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Abstract

Geometric camera calibration is the process of detesmining a map-
ping between points in world coordinates and the corresponding image
locations of the points. In previous methods, calibration typically in-
volved the iterative solution to a systam of non-linesr equations. We
present a maethod for performing camers calitvation that provides a
complets, sccurats solution, using only linear systems of equations.
By using two calibwration planes, & line-of-sight vecior is defined for
each pixsl in the image. The effective focal point of 2 camaera can be

. obsined by solving the system that defines the intersection point of
the line-of-sight vectors. Once the focal point has been determined, a
complets camers modsl can be obtained with a straighiforward least
squares procedure. This method of geometric camers calibration has
the advantages of being accurate, efficient, and practical for a wide
variety of applications.

1 Introduction

Many problems in computer vision and graphics require mapping points
in space to corresponding points in an imags. In computer graphics, for
example, an object model is defined with respect to a world coordinate
system. To generate an image, the points that lie on the visible surfaces of
the object must be mapped onto the image plane; that is, 3d world points
must be mapped onto 2d image points. In computer vision, the image
locations of points on an object can be used to infer three-dimensional
properties of the object; in this case, 2d image points must be mapped back
on the original 3@ worid points. In both cases, the mapping between
3d world coordinates and 2d image coordinates must be known. Geometric
camera calibration is the process of determining the 2d-3d mapping between
a camera and s world coordinate system.

‘We decompose the general probiem of geometric camera calibration into
two subproblems:

o The projection problem: given the location of a point in space, predict
its location in the image; that is, project the point into the image.
o The back-projection problem: given a pixel in the image, compute the

line-of-sight vector through the pixel; that is, back-project the pixel
into the world.

A complete solution to the camera calibration problem entails deriving a
model for the camera geometry that permits the solution of both the projec-
tion and the back-projection problems. For many applications, a complete
solution is necessary. Some examples from the domain of mobile robots

In the CMU Navlab project (6], 2 robot vehicle follows roads using data.
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from a color TV camera. In each image, the road is extracted, and the
centerline and direction of the road computed in image coordinates. These
parameters are then back-projected into vehicle coordinates and used to plot
a course for the vehicle that stays within the road boundaries.

Turk, et al [8] describe a similar road following technique for the Au-
tonomous Land Vehicle (ALV). Rather than parameterizing the road in terms
of centerline and direction, they describe the road boundaries as a sequence
of points. The line-of-sight vectors for each of the boundary points are
computed by back-projection. The intersections of the line-of-sight vectors
with the ground plane yield the points in the world between which the robot
must steer to stay on the road. In addition, the ALV needs to know the pre-
dicted position of the road in esch image. This prediction is obtained by
projecting the location of the road into each image, based on the position
of the road in the previous image, and the motion of the vehicle between
images.
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Figure 1: The Pinhole Camera Model

The simplest model for camera geometry is the pinhole, or perspective
model. See figure 1. Light rays from in front of the camera converge at the
pinhole snd are projected onto the image plane at the back of the camera.
To avoid dealing with a reversed image, the image plane is often considered
w lie in front of the camera, at the same distance from the pinhole. The
distance from the focal point to the image plane is the focal length.

A perfect lens can be modeled as a pinhole. No lens is perfect, of
course, so part of the problem of geometric camera calibeation is correcting
for lens distortions. The most accurate and conceptually simple method of
muﬁhﬁmwﬂdhemmenmmﬁbmionmmumhpixd
in the image. For example, at cach pixel measure the line-of-sight vector.
This would produce a gigantic lookup table. Then, given a pixel in an
image, simple indexing would yield the Line-of-sight vector that solves the
bnk-mjecﬂoupobhm.?osolvem;mjecdmmwm.thenblewoum
be searched to find the line-of-sight vector that passes nearest the point in
question.

