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Abstract. We present a novel method of geometric calibration of micro-
lens-based light-field cameras. Accurate geometric calibration is a basis of
various applications. Instead of using sub-aperture images, we utilize raw
images directly for calibration. We select proper regions in raw images
and extract line features from micro-lens images in those regions. For the
whole process, we formulate a new projection model of micro-lens-based
light-field cameras. It is transformed into a linear form using line features.
We compute an initial solution of both intrinsic and extrinsic parameters
by a linear computation, and refine it via a non-linear optimization.
Experimental results show the accuracy of the correspondences between
rays and pixels in raw images, estimated by the proposed method.
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1 Introduction

A light-field or plenoptic camera captures angular and spatial information on
the distribution of light rays in space, which obtains a multi-view of a scene in a
single photographic exposure. The concept of a light-field camera was proposed
by Adelson and Wang [1], and light-field photography has been an emerging
technology in recent years.

For light-field acquisition, Wilburn et al. [17] presented a bulky camera array.
The system can obtain a light-field image with high spatial and angular resolu-
tion, but is very expensive. Liang et al. [9] encoded angular information of light
rays using programmable aperture patterns. Veeraraghavan et al. [15] presented
a simple light-field acquisition technique based on a transparent mask attached
at the front of a camera’s sensor. Taguchi et al. [12] used hemispherical mirrors
for light-field rendering with a wide field of view. However, these approaches
have some impediments to commercialization due to manufacturing cost or low
quality of the light-field image.

Ng [10] proposed a hand-held light field camera using a micro-lens array. Ng
augmented a camera sensor by placing a micro-lens array in front of it. Each
micro-lens plays a role in a tiny sharp image of the lens aperture, estimating the
directional distribution of incoming rays through it. Georgiev and Lumsdaine
[7] presented a modified version of Ng’s model that interprets the micro-lens
array as an imaging system focused on the focal plane of the main camera lens.
Their system is able to capture a light-field image with higher spatial resolution
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than Ng’s model, but its angular resolution is decreased. Based on these ap-
proaches using a micro-lens array, commercial light-field cameras such as Lytro
and Raytrix have been released.

In the computer vision and graphics field, research on applications using hand-
held light-field cameras has garnered interest. A representative application of
light-field cameras is refocusing [10], which changes the in-focus region of an
image after capturing it. A major drawback of such hand-held systems is low
spatial resolution. In order to overcome this limitation, several light-field super-
resolution methods have been developed [3,11]. Light-field panorama [2] and
disparity estimation [13,16] are also interesting applications. In the robotics field,
light-field cameras composed of a camera array have shown their usefulness for
visual odometry and visual SLAM [6,4]. As is widely known, the performance
of these applications can be enhanced if the geometric information of hand-
held light-field cameras is available. However, there has been few works on the
geometric calibration of hand-held light-field cameras.

An earlier work [14] dealing with a camera array system is based on combin-
ing plane and parallax methods. Johannsen et al. [8] present a metric calibration
method using a dot pattern with a known grid size and a depth distortion cor-
rection for focused light-field cameras [7]. The most similar previous works to
the present study is that of Dansereau et al. [5], who proposed a geometry cali-
bration approach for commercial light-field cameras. They modeled pixel-to-ray
correspondences of commercial light-field cameras in 3D space, and presented a
4D intrinsic matrix from a conventional pinhole and thin-lens model. However, it
has remaining issues such as estimating the initial values of the cameras physical
parameters.

In this paper, we present a novel geometric calibration method for micro-lens-
based light-field cameras. Instead of using sub-aperture images, we utilize raw
images of light-field cameras directly. Since conventional methods of generat-
ing sub-aperture images are based on assumptions on light-field cameras, they
must be generated ‘after’ geometric calibration of raw images. We present a new
formulation of the projection model of micro-lens-based light-field cameras. We
extract line features from raw images and compute an initial solution of both
intrinsic parameters and extrinsic parameters of light-field cameras by a linear
method. The initial solution is then refined via a non-linear optimization.

