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The paper deals with geometric calibration of industrial robots and focuses on reduction of the mea-surement noise impact by means of proper selection 

of the manipulator configurations in calibration experiments. Particular attention is paid to the enhancement of measurement and optimization tech-

niques employed in geometric parameter identification. The developed method implements a complete and irreducible geometric model for serial 

manipulator, which takes into account different sources of errors (link lengths, joint offsets, etc). In contrast to other works, a new industry-oriented 

performance measure is proposed for optimal measurement configuration selection that improves the existing techniques via using the direct 

measurement data only. This new approach is aimed at finding the ca-libration configurations that ensure the best robot positioning accuracy after 

geometric error compen-sation. Experimental study of heavy industrial robot KUKA KR-270 illustrates the benefits of the devel-oped pose strategy 

technique and the corresponding accuracy improvement.

1. Introduction

In robotic literature, the problem of geometric calibration is

already well studied and has been in the focus of the research

community for many years [1–8]. As reported by a number of

authors, the manipulator geometric errors are responsible for

about 90% of the total positioning error [9]. Besides of the errors in

link lengths and joint offsets, the end-effector positioning errors

can be also caused by the non-perfect assembling of different links

and arise in shifting and/or rotation of the frames associated with

different elements, which are normally assumed to be matched

and aligned [10]. It is clear that the geometric errors do not vary

with the manipulator configuration, while their influence on the

positioning accuracy depends on the latter. At present, there exist

various calibration techniques that are able to calibrate the ma-

nipulator geometric model using different modeling, measure-

ment and identification methods [11–16]. The identified errors can

be efficiently compensated either by adjusting the controller input

(the target point) or by direct modification of the model para-

meters used in the robot controller.

The classical calibration procedure usually includes four steps:

modeling, measurement, identification and implementation. The

Modeling step focuses on the development of proper geometric

model of robotic manipulator. In the pioneer works [14], re-

searches have used the classical DH convention for robot calibra-

tion. However, this model turned out to be discontinuous in some

cases and may lead to unacceptable identification results [17]. So,

several alternative approaches have been proposed to overcome

these difficulties by means of introducing extra parameters [18,19].

Since the inclusion of additional parameters causes redundancy,

these methods raise the problem of parameter non-identifiability,

which leads to the necessity of investigating the model com-

pleteness, irreducibility and continuity. For example, in [20], the

authors proposed a complete and parametrically continuous (CPC)

model and further its modified version (MCPC) for robot calibra-

tion. Besides, there have been also proposed some analytical/nu-

merical techniques for elimination of the non-identifiable para-

meters. For example, in [18], the authors used QR decomposition

of the identification Jacobian for model reduction and in [21], the

authors used straightforward evaluation of the Jacobian matrix

rank.

The Measurement step involves data collecting of robot link and

end-effector position/orientation. Generally, six parameters are

required to specify the manipulator end-effector location (three

translations and three rotations) [12,22], but sometimes the end-

effector position is measured only [23]. Various calibration

methods based on different measurement techniques were
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proposed, they are usually categorized as closed-loop and open-

loop ones. The closed-loop calibration uses physical constraints on

the manipulator end-link (point, line or plane constraints, for in-

stance). It is claimed to be autonomous and does not require any

external device [13,21,24]. However in this case, the manipulators

must have some redundancy to perform self-motion, and the robot

configuration should be carefully selected to satisfy particular

constraints. Therefore, the open-loop methods have found wide

applications; they are based on the full or partial pose measure-

ments of the end-effector location using external devices. In

practice, the partial pose information is often used and provides

from one to five dimensional measurements [11,25,26] instead of

the full pose information (6-dimensional location). In general, the

lower dimensional measurement is more attractive due to sim-

plicity of calibration experiment setup. For this so-called partial

pose measurement technique, various external devices can be ap-

plied, such as laser tracking system [23], the ball-bar system [27]

and wire potentiometer [22], etc.

The identification step in robot calibration can be treated as the

best fitting of the experimental data (given input variables and

measured output variables) by corresponding models. This pro-

blem has been addressed by a number of researchers who have

used various modeling methods and identification algorithms,

such as linear least square technique, Levenberg–Marquardt al-

gorithm, Kalman filtering technique and maximum likelihood es-

timator etc. [16,28]. Among them, the least square technique is the

most often applied one, which aims at minimizing the sum of

squared residuals [29]. An important problem here is non-homo-

geneity of the residual errors (distances and angles, for instance).

To solve this problem, usually a straightforward solution is ap-

plied: assigning weights or normalization, but this weight as-

signing procedure is very non-formal and not rigorous (while

being essential for the final results). To solve the corresponding

optimization problem, there exist various numerical algorithms

such as gradient search [27,30], heuristic search and the others

[31]. However, these numerical techniques are often difficult to

apply due to large number of parameters to be tuned, that often

lead to low convergence. Nevertheless, for the case of geometric

calibration, the errors in the parameters are relatively small, so the

linearization technique can be successfully applied. In this case,

the solution of a linear least square problem can be found

straightforwardly (i.e., via the pseudo-inverse of Moore–Penrose)

[32,33]. It should be mentioned that in some particular cases, for

instance, when the geometric errors are relatively large, the so-

lution can only be found iteratively [15].

The most essential works on the above mentioned calibration

methods in robotics literature are summarized in Table 1. Among

these publications, limited number of works directly addresses the

problem of parameter identification accuracy and reduction of the

impact of measurement errors. Although the calibration accuracy

may be improved by straightforwardly increasing the number of

experiments [27], the measurement configurations may also affect

the robot calibration [34]. It has been shown that the latter may

significantly improve the identification accuracy [35]. Intuitively,

using diverse manipulator configurations for different experi-

ments seems perfectly corresponds to the basic idea of the clas-

sical experiment design theory, which intends to spread the

measurements as much distinct as possible [15]. However, the

classical results are mostly obtained for very specific models (such

as the linear regression) and cannot be applied directly due to

non-linearity of the relevant expressions of robot geometric

model.

At present, there are few works where the problem of optimal

pose selection for robot calibration has been discussed [39,40]. In

these works, in order to compare the plans of experiments, several

quantitative performance measures have been proposed and used

as the objectives of the optimization problem associated with the

optimal sets of measurement poses. In defining the objectives, the

authors in [35,40–42] proposed some observability indices, which

are based on the singular values of the identification Jacobian

(condition number, for instance). These indices have been ex-

amined and compared in [38,39,43,44], where the authors paid

more attention to developing efficient numerical algorithms, such

as genetic algorithm, Tabu search, DETMAX and also hybrid

methods in order to obtain the optimal measurement configura-

tions. However, these approaches deal with rather abstract notions

that are not directly related to the robot accuracy and may lead to

some unexpected results, for example, when the condition num-

ber is good, but the parameter estimation errors are rather high.

Besides, it usually requires very intensive and time consuming

Table 1

Summary of related works for geometric calibration

Application (Manipulator) Number of model

parameters

Number of measurement

configurations

Measurement device Identification algorithm Achieved accuracy,

[mm]

6-dof parallel robot [25] 35 80(1) Two inclinometers(a) Levenberg–Marquardt

method

0.40

Stewart platform [36] 42 15(1) Single theodolite(a) Non-linear LS 0.50

PUMA 560 [23] 27 25(1) Laser tracking system(a)
— 0.10

PUMA 560 [27] 36 800(1) Ball-bar system(a) Gradient search method 0.08

PUMA 560 [22] 24 48(1) Wire potentiometer(a) Non-linear LS 0.50

PUMA 560 [13] 23 100(3) –
(b) Non-linear LS 0.25

Schilling Titan II [37] 42 800(2) –
(b) Linear LS 5.70

Stäubli TX90 [15] 23 100(2) Touching probe(b) Weighted pseudo inverse 0.22

SCARA robot [38] 30 10(4) –
(b) Genetic algorithm 3.60

Gough platform [39] 42 18(5) Vision system(c) Heuristic search 1.30

Selection of measurement configurations:
1 Random configurations.
2 Well distributed configurations.
3 Noise amplification index.
4 Minimum condition number.
5 Several observability indices.

Measurement technique:

a Open-loop measurement.
b Closed-loop measurement.
c Simulation.
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computations caused by a poor convergence and high dimension

of the search space (number of calibration experiments multiplied

by the manipulator joint number). Therefore, for the industrial

applications, existing approaches should be essentially revised.

The primary goal of this work is to achieve the desired robot

positioning accuracy using minimum number of experiments.

Here it is proposed to introduce an additional step to the classical

calibration procedure, the design of experiments, which is per-

formed before measurements and is aimed at obtaining the set of

measurements poses that ensures good calibration results (robot

accuracy after error compensation). It allows us to improve the

efficiency of error compensation and to estimate the robot accu-

racy, which is important for industrial applications.

To address the above mentioned problems, the remainder of

the paper is organized as follows. Section 2 presents the problem

of geometric calibration in general. Section 3 describes a suitable

manipulator geometric model for calibration purposes (complete,

irreducible model). Section 4 contains one of the main contribu-

tions: an enhanced partial pose measurement method. Section 5

describes a dedicated identification algorithm for manipulator

geometric parameters. Section 6 proposes a new approach for

optimal measurement pose selection and evaluates the calibration

efficiency improvement. Section 7 presents the experimental re-

sults obtained for the geometric calibration of a KUKA KR-270

robot. Finally, Section 8 summarizes the main results and con-

tributions of this paper.