Alooh:publeofcnlitnﬁcndauforenchﬁxdwaﬂdbemhibiﬁvely
expeasive. The obvious compromise is (o sample the image, and interpolate
between data points. If the error in interpolation is less than the measure-
ment error, no accuracy is lost. Most approaches to geometric camera
calibration involve sampling the image, and solving for the parameters of
the interpolation functions. The obvious differences between approaches are
in the form of the interpolation functions, and the mathematical techniques
used 10 solve for the parameters. The main intent of most calibration work
has been the solution of the back-projection problem. The projection prob-



lem has occasionally been overlooked. The following paragraphs triefly
describe past work.

o Sobel [5] introduced a methad for calibration that involved the solu-

tion of a large system of non-linear equations. In addition to solving
for the intrinsic camera parameters, his method also solved far extrin-
sic camera parametcrs, such as camera pan and tit. Sobel used the
basic pinhole model, and solved the system using a non-linear opti-
depended on the user to provide initial parameters for the optimization
technique.
Tsai (7] improved on the general non-linear approach in several ways.
He modeled distortions globally using fourth order functions, and
presereed 3 method for computing good initial paramesers for the
optimizstion technique. Tsai's model of lens distortions assumes that
the distortions are radially symmetric.

Yakimovsky and Cunningham [9] presented a calibration technique
that also used a pinhole model for the camers. They treated some
combinations of parameters as single variables in order to formulate
the problem as a system of linear equations. However, in this formu-
lation, the variables are not completely linearly independent, yet are
trested as such. No lens distortions are modeled with this approach.

e Martins, Birk, and Kelley (3] reported a calibration technique that

does not utilize an explicit camers model. Their two-plane calibra-
tion method consisted of measwring the calibration data for various
pixels across the image. The data for other pixels is computed by in-
terpolation. The back-projection problem is solved by computing the
vector that passes through the interpolated points on each calibeation
plane. The interpolation can be either local or globsl. The two-plane
method solves only the back-projection problem.
Isaguirre, Pu, and Summers (2] extended the two-plane method o
include calibration a3 8 function of the position and orieniation of the
camers. They used an iterative approach based on Kalman filters to
obtain the solution.

Onr goal in camera calibration was (0 develop a single, basic calibration
procedure (0 solve both the projection and back-projection problems for
a variety of applications. Comsequently, the desired procedure had to be
conceptually straightforward, easily extended to obtain various degrees of
accurxcy, and computationally efficient. To meet these requirements, we
chose t0 begin with the two-plane method of Martins, Birk, and Kelley,
Section 2 discusses the two-plane method and the solution 1 the back-
projection problemn. This method can be made arbitrarily accurste; the
only problem is that it fails to solve the projection problem. In section 3
we present 2 method for solving the projection prot*.m that utilizes the
calibration data from the two-piane method. The solution (0 the projection
problem is a simple application of analytic geometry, and is completely
formulatad with sysiems of linear equations.

The calibration method presented in this paper has been implemented
and tested in the Calibrated Imaging Laboratory st CMU {4). Results are
presented in section 4 that demonstrate the accuracy of this method.

2 The Solution to the Back-Projection Problem

Martins, Birk, and Kelly [3) first formally presented the two-plane calibra-
tion technique for solving the back-projection problem. This technique has
the advantage that it provides exactly the information nceded—ihe ray in
space that defines the line of sight of a given pixel—without any explicit
camera model.

Figure 2 illustrates the concept of two-plane calibration. Let Py and P2
denote the calibration plancs. Assume that the 3d locations of the calibration
points on each plane are measured. An image of each plane is acquired,
and the image location of each of the calibration points is extracted. Let
the calibration points be denoted py, and the corresponding image locations
be denoted gy, where { = 1,2 is the plane, and j = 1,2,...,n is the point
index. Thus, the image of py is gy.

Let p and v denote the row and column coordinates, respectively, of an
image. Then, given apoint v={ » ¥ | in the image, the Line-of-sight
vector for v can be computed as follows. First, use the points py; and gy,

10 interpolate the location of v on the first calibration plane, P;. Call this
point u,. Then, interpolate 1o find the location of v on the second calibration
plane. Call this point 4. The pixel line-of-sight vector then has direction

— u; and passes through the point u).