2 Line Features from Raw Image

The most important data for calibration of any sensor are correspondences be-
tween known environments and sensor measurements. For example, we usually
detect corners of a checkerboard with known size for conventional camera cal-
ibration. Figure 1 shows examples of raw images captured by Lytro, a popular
micro-lens-based camera. It is difficult to extract precise locations of checker-
board corners in small micro-lens images. We have observed that border lines of
black and white regions are more visible than corners in micro-lens images. In
this paper, we extract line features from raw images and utilize them to calibrate
micro-lens-based light-field cameras.
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Fig. 1. Examples of raw images captured by Lytro. It is difficult to extract precise
locations of checkerboard corners from raw images. However, lines are relatively visible
in small micro-lens images.

(a) (b) (c) (d)

Fig. 2. Vignetting effect of micro lenses. Left two figures (a, b) and right two figures
(c, d) are examples of raw images with vignetting and without vignetting, respectively.
Raw images are divided by white-plane images to remove the vignetting effect. Checker-
board images without vignetting (d) are better than those with vignetting (b) for line
feature extraction.

Extraction of line features consists of two steps: (1) selection of micro-lenses
to extract lines and (2) computation of line parameters for every micro-lens. We
assume that the centers of micro-lenses are already known by any means, such
as using data given by manufacturers or computing centers from white-plane
images. White-plane images with vignetting are used for two purposes: estimat-
ing micro-lens centers and removing the vignetting effect from raw images. As
shown in Fig. 2(b), the vignetting effect of micro-lenses makes it difficult to es-
timate the accurate location of line features. We simply divide raw images by
white-plane images to generate images without vignetting. In this paper, we use
raw images from which the vignetting effect of micro lenses is removed (see Fig.
2(d)).

2.1 Line Feature Extraction

Micro-lens images are usually too small (10× 10 pixels for Lytro) to be applied
to conventional line fitting techniques. In this paper, we propose an indirect line
fitting method. Instead of extracting lines directly from micro-lens images, we
generate a number of samples with known line parameters and compare them
to actual micro-lens images.
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Fig. 3. Template generation for line feature extraction. (a) Line equation is determined
by an angle θ and a translation t. (b) Example of template. Top: θ = 60(deg), t =
−2.5(pixel), bottom: θ = −20(deg), t = 1.7(pixel).

Let (uc, vc) be the center of a micro-lens image. First we prepare a small rect-
angular template whose side length is equal to the diameter of the micro-lenses
(11 pixels in our implementation). The center pixel of the template corresponds
to the pixel of the micro-lens image closest to its actual center. Let (ur, vr)
be the round-off result of (uc, vc), and (u′

r, v
′
r) the center pixel of the template

(u′
r = v′r = 6 in our implementation). The micro-lens center (u′

c, v
′
c) in the

template is defined as

[

u′
c

v′c

]

=

[

u′
r

v′r

]

+

([

uc

vc

]

−

[

ur

vr

])

. (1)

Templates are generated by varying the rotation angle θ and translation t of
a line (see Fig. 3(a)). Setting the center pixel of the template as (0, 0), a line
equation is defined as

x · sin θ + y · cos θ + t = 0. (2)

Examples of template are shown in Fig. 3(b).
We generate templates with varying parameters −90 ≤ θ ≤ 90(deg) and

−(radius) ≤ t ≤ (radius) (radius=5(pixels) in our implementation using Lytro).
They are compared to micro-lens images via normalized cross-correlation (NCC).
We compute the ‘absolute value’ of ‘weighted’ NCC using Gaussian weight to
consider inverted templates and ignore the outside region of micro-lens images.
After selecting a template with the maximum NCC value, we adjust the constant
term of its line equation to set the actual micro-lens center in the template (1)
as the origin:

(x + (uc − ur)) · sin θ + (y + (vc − vr)) · cos θ + t

= x · sin θ + y · cos θ + t+ (uc − ur) sin θ + (vc − vr) cos θ

= x · sin θ + y · cos θ + t′.

(3)
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Fig. 4. Upper-limit distance estimation of line segment. (a) ‘Feature distance’ refers
to the distance between the micro-lens center (red dot) and the line feature (green
line) in the raw image. (b) ‘Segment distance’ is the distance between the micro-lens
center (red dot) and line segment (green line) connecting two adjacent corners in the
sub-aperture image. (c) An example of N nearest micro-lens centers from the center
of a line segment. (d) Relation between feature distance (vertical axis) and segment
distance (horizontal axis) is estimated via line fitting.

