a).j . If C(a).j and C(/3).i were

on the same side of span C(a).j , then by Lemma 2.8, the interiors of the

full complementary cones pos C(a) and pos C(O) would intersect. This

contradicts that M E El . Thus, C(a).1 and C(fl)., are on opposite sides

of span C(Qa).; . Hence we have

intpos C(a).1 C int[posC(a)Upos C(/3)J _ int K(M),

so span C(a).; cannot be a supporting hyperplane of K(M).
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Without the assumption that M E U we find that both directions in

Lemma 2.18 fail to hold. The matrix

[0 -,]
M 1 0

see Figure 2.3 again, is in Qo n Ef but is not in U. As always, pos C(0)

is a nondegenerate complementary cone, and C({ 2 }).2 E span C(0).2 . But

span C(0). is not a supporting hyperplane to K(M). For the other direction,

consider -1 O]
M0 -1

This matrix is also in Qo but not in U. In this instance, K(M) = 'R2

Lemma 2.18 would make each boundary hyperplane contain a degenerate

complementary cone. But this is clearly not the case.

Notice that the second of these matrices is not in Efo, and cannot be as

the second part of the proof only needed M E Ef . Notice, also, that the

first of these two matrices belongs to P 0 , but not the second. In fact we

prove

COROLLARY 2.19 Suppose M E P0 n Qo n RJx,n and let pos C(a) be

a full complementary cone relative to M. Define the index set

,3 = a { i I. If span C(a).j is a supporting (boundary) hyperplane of

K(M), then C(fl).1 E span C(t).;.

Proof. Suppose C(3).j 0 span C(a)., . If C(a). and C(3).j are on the

same side of span C(a).j = span C(/P).j , then det C(a) and det C(3) are

not zero and have the same sign. Thus (det M, 0)(det Mp) < 0. This

is impossible when M E Po . Thus, C(a).j and C(/3)., are on opposite

sides of span C(a). . As in the proof of Lemma 2.18, we have
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int pos C(a).j C int[pos C(a) Upos C(i)] C int K(M), so span C(e).j can-

not be a supporting hyperplane of K(M).
El

With Lemma 2.18, we can show that for M E Qo the conditions of

Corollary 2.11 are sufficient as well as necessary for M E Ef not to be in U.

We have

THEOREM 2.20 If M E Ef n Qo n RIx,, then M 0 U if and only if

there exist a, / E (-n) and i, j E j such that

(i) Q A1,i =Z= ,

(ii) (det M,,)(det Mp) =/ 0 and there exists a nonzero vector

v E R' such that vTC(a).i = vTC(f3)., = 0,

(iii) C(a).j and C(,3).j are on opposite sides of span C(a).j = span C(3).3

[that is, (v'C(Q).i)(V"C(/).j) < 0 I"

Proof. The necessity part of this theorem follows from Corollary 2.11. Now

suppose that the conditions are satisfied. We know that pos C(a) is a full

complementary cone. As i =, j and span C(a).; = span C(3).) we would

have C(a).j 3 C(3).i and C(3).i E span C(a).j . So if M were a U-matrix,

Lemma 2.18 would imply that span C(a).; is a supporting hyperplane of

K(M). But this is impossible if C(a).1 and C(13).j lie on opposite sides of

span C(c)..

0

Condition (iii) in Theorem 2.20 is non-trivial. Figure 2.4 shows K(M)

for the matrix

I 0

so



which is in E fn Qo This matrix satisfies (i) and (ii) with (a, /3, i, j) =

(0, 2, 1, 2). However, (iii) is not satisfied, and, indeed, M E U.

Notice that Theorem 2.20 implies Example 2.12 must have used a matrix

M not in Q0 which, in fact, it did. However, Example 2.10 used a Qo -matrix

so we cannot strengthen Theorem 2.9 for EI n Qo -matrices. Example 2.14

does not use a Q0 -matrix, but we still cannot strengthen Corollary 2.13 as

seen by

EXAMPLE 2.21 Let

0 -1 -1 -1]

0 0 -1 -IM-

0 0 1 1

1 0 0 0

The full complementary cones are C(O), C({ 3), C({ 1,4}) and

C({ 1, 2, 4 }). Suppose, for the sake of contradiction, that M % Eo . Then

there is a nonzero z > 0, so that for any i E 4, if xi > 0, then (Mx)i < 0.

As we will always have (Mx) 3 , (Mx) 4 : 0, we must have z 3 = X4 = 0. But

then we will have (MX) 2 ' 0, thus requiring that X2 = 0. Cumulatively

these conditions will cause (Mx)i to be nonnegative, leading us to conclude

that x, = 0, giving a contradiction. Thus M E Eo • M has three non-

trivial principal transforms which correspond to block pivots on M.0 where

a can be { 3 }, { 1, 4 }, or {1, 2, 4 }, and are, respectively,

0 -1 0] 0 0 0 1 0 0 0 1]

0 0 -1 0 1 1 0 0 -1- 1 0 0

0 0 1 -1 -1 -1 0 0 0 -1 0 0

1 0 0 0 1 l -1-1 -1 0 0 -1 -1 0

Similar arguments will show that these three matrices are all in E0 . Thus

51



M E Ef. Now, it is clear that K(M) C pos[ I I -MJ. Given the following

fact (see, for example, Proposition 4.2 of Doverspike and Lemke (1979))

ME Qo pos[II-M]==U{posC(a):dctC(a)$0},

and noting that

pos[ I-M I= {x E 4 : X,X 2 , X3  0 and X1,X2 >-z3},

pos C(O)- { X E _4 X:z, X2 ,z 3 ,4 > 0 },

posC({3) {z E 9Z4 X,Z 2 ,-X 3,z4 > 0 and XI, X2  -X,

pos({1,4}) 1{E R4 :zl,z2 ,-X4 0 andX2 Xl -- X3 },

posC({1,2,4})= {X R4 :z, 2 ,-4 0 and x z2  -x 3 },

we find that M E Q0 . As in Example 2.14, for x = (1, 2, 1)', we have that

span C({ 1, 4 }).i = span C(0).A and C({ 1, 4 }).1 x = C(0).A z; thus M 0 U.

However, there are only four candidiates for the 4-tuple (a, /3, i,j) in the

conditions of Theorem 2.6, and checking them shows that, for each, we have

some q E pos C(a).t \ pos C(,8). 3 and some 4 E Pos C(3).3 \ posC(a).;,

(C(0), C({ 1,4 }), 4,1) q = (2, 1,0, O)T = (1, 1,1, O)T

(C(0), C({ 1, 2, 4 }), 4, 1) q = (1,2,0, O)T = (1, 1, -1, O)T

(C({ 3 }),C({ 1, 4 }), 4,1) q = (2 ,1, 0, O)T = (1,1,1,0) T

(C({3}),C({1,2,4}),4,1) q = (1, 2 ,0, O)T = (1,1,1,O)T.

Hence, M is an example showing that Corollary 2.13 cannot be strengthen

to say that its three conditions are necessary for a matrix in Ef n Qo not

to be in U.

We now come to a result which says that when K(M) is convex and

(q, M) has a unique solution for all q E int K(M), the matrix M cannot
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have any negative principal minors. The proof sheds light on the conical

structure of Qo nU-matrices.

THEOREM 2.22 Qo n U C Po

Proof. Let M E Qo nUf3nx. There are two cases. If M E Q, then

M E QnU = P c Po. Assume therefore that M E Qo \ Q. Thus,

K(M) : R'. Suppose we have a collection of index sets al, ... , Cak E ()

for which

det~aa > 0, " _1.,k. (2.9)

We know k > 1 since a, 0 belongs to the collection. Now consider

k

C= U posC(aj),
j=1

and suppose Ck : K(M).

As M E Q0, K(M) is a closed convex finite cone. The cone Ck is

closed and polyhedral; by our assumption, it is a proper subset of K(M).

Thus there must exist a point q E int K(M) \ CA;. Let p E int Ck. (Note:

Ck contains R and so has a nonempty interior.) Let

L={r:r=(1-)p+Xq, 0 <) X 1},

and so intL {r : r = (1-X)p+Xq, 0 < X < 1 }. As Lfint K(M) -76 ,

K(M) is convex, and (hence) L C K(M), we have

intL C int K(M) and int L n ack - 0.

Thus,

ack nint K(M) 34 0.
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Now OCWk is (n - 1) -dimensional and contained in

U pOSC(aj).;.
jEk
iEW

Hence as the union of the boundaries of the pos C(aj)., is (n- 2) -dimensional,

and as we can slightly perturb the position of the point p we selected and

still keep it within int Ck, then we may assume that

intposBnOCk nint K(M) L0 (2.10)

where B -- C(Q).-f E Rn x(, - l) for some a3 in the given set satisfying

(2.9). Let

aj a { n}

Now pos B C pos C( j). If det C(Pj) = 0, then there exists a point

E int pos C(i3) n int K(M) , and (4, M) has infinitely many solutions. This

contradicts the hypothesis that M E U. Thus det C(,/j) 34 0, and accord-

ingly, detMpp, 34 0. If detMp,p, < 0, then as detMa,., > 0, we have

(det C(aj))(det C(3j)) > 0 implying that C(aj)., and C(/3.).,, lie on the

same side of span B. Thus, by Lemma 2.8, int pos C(aj) n int pos C(f3,) _ 0,

which contradicts the assumption that M E U. Thus det Ma,,,, > 0, and

we have I.,, and -M.,, lying on opposite sides of span B. Hence

int pos B C int(pos C(a.) U pos C(/Oj)I.

From this and (2.10) we have /Pj 0 {al,...,ak}. Let at+l = /, and

adjoin it to the collection of known index sets for which the corresponding

principal minor is positive. We repeat this construction until I index sets are
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found and

C1= U osC(Oa) = K(M).

If P E (N) and al )ai,...,ai}, then det Mpp = 0; otherwise

int pos C(,) n int K(M) y 0

and this implies there exists aj (1 < j <L 1) such that

int pom C()n int poe C(oi) 3 0

which contradicts our assumption that M E U.

The next theorenm sharpens the ideas concerning the structure of a K(M),

for M E Qo nlu, that we developed in the proof of the last theorem.

THio,.M 2.23 If M E (Qo \ Q)fnUAnitkx%, then there exists a

nonnegative m X n matrix A such that

K(M) = (q:Aq _ 0},

and the number m is minimal. Moreover, it

ah = suppAk. for all k E

then det M.... = 0. If det Mpp = 0, for some P E (VI), then there exists

k E VK such that a# C .

Proof. From Theorem 2.22, we know that M E P0 \ P. The cone

K(M) being convex and finitely generated can be expressed as a polyhedral
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convex cone (see Weyl (1935)). Thus there exists a matrix A E Rm'" such

that

K(M) = {q: Aq > 0}.

The matrix A can be chosen so that none of its rows is redundant. Since

*1 C K(M), it follows that A > 0 (and Ak. 34 0 for all k E Wi). Each of

the hyperplanes

H(Ak.)={XEb?:AT.X=O} kE i

is the boundary of a half-space

H+(A/.)={xE R" ':A.x > 0} kEWi

and has an (n - 1) -dimensional intersection with a K(M). For each k E M,

there exists an a E () such that

dim[pos C(a) n H(Ak.)] = n - 1.

If det Ma 0, then

pos C(a) g H(Ak.). (2.11)

If det Ma #0, then by (2.11) there must exist an index i E ff such that

dim[pos C(a).t nl H(Ak.)] = n - 1, (2.12)

and

C(a).j 0 H(Ak.).

Let 8-aA{i}.If detMpp60, as ME Po,wehave

(det C(a))(det C(,O)) < 0.
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So C(a).j and C(3). lie on opposite sides of span C(a).; = span C(ja)..

Thus

int pos C(a).1 C_ int[pos C(a) U posC() C int K(M),

which contradicts (2.12). So, det Mpj- = 0.

Hence for every k E M, there exists a 83k E (M), with det Ma, -- 0,

and such that (2.11) holds with a = 13k. Then

j E a .k H(Ak.) .i posC(#) = -M.kEH(Ak.),

and

Oh L k = Ik E. H(Ak.).

Thus, the columns of C(a) are all in H(Ak.) which implies det Ma,- = 0.

In fact, if 0 E (R) and detMpp = 0, then pos C(3) g 8K(M), so

pos C(6) g H(Ak.) for some k, and as above, j E ak implies . 0 H(Ak.),

so C(13).j = -M.j . This implies ak g P.

We now examine a situation which could be viewed as a partial converse

to Theorem 2.22. It involves matrices belonging to a special subclass of Po.

We shall show that these matrices belong to U and that they give rise to

cones K(M) of a special form. To this end, we introduce

DEFINITION 2.24 If M E Po fnl ×', then M E P1 if and only if

there exists a unique index set a E (W) such that det Ma. = 0.

Thus, M E P1 if and only if it has nonnegative principal minors

precisely one of which is zero. A P1 -matrix may or may not belong to Q.

For instance

M=[ E P nQ,
1 0
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see Figure 2.5, whereas

see Example 2.2. In the former case, the matrix does not belong to U, but in

the later case it does.

THEOREM 2.25 If M E (PI \Q)l n fxf, then M E U, and K(M)

is a half-space. Furthermore, let a E It" be the normal to the hyperplane

8K(M). If detM.. = 0, then a can be chosen so that a. > 0 and

a,=0.

Proof. Let K t(M) be the union of the full complementary cones associated

with M. Then 8K f(M) is contained in the union of the boundaries of the

full cones. Suppose pos C(a) is a full complementary cone and

dim[OKf(M) n pon c(a).;- = n- 1.

Let 0 = a a {i). If pos0(P) is a full cone, we may ask: where is

0(3).j with respect to span 0(a).; = span C(,8)., ? If C(3)., is on the same

side of span 0(a).t as C(a).,, then (det C(a))(det 0(3)) > 0 giving us the

contradiction that (detM.,)(det Mpp) < 0. If C(f)., is on the opposite

side, then

int pos C(a).; 9 int[pos C(a) U pos 0(fi)j,

to

dim[8Kf(M) n pon 0(a).;) 5 n - 2,

a contradiction. Hence pos 0(6) is degenerate and contains C(a)., . There-

fore 8K t(M) is contained in the union of the degenerate complementary
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cones. But, by hypothesis, there is only one degenerate complementary cone.

Since M 0 Q, we have 8K (M) - 0. Thus, aK f(M) is contained in this

one degenerate complementary .cone.

Let L = {x : aT x = 0 } be the affine hull of this degenerate com-

plementary cone. (Both are (n - 1) -dimensional.) Being the boundary of.

an n-dimensional polyhedral cone contained in L, OKf(M) cannot have a

boundary relative to L. Hence aKr(M) = L, and K(M) is a half-space

{ (zX
> O} with 0 0a->O as '_ C K(M).

If det M,,,, = 0, then pos C(a) is the only degenerate complementary

cone. Thus I. 0 L if and only if i E a. This implies a. > 0 and a& = 0.

Moreover M E P0 C Ef , and the fact that the only degenerate cone

is aK f(M) forces the three conditions in Theorem 2.6 to fail to be satisfied,

so we have MEU.

As final remark before leaving this chapter, lest the impression be given

that Eo is made up of only matrices that are Po, U, or Qo, we give an

example of a matrix that is in E' \(Po UUU Qo).

EXAMPLE 2.26 Let

0 0 -1 0

M 0 0 0 1

1 0 0 0

0 1 0 0

Clearly M 0 PO as det M., < 0 for a = (2, 4}. M has exactly four non-

degenerate cones: C(O), C(W), C({ 1, 3 }), and C({ 2, 4 }). Each is a different

orthant in 9?
4 , so the interiors of these four cones are pair-wise disjoint, and
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hence M E Ef However, with (ar, P~, i, j) =(0, {1, 3 },3, 1) we can satisf

the conditions of Theorem 2.6 - in fact, pos C(0).S = pos C({ 1, 3 }).I - and so

M 0 U. Finally, we have (0, 2, 0, O)T E K(M) and (0, 0, 0, -.2 )T E K(M) ,

but (0, 1, 0, - )T 0 K(M) , so K(M) is not convex. Hence M 0 Qo Thus

ME E' \(Po U UU Qo) as claimed.