2. Problem of geometric calibration

In robotics, calibration is a process that allows us to estimate

the manipulator geometric parameters, which are employed in

robot controller. In practice, the nominal values of these para-

meters are different from the real ones, so they should be identi-

fied for each particular manipulator using data from calibration

experiments. As it was mentioned before, the conventional cali-

bration procedure includes four sequential steps. In the scope of

this paper, an additional step is introduced that deals with the

design of calibration experiments, in order to improve the cali-

bration accuracy. A relevant enhanced robot calibration procedure

is presented in Fig. 1. The particularities of each step of this pro-

cedure are described below.

Step 1: This step deals with manipulator modeling and is aimed

at developing a geometric model that is suitable for calibration

(complete and irreducible), i.e. which is good enough from phy-

sical point of view and does not create any numerical problems

during identification. This model should allow us to compute the

end-effector location for any given values of the actuated joint

coordinates q (provided that the manipulator parameters π are

known). However, for calibration purposes, it is usually required a

linearized version of this model allowing to evaluate the influence

of the small variations of q and π. So let us assume that the ma-

nipulator links are rigid and corresponding geometric model can

be written as the vector function gt (q, )π= , where t (p, )Tφ= defines
the manipulator end-effector location (position and orientation),

vector q contains all actuated joint coordinates, and vector

0π π π= + Δ collects all geometric parameters and their

Fig. 1. Enhanced robot calibration procedure.
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deviations. Under this assumption, the actual location of the ma-

nipulator end-effector, which incorporates the geometric errors is

expressed as gt (q, )0π π= + Δ . In practice, the geometric errors πΔ
are usually relatively small, therefore the following linerized

model can be used

t t J (1)0 π= + Δπ

where gt (q, )0 0π= is the end-effector location computed using
the nominal geometric parameters, Jπis the identification Jacobian

matrix, which can be computed using the derivative g (q, )/0π π∂ ∂ .
More details concerning the computation of identification Jacobian

can be found in [45].

Step 2: This is an additional step (design of experiments) that is

introduced here in the calibration procedure. It is aimed at

choosing optimal measurement configurations for calibration ex-

periments. It should rely on an appropriate performance measure,

which takes into account the particularities of the technological

process (robotic-based machining, for instance). It should be also

able to obtain solution within the work-cell constraints, and to

adjust the number of experiments with respect to the measure-

ment system precision. In practice, the influence of the geometric

errors on the end-effector position varies from one configuration

to another and essentially differs throughout the workspace. So,

the desired accuracy is usually required to be achieved for rather

limited workspace area (for example, where the workpieces are

located in the robotic cell). For this reason, in this paper, it is

proposed to limit the benchmark manipulator configurations by a

single one (the machining configuration, for instance), which will

be further referred to as the manipulator test-pose. To develop a

new approach of calibration experiments design that utilizes the

above proposed ideas, let us introduce several basic definitions:

Definition 1. The plan of experiments is a set of manipulator

configurations i m{q , 1, }i = that are used for the measurements of

the end-effector positions i m j n{p , 1, , 1, }i
j = = and for further

identification of the desired parameters π.

Definition 2. The manipulator test-pose is a particular robot con-

figuration q0 (that is usually specified in relevant technological

process), for which it is required to achieve the best compensation

of the end-effector positioning errors.

Definition 3. The quality of the plan of experiments is defined by

the efficiency of manipulator positioning error compensation at

the test-pose, which is the root-mean-square distance 0ρ between

the desired manipulator end-effector position and the position

obtained after error compensation.

Step 3: This step (measurements) deals with carrying out cali-

bration experiments using the obtained configurations. Depending

on the measurement methods (measurement tools and devices,

reference point locations, see Fig. 2, where a typical manipulator

mounting flange is shown), it may provide different experimental

data (the end-effector position/location, etc.). For the conventional

full-pose measurement technique that is frequently used in robot

calibration, the corresponding optimization problem allowing us

to compute the desired parameters is expressed as

t J min
(2)i

m

i i

1

2∑ π‖Δ − Δ ‖ →π
π

=
Δ

However, the residual components of this system of identifi-

cation equations are non-homogeneous (millimeters and radians,

for instance). In some cases, these components are normalized

before computing the squared sum, but it is a non-trivial step that

affects the identification accuracy. To overcome this difficulty, it is

proposed to enhance the partial pose measurement method that

uses directly and only the positioning coordinates, but for several

reference points for each manipulator configuration. More details

of this method and its advantages will be presented in Section 4.

Step 4: This step deals with the identification and is aimed at

estimating the geometric parameters by using the corresponding

model and proper identification algorithm. Usually, the identifi-

cation algorithms are based on the minimization of the least-

square objectives that are derived assuming that the measurement

tool has a single reference point (see Eq.(2)), while the proposed

measurement technique operates with several of them. For this

reason, it is required to revise the existing identification techni-

ques, taking into account both modification of the objective

function and increasing of the number of parameters (since each

reference point introduces additional parameters).

In addition, this step includes the evaluation of the parameter

identification accuracy. In practice, different sources of error may

affect the identification precision. They include the measurement

errors of the external device providing the end-effector position

coordinates (laser tracker in our case), the errors in the actuator

encoders (internal measurement devices) giving the manipulator

joint coordinates that depend on encoder resolution, etc. Besides,

the assumption concerning the manipulator model (the link ri-

gidity, for instance) may also affect the identification accuracy. It is

clear that, all these sources of error can be hardly taken into ac-

count in calibration. For this reason, only the most significant of

the above mentioned sources of error should be considered in the

accuracy analysis. As follows from our experience, the inaccuracy

of external measurement system has the most significant impact

on the robot positioning accuracy, comparing to other sources of

error that can be assumed negligible in the frame of geometric

calibration.

Step 5: At the last step (implementation), the geometric errors

are compensated by modification of the geometric parameter va-

lues embedded in the robot controller. In the case when some

errors cannot be entered in the controller directly, an off-line error

compensation technique is required. This technique should com-

pensate the manipulator errors via modification of the target

trajectory that becomes slightly different from the desired one

[46].

It is clear that the proposed scheme of robot calibration pro-

cedure allows us to improve the calibration accuracy for given

number of experiments (or to minimize the number of experi-

ments for given accuracy). The steps 1, 4 and 5 in the calibration

procedure have been already well studied [9,47], while the steps

2 and 3 still require some revision in terms of the applicability to

particular manufacturing process where the robot is used. Hence,

the goal of this work is the enhancement of calibration technique

for manipulator geometric parameters using enhanced partial

pose measurement and design of experiments. ParticularFig. 2. Measurement tool with several reference points.
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problems that should be considered are the following:

(1) Development of an industry-oriented performance measure

which has clear physical meaning that is related to the robot

accuracy after geometric error compensation.

(2) Enhancement of partial pose measurement method that al-

lows us to avoid the problem of non-homogeneity in the

identification equations.

(3) Experimental validation of the developed approach for geo-

metric calibration of an industrial KUKA KR-270 robot.

These problems will be considered in more details in the fol-

lowing sections.

3. Manipulator geometric modeling

To be suitable for robot calibration, the manipulator geometric

model must satisfy certain requirements. In particular, it should be

complete, i.e. is able to describe all possible errors in link/joint

geometry, but not redundant (i.e. does not contain parameters that

influence the end-effector position/orientation in the same way

for any manipulator configuration). In previous works [48] [49], it

was shown that the conventional D-H model may produce pro-

blems for parameter identification because its incompleteness. To

avoid this difficulty, some modifications have been proposed that

however introduce some redundancy, which may cause non-

identifiability of certain parameters. This redundancy can be

eliminated by applying either numerical or analytical techniques

[20,21,50] that allow us to obtain an appropriate model, which is

usually referred to as “complete, irreducible and continuous” one.

Let us apply one of these techniques [51] to generate the desired

model for heavy industrial manipulator KUKA KR-270 that will be

used in experimental study.

In the frame of the above defined notations and assuming that

the manipulator links are rigid enough and the non-geometric

factors are negligible in this level of calibration, the general ex-

pression of the geometric model for a n-dof serial manipulator can

be described as a sequence of homogeneous transformations

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

q

q

T(q) T ( ) T ( , ) T ( ) ...

T ( , ) T ( ) T ( ) (3)

base b q Link L

n qn Link Ln tool t

Joint 1 1 1

Joint

π π

π π

= ⋅ π ⋅ ⋅

⋅ π ⋅ ⋅

where T with different indices denote the relevant transformation

matrices of size 4 4× , q is the vector of the actuated joint co-

ordinates, while the vectors bπ , tπ , Ljπ and the scalars qjπ are the

manipulator geometric parameters corresponding to the base,

tool, links and joints, respectively. In the literature, there are a

number of techniques that allows us to obtain the manipulator

model of such type, which is definitely complete but includes re-

dundant parameters to be eliminated (methods of Hayati, Whit-

ney–Losinski, etc.). In this work, we will use the model generation

technique that is based on dedicated analytical elimination rules

and includes the following steps:

Step 1. Construction of the complete and reducible model in

the form of homogeneous matrices product.