2.2 Micro Lens Selection

In a raw image of a checkerboard, micro-lenses are classified into three cate-
gories: corner, line, and homogeneous. We extract line features from only micro-
lens images that contain border lines of black and white regions, not corners
or homogeneous regions. In order to identify the class of each micro-lens, we
utilize a sub-aperture image at the center (i.e., a collection of center pixels of
micro-lens images). This is based on the conventional assumption on micro-lens-
based light-field cameras, but is sufficient to provide useful information for the
selection.

The distance of a line feature from the micro-lens center in a raw image
(feature distance, see Fig. 4(a)) is nearly proportional to that of a line segment
from the micro-lens center in a sub-aperture image (segment distance, see Fig.
4(b)). For each line segment connecting adjacent corners of checkerboard, we
measure the upper limit of the segment distance that guarantees the existence
of a line feature in the micro-lens. This must be measured for each line segment
because it depends on the distance from the camera to the checkerboard in the
real world.

We compute the center of a line segment in a sub-aperture image, and then
select N nearest micro-lens centers from it (see Fig. 4(c)). A line feature is
extracted from each micro-lens center. We compute the feature distance and
estimate the relation between the feature distance and the segment distance
(see Fig. 4(d)). We consider a segment distance corresponding to a user-defined
feature distance as the upper limit of the segment distance of a line segment.

Each line segment in a sub-aperture image has a small region where line fea-
tures exist in the raw image. This is shown in Fig. 5. For each line segment, there
are at most four neighboring line segments perpendicular to it. Each perpendic-
ular line has its own upper-limit distance. We classify regions near perpendicular
segments within their upper-limit distances multiplied by a user-defined constant
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Fig. 5. Line features exist only near lines, not homogeneous regions or near corners. For
each line segment (a red line with upper-limit distance of d), there are four neighboring
line segments (orange lines with upper-limit distances of d1 ∼ d4) perpendicular to it.
Blue regions near perpendicular segments within their upper-limit distances multiplied
by s are classified as ‘corner regions’. The remaining region (green region) near the
line segment within its upper-limit distance is classified as a ‘line region’. We extract
line features from only micro-lenses whose centers are in line regions of a sub-aperture
image.

s as ‘corner regions’. Since the upper-limit distances of neighboring perpendic-
ular lines may be different (d1 �= d2, d3 �= d4 in Fig. 5), we choose a larger one
between two distances. The region near each line segment within its upper-limit
distance except corner regions is classified as a ‘line region’. We extract line
features from micro-lenses whose centers are in line regions of the sub-aperture
image.

3 Projection Model of Micro-Lens-Based Light-Field

Cameras

Micro-lens-based light-field cameras contains two layers of lenses: the main lens
and a micro-lens array. We apply the ‘thin lens model’ to the main lens and the
‘pinhole model’ to the micro-lenses, similar to [5].

Let F be the focal length of a thin lens. All rays from an arbitrary point with
distance a from a lens pass through it and head to a common point called an
‘image (see Fig. 6). That is why we may consider the location of an image as
that of a point. The word ‘image’ refers to ‘a common point of rays’ only in this
section while it refers to ‘data captured by a camera’ in the other sections.

The image, point, and lens center are collinear because a ray passing through
them (red line in Fig. 6) is not refracted by the lens. If the lens center is set as
the origin, the coordinates of the image can therefore be computed using those
of the point and a distance ratio b/a. The distance b of the image from the lens
is computed using a and F as follows:

1

a
+

1

b
=

1

F
(4)

b =
aF

a− F
=

F

a− F
· a. (5)
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Fig. 6. Thin lens model. All rays from an arbitrary point pass through a common point
called an ‘image’. Observing a point through a lens, we may treat the location of an
image as that of the point. If the lens center is set as the origin, the coordinates of the
image are computed using those of the point and a distance ratio b/a because a ray
(dotted red line) passing through them and the lens center is not refracted by the lens.