60



hi2

22

Figure 2.1

2

2'

Figure 2.2

61



212

Figure 2.3

1, 2t

1' F igure 2.4

62



2

\21

Figure 2.5'

1, 2'

Figure 2.6

63



CHAPTER 3.

INS-MATRICES: CHARACTERIZATION RESULTS

3.1 Introduction to INS-matrices

We have now defined and studied the class U which generalizes the class

P. We are led to wonder about possible larger classes containing U. As before,

we must decide what properties we wish this larger class to inherit from U

and what properties we wish to relax. The one essential property of U is the

uniqueness of the solution to (q, M) where q is in the interior of K(M).

However, the main properties of the combinatorial and geometric structure

of K(M), that is peculiar to those M E U, is derived more from having the

same number of solutions everywhere within the interior of K(M) than from

that number being, in particular, one. With this in mind, we focus attention

on understanding this structure. We have

DEFINITION 3.1 For any k E Z-, a matrix A is said to be an

INS k-matrix, A E INSk, if and only if

A E U{ M E ': Isol(q, M) =k, for all q E int K(M)}.
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DEFINITION 3.2 A matrix A is said to be an INS-matrix, A E INS

(Invariant Number of Solutions), if and only if

AE U INS,;.
kEZ+

As before, and as will be shown in Theorem 4.7, we must define these classes

with respect to q in the interior of K(M), not all of K(M), otherwise these

classes will contain only the P-matrices. Notice that we have

U =INS, g INS.

Thus the INS-matrices seem a natural extention of the U-matrices, but are

strictly larger as seen by

EXAMPTr 3.3 Let

-2 1

As illustrated in Figure 3.1, M E INS2 . Notice that the full complementary

cones can be partitioned into two groups, { C({ 1, 2 }) } and { C(0), C({ 2 }) },

such that the union of the cones in each group covers the interior of K(M),

and the interiors of the cones in each group are pairwise disjoint. We also see

that Isol(q, M)J for q E 9K(M) is one or infinity - never two - for points

in, respectively, pos C(ff).2 and int pos C(f).•

In the last chapter we noticed that U n Q = P. A result of Murty's

shows that a similar result holds for the class INS.

THEOREM 3.4 INS n Q = P.

Proof. If M E INS n Q, then int K(M) = R, so Isol(q, M) is constant

for all q E R?". Theorem 7.10 from Murty (1972) states that this constant is

65

-- ,,, , . = d • li



equal to one. Hence M E U, and we have M E P as desired.
0

Before continuing on to the next sections, where we look at what goes

into making an INS-matrix, there are a few concepts which should be brought

up first.

DEFINITION 3.5 Let M E §,,×n, we then define

K(M) U pos C(a).
ah:(W)

K(M) is the union of the faces of the complementary cones. It contains, in

some cases equals, OK(M). In Example 3.3, (1,0)T 0 E K(M) \ 8K(M),

while with M = 0 we have K(M) = 9K(M). K(M) is the set of all

q E qn that are degenerate with respect to M. Being the union of a finite

collection of sets with dimension n-1 or less, K(M) has zero n-dimensional

volume. It is a closed cone in WI.

We will be interested in the open set _Rn\ K(M) . Let E be the collection

of the connected components of lRn\ K(M) . As R, is locally path connected

and as Wn \ K(M) is open, the path components of Wn \ K(M) are the

same as the (connected) components. See, for example, Munkres*(1975). E

"almost" partitions Rn, in that it partitions !R \ K(M) which is "almost"

R ". If r E E., then r is an open polyhedral cone, i.e., ar is a finite collection

of (n - 1) -dimensional finite cones. It is not necessarily true that r -int r,

although it will be shown later that 1 C int r. For example

EXAMPLE 3.6 Let

M= 1 0 0

0 0 0
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then E contains L," components: II int W3 and

r 2 =int[R3 \ R1J x E\{ER 3 : x -i = 0 , X 3  0 }.

r 2 #intr 2 = int[_R3 \ W3]. This also shows that, if r E E , then r is not

necessarily convex. For another example of this

EXAMPLE 3.7 Let

'0 0 -1

M= 0 0 -1

-0 0 -1I

Then E contains three components:

171 = int[_R3 \ gZ,

1 2 = intposC({3 }) = {E R3 : X, > X3, X2 > X3 , X3 > 0},

r3 = intR \posC({3}).

Here only r 2 is convex, although ri = int ri for i = 1, 2, 3. We will return

later to the subject of convexity and the ri.

We now discuss necessary conditions for a matrix to be INS.

3.2 Necessary Conditions for INS-matrices

In the last section we introduced the partition of N' \ K(M) by open

polyhedral cones r E E. The importance of this structure is contained in

THEOREM 3.8 If r E E, and q, E F, then

Isol(q, M)l - so1(4, M)I.
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Proof. Fix q, Er E E. As q,4 K(M), we know that q and 4 are

not contained in any degenerate complementary cone, and are not contained

in the boundary of any nondegenerate cone. From Chapter 1, we know that

any solution to (q, M) is associated with a complementary cone containing

q. We also know that, if the cone is nondegenerate, there is only one solution

associated with it. Now if q E pos C(a) then q E int pos C(a). Letting

x C(a)-l q > 0, the solution associated with this cone is (w, z), where

z. xa > 0 and wa - x& > 0. As in Lemma 2.7, any other solution (iv, Z)

is associated with another complementary cone pos C(3) containing q. Also,

any other complementary cone containing q is associated with a different

solution. We therefore see that Isol(q, M) is the number of complementary

cones that contains q. The same holds for 4.

Suppose that for some a E (Wn) we have q E pos C() and I pos C(a).

Then any path from q to 4 must contain a point in o pos C(a) C K(M) , so

q and 4 are not in the same path component of Rn \ K(M) , i.e., not in the

same r, a contradiction. Thus any complementary cone containing q con-

tains 4, and vice versa. Thus they are in the same number of complementary

cones, and so Isol(q, M)I = Isol(4, M)J.

0

The proof just given shows that for any complementary cone, pos C(cf),

and any rEE,

r n pos c(a) 0 4 , r c pos c(a).

The main result of this section is
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THEOREM 3.9 If M E INS, then

aK(M) = U {posC(a).: posC(a).; is not proper}.

46W

Proof. Let pos C(a) be a degenerate cone. Suppose pos C(a) n int K(M) 0.

Then there will exist a q such that

q E int pos C(a) n int K(M).

From Proposition 1.6, we know that Isol(q, M)I = oo. As M E INS, there

must be infinitely many solutions for each point in the interior of K(M).

From the proof of Theorem 3.8, we see that for any point in R' \ K(M) the

number of solutions it has to the LCP is equal to the number of complemen-

tary cones containing-it, which is finite. Hence int K(M) g K(M), but this

is impossible as the set on the left is n-dimensional and the set on the right

is (n - 1)-dimensional. Thus all degenerate cones are contained in a K(M).

(This also shows that INS,,. = 0, so our definitions cover just what we want

without any technical problems..)

Suppose now that pos C(ot) is a full cone, pos C(a).; is a reflecting face,

and pos C(m)., n int K(M) 0 0. Then there is a q E int pos C(Q)., n int K(M)

such that for any E ( E), jEW, we have

q E pos C().dim[pos C(). (3.1)
q E ntpo5C(f3).j i_ span C(a).t

and any small enough open ball around q is bisected by int pos C(a)t with

the two open half-balls contained in r0,r1 E E, respectively. (We are not
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assuming ro 3 r,.) Refer to Figure 3.2. To see this more clearly, notice

that the set of points that are in either

(i) the boundary of an (n - 1)-dimensional face of a complementary cone,

(ii) a k-dimensional complementary cone where k < n - 1,

(iii) the intersectioa of pos C(a).j with an (n - 1) -dimensional face

(of a complementary cone) not in span C(a).;,

I
is a set of dimension less than n - 1, while dim[int pos C(a).j] = n - 1.

Furthermore, as all the k-dimensional facets of K(M) are closed and finite

in number, we know that for an open ball around q, that has a small enough

radius, we will have a k-dimensional facet of K(M) intersecting the open

ball if and only if that facet contains q.

Since pos C(a),i is a face of the full complementary cone pos C(a), then

either T0 n pos C(c) 0 or Tn pos C(a) 3 0, but not both as pos C(a) lies

entirely on one side of pos C(a).; . Thus without loss of generality we assume

r g posC(a) and r nposC(a) = 0.

(Thus, indeed, ro 31 ri .) Let Ho and H1 be the two closed half-spaces

with span C(a).j as boundary, where T0 g H0 and r C H1 . Suppose

that there is some complementary cone, pos C(P), that contains r, but

not To. Then it must be a full cone and have some face, say pos C(i).j,

containing q. By (3.1) this face lies in span C(a).j, hence C(3).j lies in H,.

However, as pps C(a).; is reflecting we have both I., and -M.j in int H 0 ,

a contradiction. Thus no complementary cone contains r and not r 0 . But

posC(a) contains r0 and not Ti. Hence,

Isol(q1 , M)I _< Isol(q0 , M)I + 1 qO E ro, q' E r. (3.2)
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Siuce q E int K(M), we have. Isol(ql, M)I > 0, so r0 ur, int K(M).

Hence (3.2) implies that M INS, a contradiction. hus

M E INS =.a K(M) U {pos C(a): pos C(a).; is not proper}.

Now suppose that q E a K(M). Clearly q is not interior to any full

cone. Suppose that it is not contained in a degenerate cone. Then it is on

the boundary of some full cone, hence q E a int K(M). As int K(M) is

an n-dimensional polyhedral cone, a int K(M) is the union of finitely many

(n - 1)-dimensional finite cones, each contained in some degenerate cone or

a face of a full cone. If pos C(a).j is a proper face, then we know 1.i and

-M~j are on opposite sides of span C(a).j . Thus

int pos C(a).; C int[pos C(a) U pos C( A { i})] C int K(M),

giving

dim[pos C(a).; n a K(M) I <- 1.

Thus pos C(a).j is not a face containing one of the (n - 1)-dimensional finite

cones of 0 int K(M). Thus 6 int K(M) is contained in the reflecting faces

and the degenerate cones, and, hence, so is a K(M).

COROLLARY 3.10 Let M E !nX'× then

8K(M) U {PosC(a)'j : pos C(a). is not proper }.
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Proof. Simply notice that in the last part of the proof of Theorem 3.9 we

never used the fact that M E INS when showing this result.

Saigal (1972b) uses the concept of a "regular pseudomanifold." We

borrow the terminology for the similar, but stronger, concept embodied in

DEFINITION 3.11 Let M E 3x,, then K(M) is said to be regular if

and only if

a K(M) - U {posC(a).: posC(a).t is not proper).
oeW

Theorem 3.9 then says that

M E INS = K(M) is regular.

This is the general necessary condition for a matrix to be in INS. In the next

section we take up the question of this condition's sufficiency.

3.3 Sufficient Conditions for INS-matrices

We now know that if a matrix M is in INS then K(M) is regular. The

natural question is to ask whether this is a sufficient condition. To this end,

we prove the

LEMMA 3.12 Assume M E &,"x and K(M) is regular. Assume also

that ro0 , 1 1 E E are subsets of K(M) - and hence its interior. Suppose for

some zEro and yEt1 there isapath LEintK(M) from z to y. Then
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L can be chosen to have the following "nondegeneracy" properties:

(i) Ln K(M) is a finite set;

(ii) if q is a point in LN K(M),

then q is in the interior of any face containing it;

(iii) all faces containing q lie in the same hyperplane.

Proof. If r0 = P1 , by definition, we can construct a path L" within

P0 from z to y. The above are then vacuously true. If P0 I4 r, we can

construct the path L*. from L as follows. We know that L is the image of

some continuous function

f : [0, 1] --, v, /(0) --zE 1r, f(l) = Y E 11.

Since F0 is closed, we have

0 < X = max{f- 1 ( o) } < .

Let q = f(X). Then q E aro. Let B be an open ball in int K(M) around

q E L C int K(M). Since all the facets are closed sets, we may assume that

B is so small that any facet of K(M), of any dimension, intersecting B must

contain q. See Figure 3.3 for a picture of the local situation around q.

r0 is a component so we may construct a path L* from z to q where

L*\q _ P0 . Let ?EBfl(L* \q). We claim that for each point in B\ K(M)

there is a path in B from that point to 4 that satisfies the conditions of the

lemma. Clearly, if such a path exists between q and some point in B n P.,

then one exists between I and all points in B rFl . (This does not follow

from what has been set up as it could be that B fn ri is not connected. In
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this case we may temporarily take the r1 as the connected components of

B \ K(M) and all will go through. It will turn out, in the next chapter, that

this precaution is not necessary. However, we do need to know that the path

can be built within B for later reference.) The set of points in B that can be

connected to q by a path satisfying the given conditions is, then, the closure

of the union of some of the B n ri. Call this set S. S is the intersection of

B with a polyhedral cone with vertex translated to q. It is n-dimensional

as Bnr0 c S. If S/-B, then S has a boundary in B. We may then

find a point i E B, in the interior of one of the (n - 1) -dimensional faces

making up OS, such that the faces of K(M) containing 4 all lie on the same

hyperplane and all contain 4 in their interiors. (These restrictions will remove

a set of points that is (n - 2) -dimensional at most, and we have a set that is

(n - 1)-dimensional from which to choose.) A sufficiently small line segment,

L, with as midpoint and orthogonal to the (unique) boundary face of S

through , will make a path from some r0 E int S to some r1 E B \ S where

Ln K(M) =

The conditions of the lemma are satisfied for this path. Since r0 E S, we

have a path to re from satisfying the conditions. Combining the paths

gives a path from I to r1 E B \ S satisfying the conditions, a contradiction.

Thus B= S.

Now, let

= max{- 1 (p ): Bnri 70}.

Clearly X < X, as L did not end at q. Let

q . ((X) E r 2 .
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Pick a point r in B n [2. There will exist a path, from x to , from

to r, and from r to q', satisfying the conditions of the lemma. If ' - 1,

then q' = y and we are done. If X' < 1, an open ball around q' can be

made small enough to repeat the above arguments, extending the path into

some new component [3. As there are finitely many components, we will

eventually have a path from x to y in int K(M) that satisfies the lemma's

conditions.
El

Consider a point q E Ln K(M). The previous lemma shows that for

a small enough open ball, B, around q, there is a hyperplane H such

that q E Bf K(M) = BnH, and BnH splits B into two open hemi-

hyperspheres, contained in, say, [2 and r3 respectively. (See Figure 3.4.)

Since q E int K(M), all faces containing q are proper. Suppose that a full

complementary cone, pos C(a), contains [2 but not V 3 . Hence for some

i E fI, we must have q E Pos C(a).i C H. The previous lemma allows

us to assume that int pos C(c). bisects B into the aforementioned hemi-

hyperspheres. As pos C(a).; is proper, I.i and -M., lie on opposite sides

of H. Thus pos C(a A { i }) contains [3 but not r'2. Since we could have

assumed at the start that pos C(a) contained [3 and not [2, we have a

bijective correspondence between complementary cones containing [2, not

[3, and complementary cones containing [3, not ['2. So the number of

complementary cones containing ['2 is the same as the number containing

3. Thus

q r2, E[3 sol(q, M) I sol(4, M)I.

Therefore, if we start at x and follow the path L, we will pass through a

finite sequence of 1 FE E where Isol(q, M) is invariant for all q in the [i.

Hence
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Isol(x, M)I = Isol(y, M)I.