� The base transformation ⎡⎣ ⎤⎦T T T T R R Rbase x y z x y z
b

=
� The joint and link transformations T Tj Link jJoint, ,⋅

(1) For revolute joint qT T R ( , ) [T T R R ]j Link j e j j qj u v u v LjJoint, , ,⋅ = π ⋅

(2) For prismatic joint qT T T ( , ) [R R ]j Link j e j j qj u v LjJoint, , ,⋅ = π ⋅

where e jis the joint axis, u j and v j are the axes orthogonal to e j.

� The tool transformation ⎡⎣ ⎤⎦T T T T R R Rtool x y z x y z
t

=

Step 2. Elimination of non-identifiable and semi-identifiable

parameters in accordance with specific rules for different nature

and structure of consecutive joints.

� For the case of consecutive revolute joint qR ( , )e j j qj, π

(1) if e ej j 1⊥ − , eliminate the term Ru L, j 1− or Rv L, j 1− that corres-

ponds to Re j, ;

(2) if e ej j 1∥ − , eliminate the term Tu L, j k− or Tv L, j k− that defines the

translation orthogonal to the joint axes, for which k is

minimum (k 1≥ ).
� For the case of consecutive prismatic joint qT ( , )e j j qj, π

(1) if e ej j 1⊥ − , eliminate the term Tu L, j 1− or Tu L, j 1− that corres-

ponds to Te j, ;

(2) if e ej j 1∥ − , eliminate the term Tu L, j k− or Tv L, j k− that defines the

translation in the direction of axis e j, for which k is mini-

mum (k 1≥ ).

Let us apply the above presented technique to the industrial

robot KUKA KR-270 (See Fig. 3), which is used in experimental

validations of this paper. For this manipulator that includes six

revolute joints, the complete (but redundant) model contains 42

parameters and can be presented as

Fig. 3. The industrial serial robot KUKA KR-270 and its geometric parameters. (a) Industrial robot KUKA KR270 and (b) the manipulator architecture.
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⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

q q

q q

q q q q

q q

q q

T T T T R R R R ( ) T T R R

R ( ) [T T R R ]

R ( ) [T T R R ] R ( )

T T R R R ( ) [T T R R ]

R ( ) T T R R T T T R R R
(4)

x y z x y z
b

z x y x y
L

y x z x z L

y x z x z L x

y z y z
L

y x z x z L

x y z y z
L

x y z x y z
t

1 1

2 2

3 3 4 4

5 5

6 6

1

2

3

4
5

6

= ⋅ + Δ ⋅

⋅ + Δ ⋅ ⋅

⋅ + Δ ⋅ ⋅ + Δ

⋅ ⋅ + Δ ⋅

⋅ + Δ ⋅ ⋅

It should be mentioned that the nominal values of some

parameters can be found in the manufacturer datasheets, but the

remaining ones are assumed to be equal to zero. Applying the

elimination rules for the case of consecutive revolute joints, the

parameters { }R , T , R , R , T , Ry L z L x L y L x L x L, , , , , ,1 2 3 4 5 5 are sequentially

eliminated from the redundant model (4). Here, it is worth making

the following remarks:

Remark 1. In the redundant model (4), it has been already taken

into account that the nominal geometric parameter d1 (shift of the

robot base along z-axis) cannot be identified separately from the

base transformation.

Remark 2. For the first and the last joints, which are connected to

the robot base and tool respectively, the offsets q1Δ and q6Δ are

treated as semi-identifiable parameters. So, they are eliminated

from the manipulator geometric model and are incorporated in

the base and tool parameters. However, the actuated joint vari-

ables q1 and q6 must retain in the model.

Remark 3. The geometric parameters of the last link

{ }T , T , R , Ry z y z
L6

cannot be identified separately from the tool

transformation. So, it is reasonable to include these parameters in

the tool transformation.

Remark 4. In the case when only position measurements are

available, the tool orientations are not known. So, the parameters

of the rotational transformations { }R , R , Rx y z
t
corresponding to the

tool are treated as non-identifiable.

Remark 5. Six parameters describing the base transformation

{ }T , T , T , R , R , Rx y z x y z
b
and three parameters { }T , T , Tx y z

t
that define

tool transformation can be treated as known (there are dedicated

techniques to identify them separately).

This finally allows us to obtain the complete and irreducible

geometric model for the considered manipulator that includes 18

principle parameters to be identified.1

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

q

q q q q

q q q q q

T R ( ) T T R

R ( ) [T R R ] R ( ) [T T R ]

R ( ) T T R R ( ) [T R ] R ( )
(5)

robot z x y x
L

y x x z L y x z z L

x y z z
L

y z z L x

1

2 2 3 3

4 4 5 5 6

1

2 3

4
5

= ⋅

⋅ + Δ ⋅ ⋅ + Δ ⋅

⋅ + Δ ⋅ ⋅ + Δ ⋅ ⋅

This model will be further used for geometric calibration of the

industrial robot KUKA KR-270 and for the optimal selection of the

measurement poses. Let us collect these parameters in the fol-

lowing vector

{

}

p p q p q p p q p p

q p (6)

x y x x x z x z z y z z

z z

1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

5 5 5

φ φ φ φ φ

φ

π = Δ Δ Δ

Δ

where q jΔ is the joint offset, p p p, ,xj yj zj and , ,xj yj zjφ φ φ are the

relevant translational and rotational parameters, and j indicates

the joint/link number. For these parameters, the corresponding

nominal values are

{ }d d d d0 0 0 0 0 0 0 0 0 0 0 0 0 0 (7)0 2 3 4 5π =

where the geometric meaning of d d, ... ,2 5 is illustrated in Fig. 3. In
the following sections, this model will be used for computing the

end-effector location of the KUKA KR-270 robot required for some

numerical routines employed in parameter identification algorithms.

4. Enhanced partial pose measurement method

In industrial applications, it is often used the partial pose

measurement method that requires obtaining the end-effector

position coordinates only (without orientation). On the other

hand, this simplification does not allow the user to identify certain

manipulator parameters that can be estimated via the end-effector

orientation. For this reason, this section presents an intermediate

technique, where the orientation is not computed directly but is

incorporated in the identification equations via the Cartesian co-

ordinates of several reference points.

For the conventional full pose measurement technique, the de-

sired parameters are identified from the full-scale linearized geo-

metric model (1), which can be rewritten as

i mt J , 1, 2, ... (8)i i πΔ = Δ =π

where p p pt ( , , , , , )i xi yi zi xi yi zi
Tφ φ φΔ = Δ Δ Δ Δ Δ Δ is the pose devia-

tion caused by small variation in the model parameters πΔ . It is

clear that the corresponding system of linear equations can be

solved with respect to πΔ if the number of experiments m is suf-

ficiently high and the manipulator configurations i m{q , 1, }i = are

different to ensure non-singularity of relevant observation matrix

used in the identification procedure. For this technique, each

configuration qi produces six scalar equations to be used for the

identification. Corresponding optimization problem (2) whose

solution leads to the desired parameters πΔ is often solved with-

out paying attention to the non-homogeneity of the residual

components. In some cases, the weighted least-square technique

is used to resolve this problem, but the weighting coefficients are

usually defined intuitively, which may affect essentially the

identification accuracy.

The main difficulty of this conventional technique (full-pose) is

that the orientation components ( . . )xi yi zi
Tφ φ φ cannot be mea-

sured directly. So, these angles are computed using excessive

number of measurements for the same configuration qi, which

produce Cartesian coordinates p p p j n n{( , , ) 1, ; 3}xi
j

yi
j

zi
j T | = ≥ for

several reference points of the measurement tool attached to the

manipulator mounting flange (Fig. 2). Hence, instead of using mn3

scalar equations, that can be theoretically obtained from the

measurement data, this conventional approach uses only m6 scalar

equations for the identification. This may obviously lead to some

loss of the parameter estimation accuracy.

To overcome this difficulty, the proposed technique is based on

reformulation of the optimization problem (2) using only the data

directly available from the measurement system, i.e. the Cartesian

coordinates of all reference points pi
j (see Fig. 2). This idea allows

us to obtain homogeneous identification equations where each

residual has the same unit (mm, for instance), and the optimiza-

tion problem is rewritten as follows

p J min
(9)i

m

j

n

i
j

i
j p

1 1

( ) 2∑ ∑ π‖Δ − Δ ‖ →
π

π
= =

Δ

1 It should be stressed that 6 parameters related to the base transformation

and 6 parameters describing the tool transformation are not included in this ex-

pression (see Remarks 1 and 5), so it is in good agreement with common expres-

sion of Zhuang [52] that for robot with 6 rotational joints yields 30 independent

parameters.
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Here, the matrix J i
j p( )
π

with the superscripts “ p( )” denotes the

position rows of the corresponding identification Jacobian J i
j
π
, the

index “i” defines the manipulator configuration number, and the

index “ j” denotes the reference point number. An obvious ad-

vantage of this formulation is its simplicity and clarity of the re-

sidual vector norm definition (conventional Euclidian norm can be

applied here reasonably, the normalization is not required). So, the

problem of the weighting coefficient selection does not exist in

this case. In fact, under the assumption that measurement errors

are modeled as a set of independent and identically distributed (i.i.

d.) random values (similar for all directions x, y, z and for all

measurement configurations), the optimal linear estimator should

operate with equal weights for all equations. Besides, the most

important issue is related to the potential benefits in the identi-

fication accuracy, since the total number of scalar equations in-

corporated in the least-square objective increases from m6 to mn3 .