Figure 7 shows the projection model of micro-lens-based light-field cameras.
The projected location of an arbitrary point is the intersection of the CCD array
and a ray that passes through an image of the point and a micro-lens center (see
Fig. 7(a)). The actual path of the ray is indicated by a red line, but we do not
have to be concerned with this because we consider the location of the image as
that of the point.

Since there are many micro-lenses, a point is projected onto multiple locations
(one location for each micro-lens). In Fig. 7(b), the left part of the main lens in
Fig. 7(a) is rotated 180 degrees. Without loss of generality, we set the center and
optical axis of the main lens as the origin and the z-axis of the camera coordinate
system, respectively. The relation between the coordinates of point (Xc, Yc, Zc)
and image (X,Y, Z) is described as

⎡

⎣

X
Y
Z

⎤

⎦ =
F

Zc − F

⎡

⎣

Xc

Yc

Zc

⎤

⎦ . (6)

The ratio among elements is not changed because both of them lie on a line that
passes through the origin of the camera coordinate system.

Let L and l be the distances from the micro-lens array to the main lens and
the CCD array, respectively. The physical center of the micro-lens is computed
using its projected location (xc, yc):

(physical center of micro lens) = L

⎡

⎣

xc

yc
1

⎤

⎦ . (7)

Note that projected locations are expressed in a normalized coordinate system
(z = 1).
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Fig. 7. Projection model of micro-lens-based light-field cameras. (a) All rays from an
arbitrary point pass through the image of the point. For each micro-lens, a ray from
the image passes through its center and meets with the CCD array. (b) The left part
of the main lens is rotated 180 degrees to make further computation easier, similar to
the conventional pinhole model.

The projected location (x, y) of an image is computed by extending the line
connecting the image and the micro-lens center as follows:

(L+ l)

⎡

⎣

x
y
1

⎤

⎦ =

⎡

⎣

X
Y
Z

⎤

⎦+
L+ l − Z

L− Z

⎛

⎝L

⎡

⎣

xc

yc
1

⎤

⎦−

⎡

⎣

X
Y
Z

⎤

⎦

⎞

⎠ (8)

[

x
y

]

= −
l

(L− Z)(L+ l)

[

X
Y

]

+
L(L+ l − Z)

(L− Z)(L+ l)

[

xc

yc

]

. (9)

Equation (9) is simplified by subtracting the projected micro-lens center
(xc, yc) from it:

[

x− xc

y − yc

]

=
l

(L − Z)(L+ l)

(

−

[

X
Y

]

+ Z

[

xc

yc

])

. (10)

Substituting (6) into (10),

[

x− xc

y − yc

]

=
l

(L− F
Zc−F

Zc)(L + l)

(

−
F

Zc − F

[

Xc

Yc

]

+
F

Zc − F
Zc

[

xc

yc

])

=
1

K2(K1Zc − 1)

(

−

[

Xc

Yc

]

+ Zc

[

xc

yc

])

,

(11)

where K1 ≡ 1/F − 1/L and K2 ≡ L(L/l+ 1).

4 Calibration of Micro-Lens-Based Light-Field Cameras

The projection model of (11) contains normalized coordinates of projected points.
They can be computed if and only if we know the transformation between the
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normalized coordinates and the image coordinates. In the case of conventional
pinhole cameras, the transformation is defined by a 3 × 3 matrix called an in-
trinsic parameter. We simplify it by assuming zero skew, single focal length, and
zero center (coordinate of image center is set to (0, 0)). The image coordinates
(u, v) are then computed simply by scaling the normalized coordinates(x, y):

[

u
v

]

= f

[

x
y

]

, (12)

where f is the focal length of intrinsic parameters. Actually f indicates the
number of pixels in one measurement unit (millimeter in this paper). Adopting
(12) to the projection model (11),

[

u− uc

v − vc

]

=
1

K2(K1Zc − 1)

(

−f

[

Xc

Yc

]

+ Zc

[

uc

vc

])

. (13)

The simplified model (12) will be restored to a 3× 3 upper triangular matrix in
Sect. 5.