We have been assuming that x, y 0 K(M). Now suppose we have

y E int K(M) n K(M). As in the proof of Lemma 3.12, we can find an open

ball B C int K(M), with y E B, so small that B n K(M) is the intersection

of B with the union of finitely many (n - 1) -dimensional finite cones with

vertex translated to y. (See Figure 3.5.) Since y is contained in only full

complementary cones, each cone containing y is associated with exactly one

solution in sol(y, M). Suppose that r1 C pos C(a). Then y E pos C(a)

and let the associated solution be (w, z). We will show that no other cone

containing r1 has (w, z) as the associated solution to (y, M).

We may assume that a = 0 as we can always block pivot on Ma, to

get the principal transform 7. As shown in Chapter 1, the cone structure

is preserved and working with pos C-(O) is equivalent to working with

pos CM(a). Thus (w, z) = (y, 0). We may assume that supp w = supp y =

f\, where 0 < k < n. Thus a full cone, posC(O), has (y,0) as its

associated solution to (y, M) if and only if 0 E (k). However, for all

,8 E (k) and for all i E k, we have y E posC(/3).i. Hence posC(3).; is

a proper face of K(M) as y E int K(M) . Therefore, if P, -y E (k), then

(det Mpp)(det M.,) > 0. As 0 E (k), we then see that Mk E P. If P E (k),

and there is some 0 < E pos C(/3), then pos C(P)- is associated with a

solution to (., Mn). As M~k E P and j > 0, there is oriiy one such

solution and it is associated with only the positive orthant. Thus # = 0. Yet

r, g int pos C(O) = int R . We may conclude, as claimed, that pos C(a)

is the only complementary cone containing ri with (w, z) as the associated

solution to (y, 0). Hence Isol(y, M)I is at least as large as the number of

complementary cones containing ri.
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Suppose now that y G pos C(a). Thus looking at Figure 3.5 again

we have that some rk containing y is contained in pos C(a). In fact,

B n pos C(a) is the closure of the union of sets in the form B l Fi. Select

two points q E 1 and 4 E Fk. Let L be a path in B between q and

4 satisfying the conditions of Lemma 3.12. (In the proof we noted that

such a path can be made within B.) Suppose we cross a boundary of

pos C(a) moving along L from 4 to q. We will leave the cone at some

point interior to a face, say posC(a).j. This face must be proper, as it

contains a point in int K(M) . We then have that ! and -M lie on

opposite sides of span C(a).,. Let f3 = a A { i }. Thus we enter pos C(O3)

when we leave pos C(a). Moreover, L C B so pos C().i n B 34 0 implying

y E pos C(a).j = pos C(,6).1 . Hence the solutions to (y, M) associated with

both pos C(a) and pos C(,3) are the same, both using only the columns in

pos C(a).j. Thus we will eventually reach a full cone containing r1 such

that the solution to (y, M) it is associated with and the solution to (y, M)

that pos C(a) is associated with are the same. Hence Isol(y, M)I equals the

number of complementa-y cones containing F 1 . We have thus shown

THEOREM 3.13 Let M E W"x . If K(M) is regular, and S is a

connected component of int K(M), then

q,4 E S I Isol(q,M)l = Isol(,M)I.

We get the partial converse to Theorem 3.9

COROLLARY 3.14 Let M E 9Z"×n. If K(M) is regular, and int K(M)

is connected, then M E INS.
0
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Example 2.3 shows an INS-matrix for which int K(M) is disconnected.

In fact, there exist points in K(M), for example (1, 1)T and (-1, _I)T,

which can be connected in K(M.) only with paths containing the origin. Since

K(M) is a cone, any two of its points can be connected by a path through

the origin, so this particular K(M) is just "barely" connected. However, we

note

THEOREM 3.15 Let M E R×x, n > 1. If no complementary cone is

strongly degenerate, then any two nonzero points in K(M) can be connected

by a path in K(M) not containing the origin.

Proof. Define the map F : R' --+ R' as

F(x) - Z(max(xi, 0) . I., + min(xi, 0) • M.1).
i= 1

Thus K(M) = F( R). Clearly F is continuous. Define the continuous

radial projection P: R \ { 0 } -S as P(x) = x/IJzII, where

s n- {xE Wn : IIXII = 1}

is the unit sphere in n-space. Since no complementary cone is strongly

degenerate, F(x) = 0 implies that x = 0. So 0 0 F(Sn-'), hence

P o F: S' - S' - 1 is a continuous mapping. Furthermore

P o F(Sn- 1 ) = S'- 1 n K(M).

This and the path connectedness of S n - 1 imply that S' - I n K(M) is path

connected. However, any nonzero point in K(M) can be connected by a
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path to S' -' f K(M), i.e., the ray through that point from the origin. The

theorem follows.
0l

EXAMPLE 3.16 The matrix

0 1 0

M= 1 0 0

-1 -1 -1

belongs to INS2 . However, int K(M) is not connected, and no complemen-

tary cone is strongly degenerate. This example shows that we cannot have a

result similar to the previous one concerning the connectedness of int K(M)

in the weakly degeneracy case. However, in the case of nondegeneracy we

have

THEOREM 3.17 Let M E FR' × ' • If no complementary cone is degener-

ate, then int K(M) is connected.

Proof. Take q, 4 E int K(M). We can find full complementary cones so

that q E posC(a) and 4 E posC(3). If a = j3, then q and are path

connected within int pos C(o) g int K(M), even though q and may be

the only points of the path not in int pos C(a).

Suppose a a = (i}. If posC(a).j is reflecting, then I., and

-M.i lie on the same side of span C(a).j. By Lemma 2.8,

int pos C(a) hint pos C(Q) - 0. We can thus build a path in int pos C(a)

from q to a point in this intersection, and then to 4 through int pos C(fl). If

pos C(a).; is proper, then Li and -M lie on opposite sides of span C(a).g.

So

int pos C(a). C int[pos C(a) U pos C(O)] 9 int K(M).
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The path can then be constructed from q though int pos C(a) to a point

within int pos C(a)., and from there, through int pos C(J3), to 4.

In general, if a fi = {il,...,ik}, let y-y = a and for 1 < " < k

let -yj+1 = - {ij }" Then, posC.(-Ij) and posC(yj+1) are adjacent for

1 < j k; moreover, k+l f. This and the previous arguments show

that int K(M) will contain a path from q to 4. That is, int K(M) is path

connected.

We conclude this chapter with a partial characterization of the class INS.

COROLLARY 3.18 Let M E RnXn, and suppose that M has no zero

principal minors. We then have

M E INS = K(M) is regular.

0
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CHAPTER 4.

INS-MATRICES: FURTHER RESULTS

4.1 Convexity of the I

The partition E, defined in the last chapter, was seen to be an important

object. We noted in Example 3.7 that a component r E E need not be

convex, even if r E K(M). The matrix used in the example was a degenerate

matrix, but degeneracy was unneccessary as the matrix

-1 0 -1

M-- 0 -1 -1

0 0 -1

is nondegenerate and has, geometrically, the same E as the matrix in

Example 3.7. However, we do have the result

THEOREM 4.1 If M E INS fl nxn, then all r E E contained in K(M)

are convex.

Before starting the proof, we will need the following lemma.
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LEMMA 4.2 If M E Wn×" and T/Aintr for some F E E, then

r C int F and X E int F implies that x is in a degenerate cone.

Proof. F is open and contained in T. As intr- is the largest open set in r,

it follows that 1 C intrF.

Now X E F \ F = 1'C K(M). Thus x is contained in the boundary

of some complementary cone, say pos C(a). Suppose pos C(a) is a full cone.

Then either F C pos C(a), or r n pos c(a) = 0.

In the first case, x E 8[R' \ pos C(a)] C n \ pos C(a). Notice

C pos C(a) as pos'C(a) is closed. Hence R' \ pos C(a) nit1 = 0, a

contradiction.

In the.second case, x E aposC(a). As posC(a) is full, for all e> 0,

the set B(z, )nposC(a) is n-dimensional. Now aF C K(M) is (n - 1)-

dimensional at most, so B(x, c)\ 4 0 for all c > 0. Thus x E n' \F, and

so x 0 int 1, a contradiction.

We have shown that pos C(a) is a degenerate cone, as required.

Proof of Theorem 4.1. Suppose there exists a nonconvex F E K(M). Then

there exist two points X, y E F such that the line segment between them,

L= {Xx + (1- X)y : 0 < X < 1},

is not contained in F. Thus there must exist a point q E Ln f n K(M).

We may assume

q = Ln K(M) nB(qC), (4.1)

for some small e > 0. To see this, notice that, for small e > 0,
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K(M) n B(q, E) is the intersection of B(q, c) with a finite collection of finite

cones with vertex q and dimension less than or equal to n - 1. Since r is

open, we may take e5 , Ey > 0 small enough so that

B -= B(x, r) and B., = B(y,e)cr.

We may thus take x to be any point in B, and y to be any point in B 1 .

This means we may "perturb" x and y, and hence the line segment L, with

n-dimensional "freedom." We can thus perturb L so that it contains q and

satisfies (4.1). See Figure 4.1.

For the moment assume that q E int K(M). Thus q is not in any de-

generate cone, so we know from the previous lemma that q E r n int[oz- \ [i.

Thus, for all c > 0, K(M) n B(q, E) must be (n - 1) -dimensional. Since

we can perturb L with n-dimensional freedom, we may assume that for

q, and some f > 0 small enough, K(M) n B(q, e) = H n B(q, e) for some

hyperplane H, see Figure 4.2, and that any face of any complementary cone

containing q is (n - 1)-dimensional and contains q in its interior. (The.

argument here is similar to several given before. We are selecting from a set

that is (n - 1)-dimensional and eliminating a set that is at most (n - 2)-

dimensional.) Now let pos C(a).j be a face containing q. q E int K(M)

implies that this is a proper face, so as. q E ar we may assume r C pos C(a),

for otherwise r C pos C(a a { i }). But pos C(a).; g H, so pos C(a), and

hence r, lies entirely on one side of H. But L crosses H with x E r on

one side and Y E r on the other. Contradiction.

Now assume q E OK(M). This implies q E 9int K(M). Again, by the

perturbation argument given above and the fact that a int K(M) is a finite

set of (n - 1)-dimensional finite cones, we can assume q is contained in the

interior of some face pos C(a).t of which L is a transversal. As q is in ar
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and in a int K(M), there is some full cone, say pos C(a), that has a face in

the affine hull of pos C(a).j and contains F. Thus F is, again, only on one

side of the affine hull of pos C(a).j. Contradiction.

El

As a side result, Lemma 4.2 implies

COROLLARY 4.3 If M E R'" is nondegenerate, then for all r E E

we have r = intF.
El

We remark that, even for nondegenerate M E INS, if F S K(M) then

r may not be convex. For example, in R2 if we let M - -I E INS4 then

we get j E= 2 where one component is int K(M) = int R and convex,

with the other component being !R
2 \ !_ and nonconvex.

Failing to show for nondegenerate M that all the 1 E E are convex,

one might consider showing that some particular r is convex. With this in

mind, we prove the next theorem before leaving this section. Recall that, by

Theorem 3.8, the number Isol(q, M) is invariant over q E F for each F E E.

THEORE M 4.4 Let M E R'7X'n be nondegenerate. There exists .least

one F* EE such that for all F EE

)sol(q*, M)) I )sol(q, M)), for q* E r, q E r, (4.2)

and any such F must be convex.

Proof. It is clear that at least one F* exists. As in the proof for Theorem 4.1,

we usume otherwise, and take z, Y E 1* such that the line segment between

them, L, contains a point q not in r*. As before, using the nondegeneracy

of M, we may assume q E aF* and that there is a hyperplane H, of which
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L is a transversal, such that if q is in any face of any complementary cone,

then q is in the interior of the face, the face is (n - 1) -dimensional, and the

face is contained in H. We also know at least one face of a complementary

cone contains q. If a complementary cone, with a face containing q, contains

r , then, as in the proof of Theorem 4.1, we will have r* lying entirely on

one side of H. As before, this contradicts the fact that L is a transversal

of H. Thus no complementary cone with a face contained in H can contain

I' . By nondegeneracy and the fact that some face does contain q and hence

is in H, we know some full complementary conc does have a face lying in H.

That cone must contain r, where r is the other component in E that has q

on its boundary. (Since for c > 0 small enough we know that B(q, C)\ K(M)

is two hemi-hyperspheres, one on each side of H, we see that at most two

components in E contain q on their boundaries. We know q E ar* and we

have just seen that another component must also have q on its boundary.)

Hence, every complementary cone containing r* also contains r, but some

cone containing F does not contain F*. Thus, with q E r and q' E r*, we

have Isol(q, M)f > Isol(q*, M)J. This contradicts (4.2).

0

4.2 The Number of Solutions

In discussing the class INS an important question to ask is for what

values of k is INSk empty? We know INS1 = U is certainly nonempty. It

can be easily seen that for all positive integers n, -I E R,×, is in INS2-.

What about values of k other than the powers of two? We will attempt to

give evidence suggesting that INSk - if k is not a power of two. We begin
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by proving

THEOREM 4.5 Suppose M E INSk n R'×". If there exists some point

in a K(M) that is not contained in a strongly degenerate cone, then k is

even.

Proof. Let q E 8K(M) be contained only in full or weakly degenerate

cones. By dimensional arguments similar to ones given previously, we may

assume there is a hyperplane H such that if q is contained in a face of a

complementary cone, then that face is (n - 1)-dimensional with q in its

interior, and the face is contained in H. We can then take an E > 0 so

small that B(q, c) lint K(M) C r for some particular rP E . See Figure

4.3. Any full complementary cone containing q must contain r, and likewise

any complementary cone containing r must contain q.. Since there are no

strongly degenerate cones containing q, by Lemma 3.2 of Saigal (1972a) it

follows that q is contained in an even number of full cones. Thus for any

E r, we have Isol(4, M)I is even, whence k is even.

COROLLARY 4.6 Suppose M E INSkn Rx. If there are no strongly

degenerate cones in K(M), then k is even, or M E P.

0

We now reconsider the proof of Theorem 4.5. This time we will allow

strongly degenerate cones. If q is contained in a degenerate face, then

Isol(q, M) = oo. Otherwise q is contained only in reflecting faces, as

q E 9K(M). Thus q is contained only in full cones. Let (w, z) E sol(q, M)
be the solution associated with a full cone pos C(a) that contains q, and

so there is an i E ff such that q E intposC(a).j. Thus za\{i) > 0,
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w&\{i} > 0 and zi - w - -.. Hence, (w, z) is also the solution associated

with the full cone pos C(a A i }), and is associated with no other full cone.

Thus, as we had q contained in. k full cones, it follows that Isol(q, M)J =

In any case, Isol(q, M)J 74 k. This reasoning, along with Theorem 3.4, proves

the following assertion which was mentioned at the beginning of Chapter 3.

THEOREM 4.7

P-U U M E ?'R× Isol(q, M)l =k, for all q E K(M) 4

At the start of this section it was suggested that INSk 0 0 if k is not

a power of two. As will be shown later, this would follow from

CONJECTURE 4.8 Let M E INSk n 9nX
n . If K(M) has no reflecting

faces, then k < 2.

The author has examined many INS-matrices, and studied their general

structure in the case where all boundary faces are degenerate. No coun-

terexample to Conjecture. 4.8 has been found. To obtain some feeling for

why the conjecture should be true, let us consider trying to construct K(M)

for an INSk matrix, k > 3, with all boundary faces degenerate. Clearly

Sint K(M) 4 0, otherwise M E P. Let H be a hyperplane, let

C = H n 0 int K(M) , and suppose that dim C = n- 1. Since only degener-

ate faces are in o K(M) , each such face acts as the "base" of at most one full

complementary cone. We would then find that every point in C that is not

in a m-dimensional facet of a complementary cone, where m < n - 2, i.e.,

"almost all" the points in C, must be contained in exactly k degenerate faces
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which act as bases for k full complementary cones. In building K(M) we find

there is a "tradeoff" in our placement of the column vectors of [ I -M I.