To compare the efficiency of the presented approach with the

conventional one, a simulation study has been carried out, which

dealt with geometric calibration of a 3-link spatial manipulator

(Fig. 4). Detail description of this example can be found in [53],

where it has been proved that the enhanced technique based on

partial pose information ensures essential improvement of para-

meter identification accuracy. Using these identified geometric

parameters, it is possible to evaluate the manipulator end-effector

positioning accuracy throughout the workspace. Corresponding

results are shown in Fig. 4, in which the achieved robot accuracy

has been compared for two techniques. As follows from this figure,

using the proposed approach, the maximum positioning error has

not even reached the minimum one by using conventional tech-

nique. Moreover, the minimum positioning error has been reduced

by a factor of 4. Fig. 5

Therefore, the partial pose technique is rather promising and

will be further used for calibration experiments in this work. In

contrast to the conventional methods, this technique allows us to

avoid the problem of non-homogeneity of the relevant optimiza-

tion objective and does not require any normalization (which

arises in the case when full pose residuals are used).

5. Identification of manipulator geometric parameters

5.1. Identification algorithm for the enhanced partial pose method

Let us assume that the measurement tool has n reference

points (n 3≥ ) that are used to estimate relevant vectors of the

Cartesian coordinates p p pp ( , , )i
j

xi
j

yi
j

zi
j T= for m manipulator con-

figurations qi. In this notation, the subscript “i” and subscript “ j”

denote the experiment number and reference point number re-

spectively. Correspondingly, the manipulator geometric model (3)

can be rewritten as

i m j nT T T (q , ) T ; 1, , 1, (10)i
j

base robot i tool
jπ= · · = =

Fig. 4. Difference between conventional full-pose approach and enhanced partial pose approache.

Fig. 5. Improvement of manipulator positioning accuracy after calibration due to the enhanced partial pose technique: (a) Conventional technique and (b) proposed

technique.
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where the vectors pi
j are incorporated in the fourth column of the

homogenous transformation matrix Ti
j, the matrix Tbase defines the

robot base location, the matrices j nT , 1,tool
j = describe the loca-

tions of the reference points that are observed by the measure-

ment system (see Fig. 2). Here, the matrix function T ( q , )robot i π

describes the manipulator geometry and depends on the current

values of the actuated coordinates qi and the parameters π to be

estimated. Taking into account that any homogeneous transforma-

tion matrix Ta
b can be split into the rotational Ra

b and translational

pa
b components and presented as

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

T
R p

1
,

(11)
a
b a

b
a
b

=

the vector of the reference point positions j np , 1,i
j = (that are

measured in the calibration experiments) can be expressed in the

following form

i m j n

p p R p (q , ) R R (q , ) p ;

1, , 1, . (12)

i
j

base base robot i base robot i tool
jπ π= + ⋅ + ⋅ ⋅

= =

This allows us to obtain mn3 scalar equations for the calibration

purposes, where n 3≥ and m is high enough to ensure identifia-

bility of the desired parameters.

Applying the least-square method, the corresponding optimi-

zation problem can be presented as

p p R p (q , ) R R (q , ) p

min
(13)

i

m

j

n

i
j

base base robot i base robot i tool
j

1 1

2

{p ,R ,p , }base base tool
j

∑ ∑ π π‖ − − ⋅ − ⋅ ⋅ ‖

→
π

= =

where the vectors/matrices pbase , Rbase, { }j np , 1,tool
j = and π are

treated as unknowns.

The main difficulty with this optimization problem is that some

of the unknowns are included in the objective function in highly

non-linear way. So, to solve this problem, numerical optimization

technique is required. However in practice, the deviations in the

model parameters are relatively small, which allows us to linearize

the manipulator geometric model (12). This leads to a linear least-

square problem, whose solution can be obtained straightforwardly

with the matrix pseudo-inverse. However, to simplify computa-

tions, here it is proposed to apply the linearization technique se-

quentially and separately with respect to two different subsets of

the model parameters (corresponding to the base/tool transfor-

mations and the manipulator geometry). Consequently, the iden-

tification procedure is split into two steps. In the frame of this

approach, the first step deals with the estimation of pbase , Rbase,

ptool
j , which are related to the base and tool transformations (as-

suming that the manipulator parameters are known). The second

step focuses on the estimation of π under the assumption that the

base and tool components have been already identified. In order to

ensure that the desired identification accuracy can be achieved,

these two steps are repeated iteratively.

Step 1. For the first step, taking into account that the errors in

the base orientation are relatively small, the matrix Rbase is pre-

sented in the following form

R [ ] I (14)base baseφ= ~ +

where I is a 3 3× identity matrix, vector baseφ includes the devia-

tions in the base orientation angles, and the operator “[ ]~ ” trans-

forms the vector ( , , )x y z
Tφ φ φφ = into the skew symmetric matrix

as

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

[ ]

0

0

0 (15)

z y

z x

y x

φ φ

φ φ

φ φ

φ~ =

−

−

−

This leads to the following simplified expression of Eq. (12)

p p p p [ ] R u (16)i
j

base robot
i

robot
i

base robot
i

tool
jφ= + − ⋅ ~ + ⋅

that can also be rewritten in a matrix form as

⎡
⎣⎢

⎡
⎣

⎤
⎦

⎤
⎦⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

p p I p R

p

u (17)

i
j

robot
i

robot
i T

robot
i

base

base

tool
j

φ= + ~

and

u R p (18)tool
j

base tool
j=

Here the vectors pbase, baseφ and j nu , 1,tool
j = are treated as

unknowns.

Applying to the linear system (17) the linear least-square

technique, the desired vectors defining the base and tool trans-

formation parameters can be expressed as follows

⎡
⎣

⎤
⎦

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟p ; ; u ; ... u A A A p

(19)
base base tool tool

n

i

m

i
j

i
j

i

m

i
j

i
1

1

1

1

T T∑ ∑ Δφ =
=

−

=

where

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

0 0

0 0

0 0

A

I p R ...

I p R ...

... ... ... ... ... ...

I p ... R
(20)

i
j

robot
i T

robot
i

robot
i T

robot
i

robot
i T

robot
i

=

~

~

~

and the residuals are integrated in a single vector

p ( p , ... , p )i i i
n T1Δ = Δ Δ . Finally, the variables defining the location of

the reference points are computed using Eq. (18) as

p R utool
j

base
T

tool
j= · . This allows us to find the homogeneous transfor-

mation matrices Tbase and Ttool
j that are contained in Eq. (10).

Step 2. On this step, the manipulator geometric parameters π

are estimated. For this purpose, the principal system (10) is line-

arized and rewritten in the form

p J (21)i
j

i
j p( ) πΔ = ·Δ
π

where p p pi
j

i
j

robot
iΔ = − is the residual vector corresponding to the

j th− reference point for the i th− manipulator configuration, πΔ is

the vector of geometric errors, the matrix J i
j
π
is the identification

Jacobian computed for the configuration qi with respect to the

reference point j. Applying to this system the least-square tech-

nique, the desired vectors of geometric errors πΔ can be obtained

as

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟J J J p

(22)i

m

j

n

i
j p T

i
j p

i

m

j

n

i
j p T

i
j

1 1

( ) ( )

1

1 1

( )∑ ∑ ∑ ∑πΔ = Δ
π π π

= =

−

= =

It should be noted that, to achieve the desired accuracy for the

original non-linear problem (13), the steps 1 and 2 should be re-

peated iteratively.

Another particularity may arise here is related to the property

of measurement noise. In the above expressions, it was explicitly

assumed that the measurement errors are similar for all directions.

However, for some measurement systems, the errors in the long-

itudinal and transversal directions may essentially differ. In this

case, the Eqs. (19) and (22) should be slightly modified by
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including weighting coefficients

⎡
⎣

⎤
⎦

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

p ; ; u ; ... u

A W A A W p
(23)

base base tool tool
n

i

m

i
j

i
j

i
j

i

m

i
j

i
j

i

1

1

2

1

1

2T T∑ ∑

φ

= Δ
=

−

=

and

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟J W J J W p

(24)i

m

j

n

i
j p T

i
j

i
j p

i

m

j

n

i
j p T

i
j

i
j

1 1

( ) 2 ( )

1

1 1

( ) 2∑ ∑ ∑ ∑πΔ = Δ
π π π

= =

−

= =

where the weighting coefficients matrix Wi
j is computed using a

technique proposed in our previous work [54].

Hence, the above presented identification algorithm is able to

provide the estimation of the manipulator geometric parameters

as well as the matrices of the base and tool transformations.

However, the obtained identification results usually include some

dispersion due to measurement errors. So, in order to achieve

desired identification accuracy, the influence of these errors

should be evaluated and reduced as much as possible, which will

be in the focus of the following subsection.