We apply (13) to line features extracted from raw images of a checkerboard
pattern. Unfortunately, projections of two adjacent corners do not lie exactly
on their corresponding line feature because of nonlinear terms such as the left
multiplier term 1/K2(K1Zc−1) of (13) and radial distortion of the main lens. We
do not know which part of a line segment is projected onto micro-lens images and
extracted as line features. However, projections of corners are close enough to
corresponding line features to use an approximation that they lie on the features.
Let (a, b, c) be the parameters of a line feature:

a(u− uc) + b(v − vc) + c = 0 (a2 + b2 = 1). (14)

Substituting corner projections (13), the line equation (14) becomes

a(−fXc + Zcuc) + b(−fYc + Zcvc) + cK2(K1Zc − 1) = 0. (15)

Let (Xw, Yw, Zw) be one of two corners that define a line segment in the
world coordinate system (i.e., the checkerboard coordinate system). It must be
transformed into the camera coordinate system by an unknown transformation
matrix with a 3× 3 rotation matrix R and a 3× 1 translation vector t

⎡

⎣

Xc

Yc

Zc

⎤

⎦ = R

⎡

⎣

Xw

Yw

Zw

⎤

⎦+ t =

⎡

⎣

r11Xw + r12Yw + t1
r21Xw + r22Yw + t2
r31Xw + r32Yw + t3

⎤

⎦ , (16)

where rij and ti are the elements of R and t at the i-th row and the j-th column,
respectively. Without loss of generality, the z-coordinate of the checkerboard
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pattern is set to zero (Zw = 0 for all corners). Substituting (Xc, Yc, Zc) by (16),
(15) becomes an Ax = 0 form:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−aXw

−aYw

−a
−bXw

−bYw

−b
(auc + bvc)Xw

(auc + bvc)Yw

(auc + bvc)
cXw

cYw

c

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⊤ ⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

fr11
fr12
ft1
fr21
fr22
ft2
r31
r32
t3

K1K2r31
K1K2r32

K2(K1t3 − 1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0. (17)

For each micro-lens whose center is in line regions shown in Fig. 5, two equa-
tions are derived from two corners that define a line segment corresponding to
a line feature in the lens. Stacking all line features to the matrix A, its right
singular vector v corresponding to its smallest singular value is selected as an
initial solution multiplied by an unknown scale λ (v = λx). Let vn be the n-th
element of v. Initial values of unknown parameters are computed using v as
follows:

f =

√

−v1v2 − v4v5
v7v8

(∵ r11r12 + r21r22 + r31r32 = 0), (18)

λ =
√

(v1/f)2 + (v4/f)2 + v27 (∵ r211 + r221 + r231 = 1), (19)

r1 =
1

λf

[

v1 v4 fv7
]⊤

, r3 =
r1 ×

[

v2 v5 fv8
]⊤

∥

∥

∥r1 ×
[

v2 v5 fv8
]⊤

∥

∥

∥

, r2 = r3 × r1, (20)

t =
1

λf

[

v3 v6 fv9
]⊤

, (21)

K2 =
1

λ

(

(v10 + v11)t3
r31 + r32

− v12

)

, K1 =
v10 + v11

λK2(r31 + r32)
, (22)

where rn is the n-th column of R. The scale λ is always positive in (19); however,
it can be negative in real cases. We determine its sign by checking that of the
third term of t (v9/λ) because it must be positive (i.e., the planar pattern must
be in front of the camera). If it is negative, we change the signs of r1, r2, t, K1

and K2.
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5 Non-linear Optimization

The initial solution computed in Sect. 4 is refined via a non-linear optimization.
We have mentioned that checkerboard corners do not lie exactly on correspond-
ing line features. Let (u, v) and (u′, v′) be projections of two adjacent corners
(Xw, Yw) and (X ′

w, Y
′
w), respectively, onto a micro-lens image whose center is at

(uc, vc). We compute a point on the line connecting (u, v) and (u′, v′) that is
closest to (uc, vc) by computing a constant k′. In the optimization process, we
project (Xw, Yw)+k′(X ′

w−Xw, Y
′
w−Yw) onto the micro-lens image and compute

the distance between the projected location and corresponding line feature as
follows:

k′ = argmin
k

∥

∥

∥

∥

[

u
v

]

+ k

([

u′

v′

]

−

[

u
v

])