Various types of interpolation can be used, with different degrees of
accuracy, Martins, et al report three types of interpolation: linear, quadratic,
and linear spline. The two-plane method has the potential for being the most
accurate of any calibration method for the solution of the back-projection
problem. At the limit, this technique consists of measuring the line~of-sight
vectors for each pixel in the image. As will be seen in Section 4, the
number of calibration points used has a strong influence on the accuracy of
the calibration,
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Figure 2: Two-Plane Calibration

2.1 Giobal Interpolation

One approach to interpolating the calibeation data is to globally fit an in-
terpolation function o the data. This function is then used for any pixel
across the entire image. Global interpolation has the effect of averaging
errors over all the pixels 30 that the resuitant line-of-sight vector is exact
for no pixel, but is close for all pixels. This has the advantage of reducing
the sensitivity to errors or noise in measurementss. On the other hand, the
fmdmmmmfundouhmapmdmmpnmmmem
distortions, and may or may not be appropriate.

211 Linear Interpolation
Letpym[x y z],andgy={p 7 1)' Then a linear ransforms-
nonhuweenpunquﬁvenby

Pi=Agy
where A; is a 3x3 matrix. Given n measurements on each plane, we can
then form the system

[P P2 ... Pal=Afga g2 ... qu]

or,
Pi=AQ

musymmuaﬂvedmmmwmmbymmgmmmx
pseudoinverse (also called the generalized matrix inverse) (1):

A= (@0 oip;
Given a pixel v in the image, the direction of the Line-of-sight vector
through v is given dy u; ~ uzwhucu,-A‘v,mdu;-sz
2.12 Quadratic Interpolation

Quadratic interpolation is similar o linear, except that second-order terms
.emedinthep.m.andthemukAum We represent a
point in space by p = [ x y :] but we represent image locations by
a=[p 7 / ¥ pv 1] Withihese modifications, the formulation
is otherwise identical. Martins, et al report that quadratic interpolation was
more accurate than linear.

22 Local Interpolation
With no a priori knowledge about the lens distostions, global interpolation



may be inappropriate. A better approach may be to model the distortions
locally. If the calibration data is densc enough, the interpolation can be
very accurate. In the paragraphs below, we discuss a technique called linear
spline imnterpolation, which uses a linear function 1o perfarm interpolation
* over each local regioa.

Conceptually, this technique of interpolation consists of tesselating each
calibration grid with triangles, and performing linear interpolation within
cach triangle. The calibration points form the vertices of the triangles. A
plane is defined uniquely by three points, s0 no errors are introduced at the
vertices. This is not the case for global interpolation techniques, in which
errors are averaged over all points, including calibration points. Martins, et
al achieved their best accuracy using this form of interpolation. In section
4, we report experiments which confirm this result.

In our current implementation, the grid is not tesselated in advance.
Instead, for any point v in the image, each calibration grid is searched to
find the three closest calibration points. The linear interpolation matrices A;
are computed using just three points each. The line-of-sight vector is then
computed as in Section 2.1.1. Figure 3 illustrates the procedure.

image plane

calibration grid i
ﬁgun 3: Linear Spline Interpolation

3 Linear Solution to the Projection Problem

The two-plane method for solution to the back-projection problem did not
utilize an explicit camera model. In order to use the two-plane data to obtain
a solution to the projection problem, it is necessary to have a camera model
to formuiate the equations. We use a model similar to that of Yakimovsky
and Cunningham {9].

In figure 4 we begin with a pinhole model and define the following
vectors and points:

o P=[p: py ps | = the vector from the origin to a point in space.

e F=[fi f, fi |’ == the vecior from the origin to the camera focal
point.

eR=[r, r, r,] == avector that points along the direction of
increasing row number. R represents the displacement vector from
one pixel to the next in the row direction. The magnitude of R is the
row scale factor.

eC=[¢cx ¢ ¢ ) ==a vector that points along the direction of
increasing column number. C represents the displacement vector from
one pixel 1o the next in the column direction. The magnitude of C is
the column scale factor.