The more we place in C, the more degenerate faces we will have to form

bases of full cones, which can be used for this multiple covering of C. The

more we place outside of C, the more full cones we can actually form on

these degenerate faces. There are other tradeoffs in the construction. For

instance, the more boundary hyperplanes H that 8int K(M) has, i.e., the

more possible C's that exist, the more we must worry about putting the

column vectors of [ I I -M ] on the boundary of each C to "spread them

around" to the different C's. The fewer the number of boundary hyper-

planes, the more likely the C's will contain lower dimensional linear spaces

(linealities), iequiring many degenerate faces for our multiple coverings of

the C's, and the previously mentioned tradeoff becomes more critical. With

these and other requirements on the structure of K(M), including the way

in which the columns vectors of [ I I -M J form the complementary cones,

it seems certain that the 2n column vectors of [ I I -M I would not permit

k to exceed two. If this is so, we have

THEOREM 4.9 If M E INSkf 3n <× and Conjecture 4.8 is true, then k

is a power of two.

Proof. The proof uses induction on n. If n = 1, then there are at most

two complementary cones. Thus k < 2 and the theorem is true. Suppose

the theorem is true for n - 1. If no faces are reflecting, then k < 2 by

Conjecture 4.8 and the theorem holds.

Thus suppose posC(a). is a reflecting face. Then, posC(a)., C

a int K(M). Let H be the hyperplane span C(a).j. Let
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S = {posC(3).": pos C()., g H}.

iew

pos C(3).i is in S if and only if the columns of C(3)., are all in S. (Notice

that we use .1 here as both I.i and -M.i are on the same side of H, but

not in H.) We can now think of the vectors of It, and -MI as forming

an (n - 1)-dimensional LCP. (For notation, say that the matrix associated

with this new LCP is k.) The correspondence is as follows:

H takes the place of lR"-;

S takes the place of K(M);

pos C(a).j takes the place of the identity matrix as pos C(a).1 is a known

full cone in H;

if pos C(&).j E H, then -M.d is represented by pos C6(&).j , otherwise

-M., is represented by the zero vector. (Here we index on 1, so we

have j E 1.)

We will refer to this LCP in H as the reduced LCP. We claim that K(M)

is regular.

Suppose q E int S is contained in a reflecting face of the reduced LCP.

By dimensional arguments similar to earlier ones, we may assume there

is an (n - 2)-dimensional hyperplane ft C H such that if a face of a

complementary cone in the reduced LCP contains q, that face is (n - 2)-

dimensional, contains q in its interior, and is contained in ft. Thus for

c > 0 small enough, B(q, E) nH is a hypersphere divided into two hemi-

hyperspheres by Ht, with one hemi-hypersphere contained in ar and the

other contained in av'. Here r and r' are in the E of the original LCP.

See Figure 4.4. Let pos C(a)., be a reflecting face in S containing q. Thus
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both full cones of the reduced LCP which contain that face lie on the same

side of Hf in H. We may assume they both contain ar n H, and both

intersect ar' n H only on ft. But then, as both .,j and -M. lie in H on

the same side as ar n H, no full cone of S can contain ar' n H and without

containing ar n H. Thus more cones of the reduced LCP contain ar n H

than contain aOr fH. But each full cone of the reduced LCP is a face for

exactly two cones of the original LCP. (The cones you get by adding in I.j

and -M.i, respectively, as another generator of the cone.) Also, each full

cone of the original LCP with a face in H has that face as a full cone of the

reduced LCP. Hence as q E int S, we have some full cone of S containing

aor'nH and so if z E r and Y E r then Isol(x, M) > Isol(y, M)I > 0.

This contradicts the assumption that M E INS.

Now suppose q E int S is contained in a degenerate cone, say pos Cg1 (a),

of the reduced LCP, where i 0 a E (n). If all the columns in Cg.(a) are from

the original LCP, i.e., none of them are zero columns made, as mentioned

before, because the associated -M. was not ;- H, then post I.i I Ck(a)

is a degenerate cone of the original LCP. What's more, as q E intS, this

degenerate cone contains points in the interior of the convex hull of S and

I.,, which, in turn, is contained in K(M). This is impossible since M E INS.

We thus assume Cg,(a) contains columns which were made zero, as described

before. Now substitute for all but one of these columns that were made zero,

say all but -M.j, the associated complementary column from C(jO(). Let

this new matrix be Cgr (,0), and notice that q E pos Ck (0)• If Cj(P A { j 0)

is a degenerate cone in the reduced LCP, then as none of its columns were

made zero in the way initially described, we would be back to the previous

case. Thus assume that pos C (0 a jl" )) is a full cone in the reduced LCP,

and thus dim[pos Ck(P).j - n - 2. We can now use the same argument as
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in the case when we assumed q was in a reflecting face of S. However, here

we use pos Ci(fP).I instead of pos C(a).,5 . Also, there is one full cone, not

two, of the reduced LCP with pos Ck(,O).j as a face, but we still have this

one cone containing ar f H - and not containing ar' n H - so the argument

remains valid. We conclude that S - K(k) is regular, as claimed.

Let q be in a connected component of the interior of S. By familiar

dimensional arguments, we may assume that if a complementary cone of

the reduced LCP contains q, then it is a full cone containing q in its

interior. Thus, for an c > 0 small enough, B(q,) n int K(M) C r for

some particular r E E. (See Figure 4.3 again.) Since q E aK(M), the

complementary cones of the reduced LCP that contain q are reflecting faces

of the original LCP. (They can't be degenerate faces as both I., and .- M.1

are not in H.) Thus each cone of the reduced problem that contains q is the

face of two distinct full cones of the original problem, and these two cones

will contain r. Also, any cone containing r must contain q. As we've seen

before, the number of cones containing r must be k, hence the number of

full cones in the reduced LCP containing q must be 1. Since q could be in

any connected component of int S, using Theorem 3.13 we find k E INSk/2.

By induction on the dimension of the LCP we see that is a power of two.

Thus k is a power of two.
0

The previous theorem makes it seem almost certain that

INS= U INS2'.
p-O

However, there is a large class of matrices for which we can show the result

of the theorem holds without recourse to Conjecture 4.8. We see this in the
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following

THEOREM 4.10 Let M.E INSknR xn. Suppose that for all a E (w)

we have det C(a) = 0 if and only if C(a).i = 0 for some i E W. It is then

the case that k is a power of two.

Proof. The point here is to show that the proof of Theorem 4.9 goes through -

without using Conjecture 4.8 and with only minor changes - when we restrict

ourselves to the matrices described in the statement of Theorem 4.10. (We

use here the notation of the proof of Theorem 4.9.)

In the case where we have a reflecting face, the proof is the same. The

only thing needing commentary is the induction step where we must now show

the reduced LCP satisfies the hypothesis of this theorem. Suppose pos Ck a)

is a degenerate cone in S, where i 0 a E (W). Assume no column of Ck(a)

is zero. Thus all the columns in Ck(a) come from the original LCP, i.e.,

are not "artifical" zero columns as described before, and so pos C(a) is a

degenerate cone of the original LCP with no zero columns. This contradicts

the fact that the original problem satisfied the hypothesis of tle theorem.

Hence the reduced problem satisfies the hypothesis of the theorem.

Now suppose there are no reflecting faces. If M E Q, then M E P

and we're done. Otherwise a int K(M) 3 0 and so must be made up of

degenerate cones. Thus M must have at least one column that is all zeros,

say M.i 0. Thus

{q E : q,-0} aint K(M),

and we can let

H ={q E W q" 0) }
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We can now go through with the proof of Theorem 4.9 for the case of a

reflecting face. The reduced LCP is made in the same way. I.g represents

Ck(O) taking the place of the. identity matrix for the reduced LCP. For

j E 1, if -M.j E H then -M. represents -M.j, otherwise -M. = 0.

The difference is that each full cone in S is the face of one full cone in the

original LCP - which will contain I., - and for each full cone of the original

LCP with a face in H, that face will be a full cone in S. We will finally get

the reduced LCP in INSk, which, by induction, will mean k is a power of

two. (The reduced LCP satisfies the hypothesis of this theorem by the same

reasoning as given in the second paragraph of this proof.) We thus arrive at

the same conclusion as in Theorem 4.9.
0.

We leave this section with the following immediate corollary to the last

theorem.

COROLLARY 4.11 If M E INS, nv x  is nondegenerate, then k is a

power of two.
0

4.3 The Structure of K(M) and aK(M)

The purpose of this section is to build a link between the combinatorial

and geometric representations of K(M) for nondegenerate INS-matrices. The

main result is to show K(M) and 8K(M) can be divided into several

disjoint pseudomanifolds. For this purpose we review some of the basic

definitions related to pseudomanifolds. For a more detailed discussion of
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these topological-combinatorial constructs discussion see, for example, Eaves

4(1972, 1976), Freund (1980), and Spanier (1966).

DEFINITION 4.12 Let V be a finite, non-empty set of elements (vertices).

We say that a collection P of subsets of V is an n-dimensional pseudo-

manifold if and only if

(i) S E P implies that ISI = n + 1. The subsets S are referred to as

n-simplexes.

(ii) F C V and IFI = n implies that F is a subset of at most two elements

in P. (F is an (A - 1) -simplez.)

(iii) For every pair S, § E P, there is a finite sequence S = So, Sly_, S.. -

of elements of P such that ISinSi+,JI =n, for 0 < i < m.

The boundary, 4P, of the pseudomanifold P is the collection of subsets

F C V which have n elements and are contained in exactly one element of

P.

DEFINITION 4.13 Let S be a simplex of the n-dimensional pseudo-

manifold P. Let (so,s s, ;) be some fixed ordering of the elements of

S. Any ordering of these elements, say (8j., sj ,...., sj.), is then defined to be

a positive (negative) orientation if and only if the permutation (jo, ji, M

is even (odd). In this way we say we have oriented the simplex S. We say

two distinct simplexes in P are adjacent if they have n elements in com-

mon. Thus, if S and S are adjacent, we can write S = (s, 8I,...,mn) and

S = (,s8,..., sn). If these particular orderings for S and S are given

different signs by the orientations on S and 5, then we say S and S are

coherently oriented. Finally, we say P is orientable if we can specify an

* orientation for all S E P such that any two adjacent simplexes are coherently
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oriented.

EXAMPLE 4.14 For any matrix M E Wx"t, K(M) can be viewed as

the geometric representation of an orientable (n - 1)-dimensional pseudo-

manifold without boundary, i.e., the boundary is an empty set. (Notice the

combinatorial dimension is one less than the geometric dimension.) Let V

be the set of column vectors in the matrix [ I -M 1. The elements of

the pseudomanifold are the sets of column vectors of the complementary

matrices. The geometric representation of C(a).p is then pos C(a).p for

a,/3 E (W). For any a E (Wn), let the orientation of (C(a).i,...,C(a)., ) be

determined by the sign of (-1)1"1. It is not hard to see this will orient the

pseudomanifold.

Doverspike and Lemke (1981) showed that for a large class of non-

degenerate matrices M E Q0 , it is possible to find a collection of complemen-

tary cones whose union is K(M), and forms a pseudomanifold P in such a

way that the geometric union of the faces in OP is a K(M). Furthermore,

there will be exactly one other collection, disjoint from the first, of com-

plementary cones whose union is also K(M), which also is a pseudomanifold

whose boundary is OP. As we will be building somewhat similar pseudo-

manifolds from INS-matrices, eventually to prove Theorem 4.18 - which the

reader may wish to glance at now - it will be useful at this point to go over

the proof of the Doverspike-Lemke result before proceeding. The basic idea

of the proof is explained in the following paragraph. (The full details of the

proof would require many pages and are omitted.)

Consider the geometric structure of K(M). For each 1-dimensional facet

of K(M) we find a column from [ I I -M I whose "pos" spans it. (We have

our choice of any column vector which is in the facet when there is more than
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one.) In this way we build up (trivial) pseudomanifolds for the 1-dimensional

facets of K(M). From here on, we assume we have built up pseudomanifolds

for the r -dimensional facets of K(M), 1 < r < n. The boundary of

any (r + 1)-dimensional facet is the union of r-dimensional facets. We can

take the union of the pseudomanifolds of these r-dimensional facets as a

boundaryless pseudomanifold over the geometric boundary of our selected

(r + 1) -dimensional facet. (They will "fit" together as their boundaries were

made from the same pseudomanifolds on the (r - 1)-dimensional facets.) We

then give a construction to show there will be exactly two pseudomanifolds,

as previously described, on the (r + 1) -dimensional facet whose boundary

pseudomanifold is the pseudomanifold we pieced together on the geometric

boundary of the (r + 1)-dimensional facet. We continue this until r-+1 = n,

at which point we have the result.

The concept we wish to use from this is the family of pseudomanifolds on

the r -dimensional facets of K(M), with the r -dimensional pseudomanifolds

forming the boundaries of the (r+1) -dimensional pseudomanifolds. However,

we will be working from the higher dimensions to the lower dimensions,

whereas Doverspike and Lemke do the opposite. Notice we are able to start

our constructions since K(M) is regular, which implies that for any face in

K(M), say posC(a).;, we have

dim [pos C(a)., n a K(M) --- n - 1 pos C(a).; c a K(M).

The following lemma will prove useful.

LEMMA 4.15 Let M E INS fl RIx, be nondegenerate. It is then the

case that the r-dimensional facets of K(M) are regular. (That is, if the

(r-1)-dimensional cone pos C(a).p, where a, P3 E (W) and 1131 = r-1, is the

common face of two r -dimensional complementary cones in an r -dimensional
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facet of K(M), then it is. either a boundary face of the facet, or it is a proper

face. If the two r -dimensional cones are not in the same r -dimensional

facet of K(M) then, clearly, pos C(a).p is on the common boundary of both

r -dimensional facets which contain the r -dimensional cones, so we need not

worry about this case.)

Proof. This is easily seen by reverse induction. It is true for dimension

n, as K(M) is regular by assumption. Suppose it is true for dimension

r + 1, 1 < r < n. Suppose that it fails in dimension r. We may assume

some q in the interior of an r-dimensional facet is contained in a reflecting

(r - 1)-dimensional face, pos C(a).-I, which is the common face of the

two cones posf C(a).-- -M, ] and posf C(a).- - 1 1., ] contained

in the r-dimensional facet. (As M is nondegenerate, there cannot be any

degenerate faces here.) Some (r + 1)-dimensional facet will contain this

r -dimensional facet in its boundary, and thus must contain some column vec-

tor from [ I I -M] which is not in [I., -M.7]. Say it contains I.,,. As the

r-dimensional complementary cones covering the r-dimensional facet must

be generated from column vectors of [I., -M.7] - due to nondegeneracy of

M - then the interior of the cone pos[ q I .,, I is contained in the interior of

the (r+ 1)-dimensional facet. Hence the reflecting face, pos[ C(e2).7 1-_- I I.- I

which is the common face between the cones posf C(a).--I I I . I and
pos[ C(a).;- -M. . ], contains points in the interior of the (r + 1)-

dimensional facet, contradicting the regularity of that facet. This completes

the induction. Thus all the r-dimensional facets are regular, for 1 < r < n.

We can now start building up our pseudomanifolds.
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DEFINITION 4.16 For any complementary cone, C, in K(M) define the

pseudomanifold P = P(C) to be C and all complementary cones C' for

which there exists a finite sequence of complementary cones C = C1, C2 , ....

Cm = C*, where, for 1 < i < m, C, and C,+ 1 are adjacent cones whose

common face is proper.

Let M E INSk, n3VX be a given nondegenerate matrix. Thus by

Theorem 3.17 we know that int K(M) is connected. Fix some C C K(M).

Let P = P(C). Let q and 4 be two points in int K(M) such that if a

complementary cone contains one of these points, then it contains that point

in its interior, i.e., q, 4 E K(M) \ K(M). We can now use Lemma 3.12

to get a path L from q to 4 satisfying the conditions of Lemma 3.12.