−

[

uc

vc

]∥

∥

∥

∥

2

. (23)

In Sect. 4, we simplified the transformation between normalized coordinates
and image coordinates as (12) and (13). However, the simplified transformation
is not suitable for real cameras. We restore it to a generalized model with zero
skew as follows:

⎡

⎣

u
v
1

⎤

⎦ =

⎡

⎣

fx 0 cx
0 fy cy
0 0 1

⎤

⎦

⎡

⎣

x
y
1

⎤

⎦ (24)

[

u− uc

v − vc

]

=
1

K2(K1Zc − 1)

(

−

[

fxXc

fyYc

]

+ Zc

[

uc − cx
vc − cy

])

. (25)

Initial values of fx and fy are set to that of f , and those of cx and cy are set to
the coordinates of the center pixel of raw images.

Moreover, we also consider radial distortion of the main lens. An arbitrary
point (Xc, Yc, Zc) in the camera coordinate system is distorted using a popular
model,

⎡

⎣

X̂c

Ŷc

Ẑc

⎤

⎦ =

⎡

⎣

(1 + k1r
2 + k2r

4)Xc

(1 + k1r
2 + k2r

4)Yc

Zc

⎤

⎦

(

r2 = (Xc/Zc)
2 + (Yc/Zc)

2
)

, (26)

mentioned in Zhang’s work on camera calibration [18]. The camera coordinate
(Xc, Yc, Zc) in (25) is substituted by (X̂c, Ŷc, Ẑc).

The final version of the cost function of the non-linear optimization is

g(K1,K2,R, t, fx, fy, cx, cy, k1, k2)

=
∑

‖a · (u+ k′(u′ − u)− uc) + b · (v + k′(v′ − v)− vc) + c‖
2
,

(27)

which is a combination of the equations mentioned above. First we transform
adjacent corners of a checkerboard into the camera coordinate system using
(16). They are distorted by (26) and then projected onto micro-lens images
using (25). The cost function g is a squared sum of distances between the closest
points computed by (23) and corresponding line features (14). Note that just
one distance is computed for each line feature, instead of two.
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(a) (b)

Fig. 8. (a) A part of raw images used for calibration. (b) Example of line features
extracted from raw images. Red dots and green lines indicate micro-lens centers and
line features, respectively. No line features are extracted from corner regions.

The proposed algorithm can be applied to a single raw image of a checker-
board. In the case of using multiple frames, we compute an average value of f
first and compute initial values of the other parameters using it. Since a small
number of frames may provide an imaginary value for f due to noise and mathe-
matical error, we ignore those values and compute the average of only real values.
Values of K1 and K2 are also averaged to make the final solution converge faster.

6 Experimental Results

We captured a dataset of checkerboard images using a Lytro camera. The size
of raw images are 3280× 3280 pixels, and the grid size of a checkerboard is 10
mm. Line parameters (θ, t) in Sect. 2.1 are selected among θ = 0 : 0.5 : 180(deg,
MATLAB expression) and t = −4 : 0.05 : 4(pixels) via a coarse-to-fine search.
For the line fitting described in Fig. 4(d), we selected N = 100 nearest micro-lens
centers from each line segment and discarded the centers whose feature distance
is larger than 3 pixels. The upper limit of the segment distance in Sect. 2.2 is set
to the value corresponding to the user-defined feature distance of 2 pixels. The
value of s is set to 2.5 because the radius of micro-lens images is 5 pixels in the
case of using Lytro. We extracted 155,474 line features from 9 raw images shown
in Fig. 8(a). Examples of line features extracted from raw images are displayed
in Fig. 8(b). Since we did not extract corners, we projected them onto corner
regions of raw images to verify the accuracy of the results. Figure 9 shows an
example of a corner projected onto a raw image. Our dataset and executables
are available online1.

After calibrating the camera using raw images, we generated a number of
sub-aperture images based on the calibration result. Since the average distance
between adjacent micro-lens centers is near 10 pixels, the size of the sub-aperture
images is set to 328×328 (1/10 of raw images). We extracted corner features from

1 https://sites.google.com/site/yunsubok/lf_geo_calib

https://sites.google.com/site/yunsubok/lf_geo_calib
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Fig. 9. Corners are projected onto raw images to verify the accuracy of line features
extracted from raw images. The right image is a magnified view of the region denoted
by a red rectangle in the left image. Red circles and green dots indicate micro-lenses
and projected corners, respectively. The projected location in each micro-lens image is
very close to its actual location.