. [p, 9p | == the piercing point of the image, or the point where
the optical axis pierces the image plane.
The vectors R and C define the orientation and scale of the image plane.
Columns in the image planc arc parallel to R, while rows are parallel to C.
The projection, [ p v ], of a point P onto the image plane can be
computed by taking the dot product of the vector from the focal point to P,
and adding the offset to the piercing point. For example, consider computing
the row coordinate, p, of the projection. The vector P - F is the vector from

the focal point that passes through P. Every point along this vector will have
the same location in the image. Let V be a normalized vector along P - F,
that is, let P_F
1)
“iP=Al

where || - || denotes the length of a vector. Let © represent the usual vector
dot product. Then V ® R represents the projection of V onto R measured in
rOW units. Addmgmemwcoadmawot'thepmmgpommmslam VOR
into image coordinates.
'merefm.thelmagelocanon [ » 7 ].of apoint P can be computed
using the equations:
p=VOR+p, @

1=VOC+ )

IfF, R, C, py, and 7, are all unknown, then the resulting system is non-
linear. However, the two-plane formulation of the back-projection problem
yields the information needed to make solving for the focal point location
a lincar problem.

Figure 4: A Linear Model of Camera Geometry

3.1 Focal Point Solution

In a pinhole camera, all incoming light rays pass through the focal point
Since a lens is not a perfect pinhole, we instead refer to an effective focal
point, which is the point that is closest to all the rays. From the two-plane
method for the back-projection problem, one can compute a bundle of rays
that pass through the lens. The next step is to find the point in space that
minimizes the distance to all the rays.
'lheeqmnonmtmesqmteddismoeo“ﬁ'omapounl’-[x y 2]

wthelinethrough Py =[x, » 2 ) lndixecuon[a b c ]’ (where
2+l rd=l)is

2
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Expansion of terms yields:
& = BPR+A)+P(@+A)+ @+ )
— 2xyab — 2xzac — 2yzbc
+ 2x(bky — ckz) + 2)(cki — aks) + 2z(ak; - bk;)
+H+5+8
where:
k = z1b-yc
k2 = xc-2za
ky = ya—xib

To find the effective focal point, we need to minimize D = 3~ 4. Dif-
ferentiating D with respect to x, y, and z yields:



8D/8x = Y u(BP+A) =Y 2yab— 2zac+ . 2Abks — ck)
oD/8y = Y W@ +P) = 2uab-—y 2abc+  2ck —aks)
8D/8z = Y 2P +bh) - 2amc— Y 2ybc+ Y Aaky - bky)

The sums are taken over all the line-of-sight vectors (a, b, ¢, ki, k2, k3 are
functions of the vectors).

Now, by setting the derivatives of D to zero to find the minima, and
putting the equations in matrix form, we obtain:

h=Af
where:
Y (cky — biks)
[Z(ﬂks-ckl)]
Y (bky — aky)
T+ ab -Yac
A-[ - ab ):( +c® =Y b ]
-Sac -Tbe T(@+b)

3]

So the solution we seek, f, the effective focal point of the camera, is
simply:
f=A"'h

3.2 Computation of the Camera Base Vectors

Equations (2) and (3) relate the position of a point in space to a correspond-
ing image location. These equations can be written as a linear system:

s Cx
ry &
N G
Pr T

Given N points in space, we have 2N equations to solve for the 8 un-
knowns in R, C, p,, and 7,:

[P r]=[v w w 10}

AN vai v va 10 Fe G
;7T va v va 10 roG
Pn Ia Vo Vpn Vmm 1.0 Pr
or,

B=WX

So, using the pseudoinverse to obtain a least squares solution, we have:
X=[ww])" wB
X contains the values for R, C, p,, and 7,.

33 The Local Projection Problem

In section 2 we presented several ways of modeling camera geometry for the
back-projection problem. The linear interpolation technique (section 2.1.1),
which involved fitting a first-order transformation to all the calibration data,
is a global modeling technique. The linear spline interpolation technique
(section 2.2) is a local modeling technique, since at each pixel, only the
calibration data in a local region around the pixel is used to compute the
interpolation function. The results of Martins, et al [3], and our laboratory
results (see section 4) both indicate that a local modeling technique yields
supeTior accuracy.

The solution to the projection problem presented in sections 3.1 and 3.2
is a global modeling technique. All the calibration data is used to com-
puie the model parameters, and the results are used to solve the projection
problem for any point in space. In direct analogy to the linear spline tech-
nique used in back-projection, a technique can be derived for using local
information to improve the accuracy of solution to the projection problem.

Our local projection technique involves finding a linear model for local
regions of the image. The technique involves two steps. In the first siep,
the global solution is used to obtain an estimated image location for a
point in space. That estimated image location is used to find the four
nearest calibration points on each calibration plane. These points are used
to compute a local linear solution to the projection problem. The local linecar
solutions could also be precomputed, and the global solution would then be
used simply to index the cosrect local solution.