Suppose s members of P contain q. Now move along L from q to .

When L crosses a face of a complementary cone, that face must be proper

as L C int K(M) and K(M) is regular. Thus L leaves one complementary

cone and enter another one. If the first cone was a member of P, then

the second cone will also be. Hence, for points in L \ K(M) , the number

of members of P that contain any given point is independent cf the point

selected. Thus j is contained in a members of P, as was q. Thus every

point in int K(M) \ K(M) is contained in a members of P.

Before continuing on, let us digress momentarily to point out a simple

fact about P. Suppose that C* is a cone in P. By definition we have
the sequence of cones, C = CI, C2 ,...,C, = C*, adjacent on proper

faces. Suppose C1 = pos C(a) and C2 = pos C(/3). By the definition of

a proper face, we have (det Maa)(det Mpp) > 0. If we have C' = pos C( ),

then it is easily seen that continuing the reasoning in the last sentence

along the sequence of cones C1, C2 ,...,Cm. will lead us to conclude

(det Maa)(det My) > 0. Hence, the sign of the determinant of the prin-
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cipal submatrix of M associated with every member of P is invariant over

P. This fact will be useful momentarily. For notational purposes, we say

a full complementary cone pos.C(ct) is positive (negative) if det Ma > 0

(det Ma. < 0).

Returning to the main discussion, we have shown every point in

K(M) \ K(M) = int K(M) \ K(M) is contained in s members of P, where,

clearly, a > 1. Since these complementary cones are closed, and by non-

degeneracy K(M) = int K(M) \ K(M) , it follows that the geometric union

of the members of P is K(M).

Now, if pos C(c). is a face of exactly one member of P, i.e, is in OP,

then it must be in 0 K(M) . For if it contains a point in int K(M), then it

must be a proper face, which would imply either both or neither of the cones

containing it are in P. Hence the geometric union of the members of OP

must be contained in 0 K(M) .

Let q E 8 K(M) be such that if any complementary cone contains it,

the cone contains it in the interior of one of its faces, and that face must be

contained in 0 K(M) . (This, as usual, allows q to be "almost all" the points

in OS.) Hence, for c > 0 small enough, any point in

B(q,c) nint K(M) 9 K(M) \ K(M) (4.3)

will be in the same complementary cones as q. As the points in (4.3) are

contained in s members of P, it follows that q is contained in a members

of P. Suppose that pos C(a) E P contains q in its face pos C(a).j. Let

P a C A { i }, thus pos C(O3) is the one other complementary cone with

pos C(a). as a face. The face cannot be proper as it is in 0 K(M). Thus the

face is reflecting, and so (det Mca)(det Mpp) < 0. Since pos C(a) E P, the
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digression above shows that pos C(3) P. Hence, any face of a complemen-

tary cone in 0K(M) is a face of at most one cone in P. Thus q is in s

members of OP.

In the previous paragraph we showed that any cone pos C(a).#, where

11 = n - i, is contained in at most one member of P. We now assume that

this proper holds for lower dimensional cones.

ASSUMPTION 4.17 Let M E INS n &'"× be nondegenerate, and let C

be any complementary cone in K(M). Let F be any r-dimensional facet of

K(M), 1 < r < n, and posC(a).p _ aK(M), be any cone in OF where

a, / E (ff), pos C(a) E P(C), and 11 = r - 1. Then there exists at most

one 'y E (W) with 1H/I = r such that, posC(a).. C F and y. .

(This assumption is essentially the "consistency" assumption used in the

previously cited work of Doverspike and Lemke.)

We can now state the main theorem of this section.

THEOREM 4.18 Let M E INSk n Rn x n be nondegenerate. If Assump-

tion 4.17 holds, then the complementary cones of K(M) can be partitioned

into k disjoint collections where each collection is an orientable (n - 1)-

dimensional pseudomanifold by the representation described in Example 4.14.

Furthermore if P is one of these pseudomanifolds, then the geometric union

of the cones in P equals K(M). Also, if pos C(a), pos C(3) E P, then

int pos C(a) n int pos C(3) = 0. (In this way each pseudomanifold partitions

K(M).) In addition, the (n - 1)-faces making up the boundary of P, call it

aP, also have disjoint interiors and their union is geometrically 0 K(M). (It

is known that aP will be an orientable (n - 1)-dimensional pseudomanifold

without boundary.)
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Proof. Most of the work has been already done. We will use reverse

induction. Suppose by induction we have a sequence of facets of K(M), say

F;,Fr+Y,...,F,-1 , and dimF- = i for r < i < n. In addition, suppose

for each F there is a collection, P, of i-dimensional facets of members

of P = P(C), each facet being in Fi, such that for each q E Fi which is

not contained in any (i - 1) -dimensional facet of any complementary cone,

(which is "almost all" of F,) there are exactly s members of Pi containing

q.

We have already shown we may start the induction by taking F,-, as

any (n - 1)-dimensional facet of K(M), and selecting as P,_ 1 all those

faces of members of P that lie in F,- 1 . Now suppose we are at the general

induction step. Take as F,_- any boundary facet of F,. For any q E F,--1

that is not contained in any (r - 2) -dimensional facet of any complementary

cone there is an E > 0 small enough so that each member of P, either

contains or is disjoint from B(q, )f F7 . By induction, for small c > 0, we

have each point in B(q, E) n int F, must be in exactly s members of P,, thus

q is in s members of P,. By Assumption 4.17, each (r - 1)-dimensional

facet, of a complementary cone, contained in F,_-1 must be the face of no

more than one member of PT. Hence, if we define P,_ 1 as all the faces of

members of P, contained in F,- 1 , the point q is contained in exactly s

members of P,-. Noticing that the members of Pri must be facets of

members of P completes the induction.

The only "catch" in the induction is where we assume that F,. has

a boundary facet. Suppose it doesn't, and hence F, is an r-dimensional

subspace. By the nondegeneracy of M, we may assume I. and -M.i

are not in Fr, for r < i < n. Also, notice F,. must be covered by the

r-dimensional facets of complementary cones that are in F,. If there is
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some column vector of [ I.v -M.] that is not in F,, say LI, then every

r -dimensional facet, of a complementary cone, that is in F, must contain

- M , and so by nondegeneracy must not contain MI. This contradicts

the fact that F. is covered. Thus F, contains all the column vectors of

[.v I -M.v J. We can view F,, as kr, and' [ I-M. ] as defining a

LCP, where the matrix of the LCP is M, = -Mn. We know M, E Q.

By Lemma 4.15 K(M,) is regular so, by Theorem 3.18, M E INS. Hence

MEP. Thus a=1.

Now suppose that we can always continue the induction down to F1 ,

no matter what choices we make along the way. By nondegenracy, F1

can contain at most two column vectors from [ I I -M ]. If it contains

only one such vector then we have a = 1 as before. If it contains two

such vectors then they are I.i and -M.i for some i E W. (In this case

a = 2.) Hence -Mi = XI. for some X > 0. As the.boundary of K(M)

contained no lineality (no linear subspace), there must be a minimum of n

1-dimensional facets. Hence, for some i E W, each such facet must contain

-M.i and I.e. Each facet must be associated with a different i. Thus M

is a diagonal matrix with negative diagonal entries. It is easily seen that

for each complementary cone C, we have P(C) = { C). Hence a = 1, a

contradiction.

In all cases we have have a = 1. Thus any two cones in P must have

disjoint interiors, otherwise the intersection would be n-dimensional which

would mean some of the points in the intersection are in K(M) \ K(M)

and would have to be in only one member of P. The same can be said for

the members of OP. Since any point in K(M) \ K(M) is contained in

k complementary cones, as M E INSk, and each complementary cone C

is contained in some pseudomanifold P, for example P(C), then the com-
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plementary cones can be partitioned into k, clearly disjoint, collections with

each collection forming a pseudomanifold. Each pseudomanifold, P(C), can

be oriented, as in Example 4.14, by giving the ordering (C(a).i, ... , C(a).,)

of pos C(a) the sign (--1)1a1. This induces orientations for the boundary

pseudomanifolds. See, for example, Freund (1980).

0l

As a final remark, it should be mentioned that the boundary pseudo-

manifolds need not be distinct. For example, Figure 4.5 shows K(M) for

1 0]
0 -- 1

In this case M E INS4 , and the four pseudomanifolds are the four com-

plementary cones. Each has a different boundary pseudomanifold. Figure 4.6

shows K(M) for

1 1

Here M E INS2 , and the two pseudomanifolds are { pos C(0), pos C(( 2 }) }

and { pos C(( 1 }), pos C(9) }. These both have the pseudomanifold { pos 1.2,

Pos -M. 2 } as boundary.

4.4 A Simple Class of INS-matrices

The relation between INS-matrices and other matrix classes will be dis-

cussed in Chapter 5, however, it seems appropriate at this point to introduce

a simple subclass of INS. So saying, we have
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DEFINITION 4.19 We say that a matrix A is in the class GNI (Gener-

alized Negative Identity) if and only if

AE U {ME -X":IsupMiI -  1, foralliE f},

ncEZ+

i.e., each column of the matrix contains at most one non-zero entry, and, if

it exists, this non-zero entry is negative.

Suppose M E GNI and a E (fl). If pos C(a) is a full cone then

posC(a) = W'. Otherwise, posC(a) g M". Thus no face of any

complementary cone intersects the interior of K(M) = R'. Accordingly,

int K(M) = int R' is itself one of the connected components in E. So, by

Theorem 3.8,

GM C INS.

GNI-matrices satisfy the conclusion of the theorems of Section 4.2, and

the proof sheds light on the combinatorial aspect of the subject. In fact,

the theorem essentially follows from the next lemma which is an interesting

combinatorial result by itself.

LEMMA 4.20 Suppose we are given n boxes, labelled 1, 2,...,n, and

2n balls, labelled 1,2,...,n, 1,2,. .. ,i. Suppose also that, for all i E ff ,

ball i is in box i, whereas ball i may be in any one, or none, of the boxes.

Say that (L1, 12,..., ln) is a list if for all i E W, Ii equals j or 3 for some

j E N, and ball Ii is contained in box i. Say that a list is proper if for all

i E ff there exists a j E f such that 1, E { i, i }. Then the number of proper

lists is a power of two.

Proof. This will be by induction on n. If n = 1, the number of proper

lists is 2 or 1 depending on whether ball I is, respectively, in or not in box 1.
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The lemma is true in this case.

Assume the lemma is true for 1, ... , n - 1. We will show it true for n.

Suppose some bail is in no box. We may assume it is ball i. Then any proper

list (l, 12, ... , I) has In = n. Notice that (11, 12, ... , , I.-1) is a proper

list, and any such proper list can be extended to a complete proper list by

adjoining 1, - n. Also the distribution of the balls 1,..., n- 1, ,..., n - 1

in the boxes 1,...,n - 1 satisfies the conditions of the lemma. Thus by

induction the number of proper lists (li,..-, 4-1) is a power of two, and

this equals the number of complete proper lists (11,..., 1 ).

Assume all the balls 1,..., are each in some box. Suppose ball i is

in box i. Again, we may assume i = n. Then, as above, any proper list

(, ... ,,-1) can be made into a complete proper list by adjoining either

I = n or by adding in In = ii. (Notice that either is possible.). Also, any

proper list (l1,...,l,) will have In =- n or In = ii, hence ,. -l) is

a proper list. As above, we may use induction to show that the number of

proper lists (11,..., , is a power of two. Thus we have twice that number

of complete proper lists. This is still a power of two.

Now suppose, for all i E II, that we have i in some box, but not box i.

Let il, i2,i3,... be a sequence defined by letting il = 1 and saying that ball

ij is in box ij-.-1 for all j E Z+. Then the sequence must clearly repeat a

number at some point, say ii = ik, such that j < k, and i, i',. iA-

are all distinct. We may assume that j = 1, that 3 < k < n + 1, and the

sequence at the end of the last sentence is 1,2,...,k - 1. Let (11,...- ,

be a proper list. If 11 = 1, then as ball k - 1 is in box 1, we need to have

lk-1 k-1. As ball k -2 is in box k-1, we need to have 1 -2 = k-2.

Continuing in this fashion we find that (l,...,lk-1) is (1, ... ,k- 1). If
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11 3 1, then we need 12 - 1. As 12 2, we need that 13 = 2. Continuing

in this fashion we have that (
1

1, .. . , Ik-1) is (k - 1, i, 2,..., k - 2). Thus

we must have that ,,) equals (1,...,k-1) or (k- 1, i,...,k - 2).

Notice that either one of these two will do, since having either one of these

begin the complete proper list will force the rest of the proper list, (1k,.. ., ),

to be selected from the set { k,...,n, I, ., }. Hence given an "ending"

to the proper list that works with either of the previous two "beginnings,"

the "ending" will work with both of the "beginnings." Furthermore, we

see the "ending" is just a proper list for the boxes k,...,n using balls

k,... , n, k, ... , fi, and pny such proper list will do. By induction, the number

of such proper lists for the "ending" is a power of two. Since there are two

possible "beginnings," the number of complete proper lists is also a power of

two. This completes the induction, and the lemma follows.
0

The above lemma translates almost immediately into the

THEOREM 4.21

GNI C U INS2,.-p0

P=O

Proof. Let M E GNnbIR' x '<. With reference to Lemma 4.20, ball i

corresponding to I. and ball i corresponding to -M for i E ii. We say a

ball is in box i if and only if the &th component of the corresponding vector is

nonzero. Thus there is a bijective correspondence between full complementary

cones and proper lists, where the elements of a proper list correspond to the

columns of a nondegenerate complementary matrix. Each of these full cones

is equal to !_ ---- K(M), and as Lemma 4.20 now tells us the number of
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such cones is a power of two, we have M E INS2 , for some nonnegative

integer p.

It seems bothersome to require that the nonzero entries in a GNI-matrix

be negative. It would be preferable to work with the following class of

matrices.

DEFINITION 4.22 We say that a matrix A is in the class GI if and only

if

AE U {M ER"×":suppM.il <_ 1, foralliE W},
nEZ+

i.e., each column of the matrix contains at most one non-zero entry.

Unfortunately, as seen at the end of Section 2.1, the matrix

[ -1

is not INS, but is in GI. See Figure 2.3. Thus GI g INS. However, it.

is "close" enough to warrant investigation, and so we look at the following

combinatorial lemma which is an extension of Lemma 4.20. (The proofs are

almost identical so the proof of Lemma 4.23 will be given in less detail than

necessary, but familiarity with the reasoning in the proof of Lemma 4.20 will

be assumed.)

LEMMA 4.23 Suppose we are given 2n boxes which are labelled 1, 2,...,

n, 1', 2,..., n', and 2n balls, labelled 1, 2,..., n, ,2,..., fi. Suppose also

that, for all i E W, ball i is in box i, but ball i can be in any one box, or

no box at all. Say that (bi,b2,. .. b) is a box list if, for each i E W, bi is

either i or i'. Furthermore, given a box list, we say that (11,12,..., 1n) is a

list for the box list if, for each i E 31, l equals j or 3 for some i E ll, and
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Ii is contained in box bi. Say that a list is proper if, for all i E W, there is a

i E W such that Ii E { i, i }. Then, there exists a nonnegative integer p such

that the number of proper lists, associated with any box list is either zero or

2P.

Proof. We will use induction on n. For n = 1 either 1 is in no box (box 1),.

in which case box 1 has one (two) proper list(s) and box 1' has none, else I

is in box 1', in which case both boxes have one proper list. The lemma holds

here.

Now assume the lemma holds for 1,..., n - 1. We will show it true for

n. Suppose some ball, say i, is in no box. Then any box list with at least

one proper list must have b, = n. Also, any proper list must have In = n.

Similar to before, we find that the number of proper lists that are associated

with box lists of the form (bl, ... , b - 1 , n) equals the number of proper lists

(l, ... , LIn-1) for the associated box lists (bl,..., b- 1 ) when we consider

the embedded smaller problem for n - 1. The lemma then holds here by

induction.