Table 1. Projection error of sub-aperture images (unit: pixel)

Distance from center -3 -2 -1 0 1 2 3

-3 0.9944 0.5913 0.5301 0.5152 0.5253 0.5766 0.7563

-2 0.5587 0.4634 0.4508 0.4451 0.4487 0.4578 0.5357

-1 0.4795 0.4308 0.4163 0.3759 0.3917 0.4285 0.4625

0 0.4451 0.4127 0.3859 0.3368 0.3526 0.4036 0.4253

1 0.4332 0.3944 0.3937 0.3589 0.3675 0.3885 0.4137

2 0.4344 0.3825 0.3615 0.3623 0.3684 0.3830 0.4229

3 0.5331 0.4055 0.3945 0.3885 0.3896 0.3968 0.5079

sub-aperture images independently and computed the RMS value of projection
errors. Extrinsic parameters of the calibration result are the transformation from
the checkerboard coordinate system to the camera coordinate system of the raw
images. Transformation from the camera coordinate system to each sub-aperture
coordinate system is computed using the calibration result. Projection errors of
sub-aperture images are summarized in Table 1. Although extrinsic parameters
of sub-aperture images are not estimated independently but ‘predicted’ using
the calibration result, the projection errors are very small. Details of generating
sub-aperture images are described in our supplementary material.

For direct comparison of the proposedmethod with [5], we alsomeasured ray re-
projection errors in millimeters using the same datasets2. The results are shown in
Table 2. Although our RMS ray re-projection errors are almost the same as those
of [5], our method has two advantages. The first is that we have obtained similar
results using a smaller number of parameters (6 parameters) than [5] (12 param-
eters). This is verified by reducing the number of images used for calibration, as
shown in Table 2. In addition, our sub-aperture images are geometrically closer to
images captured by a parallel multi-camera array than those of [5].

2 http://marine.acfr.usyd.edu.au/research/plenoptic-imaging

http://marine.acfr.usyd.edu.au/research/plenoptic-imaging
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Table 2. RMS ray re-projection error of sub-aperture images (unit: mm). The numbers
(N) of the proposed method indicate the number of images used for calibration among
18 images for each dataset.

Method Previous [5] Proposed Proposed

Dataset B (grid 3.61) 0.0628 (9) 0.0717 (5) 0.0700

Dataset E (grid 35.1) 0.363 (14) 0.365 (5) 0.331

(a) (b) (c) (d)

Fig. 10. (a) Sub-aperture image using the method in [5]. (b) Disparity map estimated
using (a). (c) Sub-aperture image using the proposed method. (d) Disparity map esti-
mated using (c).

High accuracy of geometric calibration is essential for good results in various
applications. In order to verify the geometric accuracy of the proposed method,
we estimated disparity maps using a state-of-the-art disparity labeling method
[16] as an example application. It uses a structure tensor to find correspondences
between sub-aperture images and it provides accurate results if corresponding
points in sub-aperture images are aligned well. We fixed user-defined parameters
for a fair comparison. Sub-aperture images from [5] in Fig. 10(a) lead to outliers
while those from the proposed method in Fig. 10(c) provide reliable results.

7 Conclusion

We presented a novel method of geometric calibration of micro-lens-based light-
field cameras. Instead of using sub-aperture images, line features are extracted
from raw images directly. We formulated a projection model based on the thin-
lens model and the pinhole model and applied it to line features. An initial
solution of both intrinsic and extrinsic parameters are estimated using a linear
computation, and it is refined via a non-linear optimization. Since the correspon-
dences between rays and pixels in raw images are estimated accurately using the
proposed method, geometrically well-aligned sub-aperture images provide small
projection errors and a disparity map with less noise. Future work will include
improving the accuracy of line features, overcoming limitations of thin-lens and
pinhole models, and modeling the lens distortion of outer sub-aperture images.
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