5.2. Influence of the measurement errors on the identification

accuracy

Under the assumption that measurement noise has the most

significant impact on the robot positioning accuracy and the other

sources of error are negligible, the basic equation of calibra-

tion (21) should integrate the measurement errors and is ex-

pressed as

i m j np J ; 1, , 1, (25)i
j

i
j p

i
j( ) π εΔ = ·Δ + = =

π

where the vectors ( , , )i
j

xi
j

yi
j

zi
j Tε ε εε = denote the additive random

errors, which are usually assumed to be unbiased and i.i.d. with

the standard deviation σ . Then, using Eq. (22), the estimates of the

desired parameters can be presented as

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟J J J

(26)i

m

j

n

i
j p T

i
j p

i

m

j

n

i
j p T

i
j

1 1

( ) ( )

1

1 1

( )∑ ∑ ∑ ∑π̂ π εΔ = Δ +
= =

π π

−

= =
π

where the second term describes the stochastic component. As

follows from this expression, the considered identification algo-

rithm provides the unbiased estimate of the desired parameters,

i.e., E ( )π̂ πΔ = Δ where, E ( )⋅ denotes the mathematical expectation

of the random value. Taking into account the statistical properties

of the measurement errors (which are assumed to be similar for all

reference points, all manipulator configurations and all directions,

in accordance with expression ( )E Ii i
T 2σε ε = ), the desired covar-

iance matrix of πΔ , which defines the identification accuracy, can

be computed as

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟cov( ) J J

(27)i

m

j

n

i
j p T

i
j p2

1 1

( ) ( )

1

∑ ∑σπ̂Δ =
= =

π π

−

Hence, the impact of the measurement errors on the identified

values of the geometric parameters is defined by the matrix sum

J Ji
m

j
n

i
j p T

i
j p

1 1
( ) ( )∑ ∑= = π π that in literature is also called the information

matrix. It is clear that to achieve the best accuracy, the elements of

covariance matrix (27) should be as small as possible. This re-

quirement can be satisfied by proper selection of the experiment
input data (i.e., the measurement configurations i m{q , 1, }i = ) as

well as by increasing the number of experiments m. Since in-

creasing of the measurements is rather time consuming, it is

reasonable to investigate the first approach that deals with opti-

mization of the measurement configurations for limited number of

experiments.

In more general case when the measurement errors differ from

direction to direction, the expectation ( )E i i
Tε ε can be expressed as

( )( )E diag i k, , , if (28)i
j

k
jT

xi
j

yi
j

zi
j2 2 2σ σ σε ε = =

(see our previous study on this issue presented in [54]). So, the

covariance matrix defining the calibration accuracy can be re-

written in the following form

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟cov( ) J W J

(29)i

m

j

n

i
j p T

i
j

i
j p2

1 1

( ) 2 ( )

1

∑ ∑σπ̂Δ =
= =

π π

−

where the weighting coefficient matrix Wi
j can be computed as in

Eq. (24). It is clear that here the optimization of measurement

configurations is also promising. However, in practice for the

design of calibration experiments, the measurement errors are

assumed to follow the i.i.d assumption.

In the literature, the problem of optimal pose selection for ca-

libration experiments have been studied in a number of works

[36,39–44], where several scalar criteria were proposed to defined

this type of optimality in formal way. The main drawback of these

approaches is that the relevant optimization objectives are not

directly related to the manipulator positioning accuracy and its

targeted industrial application (they usually focus on the para-

meter identification accuracy). Hence, in order to achieve si-

multaneously high accuracy both for the manipulator parameters

and for the end-effector position (or to find reasonable trade-off),

it is required to revise the existing techniques and to define a

proper objective for measurement pose selection, taking into ac-

count the specificities of the application area studied in this work.

This issue is in the focus of the next section.

6. Optimal selection of measurement configurations

This section proposes a new approach for calibration experi-

ments design that has two distinct features: (i) optimization based

on a new industrial-oriented performance measure that evaluates

the manipulator positioning accuracy after calibration; (ii) utili-

zation of experimental data obtained by means of the enhanced

partial pose measurement method.

6.1. Test-pose based approach for calibration experiments design

In robot calibration, the desired manipulator parameters are

estimated using experimental data corrupted by the measurement

noise. For this reason, the parameters estimates are not equal to

the true values, they vary from one set of experiments to another

and can be treated as random ones. As follows from previous

section, relevant identification algorithms provide unbiased esti-

mates (i.e. their expectation is equal to the true values) but their

dispersion essentially depends on the set of measurement con-

figurations that provides the experimental data for the identifi-

cation. Hence, it is reasonable to select the measurement config-

urations in the best way, in order to ensure the lowest impact of

the measurement errors on the parameter estimates. In the lit-

erature, this problem is known as the “calibration experiments

design”. However, existing approaches focus on the accuracy of the

parameter estimation (defined by the relevant covariance ma-

trix (27)), while the considered industrial application motivates us

to focus on the manipulator positioning accuracy after calibration.

In more details, the notion of manipulator positioning accuracy

after calibration is illustrated in Fig. 6. It is assumed here that the
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desired end-effector position is pd, but without calibration, the

end-effector is located at the point gp (q , )0 0 π= , which can be

computed using the nominal geometric model. Here, the joint

coordinate vector q0 is obtained from equation gp (q , )d 0 0π= via

the inverse kinematics. Using calibration, for each set of experi-

mental data, it is possible to find the parameter estimates kπ̂ that
allow us to compensate partially the positioning errors by com-

puting another joint coordinate vector qk from the equation

gp (q , )d k kπ̂= and to relocate the end-effector at the point

gp (q , )k k π= , which is closer to the desired position pd. Evaluating

the distribution of Cartersian coordinates of points pk, it should be

mentioned that those points are concentrated around the desired

position pd in such way that:

E (p ) p (30)k d=

So, the target position can be treated as the center. To evaluate

their dispersion with respect to the desired position, relevant

distances dist(p , p )k k dρ = can be used. This leads to the following

statistical performance measure

( )E (p p ) (p p ) (31)k d
T

k d0ρ = − −

which is the root-mean-square distance between the target posi-

tion and the end-effector position after calibration. This indicator

is used below to describe the geometric errors compensation ef-

ficiency. It is clear that the performance measure 0ρ is directly

related to the manipulator accuracy in an engineering viewpoint.

It is clear that the positioning error scattering and relevant

performance measure 0ρ highly depend on the target point posi-

tion and varies throughout the workspace. In the frame of this

work, it is assumed that the manipulator accuracy can be eval-

uated for so-called test-pose that is specified in the relevant

technological process. This idea allows us to use the above men-

tioned performance measure 0ρ as an objective in the calibration

experiments design.

Using the adopted notations and assuming that the manip-

ulator geometric model is linearized, the distance kρ can be com-

puted as the Euclidean norm of the vector p Jk
p

k0
( )δ δπ=
π

, where the

subscript’‘0’ in the identification Jacobian J p
0

( )
π

is related to the test

pose q0 and k kπ π̂ πδ = − is the difference between the estimated

and true values of the robot geometric parameters respectively.

Further, taking into account expression (26) and the assumptions

concerning the measurement errors that are treated as unbiased

and i.i.d. random variables, it can be easily proved that the ex-

pectation E ( p ) 0kδ = . Therefore, the points pk that the end-effector

attains after compensation are located around the desired position

pd, as shown in Fig. 6.

The dispersion of these points can be evaluated by the variance

( )E p pk
T

kδ δ which in accordance with the above definition is equal

to the square of the performance measure 0ρ . This yields the fol-

lowing expression

( )E J J (32)
T p T p

0
2

0
( )

0
( )ρ δ δπ π=

π π

which can be rewritten using the identity equation

p p trace( p p )T Tδ δ δ δ≡ as

( )Etrace J ( )J (33)
p T p T

0
2

0
( )

0
( )ρ δ δπ π=

π π

Further, by applying Eq. (27) and considering that the term

E ( )Tδ δπ π is the covariance matrix of the geometrical error esti-

mates, i.e., E ( ) cov( )Tδ δπ π π̂= , the desired expression can be pre-

sented in the final form as

⎛

⎝

⎜
⎜⎜

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎞

⎠

⎟
⎟⎟

trace J J J J

(34)

p

i

m

j

n

i
j p T

i
j p p T

0
2 2

0
( )

1 1

( ) ( )

1

0
( )∑ ∑ρ σ= ⋅

π π

= =
π π

−

As follows from this expression, 0
2ρ can be treated as the

weighted trace of the covariance matrix cov( )π̂ , where the weighting

coefficients are computed using the test-pose joint coordinates q0.

Hence, the proposed performance measure has obvious advantage

compared to the existing ones [40], which operate with “pure”

trace of this matrix and involve straightforward summing of its

diagonal elements (which may be of different units). Based on this

performance measure, the calibration experiments design can be

reduced to the following optimization problem

⎛

⎝

⎜
⎜⎜

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎞

⎠

⎟
⎟⎟

trace J J J J min

(35)

p

i

m

j

n

i
j p T

i
j p p T

0
( )

1 1

( ) ( )

1

0
( )

{q ...q }i m
∑ ∑ →

π π

= =
π π

−

whose solution gives a set of the desired measurement config-

urations {q , .. . , q }m1 .

Hence, in the frame of the proposed approach, the calibration

quality (evaluated via the error compensation accuracy 0ρ ) is

completely defined by the set of Jacobian matrices { }J , ... , Jp
m
p

1
( ) ( )
π π

that depend on the manipulator configurations {q , .. . , q }m1 , while

the Jacobian matrix J p
0

( )
π

corresponding the test-pose q0 defines the

weighting coefficients. It is worth mentioning that test-pose based

approach can be also extended for calibration of the manipulator

elasto-static parameters (see [55], for more details). The ad-

vantages of the proposed approach will be illustrated in the fol-

lowing subsections.