4 Experimental Results

Measurements and tests were conducted within the Calibrated Imaging Lab-
oratory (CIL) at CMU (Shafer (4]). The CIL is 2 facility that provides a pre-
cision imaging capability. The purpose of the CIL is to provide researchers
with accurate knowledge about ground truth so that computer vision theories
can be tested under controlled scientific conditions. Of particular interest for
this study, the CIL provides facilitics 1o accurately measure point locations,
and to accurately position and orient cameras.

Pogition measurement of points in the CIL is performed with the use
of theodolites (surveyor's transits), which are basically telescopes with
crosshairs for sighting, mounted on accurate pan/tilt mechanisms. Objects
10 be measured are placed at one end of an optical bench; the theodolites are
fixed to the other end, scparated by a little more than 1 meter. To measure
the position of a point, the crosshairs of each theodolite are placed over the
point, and the horizontal and vertical displacements read off. Trigonomet-
ric equations then yield the position of the point in a Cartesian coordinate
system defined with respect o0 the theodolites. As currently configured, the
theodolites can determine point locations to less than 0.1 mm.

4.1 Test Scenario

The Isboratory tests described below were designed to provide answers
the following questions:
1. What accuracies can be expected from off the shelf cameras and
lenses?

2. How does increasing the number of calibration points affect the ac-
curacy of calibration?

3. What is the expected accuracy for the projection problem?

Tests were performed using a calibrated grid. The grid consisted of
horizontal and vertical lines 1mm in width, spaced 12.7 mm apart. The
intersections of the lines on the grid were used as calibration points. A
special intersection detector was implemented to extract the intersections
from digital images with sub-pixel precision. Each time the grid was moved,
new measurements were taken, an image digitized, and the intersection
detector applied. The result was a data file in which each calibration point
was associated with its 3d position and its image location.

A complete test consisted of data from three different grid locations.
Due t0 the size of the laboratory, focal iength of the lens, and depth of field
of the lens, the grid was typically placed at distances ranging from 0.50m
to 0.56m from the camera. Data from two of the grid locations was used to
compute calibration parameters. These parameters were then tested using
data from the third grid location. The third grid will often be referred to
a3 the test grid. In each of the tests reported here, the focus of the camera
was kept fixed. The camera used was a Sony CCD, model AVC-D1, with
the standard 16mm lens.

A total of 300 calibration points were used on each grid. Rather than
measure the location of each point individually, the location of each point
wsas computed based on the measured locations of the center point and the
four comers. Counsequently, the accuracy of the data depended not only on
the accuracy of the theodolites, but also upon factors such as the planarity
of the grid, and the precision of the grid lines. In preparing for each test, the
ovenall accuracy of the calibration data was estimated. For several points
at each grid location, the 3d locations were measured using the theodolites.
The measured locations were then compared with the computed locations.
Differences of up to 0.2 mm were recorded, with typical differences being
between 0.1 and 0.2 mm. The accuracy of the calibration method is limited
by the accuracy of the calibration data, so the best accuracy achievable in



this scenario is between 0.1 and 0.2 mm.,

The effects of density of calibration points on calibration accuracy was
tested by varying the number of calibragion points used. This was easily
implemented by simply skipping over some of the rows and columns in the
grid. In each case, the calibeation points were uniformly distributed over
the image. Dama is reparted for the following distributions of points: 3x3,
5x7, 7x10, 15x20.

In all the tests reported below, grid O refers to the grid location farthest
from the camera, while grid 2 refers 10 the grid location closest to the
camers. In all cases, the number of points was varied 10 compute the
calibration parameters, but all 300 calibration points on the test grid were
used in testing.