Assume all the balls 1,2,...,i are in some box. If for some i, say

i - n, we have ball h in box n, then we will have a situation similar to the

above. Any box list will have no proper lists if bn = n', and the number of

proper lists of box lists in the form (bl,... , bn--l, n) equals twice the number

of proper lists (l,... , -1) for the box lists (bi,..., bn-. 1 ) when we consider

the smaller embedded problem. (We would just add on In = n and In = i

to get the two complete proper lists from the box lists of the smaller problem.)

The lemma then holds here by induction.

If we had ii in box nt' in the previous paragraph, then each box list

(bl,...,b, ) would have the same number of proper lists as (bl,..., b,- 1 ) in
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the smaller embedded problem. The reasoning is the same as before, only

now we complete the smaller proper lists by adding on 1, = n if b, = n,

and L,. = fi if b,, = n'. The lemma will still hold by induction.

So now, finally, assume that all the balls 1,... i are in some box but,

for each i E ii, ball i is neither in box i nor in box i. Thus, as in the

proof of Lemma 4.20, we may assume for some k, where 3 < k < n + 1,

that, for all i E k- 2, the ball i is in either box i-+ I or box (i-+ 1)',

and the ball k - 1 is in either box 1 or box 1'. Now suppose the box list

(bb,...,b,) has a proper list (1....,L). Suppose l1 = 1. Thus b = 1, so

no other ball in the proper list , -%n be from box 1 or box 1'. Hence we need

11-,1 = k - 1. Continuing on in t~iis fashion, as in the proof of Lemma 4.20,
we get (L,...,lk-1) is (1,.. ,,k -1). If 11 then we need 12. 1.

Thus b2 equals whichever of the two boxes, 2 or 2', contains 1. In either

case, we cannot select any other ball from either of the two boxes for the

proper list, hence we need 13 = 2, and continuing on we have (11... 1, lk-1)

is (k - 1,1, 2,..., k -- 2). Each of these cases determines the "beginning"

of the box list, i.e., (bl, b2 ,...,bk -1). If the list in each case is the same,

then any box list which has at least one associated proper list must have

this "beginning." The ending, as in Lemma 4.20, can be any proper list

(1k,..., 1,,) from the smaller embedded problem. By induction this is a fixed

power of two, say 2P , and so the number of complete proper lists, f€or any box

list having proper lists, is 2P+1. If the two "beginnings" are different, then

any box list having proper lists must have one of these two "beginnings," and

the number of proper lists it will have will be 2P .

In all cases, all box lists with proper lists have the same number of proper

lists, and that number is a power of two. The induction is now completed.

13
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Now, with this lemma, we can finish this section with the following

THEOREM 4.24 If M E GInrn × n , there exists a nonegative integer

p, such that for all q E K(M)

Isupp qj = n Isol(q, M)- 2P.

Proof. With reference to Lemma 4.23, let ball i correspond to I.I, and ball i

correspond to -Mi. We say a ball is in box i if and only if the corresponding

vector has it's ith component positive. We say a ball is in box i if and

only if the corresponding vector has it's ith component negative. Each

full complementary cone must be, geometrically, an orthant in Rn. Each

degenerate complementary cone must be, geometrically, contained in the

union of the boundaries of the orthants. There is a bijective correspondence

between orthants and box lists. Thus the interior of each orthant that is

contained in K(M) must be an element in E. Since there is a bijective

correspondence between full cones covering an orthant and proper lists of the

orthant's associated box list, Lemma 4.23 implies that each orthant contained

in K(M), i.e., with some associated proper list, must be covered by the same

number of full cones as the other orthants in K(M), and that number must

be a power of two. Thus, by Theorem 3.8, Isol(q, M)j is this power of two

for any q belonging to K(M) and the interior of an orthant.

0

113



-B(q,e:)

Figure 4.1

q ~ ~ c

/

/ r
I/

Figure 4.2

114



q

Rn \ K(M)

Figure 4.3

ar'

Figure 4.4

115



2, 2-

Figure 4.5

2

21I

Figure 4.6

116



CHAPTER 5.

MATRIX CLASSES AND LCP THEORY

5.1 Matrix Classes

Much of the literature concerning the LCP deals with the study of matrix

classes. Some classes are defined using the LCP itself and so we seek more

constructive characterizations. Other classes are defined using more simple

and testable criteria and results are found concerning the nature of the LCP

(q, M) when M is in one of these classes. The relationships among the classes

has also been a rich subject of study, and much work has been devoted to

trying to understand which basic properties of importance to the LCP are

common, or different, among the matrix classes. In Figure 5.1 we have listed

the seven matrix classes defined in this work along with some of the more

well-studied matrix classes in the field. This figure should be referred to

throughout this section. (The arrows indicate inclusion relationships among

the classes, with the larger classes tending to be at the top of the page.)

The purpose of this section is to define the classes in this "family tree," and

to discuss just where U and INS fit into it. There is no attempt to give a

detailed review of these classes, however references are given showing where
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more information can be obtained. Some basic references of general value

are Lemke (1970), Karamardian (1972), Kostreva (1976), Mohan (1978), and

Cottle (1983). The classes are presented in alphabetical order by the symbols

used in Figure 5.1. At times it will be necessary to refer to the definition of

a matrix class not yet given.

(A) A matrix M E Rxn is said to be adequate, M E A, if and only

if M E P0 and for all a E (ff) we have det M,, -- 0 implies the column

vectors M.a are linearly dependent and the row vectors M., are linearly

dependent. See Ingleton (1966), Cottle (1968) and Eaves (1971).

(BG) A matrix M E RX" is said to be a bimatrix game matrix,

M E BG, if and only if for some m E (n -- I1) there are matrices

A E R-mx(n-m) and B E x(-m)xm where A,B > 0 and

B 0

See Lemke and Howson (1964), Cottle and Dantzig (1968) and Eaves (1971).

(CP) A matrix M E Rnxl is said to be copositive, M E CP, if and

only if for all X E IRn', X > 0 implies XTMX > 0. This matrix class has also

been denoted as Co. Copositive matrices are important in combinatorics and

other fields aside from complementarity. There is a large literature about this

class, for example, see Gaddum (1958), Cottle and Dantzig (1968), Cottle,

Habetler, and Lemke (1970b), Pereira (1972), Hoffman and Pereira (1973),

and Evers (1978).

(C+) A matrix M E RJ',x 'x is said to be copositive-plus, M E C+, if

and only if M is copositive and for all x E R', x > 0 and xTMz - 0 imply

(M + MT)X = 0. Like the copositive matrices, there is a large literatur,

concerned with these matrices. See the papers given as references for the
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copositive matrices.

(E 0 ) A matrix M E nX' is said to be semi-monotone, M E E0,

if and only if for all X E R', C3x > 0 implies there is some k E K

such that Xk > 0 and (Mx)k 0. (This class has also been denoted

as L 1 .) If M is symmetric, then M is semi-monotone if and only if

M is copositive. We have used these matrices previously, with their other

characterization of being the class of matrices M for which jsol(q, M) = I

for all 0 < q E R. Like the copositive matrices, the semi-monotone matrices

have been extensively studied. See, for example, Lemke (1970), Eaves (1971),

Pereira (1972), Karamardian (1972), and Garcia (1973).

(EI) A matrix M E 9?n" is said to be fully semi-monotone if and

only if all principal transforms of M are semi-monotone. This matrix class

was introduced in this work, and was shc:-.n to contain the matrix classes

U and PO. (It is clearly contained in E0.) As seen, it can be characterized

as the class of matrices such that for all q E !R, if (w, z) E sol(q, M) and

w-+-z > 0 then { (w, z) } sol(q, M). To see why Ef has been placed

where it is in Figure 5.1, consider the matrices

2 1 -2 1 2 -1 -2 -1 0 -1

(5.1) (5.2) (5.3) (5.4) (5.5)

None of these matrices are in E t . However, (5.1) is in SCP, E, and

(N nQ)- 1 , (5.2) is in 7, (5.3) is in N n Q, (5.4) is in N\ Q, and (5.5) is in

GNI. Consider now

0 0 2 1
M ,(5.6)

1 2 0 0

2 1 0 0J
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M is in DG, but is not in Et. This can be seen as we have

o o -i

0 0
o o oM --1 _.

.0 0
0o 0

and the inverse of a matrix, if it exists, is always a principal transform.

However, with z = (1,0, 1, 0)T , we note that there is no index k E 4 for

which Xk > 0 and (M-x)k 0. Hence M V Et .

(E) A matrix M E !'%X is said to be strictly semi-monotone if and

only if for all x E R' , 0 4z 0 implies there is some k E ff such that

z, > 0 and (Mx)k > 0. (This class has also been denoted as L*.) If

M is symmctric, then M is strictly semi-monotone if and only if M is

strictly copositive. Similar to the semi-montone matrices, these'matrices can

be characterized as being the class of matrices M for which Isol(q, M)] = 1

for all 0 < q E RJ' • See the papers given as references for the semi-monotone

matrices. This matrix class is also the class of completely Q-matrices, which

are defined to be those Q-matrices all of whose principal submatrices are also

Q-matrices. This equivalence was shown by Cottle (1979).

(GI) A matrix M E Rnx is said to be in GI if and only if for all i Eff

we have Isupp M.il <: 1. This class was brought up in Chapter 4 due to its

combinatorial nature, and because it is "almost" in the class INS. For such

a simple class of matrices, it seems surprising that it is contained in none

of the other matrix classes in Figure 5.1. Still, Example 2.3 is a GI-matrix

that is not in Qo, and the 1 X 1 matrix (these are usually referred to as

"numbers") 1-1] is not in So. As mentioned in Chapter 4, GI L INS. The

class GI is contained in no other matrix class in Figure 5.1, since every other
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matrix class shown there is a subclass of Qo, So, or INS.

(GNI) A matrix M E W"xn is said to be in GNI if and only if M E GI

and M < 0. It was shown in Chapter 4 that this class is in INS. In fact,

M E INS k nG GNI implies k = 2P for some nonnegative integer p. Also

INS2P n GNI , 0 for all nonnegative integers p, as the zero matrix is in INS1

and -I E Rpxp is in INS 2 ,.

(INS) A matrix M E RfX, is said to be in INS, for Invariant Number

of Solutions, if and only if there is some positive integer k such that for all

q E int K(M) we have jsol(q, M)j = k. We have studied these matrices

a great deal. Notice now where they fit into Figure 5.1. We know from

Theorem 3.4 that INS nQ = P. Also, it is shown in Garcia (1973) that

M E L(d) with d > 0 implies Isol(d, M)I = 1, and hence we have

U L(d)nINS=U.
d>O

We see that E0 nINS = U, since for M E E0 we have Isol(q, M)I = 1 for

all q > 0. More will be said about INS matrices in relation to some of the

other classes, but, before moving on, notice that the matrix given in (5.5) is

in INS but is not in So, so INS S So .

(K) A matrix M E Rx n is said to be in K if and only if M EPnZ.

(These matrices have also been referred to as the Minkowski matrices and

denoted as the class M.) These matrices have a great deal of structure,

both geometric and algebraic. It is interesting to note K = Z n Q, i.e., the

complementary cones of a Z-matrix cover R' if and only if they partition 3z".

(The meaning of "partition" allows the cones to intersect on their boundaries.)

The classic reference for these matrices is Fiedler and Pta.k (1962). See also

Cottle and Veinott (1972).
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(KO) A matrix M E RJ X" is said to be in K0 if and only if

M E Po f Z. Again, the classic reference here is Fiedler and Pt~k (1962).

In Mohan (1980), it is shown that the boundary of a K0 matrix is the union

of the degenerate faces. Since, for M E K0 , there are no reflecting faces in

K(M), as K0 g Po , it follows that K(M) is regular. In Chandrasekaran

(1970) it was shown that Z E Q0, hence K(M) is convex for a Ko -matrix,

and so int K(M) will be connected. Thus K0 g INS by Corollary 3.14.

As K0 C PO C E0 , we see we must have KO C U. In Mohan (1980),

other results are derived about Ko which can be viewed as consequences of

some of the theorems presented here concerning U-matrices. See also Mohan

(1978) for more on K0 -matrices.

(L) A matrix M E RtX, is said to be in L if and only if M E E0 ,

and for all (w,z) E sol(0, M), where z$0, there is a x E R', 0 4 x > 0,

with z > x and w > -- MTX > 0. This is one of the largest classes of

matrices that Lemke's algorithm using e = (1, 1,..., 1) is known to process.

The standard reference for this class, which is also the reference defining the

class, is Eaves (1971).

(L(d)) A matrix M E R'Lx is said to be in L(d) if and only if for all

(w,z) E sol(Xd, M), where z# 0 and X > 0, there is a x E R', 0 x _ 0,

with z _ z and w > -MT x > 0. The standard reference for these classes

is Garcia (1973). It should be pointed out that L = nd>o L(d).

(L*(d)) A matrix M E R"X, is said to be in L*(d) if and only if

for all X > 0 we have that (w, z) E sol(Xd, M) implies (w, z) = (Xd, 0).

For d > 0, L*(d) is the class of all matrices M where in K(M) the only

complementary cones containing d are pos C(a) where a fl supp d = 0, and

there are no strongly degenerate cones in K(M). For d 0, L*(d) is
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the class of all matrices M where K(M) has no strongly degenerate cones

and does not contain d. These classes, as well as the L(d), were introduced

in Garcia (1973). There it is shown if M E L(d), with d > 0, then for

all X > 0, we have {(Xd,0)} 0 sol(Xd, M). Hence, for d > 0, we have

L*(d) = L*(O) nL(d). While before we had L = fld>o L(d), we can only say

here that E n fd>o L(d). For example, the matrix

[ 01 1

is in nd>OL*(d), but is not in E. We will have more to say about these

classes later on.

(N) A matrix M E 3 'nX is said to be in N if and only if all principal

minors are negative. Two standard references for this class are Saigal (1972a),

and Kojima and Saigal (I979). More will be said about this class in what

follows.

(NnQ) A matrix M E R''X" is in this class if and only if it is both

in N and in Q. It is shown in Kojima and Saigal (1979) that if M E N,

then M G Q if and only if M { 0. It is also shown if ME NnQ, then

jsol(q, M)l equals 1 for q J 0, and equals 2 for 0 -4 q > 0. According

to Theorem 3.3 of Kojima and Saigal (1979), if M E NnQ and q > 0

then Isol(q, M) equals 3 if all solutions to (q, M) are nondegenerate, and

equals 2 otherwise. (Actually, what it means for a solution of (q, M) to be

"nondegenerate" is never defined in that paper, however, it can be inferred

from context and the cited references that the intended definition is the

one given here in Chapter 1.) While it is true that there will be exactly

three solutions for all q > 0 having only nondegenerate solutions, it is true

that there are exactly three solutions for all q > 0. The last line of the
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proof, given in Kojima and Saigal (1979), says a solution is "lost" because of

degeneracy. This will be the case when 0 4- q > 0 and it is on a reflecting

face; however, for q > 0 we are only contending with proper faces, and no

solutions are "lost." Consider

EXAMPLE 5.1 Let

-1 4 1M = 1 -1 -4

2 -1 -1

It can be easily checked that M E N and, as M 0, M E Q. Let

q = (2, 4, 1)T. Then (q, M) has three solutions

(w1 , z 1) (2,4,1,0,0,0)

(V 2 , z 2) (0,6, 5,2,0,0)

(W3 ,Z 3 ) (3,0,0,0,0,1)

and (w 3, z 3) is degenerate.

(N \ Q) A matrix M E 1R"' is in this class if and only if M is in

N but not in Q. In Kojima and Saigal (1979) it is shown that this is the set

of matrices M E N for which M < 0, hence, as pointed out in the paper,

we will have K(M) = R'. Therefore these matrices are in Q0, hence all

of N is in Q0. Kojima and Saigal (1979) also shows, for all q > 0, i.e, all

q E int K(M), we have Isol(q, M) = 2. This means

N \ Q g INS 2 .