6.2. Comparison analysis of the proposed and conventional

approaches

Let us illustrate the advantages of the test-pose based approach

by an example of the geometrical calibration of a two-link planar

manipulator. It is assumed that the nominal link lengths l l{ , }1 2

differ from the real ones, and these deviations l l{ , }1 2Δ Δ should be
identified by means of calibration. In this case, the manipulator

end-effector position can be expressed as

p l l q l l q q

p l l q l l q q

( )cos ( )cos( )

( )sin ( )sin( ) (36)

x

y

1 1 1 2 2 1 2

1 1 1 2 2 1 2

= + Δ + + Δ +

= + Δ + + Δ +

where px and py define the end-effector position, q q,1 2 are the joint

coordinates that define the manipulator configuration. It can be

proved that in this case the parameter covariance matrix does not

depend on the angles q i1 and is expressed as

Fig. 6. Dispersion of the manipulator positioning errors after calibration and per-

formance measure for selection of measurement configurations (for given single

target point).
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⎢
⎢
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⎤

⎦

⎥
⎥
⎥
⎥
⎥

( )m q

m q

q m

cov( )
cos

cos

cos
(37)

i

m
i

i

m

i

i

m

i

2

2
1 2

2

1

2

1

2

∑

∑

σ
πΔ =

− ∑

−

−=

=

=

where the vector l l( , )1 2πΔ = Δ Δ denotes the parameters devia-
tions to be identified, m is the number of experiments and σ is the

standard deviation. of the measurement noise.

For comparison purposes, the plans of experiments were ob-

tained using three different strategies:

(1) the measurement configurations were generated randomly;

(2) the measurement configurations were obtained using the

conventional approach based on D-optimality principle;

(3) the measurement configurations were obtained using the

proposed test-pose based approach (see Section 6.1).

For the first approach (i), the measurement configurations were

found in a trivial way, using a uniform random number generator

scaled within the joint limits. For the conventional approach

(ii), where the D-optimality principle was used (that has been

proved to be efficient in many applications), the performance

measure is equal of the covariance matrix determinant (37), which

yields

( )m q
det(cov( ))

cos (38)i

m
i

2

2
1 2

2

σ
πΔ =

− ∑
=

As follows from this expression, this criterion requires mini-

mization of the term q( cos )i
m

i1 2
2∑ = . So, the determinant mini-

mum value is equal to m/2 2σ and it is reached when

q i mcos 0, 1, ... ,
(39)i

m

i

1

2∑ = =
=

It should be mentioned that this optimality condition also sa-

tisfies the A- and G-optimality principles. More details concerning

the calibration experiment planning using the above conditions

can be found in [56].

For the proposed approach (iii), it is assumed that the calibra-

tion quality is evaluated in the predefined manipulator test con-

figuration q q( , )10 20 . In this case, the performance measure 0
2ρ (34)

can be computed as

( )

m q q

m q
2

cos cos

cos (40)

i
m

i

i
m

i

0
2 2 20 1 2

2
1 2

2
ρ σ= ⋅

− ∑

− ∑

=

=

As follows from relevant analysis, the minimum value of 0
2ρ is

equal to

m

q

q

cos

1 sin (41)
0 min
2

2 2
20

20

ρ
σ

= ⋅
−

and it is achieved when the measurement configurations satisfy

the equation

q m
q

q
cos

1 sin

cos (42)i

m

i

1

2

20

20

∑ = ⋅
−

=

which essentially differ from (39). It should be mentioned that

general solution of Eq. (42) form configurations can be replaced by

the decomposition of the whole configuration set by the subsets of

2 and 3 configurations (while providing the same identification

accuracy). This essentially reduces computational complexity and

allows user to reduce number of different measurement config-

urations without loss of accuracy.

Using the above presented expressions for the robot accuracy

after calibration, the proposed and conventional approaches can

be compared analytically and numerically. In particular, for the test

pose q( , )20⁎ , the conventional approach (ii) ensures the position-

ing accuracy after compensation m2 /c
2 2ρ σ= , while for the pro-

posed approach (iii), similar performance measure is equal to

m q q/ cos /(1 sin )0 min
2 2 2

20 20ρ σ= ⋅ − . Corresponding values are

compared in Table 2, which proves that using the proposed ap-

proach for the calibration experiment design allows us to improve

the positioning accuracy up to 41%.

To illustrate advantages of the proposed approach, Fig. 7 pre-

sents simulation results for manipulator positioning errors after

compensation corresponding to three different sets of measure-

ment configurations employed in calibration. It is also assumed

that the manipulator parameters are l l1 m, 0.8 m1 2= = ; the

number of measurement configurations m 2= ; the test config-

uration is defined by the vector q ( 45 , 20 )0 = − ∘ ∘ , and the s.t.d. of

the measurement errors is 1 mmσ = . For comparison purposes,

the following plans of experiments (measurement configurations)

have been considered:

(1) Random plan: q (0 , 10 )1 = −∘ ∘ and q (0 , 10 )2 = ∘ ∘ , which has

been generated randomly;

(2) Conventional plan: q (0 , 90 )1 = −∘ ∘ and q (0 , 90 )2 = ∘ ∘ , which

satisfies D-optimality principle [34];

(3) Proposed plan: q (0 , 46 )1 = −∘ ∘ and q (0 , 46 )2 = ∘ ∘ , which sa-

tisfies the test-pose based approach.

To obtained reliable statistics, the calibration experiments have

been repeated 100 times. Corresponding results presented in Fig. 7

show that the proposed approach allows us to increase accuracy of

the end-effector position on average by 18% comparing to the

D-optimal plan and by 48% comparing to the randomly generated

plan.

Hence, this simple example confirms that the proposed per-

formance measure is attractive for practicing engineers and allows

us to avoid the multi-objective optimization problem that arises

while minimizing all elements of the covariance matrix (27) si-

multaneously. In addition, using this approach, it is possible to find

a balance between the accuracy of different geometrical para-

meters whose influence on the final robot accuracy is unequal.

Another example confirming this conclusion is presented in our

previous work [57].

It is worth mentioning that the proposed approach allows es-

sential improvement of the calibration efficiency and to achieve

the best manipulator positioning accuracy for the user-defined test

configurations related to the manufacturing task (in contrast to the

conventional approaches that are targeted at the best parameter

identification accuracy). However, for typical industrial robots

whose model includes very high number of parameters, relevant

optimization becomes extremely time consuming. For this reason,

the next subsection focuses on simplification of numerical rou-

tines employed in the selection of optimal measurement

configurations.

Table 2

Accuracy comparison of the proposed and conventional approaches

Test-pose (q20), [deg.] 0 30 60 90 120 150 180

/ c0
2 2ρ ρ 0.5 0.75 0.83 1 0.83 0.75 0.5

Accuracy improvement (%) 41 15 10 0 10 15 41
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6.3. Simplification of the optimal pose selection procedure

It is clear that analytical solutions of relevant optimization

problems (35) can hardly be obtained (for example, when the

number of parameters to be identified is very high, the analytical

computations of the matrix inversion in these expressions are

hardly possible). So, applying a numerical optimization technique

is the only reasonable way, but the convergence rate, the total

computational time and ability to attain the global minimum be-

come key issues. For this reason, several conventional optimiza-

tion techniques were examined. In order to improve their effi-

ciency, two techniques that are adapted to the test-pose based

approach have been proposed: (i) application of parallel and hy-

brid computations; (ii) generation of quasi-optimal solutions using

lower-dimensional calibration plans.

In order to obtain the global optimum for the considered pro-

blem, it is required numerous repetitions of the optimization with

different starting points. As follows from our experiences, even

using thousands of them may be not enough for finding the global

optimum but the required computational time could overcome

hundreds of hours. So, it is reasonable to apply parallel computing

technique to speed up the design process and to take advantage of

multi-core architecture in modern computers. Relevant computa-

tions in this work were carried out on a workstation with 12 cores,

which allowed us to decrease the computational time by the factor

of 10–12. However, it is not enough yet to solve the problem of real

industrial size, where several dozen of parameters should be

identified. To overcome this difficulty, it has been proposed a hy-

brid approach that combines advantages of the genetic algorithm

and the gradient search. The idea behind this technique is to

modify the starting point selection strategy for the gradient search

in order to improve the algorithm efficiency. To ensure better

convergence to the global minimum, it has been proposed to use

the best half of final solutions obtained from GA as the starting

points for gradient search. This hybrid approach has been proved

to be quite efficient in terms of computational time (improved by a

factor of 5, in addition to parallel computing) and allows us to

avoid convergence to the local minima.

On the other hand, as follows from our experiences, the di-

versity of the measurement poses does not contribute significantly

to the accuracy improvement if m (the total number of measure-

ments) is high enough. This allows us to propose an alternative

technique, which uses the same measurement configurations sev-

eral times (allowing to simplify and speed up the measurements).

This approach can be also referred to as the “reduction of problem

dimension”.