4.2 Back-Projection Resuits

To test the accuracy of the back-projection problem, the image location of
each of the calibration poinis on the third grid was used to0 compuse a line-
of-sight vectos. The intersection of this vector with the plane of the test
grid was computed, and the distance between the insersection snd the actual
position was used as the emor measure. In the results reportad below, the
exrors are averages taken over all the calibration points.
hblelpluenumemumobuinedfmmehck—wojwﬁmpmblm
The first error column contains the results for global Linear interpolation. For
this method, the density of the calibration grid makes little or no difference
to the accuracy of the result. This was expected; since the calibration points
are uniformly distributed across the grid, additional points do not provide
additional information for s linear fit. The best accuracy is achieved when
the test grid is positioned between the other two grids used for calibration.

error (mm)
global | local
1921 [ 0.731
0388 | 0.296
0317
1.854 | 0.740
0366 | 0.166
0.551 | 0.235
1.810 | 0.696
0.350 | 0.169
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0.534 | 0.201
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Table 1: Calibration Accuracy of the Back-Projection Problem

The second error column in table 1 presents the results obtained for back-
projection problem using local linear spline interpolation. This time there
is a general trend for greater accuracy with more calibeation points. This
and can more accurately approximate effects such as barrel distortion. There
are instances observable in the table which seem to contradict the general
trend; these are most likely due to noise in the messurements or in the
process of point extraction. Over a number of trials, the general trend has
been consistent.

The results in table 1 agree with the results obtained by Martins, et al.
To summarize, the local linear spline interpolation procedure, with as few
as 12 calibration points, is more accurate than giobal linear interpolation.
In addition, the use of more calibration points improves the accuracy of the
local linear spline method. The accuracies we achieved in our tests were at
the level of the accuracies of our measurements.

42.1 Projection Results

The accuracy of the projection problem was tested with a procedure sim-
ilar to that used in the back-projection problem. The 3d location of each
calibration point on the test grid was projeced into the image plane, and
the difference (in pixels) between the projected location and the measured
location was used as the error measure.

The test results for the projection problem are reported below in table
2. The first error column gives the error, in pixels, of the accuracy using
global interpolation. The average error reported in all cases was less than
two pixels, which is good enough for many applications. The results indicate
that the standard lenses for our cameras are reasonably good, and can be
approximated well with a pinhole model.

The second error column in table 2 reports the exrors recorded using the
local solution to the projection problem.

A comparison of the two columns in table 2 shows an improvement
resulting from using local information. In general, the results from the
local solution to the projection problem are a factor of 2 improved over the
‘global solution. The entries followed by & * are examples where the global
result was better than the local result; this may be an effect of errors in
the measurement process. The general conclusion that can be drawn is that
local models of camers geometry provide more accurate results than giobal

models—{or simple interpolation functions.

amray | calibraion | test | error (pixels)
size grids _grid | global | focal
3x3 0,1 2 158 | 1.70*
0,2 1 089 | 065

1,2 0 089 | 0.82

5x7 0,1 2 132 |1 129
0,2 1 095 | 0.36

1,2 0 098 | 046

7x10 0,1 2 120 | 1.01
0,2 1 091 | 034

1,2 0 088 | 040

15x20 0,1 2 1.15 | 1.38*
0,2 1 092 | 092

1,2 0 091 | 0.36

Table 2: Accuracy of the Projection Problem

422 Coonclusions

In section 4.1, we enumerated three questions which were to be answered by
the tests reported above. We now proceed t0 answer each of these questions
in tum.

1. What accuracies can be expected from off the shelf cameras and
lenses?
Tables 1 and 2 of test results show the accuracy achievable with a
standard commercial CCD, using the standard lens supplied with the
camera. With a simple global interpolation scheme, accuracies as
good as 1 part in 1400 (0.3 mm over 530 mm) can be obtained. With

a mare sophisticated local linear spline interpolation, the accuracies
can be increased to 1 part in 3500,

Zdeoumm;ﬂumberoj'mﬂbmdonpoinuqﬂctﬂzac-
curacy of calibration?
Wehvemmxmemnknmmyfauobuﬂnwmm-
pohﬁmwbeaclﬂevedwimamnmbaofmnbmionpoinu.
ptovidednnmepoim-emiﬁrmlydktﬁbmdovunuimge. Fur-
duinue-ﬁngthembao(edhﬂonpdnnhasnoeﬂ’ectmme
accuracy. With & local linear spline interpotation, adding calibration
poinucledyimmuthemyoﬂheback—pojecﬁon problem,
until the limiting accuracy of the calibration data is reached.