((NflQ)- ') A matrix M E R'X" is in this class if its inverse is

in N n Q. This is equivalent to saying the matrix is in Q, its determinant
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is negative, and all of its proper principal submatrices are in P. Thus all

proper principal submatrices are in Q, along with the matrix itself. Hence

these matrices are completely-Q, which is to say they are in E. For more on

these matrices see Saigal (1972b). The following example helps to justify the

placement of these matrices in Figure 5.1. Let'

3 -8 0

M = -1 3 4

.0 1 2

Notice M - 1 E NA Q. However, M 0 CP as letting x (3,2, O)T we have

xTMX < 0.

(P) A matrix M E R'X' is in the class P if and only if all principal

minors of M are positive. This is one of the most studied classes of matrices

related to the LCP. There are many equivalent characterizations of these

matrices, for example: M E P if and only if for all q E R' we have

Isol(q, M)j = 1, see Samelson, Thrall and Weslep (1958), and Murty (1972);

M E P if and only if, for z E !R1, we have z,(Mx)i :5 0 for all i El

implies x = 0, see Fiedler and Ptik (1962), also Gale and Nikaido (1965);

and M E P if and only if, for A E 9' , we have det(I - A + AM)4 0

for all 0 < A < I, see Aganagic (1978). The middle characterization gives

some intuition behind the definition of E, as it states a matrix belongs to P if

and only if for every non-zero X E R' , (not just z E R' ), we have an index

k E R for which Xk(MX)k > 0. An interesting characterization by Habetler

and Kostreva (1980) is as follows. Say a point x E R' is a complementary

point of (q, M) if and only if there is a z E R', where for all i E W we

have (Mz + q)i zi = 0, such that x - z + (Mz + q). It is then the case

that M E P if and only if there is some q E !Rn such that the interior of

each orthant in Rn contains exactly one complementary point of (q, M).
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For more on P-matrices, see the references mentioned and also Fiedler and

Ptk (1966).

(Po) A matrix M E RX,& is in P0 if and only f all principal minors

of M are nonnegative. Like P, this class has been extensively studied. In

fact, the question of exactly what structure and properties are lost when

dealing with Po as opposed to dealing with P was one of the questions

leading to the present work, and to other works in the field. Again, major

references to this class are the papers by Fiedler and Pt~k (1962, 1966). An

interesting characterization of Po, giving insight into the definition of Eo,

comes from Fiedler and Ptik (1966) and states M E Po if and only if for all

0/X E R, (not just z E R"_), we have an index k E W for which Xk 7'0

and Xk(MX)k > 0. We move on to a special class of Po -matrices which were

defined earlier in this work.

(P 1 ) A matrix M E N'x×' is in P1 if and only if M E Po and exactly

one principal minor of M is zero. This class fits into Figure 5.1 in about the

same position as Po. However, we do know

THEOREM 5.2 P1 C L.

Before starting the proof, we introduce a lemma.

LEMmA 5.3 If ME Eon xn and for some iE W we have M. ,> 0

with Mij = 0, then M V Q.

Proof. Suppose we have a matrix M satisfying the hypothesis of the lemma.

Take some q E pos C(0).I. By reasoning similar to previous dimensional

arguments, we may assume q lies in no k-dimensional faces of K(M), for

k < n - 1, and any (n - 1) -dimensional face of K(M) that contains q is

contained in the hyperplane
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H = span - {x E W = 0).

Let H+ be the closed half-space with H as boundary that contains .i,

and let H- be the other closed half-space. Let pos C(a).3 be a (n - 1)-

dimensional face of K(M) that contains Mi and is contained in H. We see

pos C(a).j cannot contain 1.i 0 H. Also, the vectors of C(a).j are linearly

independent, as pos C(a).3 is (n - 1) -dimensional, hence the face cannot

contain -M.i. Thus j -- i. As M.i E posC(0).j, and as the (n - 1)-

dimensional faces of K(M) are finite in number and closed, we can select

q close enough to M.i such that we have the additional property that any

(n - 1)-dimensional face, pos C(a)., of K(M) that contains q must have

j = i. Now for all e > 0 small enough, B(q, c) n K(M) = B(q, ) n H, and

no face of K(M) whose dimension is smaller than n - 1 intersects B(q, e).

Thus B(q, ) n pos C(0)., = B(q, ) nH. Hence

0 B(q, ) n int pos C(0) C H+.

Since M E E0 , no other full cone can intersect the interior of pos C(0). Thus

any full cone, pos C(a), containing B(q, c) n int H- must have a boundary

face in H. This face will then contain q, and so this face is posG(a).i.

As both I.i and -Mi are in H+, then we have posC(a) C H+, giv-

ing us a contradiction. Hence no full cone, and hence no cone, contains

B(q,) nH- 0. Thus M 0 Q.

Proof of Theorem 5.2. Let M E P1 n -R, " - We know M E E0 as

P 1 C PO C Ef C E0 . If sol(0, M)= {(0,0)) then M E L. Thus assume

there is a non-trivial solution, say (w, z) with z 3 0, to (0, M). Thus, letting

y = w+z, we have for some a E (K) that ya = za, ya wa, and
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C(a) y -= 0. Thus we know M,,aa y, = 0. In addition, we must have y, > 0

for otherwise some principal submatrix of Ma, and hence of M, is singular,

but M, is the only singular principal submatrix of M. In the same way,

we know ya > 0. Else, for some i E &, we have M{i }a y. = 0. Thus, with

# = a U{ i }, we have Mpp zp3 = 0 which, again, contradicts the fact that

M,, is the only singular principal submatrix. Thus y > 0.

We now show M 0 Q. If jal = 1, then it must be that, for some i E W

where a = {i}, we have M.i > 0 and Mi = 0. Thus, by Lemma 5.3,

M 0 Q. Suppose tal > 1. Pick some /3 C a with 1/31 = lal- 1, and

let M be the principal transform of M gotten by block pivoting on MOO.

(Again, we know Mjpp is nonsingular as M0 , is the only singular principal

submatrix.) Since we have Maa y,, --- 0 and Ma,, Yc , > 0, then, letting

{i} = a\f3,wehave MX; > 0 and Vi- =0. Since ME E', wehave

E EO , thus Lemma 5.3 gives us V 0 Q. Hence, as claimed, M 0 Q.

From Theorem 2.25, M E U and K(M) is a half-space. Let 0 34 x E R

be a normal to the hyperplane a K(M). As M E U, so K(M) is regular,

we must have posC(a) C 8K(M) thus C(a)TX = 0. Since all other

complementary cones are full, they cannot be contained in 8K(M) . Thus

C(&)TX > 0. Therefore xa > 0 and x& -- 0. Also, xTM,. - 0

and xTM& < 0. Hence, we can choose x so that 1ix[[ is so small that

z _> z > 0, and w > -MTX > 0. This means M satisfies the conditions

to be in L, and the theorem follows.

It should be noted that P1  CP, for consider the matrix

M[0 -4]
1 2
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I U I I

Clearly, M E P 1 - Yet, with x (1, 1)T, we've xTMz < 0.

(P 1 \ Q) A matrix M E W " is in this "class" if and only if it is in

P 1 , but not in Q. This class has the same position in Figure 5.1 as does P 1 ,

except it is also contained in U. More was said about P1 \ Q at the end of

Chapter 2.

(PD) A matrix M E RnX is said to be positive definite, M E PD, if

and only if for all 0 =A z E W" we have xZTMx > 0. For symmetric matrices,

being in P is equivalent to being in PD, which is equivalent to there being

some L E D×'Xh such that L is nonsingular and M = LTL. For more

concerning positive definite matrices, see Gantmacher (1960), Dantzig and

Cottle (1967), Cottle, Habetler and Lemke (1970a), and Cottle (1983).

(PSD) A matrix M E 'x," is said to be positive semi-definite,

M E PSD, if and only if for all x E q we have xTMx > 0. For symmetric

matrices, being in Po is equivalent to being in PSD, which is equivalent

to there being some L E Rnxn such that M = LTL. The class PSD is

usually thought of in connection with convexity as the quadratic function

F(z) : 9V --+ R defined by F(x) = xTMX + cTx + d, with M E R'X',

c E W" and d E R, is convex if and only if M E PSD. See the references

given for positive definite matrices.

(Q) A matrix M E !,xn is said to be in Q if and only if for all

q E WR" the LCP (q, M) has at least one solution. This is equivalent to saying

K(M) = R". One of the major, and perhaps most difficult, problems in

linear complementarity theory is to find a "good" characterization of Q, i.e.,

a characterization with which one could quickly test a matrix to determine

whether or not it is in Q. Many of these other matrix classes were studied in

attempts to find more classes of matrices that were contained in Q, or Q0.
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Two interesting works concerning Q are Watson (1974), Kelly and Watson

(1979). The latter contains a counterexample to a result of the former. In

essence, it shows the annoying result that the set of Q-matrices is neither

open nor closed in BZ'x' for n > 4. Hence, the class Q will be nard to

characterize. See also Cottle, von Randow and Stone (1981).

(Qo) A matrix M E n×'X is said to be in Q0 if and only if for all

q E OV where the system of inequalities

Mz- +q> 0 z > 0

is feasible, there exists at least one solution to the LCP (q, M). This is

equivalent to saying K(M) is convex. Like Q, characterizing Qo in a "good"

way is a long standing problem. In fact, with a characterization of this class

we can just say Q = Qo fn S. Again, many of the works mentioned are

concerned with Q0. For a recent and interesting paper on this class see

Doverspike and Lemke (1981). (In other works, this class is denoted K; it

should not be confused with the K used here.)

(R) A matrix M E X '× is said to be regular, M E R, if and only

if, with e = (1, 1,..., 1)T E R', we have, for all X > 0, that {(Xe,0)} =

sol(Xe,M). Clearly, R = L*(e). The standard reference for this class is

Karamardian (1972). It is of interest to note, as shown by Agaragic and

Cottle (1978), that P0 n Q = Po n R. We cannot do better than this in

classifying P0 n Q as far as Figure 5.1 is concerned. For example, the matrix

0 1

is in Q and in PO but is not in E which is the next matrix class "lower" in

Figure 5.1 than R.
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(S) A matrix M E RX' is said to be in S if and only if there exists

an x E N'W such that x > 0 and Mx > 0. This is the class of matrices

for which (q, M) is "feasible" for all q E N, i.e., for all q E R' there is an

Xq E R'I with Zq _! 0 and MXq + q _ 0, see Lemke (1970). The classic

reference for these matrices is Fiedler and Pt~k (1966). Other relevant works

to look at, that use S-matrices are Saigal (1971a) and Cottle (1979).

(So) A matrix M E W,"x, is said to be in So if and only if there

exists an x E R' such that 0 / x > 0 and Mx > 0. This is clearly

one of the largest matrix classes listed here, containing many of the others.

Again, Fiedler and Pt~k (1966), Lemke (1970), and Saigal (1971a) are good

references for this class. For a nice rcference which extends the properties

embodied in the matrix classes P, Po, S, and So to non-linear functions, see

Mor6 and Rheinboldt (1973).

Two of the inclusion arrows leading to the class So in Figure 5.1 are

not trivial, and have not been found by the author in the literature. The

justification for these inclusions is in the following two theorems.

THEOREM 5.4 Ud>oL(d) C So .

Proof. Suppose for some 0 < d E R' we have M E L(d)nfRnXn, but

M 0 So • If (w,z) E sol(0, M), then Mz > 0 and z > 0. Thus M t So

implies z = 0. Hence { (0, 0) } = sol(0, M). Garcia (1973) shows that

M E L(d) implies for all X > 0 that we have { (Xd, 0) } = sol(Xd, M).

We conclude M E L*(d). But L*(d) g Q g S C So, which gives us a

contradiction. Thus M E So and the theorem holds.

THEOREM 5.5 Eo C So.
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Proof. Suppose M E Eo Nw' X. Let I E R,'X< be the identity matrix.

Thus, for all E > 0, we have almost directly from the definitions that

M+CI E E. Now E C Q .C S C S0 ,so for each e > 0 there is a

0:, z, > 0 such that (M + EI)z6 > 0. We may assume, by scaling, that

II ,II = 1. As the set

{x E R': Ijx_ 1 }, the unit sphere in R'

is compact, we have some point xo E R', with Izxoil =- 1, that is a cluster

point of the set of x,. Thus, letting E --+ 0, we see that xo _> 0, and that

Mxo >_ 0. Thus M E So , and the theorem holds.
LI

(SCP) A matrix M E RJX? is said to be strictly copositive, M E SCP,

if and only if ZTMX > 0 for all z Ei R such that 0,A x > 0. This class has

also been denoted as C. For symmetric matrices, being in SCP is equivalent

to being in E. See the references given for copositive matrices.

(U) A matrix M E R'X×, is said to be in U, for Unique solution, if

and only if for all q E int K(M) we have Isol(q, M)l = 1. This matrix

class was the topic of Chapter 2. If M E E0 , then for all q > 0 we have

Isol(q, M)l = 1. Garcia (1973) shows that if M E L(d), for some d > 0,

then isol(d, M) = 1. Hence we see,

EonINS=U {U L(d)}nINS C U. (5.7)

Thus, as UfnQ = P, we have

{ L'(d)} INS P. (5.8)
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This helps us understand how U fits into Figure 5.1. Now consider the

following matrices

0 11 0 1 1

(5.9) (5.10)

Notice (5.9) is contained in U, but not in Qo. (This is Example 2.3.) Hence,

the right side of (5.7) is a proper inclusion. As for (5.10), it is not in U, yet

it is in A n PSD n SeP n E n P1 . Also, (5.6) showed an example of a matrix

that was in BG but not in Ef, hence certainly not in U.

(Z) A matrix M E R' x' is said to be in Z if and only if for all i,j E i,

where i 7 j, we have Mij : 0. These matrices have been well studied. See,

for example, Saigal (1971b) and the references mentioned in the paragraphs

concerning the classes K and K0 . In particular, see Mohan (1978).

(2) A matrix M E R'n' is said to be in Z if and only if M E Z

and, for all i E TT, we have Mii > 0. (This class has also been denoted by

L.) See th,. references for Z-matrices and, in particular, see Saigal (1972b)

and Mohan (1978). One thing that should be pointed out is an error in

Theorem 5.4 of Saigal (1972b). The theorem states that M E Z implies

K(M) is regular. (Saigal's definition of regularity and the definition used

in this work are different, however, all that need be known here is that the

two definitions coincide for nondegenerate matrices.) This is not the case.

Consider
1 -3 -2 0

M:
-3 0 1 -3

-1 -2 -3 1
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This matrix is nondegenerate and contained in Z. Let q - (51, 11, 19, 39 )T

and (49,9,21, 4 1)T. Then (q, M) and (4, M) both only have non-

degenerate solutions, but Isoi(q, M)j-- 4 and Isol(4, M) = 2. Specifically,

the solutions, (w, z), of (q, M) are

(51,11,19,39,0,0,0,0) (4,0,0,0,0,8J, 10J, 91)

(0, 0, 6 , 3A,18 f, 0, (0, 0, 0, 0, 1 13 J,516 ),

while the solutions of (4, M) are

(49,9,21,41,0,0,0,0) (0, 0, 11 A, 2f, 3 , 17 a, 0, 0)

This implies M 0 INS and, as M is nondegenerate, that K(M) is not

regular by either definition. This incorrect result is referred to by Mohan

(1978) in several places. Saigal (1972b) uses it to "show" that if M E Z then

M E INS2 , which is clearly not true as seen in the example just given. More

will be said about this in the next section.

5.2 Related LCP Theory

In this section we will consider some results in the LCP literature that

seem related to the material we have covered. Most of the results concerning

the exact number of solutions to the LCP have already been mentioned.

There is the classic result of Samelson, Thrall and Wesler (1958) that P

is the set of all matrices M such that for all q we have Isol(q, M)J = 1.