To explain the proposed approach in more details, let us as-

sume that the problem of the optimal pose selection has been

solved for m different configurations and the obtained calibration
plan ensures the positioning accuracy m

0ρ . Using these notations,

let us evaluate the calibration accuracy for two alternative stra-

tegies that employ total number of experiments k m× :

Strategy #1 (conventional): the measurement configurations

are found from the full-scale optimization of size k m× .

Strategy #2 (proposed): the measurement configurations are

obtained by simple repetition of the configurations got from the

low-dimensional optimization problem of size m (i.e. at each

configuration, the measurements are repeated k times).

It is clear that the calibration accuracy km
0ρ for the strategy #1 is

better than the accuracy corresponding to the strategy #2 that can

be expressed as k/m
0ρ . However, as follows from our study, this

difference is quite small if the total number of measurements is

high enough, while the number of different configurations m is

larger than 3. This allows us to essentially reduce the size of the

optimization problem employed in the optimal selection of mea-

surement poses without significant impact on the positioning

accuracy.

To demonstrate the validity of the proposed approach, a

benchmark example that deals with geometric calibration of a

6-dof manipulator has been solved using strategies #1 and #2,

assuming that the total number of measurements is equal to 12

(i.e. using different factorizations such as 12 1× , 6 2× , 4 3× ,

3 4× ). Relevant results are presented in Table 3, where the first

four lines give the accuracy 0ρ and the last line shows corre-

sponding computational time. It is noteworthy that the factoriza-

tion 12 1× , where all measurement poses are different, is only 6%

better comparing to the factorization 3 4× where measurements

are repeated 4 times in 3 different configurations. At the same

time, the factorizations 6 2× and 4 3× give almost the same re-

sults as the factorization 12 1× . On the other hand, the compu-

tational time of the optimal pose generation for m 3= is much

lower than for m 12= . Hence, as follows from these results, re-

peating experiments with optimal plans obtained for the lower

number of configurations provides almost the same performance

as “full-dimensional” optimal plan. Obviously, this reduction of the

measurement pose number is very attractive from an engineering

viewpoint. This technique will be used in the application example

presented in the following section.

7. Experimental results: geometric calibration of KUKA KR-270

To confirm the applicability of the proposed calibration tech-

niques and demonstrate their benefits from engineering point of

view, this section presents the experimental procedure, the iden-

tification results as well as the accuracy analysis for geometric

Fig. 7. Dispersion of manipulator positioning errors after calibration for different plans of experiments: (a) Random plan, (b) conventional plan and (c) proposed plan.
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calibration of the industrial KUKA KR-270 robot.

7.1. Experimental environment and measurement setup

The manufacturing cell where the examined robot has been

installed is presented in Fig. 8. The work-cell includes a 6-dof in-

dustrial KUKA KR-270 robot with six revolute joints, a machining

table, a vertical frame for mounting the pieces. It should be noted

that for geometric calibration, the above mentioned equipment

(that can be also treated as the obstacles) cause some limits for

placement of the external measurement device. Taking into ac-

count particularities of the technological process considered in

this work, the manipulator test-pose (configurationq0) has been

defined in the location where the best robot positioning accuracy

should be achieved: q (76.7 , 56.9 , 89.3 , 45.1 , 76 , 57.2 )0 = ° − ° ° ° ° ° . It

is worth mentioning that similar configuration has been used in

previous works [58,59] to evaluate the quality of the robot-based

machining.

To identify the desired geometric parameters, the manu-

facturing cell is equipped with some additional measuring devices

that provide us with Cartesian coordinates of the references points

for each manipulator configuration. Besides, the manipulator joint

angles required for the identification procedure are obtained from

the robot control system. So, entire experimental setup includes

the following units:

� 6-dof KUKA KR-270 robotic manipulator whose geometric

parameters should be identified (repeatability of this robot is

60 mm [60], details concerning its kinematics are presented in

Section 3);
� Robot control system KR-C2, which is used for changing the

manipulator configurations and measuring the corresponding

joint angles with a precision equal to 70.0001°;
� Special measurement tool with three reference points located

on the circle of radius 104 mm, this tool is attached to the

manipulator mounting flange;
� Laser tracker Leica AT-901 that is used to measure the Cartesian

coordinates of the reference point with a precision of 10 mm

[61];
� Laser tracker reflector that is sequentially attached to the re-

ference points (with precision about 1 mm), it allows the mea-

surement device to estimate the distances and compute the

required Cartesian coordinates;

The experimental setup for manipulator geometric calibration

is shown in Fig. 9. It is worth mentioning that the calibration ex-

periments are carried out in a limited area (smaller than the robot

entire workspace) caused by the work-cell size limitation and

some obstacles. For this reason, some of the manipulator config-

urations cannot be reached during the experiments (As a con-

sequence, they are not included in the optimal plan).

7.2. Optimal measurement pose selection

While selecting the minimum number of measurement con-

figurations, it is necessary to keep in mind that each manipulator

pose produces 6 independent equations only that are used for

identification. On the other hand, the set of geometric parameters

to be identified includes 33 unknowns:

(1) 18 principal parameters of the KUKA KR-270 robot;

(2) 6 parameters describing the laser tracker location with respect

to the robot base frame (both position and orientation);

(3) 9 parameters describing locations of the end-effector reference

points with respect to the manipulator mounting flange (po-

sitions only for three points).

Therefore, at least six different measurement configurations are

required to ensure non-singularity of the identification Jacobian

and ability to estimate the desired values. For this reason, relevant

optimization problem aiming at determining optimal measure-

ment poses has been solved for the configuration number m 6= .

To take into account the manipulator joint limits and the work-

cell constraints, the optimization problem for measurement

Table 3

Comparison of the optimal and quasi-optimal solutions for measurement config-

urations in calibration experiments, evaluated via 0
minρ , [mm] (case of a 6-dof

manipulator, repetitions of measurements k times for m different configurations)

Total number of

measurements

Number of different configurations

m 3= m 4= m 6= m 12=

km 3= 0.0637

(3 1)×

km 4= 0.0521

(4 1)×

km 6= 0.0450

(3 2)×

0.0426

(6 1)×

km 12= 0.0319

(3 4)×

0.0301

(4 3)×

0.0301

(6 2)×

0.0301

(12 1)×

Computational time 38 min 45 min 56 min 1.6 h

Fig. 8. The experimental work-cell environment: (a) general view; (b) typical machining configuration (test-pose).
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configurations selection (see Eq.(35)) should be solved subject to

q q qi
min max≤ ≤ and gp (q ) pi

min max≤ ≤ . In particular, { }iq 1, 6i =

denote the measurement configurations, the function g (q )i de-

scribes the manipulator geometric model and returns the end-

effector position coordinates of the current configuration. These

constraints take into account the manipulator joint limits

[q , q ]min max and the work-cell boundaries [p , p ]min max , whose va-

lues are given in Table 4 and 0, respectively. Table 5

This optimization problem has been solved using the MATLAB

software with the built-in optimization functions “ga” and

“fmincon”, which are required for the proposed hybrid approach

that employs the genetic algorithm and the gradient search. Cor-

responding solution minimizes the objective function 0ρ (the

Fig. 9. Experimental setup for manipulator geometric calibration.

Table 4

The joint limits of robot KUKA KR-270

q1 q2 q3 q4 q5 q6

qmin, [deg.] �180 �145 �110 �180 �125 �180

qmax , [deg.] 180 0 155 180 125 180

Table 5

The work-cell space boundaries with respect to the robot base frame

px py pz

pmin, [mm] �1400 �3000 300

pmax , [mm] 1800 2200 3500

Table 6

Comparison of calibration plans with different diversity of measurement

configurations.

Calibration plans Robot accuracy 0ρ ,

[mm]

Computational time

(i) {Sol. #1×3} 7.85 56 min

{Sol. #2×3} 7.84 56 min

{Sol. #3×3} 7.83 56 min

(ii) {Sol. #1×2, Sol. #2} 7.84 1.9 h

{Sol. #1×2, Sol. #3} 7.84 1.9 h

{Sol. #1, Sol. #2×2} 7.83 1.9 h

{Sol. #2×2, Sol. #3} 7.83 1.9 h

{Sol. #1, Sol. #3×2} 7.83 1.9 h

{Sol. #2, Sol. #3×2} 7.83 1.9 h

(iii) {Sol. #1, Sol. #2, Sol. #3} 7.83 2.8 h

Random configurations (for

comparison)

17.33 �0.05 s

Table 7

Identification results for manipulator tool transformations

Reference point #1 (P1) Reference point #2 (P2) Reference point #3 (P3)

Value, [mm] CI Value, [mm] CI Value,

[mm]

CI

px 277.23 70.05 276.49 70.05 278.44 70.05

py �46.53 70.04 �48.25 70.04 103.73 70.05

pz �93.87 70.04 94.05 70.05 �2.17 70.05
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proposed performance measure), which describes the manipulator

positioning accuracy after calibration. The measurement noise

parameter σ has been taken from the technical specification of the

laser tracker and is equal to 10 mm. It should be mentioned that, in

order to reduce the computational efforts and, to pay more atten-

tion to the parameters that can be tuned in the robot controller,

only nine the most essential geometric parameters were considered

while computing the Jacobian matrices J p
0

( )
π

and J i
p( )

π
. They include the

link lengths d d{ , ... , }2 5 whose nominal values are known and the

joint offsets q q{ , ... , }1 5Δ Δ that are nominally equal to zero.

In order to find a solution as close as possible to the global

minimum, the optimization problem has been solved several times

with different starting points. Nevertheless, three different

solutions have been obtained that ensure almost the same value of

the considered performance measure 0ρ ( 13.6≈ mm). Corresponding

solutions (measurement configurations) are presented in [45]. For

comparison purposes, these solutions have been evaluated both

separately and in different combinations, assuming that the

measurements are performed 18 times in the following way: (i)

repeating three times the measurements in configurations from a

single set; (ii) using twice configurations from one set and only

once from the second set; (iii) using all configurations from three

sets simultaneously (but only once). Corresponding values of 0ρ

are presented in Table 6. As follows from this table, the diversity of

manipulator configurations has almost negligible contribution to

the improvement of robot accuracy (it is about 7.85 mm, the dif-

ference is less than 0.2%). This confirms the results from Subsec-

tion 6.3, which claims that using simple repetition of the optimal

plan with lower number of measurement configurations essen-

tially reduces the experimental complexity while the same cali-

bration accuracy can be achieved.

7.3. Identification of geometric parameters

The obtained measurement configurations have been used for

the calibration experiments for KUKA KR-270 industrial robot. It is

worth mentioning that each manipulator configuration provides

27 values of the position coordinates. These coordinates have been

obtained using two different locations of the laser tracker (see more

details in [45]). However, at certain configurations, some of the

reference points were not visible for both laser tracker locations.

This problem can be solved by increasing the number of laser

tracker locations, but in practice such solution is limited by the

experimental time as well as the work-cell constraints. On the

other hand, since the calibration experiment employs two laser

tracker placements, 6 additional parameters describing the second

laser tracker location should be also identified. In total, the system

of identification equations contains 432 expressions that can be

used to identify the whole set of 39 geometric parameters. To

achieve the highest identification accuracy, here it is proposed to

use all measurements corresponding to 18 manipulator config-

urations simultaneously for calibration of the geometric

parameters.

Using the obtained measurement data, the two-step identifi-

cation procedure has been applied (see Section 5). On the first

step, the base and tool transformations have been computed,

corresponding results are presented in Table 7. On the second step,

these transformations have been used for the identification of the

manipulator geometric parameters, which are presented in Ta-

ble 8. It should be mentioned that in order to increase the iden-

tification accuracy, this two-step procedure has been repeated

iteratively (280 iterations, computing time was less than two

Table 8

Identification results for manipulator geometric parameters

Parameter Unit Value Confidence interval

Estimated using covar-

iance matrix

Estimated using Gibbs

sampling

p dx1 2≡ Δ [mm] �0.353 70.086 70.102

py1 [mm] 0.426 70.272 70.421

x1φ [deg.] 0.015 70.005 70.005

q2Δ [deg.] �0.007 70.005 70.004

p dx2 3≡ Δ [mm] 0.458 70.082 70.060

x2φ [deg.] 0.022 70.014 70.022

z2φ [deg.] �0.023 70.005 70.005

q3Δ [deg.] �0.023 70.019 70.013

p dx3 4≡ Δ [mm] �0.214 70.089 70.093

p dz3 5≡ Δ [mm] �0.508 70.363 70.259

z3φ [deg.] �0.011 70.017 70.022

q4Δ [deg.] 0.001 70.008 70.009

py4 [mm] �0.167 70.113 70.044

pz4 [mm] �0.018 70.073 70.044

z4φ [deg.] 0.025 70.015 70.010

q5Δ [deg.] �0.011 70.027 70.009

pz5 [mm] 0.016 70.104 70.041

z5φ [deg.] �0.008 70.018 70.007

Table 9

Evaluation of the manipulator accuracy improvement based on residual analysis

Criterion Before

calibration

After

calibration

Improvement

factor

Coordinate-based

residuals, [mm]

max 1.25 0.32 4.0

RMS 0.54 0.10 5.3

Distance-based re-

siduals, [mm]

max 1.31 0.39 3.5

RMS 0.94 0.17 5.5

Fig. 10. Histograms of residual distribution along X-, Y-, and Z-directions after geometric calibration: (a) X-direction, (b) Y-direction and Z-direction.
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minutes). As follows from the results, the desired geometric

parameters have been identified with high accuracy, which has

been evaluated using two different techniques (based on the sta-

tistical properties extracted from the covariance matrix and using

the Gibbs sampling).

The results presented in Table 8 include 18 parameters, some of

which cannot be modified in the robot control software. So, it is

useful to examine the effect of reducing the number of these

parameters by setting them to their nominal values. Relevant

analysis shows that the manipulator end-effector positioning error

impact because of such a simplification essentially differs from one

parameter to another, and they can be split into the following

groups:

� Parameters p p p p p p q q{ , , , , , , , , , , }x y x x z y z z z1 1 2 3 3 4 2 3 2 3 4φ φ φΔ Δ ,

whose neglecting leads to the loss of accuracy from 0.10 mm to

1.03 mm;
� Parameters p p q{ , , , , , }z z x x z4 5 5 1 2 5φ φ φΔ , whose neglecting leads

to the loss of accuracy from 0.02 mm to 0.09 mm;
� Parameter q4Δ , whose neglecting leads to the loss of accuracy

is about 4 mm.

Comparing to the machining accuracy required for the con-

sidered milling process (0.05–0.25 mm), the above listed posi-

tioning error impacts are not negligible for the most of the geo-

metric parameters. So, their deviations should be compensated

either in the geometric model embedded in the robot controller or

at the step of generation of the machining trajectory.

For comparison purposes, the manipulator accuracy improve-

ment due to calibration has been studied based on the residual

analysis before and after calibration (computed using the nominal

and identified values of geometric parameters respectively). Here,

two types of residuals have been examined, the coordinate-based

and distance-based ones. Corresponding results are presented in

Table 9, which includes the maximum and root mean square

(RMS) values of the relevant residuals. As follows from the results,

both types of the residuals have been essentially reduced after

calibration. In particular, the maximum values have been reduced

by a factor of 4 and 3.5, while the RMS values have been decreased

by a factor of 5.3 and 5.5, respectively.

Hence, the obtained results allow us to improve essentially the

manipulator accuracy for the measurement configurations that

were used in the identification. So, it is reasonable to expect that

using the geometric model, which integrates the identified para-

meters, the desired positioning accuracy for the given test con-

figuration can be also achieved. A more detailed analysis con-

cerning the parameter identification accuracy and its impact on

the robot positioning accuracy are discussed in the next

subsection.

7.4. Analysis of the identification results

In order to evaluate the calibration results, let us first analyze

the residuals computed from the identification equations for each

coordinate separately. Their histograms are shown in Fig. 10 and

corresponding distributions for each configuration are presented

in Fig. 11. As follows from the analysis, the residuals tend to follow

the normal probability distributions with zero mean and almost

the same parameter σ , which is equal to 0.10 mm, 0.09 mm, and

0.11 mm for X-, Y-, and Z- direction, respectively. The latter justifies

the utilization of ordinary least square technique (with equal

weights) for the parameter identification and allows us to con-

clude that the measurement noise parameter σ in our experiment

is about 0.1 mm.

It is worth mentioning that the noise parameter σ estimated

from the residual analysis is essentially higher than the precision

of the laser tracker measurement system, which is defined in the

technical specifications as 0.01 mm. This difference may be due to

the limitations of the geometric model, which does not take into

account a number of essential features such as the elastostatic

deformations due to gravity forces, the friction/backlash in joints

and other factors that affect the robot repeatability (70.06 mm, as

specified in the data sheets). Nevertheless, the geometric calibra-

tion ensures essential improvement of the robot accuracy in the

unloaded mode. Relevant computations show that for the con-

sidered test-pose, it is possible to achieve a positioning accuracy of

about 0.04 mm that is acceptable for the considered technological

process. On the other hand, this issue motivates further research

devoted to modeling of non-geometric factors and estimation of

relevant parameters.

8. Conclusions

This paper presents a new approach for calibration experi-

ments design for serial industrial robots. This approach employs a

new industry-oriented performance measure, which evaluates the

quality of calibration plan via the manipulator positioning accu-

racy after geometric error compensation, and considers the in-

dustrial requirements associated with the prescribed manu-

facturing task. It is proved that the proposed performance measure

can be presented as the weighted trace of the relevant covariance

matrix, where the weighting coefficients are defined by the cor-

responding test-pose. Such an approach allows us to find the

Fig. 11. Residual distribution after geometric calibration for different measurement configurations.
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optimal measurement configurations for calibration experiments

and to improve essentially the robot positioning accuracy for a

desired manipulator test-pose.

Dedicated algorithm for geometric parameter identification is

based on an enhanced partial pose measurement method, which

uses only direct position measurements from an external device

for several end-effector reference points. It allows the user to in-

crease essentially the parameter identification accuracy and to

avoid additional computations of the end-effector orientation

components, which may cause non-homogeneity in relevant

identification equations.

The obtained theoretical results have been validated via experi-

mental study that deals with geometric calibration of a KUKA KR-270

industrial robot. The manipulator geometric parameters have been

identified with accuracy equal to 0.15 mm and 0.01° for linear and

angular ones respectively (in average). These results allowed us to

achieve a manipulator positioning accuracy equals to 0.17 mm, which

is 5.5 times better compared to the non-calibrated robot.
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