In Eaves (1971), it is shown if M E PO and q is contained in the

interior of some full complementary cone then Isol(q,M)i = 1. This can
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be seen to follow from the fact that PO _ E[ For it is easily shown

that Et can be characterized as the set of those matrices M such that,

for all q, if q is contained in the irterior of a full complementary cone then

isol(q, M)J = 1. Related to this is Theorem 2.2 in Saigal (1970a) which states

that M E P0 implies that if sol(q, M) contains a nondegenerate solution

then Isol(q, M)J -- 1. This can be seen to be in error by considering the

matrix [0] = M E Po Rix. We have for X > 0 that (w,z) = (0, X)

is a nondegenerate solution to (0, M). It should also be mentioned that

this result generalized a previous result of Lemke (1965) which used positive

semi-definite matrices, a smaller subclass of P0 .

There are several theorems by Murty (1972) on this subject, including

another proof of the Samelson, Thrall and Wester result. The main theorems

from Murty (1972) of interest here are: Isol(q, M)I < oo for all q if and only

if M is nondegenerate; if Isol(q, M)j is constant over all non-zero q, then

that constant is one and M E P; if jsol(q, M)I is constant for all q which

are nondegenerate with respect to M, then that constant is one.

The class N is studied in Kojima and Saigal (1979). It is shown that for

ME N, if M { 0 then the value of Isol(q,M)J is one for q ! 0., is two

for 0 4 q _ 0, and is three for q > 0 nondegenerate with respect to M.

This last part, as noted earlier, should state isol(q, M) = 3 for all q > 0.

(Kojima and Saigal (1979) incorrectly state the value is two for q > 0 but

degenerate with respect to M.) It is also shown for M E N, if M < 0 then

the value of jsol(q, M)J is zero for q 1 0, is one for 0 { q > 0, and is two

for q > 0.

In Mohan (1980), it is shown for M E K 0 , q E int K(M) implies

Isol(q, M)J - 1 and q E aK(M) implies Isol(q,M)J = co.
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In Saigal (1972b), the concept of a "regular pseudomanifold" was dis-

cussed with reference to K(M). K(M) was defined there as being "regular"

if and only if every face was either proper or contained in a K(M). However,

the definition of "proper" given there is different from what is used here.

A face was defined there as being proper if and only if it is the intersec-

tion of the two adjacent complementary cones containing it. (It is clearly

in the intersection. The requirement here is that the intersection contain

nothing else.) "Proper" in our sense implies "proper" in Saigal's, but not

conversely. For instance, if a full cone is adjacent to a degenerate cone the

common face would be.considered "proper" by Saigal's definition but not by

ours. Hence, our definition of K(M) being regular is strictly stronger. We

will use the italic proper and regular to refer to Saigal's (1972b) definition,

and standard lettering for our own definitions. Notice the definitions are

equivalent for nondegenerate matrices. As pointed out before, Saigal (1972b)

incorrectly "proves" that M E Z implies K(M) is regular. An example of

a Z-matrix where K(M) is neither regular or regular was given in the last

section. However, the paper also contained the "theorem" that if K(M)

is regular, M 0 P, M is nondegenerate and sol(q, M) contains only non-

degenerate solutions, then Isol(q, M)[ = 2. This is also incorrect. For ex-

ample, letting M be the negative of the identity matrix in R2 
X 2 we have

M is nondegenerate, K(M) is regular and hence is regular, M 0 P and yet

q E int K(M) implies Isol(q, M)I = 4. A possible substitute here could be

gotten from Corollary 4.6 which would state that if M is nondegenerate,

M 0 P, K(M) is regular (so M E INS by Corollary 3.18), then if sol(q, M)

contains only nondegenerate solutions, then Isol(q, M) is even. These two

errors in Saigal (1972b) cause some results of Mohan (1978), which depend on

them, to be incorrect. These results are Theorems 1.3.8, 1.5.8, 1.5.12, 3.3.3,

3.3.4, and Corollary 3.3.1 of Mohan (1978).
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Aside from questions concerning the exact number of solutions, another

concept that has been studied is the constant parity property. We say a

matrix M has the constant parity property if and only if the parity of

Isol(q, M), i.e., whether it is even or odd, is the same over all q where

sol(q, M) contains no degenerate solutions. (Thus if M 0 Q and has the

constant parity property then the parity is even. Given any q . K(M) we

have sol(q, M) = 0 contains no degenerate solutions and has even parity.)

The concept of constant parity is a weaker form of the concept of a con-

stant number of solutions. Clearly all INS-matrices have the constant parity

property.

The classic theorem on constant parity was shown by Murty (1972). It

states that a nondegenerate matrix has the constant parity property. Also

in this paper is the theorem that a nonnegative Q-matrix has the constant

parity property with the parity being odd.

In Saigal (1970b) we find the following theorem on the constant parity

property: If _MT E S, then M has the constant parity property with the

parity being even. The final word on the subject was in essence given by Salgal

(1972a). It states that a matrix, M E R"')", has the constant parity property

if and only if it is true that for any collection pos C(Ql), pos C(0 2),...,

pos C(aA,) of strongly degenerate complementary cones, where k is odd and

dim[pos C(a) n... n pos C(ak) = n - 1,

there exists for each q in this intersection another strongly degenerate com-

plementary cone, posC(ak+1), such that q E posC(ak+1). This result

expresses the basic geometric structure behind the constant parity property.
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Mohan (1978) proves the following related theorem concerning Z-matri-

ces: If ME Zn& ' x  and there is a z E R' such that MTX > 0, then M

has the constant parity property and the parity is odd if and only if M E K.

The last area of complementarity theory we will bring up is Lemke's

algorithm. An algorithm for solving the LCP was suggested by Lemke and

Howson (1964), and Lemke (1965). It has since become a major tool in

the field, inspiring much research into other algorithms based on the same

principles and causing many studies to determine conditions for which the

algorithm is guaranteed to "process" a given LCP. For a detailed description

of Lemke's algorithm see the two papers mentioned or see Eaves (1971) or

Cottle (1983). The essential concept is as follows. Given the LCP (q, M), we

take some vector 0 < d E R" and consider the family of LCPs (q + Od, M),

where the parameter 0 is taken as a nonnegative number. (In the canonical

statement of the algorithm, d is taken to be (1, 1,..., I)T.) For all 0 large

enough we will have q + Od > 0 and hence (q + Od, 0) E sol(q + Od, M). In

other words, the "tail" of the ray

{q+ dOd10} > 0 (5.11)

is contained in the positive quadrant. We then move back along the ray (5.11)

attempting to get to q. When we reach the face of a complementary cone we

continue in the adjacent cone. Thus a proper face allows us to travel in the

same direction along the ray (5.11) as we had been traveling, while a reflecting

face causes us to change direction. The problems associated with reaching a

degenerate face, or with reaching a nondegencrate face on its boundary, can

be taken care of by lexicographical methods. Again, see Eaves (1971). The

actual algorithm is carried out by a pivoting scheme which gives us a solution

to the LCP (q + Od, M) when we are at the point q + Od of the ray (5.11).
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(This solution is associated with the complementary cone through which we

are currently. traveling.) The hope is we eventually reach the end-point of the

ray (5.11) and thus find a solution to the original LCP (q, M). The other

two possiblities are that we go off on the infinite end of the ray (5.11) never

to return, or we reach a degenerate face with no other full cone to travel

through than the one by which we arrived. It is now clear for M E INS

where K(M) is star-shaped at d > 0 that we will find:

1) Lemke's method using d will process (q, M) for all q E _Rn.

2) If a solution is found, then 0 will have been monotonically decreasing.

That is, after the, first pivot to initialize the algorithm, each pivot will

cause 0 to be strictly smaller. (Actually, to prevent degeneracy, we use

lexicographical techniques. In this case the vector used in place of 0 is

lexicographically decreasing.)

3) If when running the algorithm we find that 0 increases, or that we reach

a degenerate face, we may conclude (q, M) has no solution.

While it is necessary K(M) be star-shaped at d > 0 for these conditions

to hold, it is not necessary that M belong to INS. For the matrix (5.10),

K(M) is star-shaped at d - (1, I)T, and the above three conditions hold.

However, (5.10) is not in INS.

These observations, stated with a different emphasis, are basically seen

in Theorem 4.1 of Saigal (1972b). This theorem states that if K(M) is

regular and contains no strongly degenerate cones, then a necessary and

sufficient condition for Lemke's algorithm to solve (q, M) using d > 0 for

all q E K(M) is that K(M) be star-shaped at d. In addition, the theorem

states that 0 will be monotonically nonincreasing. As pointed out above,

we may replace "regular" in this theorem by "regular." In this case, the
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condition that K(M) contain no strongly degenerate cones can be dropped.

It is interesting to note that the theorem is false in one direction. While the

star-shapedness is certainly necessary, it is not sufficient. Let

0 -1 0

M -1 0 1

0 0 -1

We find K(M) = pos -M. Also, K(M) contains no strongly degenerate

cones. Notice that all faces of all complementary cones are coitained in

1 K(M) , except for pos C(0).1 and pos C({ 2 )).1. However, the complemen-

tary cones adjacent on pos C(0). are the full cone pos C(0) and the degen-

erate cone pos C(.{ 2 }). Thus pos C(O). 2 is proper, but not proper. Similarly,

the cones adjacent on pos C({ 2 ) are the degenerate cone pos C({ 2 }) and

the full cone pos C({ 1, 2 )). Thus K(M) is regular, but not regular. It is cer-

tainly star-shaped at d = (1, 1, 1)T. Yet, while q = (1, -1, 2) is contained

in K(M), in fact we have (0, 0, 0, 1, 1, 2) E sol(q, M), Lemke's algorithm

finds no solution to (q, M) using any d > 0. Thus the sufficiency part of

Theorem 4.1 in Saigal (1972b) is in error.

One more point before finishing this chapter is that Saigal (1972b) defines

K(M) to be the union of all complementary cones of dimension n - 1 or

greaker, where M E R×x. While this is often the case, it is not always

true. For example, let

0 0 1 0

M 0 0 0 1

0 0 0 0

0 0 0 0
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Now q = 1,-1,0,0) T E K(M). Yet, if q E posC(a) then {3,4} C a

and hence dim[pos C(a)j. < 3. The inclusion relationships of the matrix

classes discussed in this chapter. are diagrammed in the following figure.
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CHAPTER 6.

CONCLUSION

The central emphasis of this work has been on the underlying geometric

stucture of LCP's with the global property of an irivariant number of solu-

tions. There are other interesting open questions related to this, and to LCP

theory in general. It seems appropriate to mention some of these questions

as a conclusion to this study.

Theorem 2.22 shows that Qo n u c Po . In essence, if we think of

starting in the positive orthant, which is a positive complementary cone, and

"moving" in K(M) through a sequence of adjacent complementary cones

then, if M E Qo nl U, every common face we encounter between two com-

plementary cones is proper, until we reach a degenerate face which must be

on the boundary. Since "reflecting" isn't allowed, as those type of faces are

forbidden by the fact that M E U, and since int K(M) is path connected so

we can reach all the complementary cones, then we can never reach a negative

cone. (There isn't enough "room," and there are too many restrictions, to

allow us to "turn around.") It seems that there isn't enough "room" even

allowing degenerate faces within int K(M). Thus a problem left open by

this study is to determine whether or not Qo nl Ef C P0

Look once again at the map, F, used in the proof of Theorem 3.15.
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If, as before, we assume that no complementary cone of K(M) is strongly

degenerate, then we can associate with F, and hence with M, a special

integer referred to as the degree of F (of M). Let q E R'R be any vector

that is nondegenerate with respect to M. Then the degree of F (of M) is

the number of positive complementary cones containing q minus the number

of negative complementary cones containing q. (It can be shown that this

number will be invariant over all q nondegenerate with respect to M. For

more on the concept of degree see Ortega and Rheinboldt (1970).) The degree

of a map is a measure of the number of points in the domain which are mapped

to each point in the range. For a general map of degree k, however, it is

not necessary that any point in the range have exactly Ikl points mapping

into it from the domain. However, the map F associated with an LCP is

not a general map. Perhaps it is the case for these special maps, that when

the degree of F is k, one can always find a point in the range which has

exactly JkJ points of the domain mapping into it. In the case k = 0, this

would mean that every matrix M with zero degree is not in Q, i.e., some

point, q, in the range, IRn, of F has no point in the domain mapping into

it. (Note that q would then trivially be nondegenerate with respect to M.)

This is not the case. Kelly and Watson (1979) show that the nondegenerate

matrix

21 25 -27 -36

7 3 -9 36M--

12 12 -20 0

4 4 -4 -8

is in Q, yet it is a straightforward calculation to verify that the degree of

M is zero. For the case k = 0 the question is still open, and there are

reasons to believe that the geometric structure of non-zero degree matrices is

significantly different from the geometric structure of zero degree matrices.
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Hence we have the deep question in LCP theory of determining whether or

not there exists a matrix M with no strongly degenerate complementary

cones, and with degree k ;4 0,. such that Isol(q, M)I > Ikl whenever q is

nondegenerate with respect to M. Another way of phrasing this is to ask

if, for matrices M with no strongly degenerate complementary cones, it is

true that when the union of the positive complementary cones is R" and

the union of the negative complementary cones is R', then every vector

q, nondegenerate with respect to M, is contained in the same number of

positive complementary cones as negative complementary cones. Indeed, this

is conjectured to be true in Garcia and Gould (1980). See also Howe (1980).

(It should be pointed out that the class "Q0" in Garcia and Gould (1980) is

not the same as the one discussed in the present work.)

At the end of Chapter 3 we showed that, for nondegenerate matrices M,

K(M) is regular if and only if M E INS. It seems that the nondegeneracy

assumption should be unnecessary; this raises the question of whether it is in

general true that K(M) is regular if and only if M E INS.

In Chapters 3 and 4 we developed the idea of the partition E of

R' \ K(M) . We noted that the elements of E are not in gene-ral convex, not

even when considering only those elements contained in K(M). The question

then arises as to whether the elements of E are, in general, star-shaped. This

question is open, as is the related question of whether there will always be an

element of E which is convex. (Is Theorem 4.4 valid for degenerate matrices

as well as nondegenerate matrices?)

In Chapter 4 we already have discussed Conjecture 4.8, but have not

spoken about Assumption 4.17. This is a technical assumption that has

been used in another form by other authors. The last open question we'll
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consider is the one surrounding this assumption on the geometry of LCP's.

It can be stated as follows. Given an LCP consider the related map F as

defined in the proof of Theorem 3.15. Suppose we let D be the union of

some collection of orthants in R' such that D forms a pseudomanifold,

i.e., between any two orthants in D there is a path, in D, of "neighboring"

orthants. The image under F of each orthant is a complementary cone.

If the complementary cones which are the images of the orthants in D are

all positive complementary cones is it then the case that the restricted map

F : D -+ IR" is injective? If D = R the answer is "yes" as shown in

Murty (1972). If D is. convex we can reduce the problem to the case where

D is 9?' for some m < n and the answer is again "yes" by the result in

Murty (1972). In general the question is open. It should be noted that the

LCP structure is important. If we were to require the function F on D to

just be piecewise-linear, with the pieces of linearity being the orthants, and

the determinants of the matrices defining the affine functions on adjacent

orthants to be of opposite signs, then F : D -* Rn would not necessarily be

injective. As an example, consider D = R 3 , and F defined as follows on

the different orthants

(XlX2, X3) if X1,X2, X3 ! 0

(X1 , x 1 + X2 , X1 + 3 ) if X1 __ 0, X2 > 0, X3  0

F(x,,X2 ,x 3 ) = (XI + X2,x2, x2 + X3) if x1 > 0, x 2 _ 0, X3 0

(X1 + X 3 , ;2 + X3 , X3) if X 1 :> 0, X2 0, X3  0

F(-x) otherwise

Then F is not injective even though it satisfies all the other restrictions

mentioned.
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