3. What is the expected accuracy for the projection problem?
Usingeiﬂuakmlagloulsolmim.thcpmjecﬁmpmblanm
beuﬂvednwhhhmpiuh;mlnugooduoypixehm
reported. Pamyqu.soludmofmepmjecdonpmblan
need not be extremely accurase. Inmanyimm.mepmjecwdpixel
locamnisonlyneededloﬁndmecmuofnegionwiﬂunwmchan
operation will be performed. For these applications, accuracy of one
o two pixels is adequate.



Tt is important 1o note that the local interpolation outperformed the
global interpolation. While the differences were not great in our
tests, the lenses we used were fairly linear. If extremely wide angle
lenses are used, the distortions may be large, and the ability to locaily
interpolate will be much more important.

5 Discussion

‘We have presented a calibration method that we believe meets many of the
requirements of a basic calibration technique that can be used for a variety
of applications. Our method is based on the two-plane method of Martins,
Birk, and Kelley (3], but is extended to include a solutios to the projection
problem. We believe that the method presented here has many advantages,
described in the following paragraphs:

e Completeness.

The original two-plane method of calibration only provided a solution
to the back-projection problem. While this is sufficient for many
applications, a solution to the projection problem is also necessary
for applications such as mobile robots. We have extended the two-
plane method by providing a solution 0 the projection problem.

e Accuracy.
The two-plane calibration method can be made arbitrarily accurate.
As reported in section 4, increasing the number of calibration points
results in increasing accuracy. If no improvement results from adding
more points, then the accuracy of the calibration data must be im-
proved.
The projection problem exhibits much of the same behavior as the
that local modeling of camera geometry improves the accuracy of
the projection problem, as well as the back-projection problem. The
accuracics observed in our tests were typically less than one pixel.
o Simplicity.
The two-plane model is conceptually very straightforward and easy
to implement. The use of the line-of-sight vectors 10 solve for the
parameters of a lincar camera model arises intuitively from the ge-
ometry of the model. The method of solution for the camera model

involves solving only linear equations, so no sophisticated optimiza-
tion techniques are involved.

o Efficiency.
Solution of either the back-projection or projection problems require
only a few matrix multiplies and matrix inversions on small matrices.
The operations are guaranteed to produce a unique answer within a
fixed time. While a relatively large amount of data must be stored for
this calibration method compared to other methods, the total amount
is still insignificant.

o Practicality.
Because the method provides a complete solution to the geometric
calibration problem, the method can be used for any application. The
accuracy can be arbitrarily increased (or decreased) to meet the re-
quirements for a given application. The only change in the method
is to store the dam from more calibration points. The mathematics
remains the same, and no special equipment is required beyond that
necded to obtain precise locations for the calibration points.

In addition to the benefits of the method we presented, some gencral

observations should be made:

o Without the benefit of a priori knowledge of the form of lens dis-
tortions, local modeling of distortions seems to perform better than
global modeling. A global model is an attempt to fit the data into
a predetermined form and average the error across the entire image.
The accuracy of the interpolation is limited by how well the cho-
sen model refiects reality. Conceivably, a different function could be
required for different types of lenses to reflect different models of
distortion.

Modeling distortion locally makes no assumption about the forms of
the lens distortions. The local model can be made arbitrarily accurate
by simply sampling at more pixels. We have shown that relatively
few points are needed to achieve the level of accuracy that the mea-
surement devices provide. Moreover, local modeling is more accurate
for solving both the projection and back-projection problems.

e Nearly all of the data reported showed that the best accuracy was
obwined when the test grid was placed between the two grids used
for calibration. This is a specific instance of the general fact that
interpolation is more accurate than extrapolation. In calibrating a real
robotic system, the calibration data should ideally be obtained so as
to bound the region of interest as much as possible.

Geometric camera calibration may depend on a variety of faciors. For
examplie, the focal distance, the aperture setting, preseace or absence of a
filter, or even the operating temperature of a camera may all affect the cali-
beation parameters. We are curreatly making measurements and conducting
tests 0 determine the sensitivity of calibration parameters to many of these
factors.

The results reported in this paper were obtained using data from the
Calibrated Imaging Laboratory at CMU. Our next application of this method
will be to calibeate and register three cameras and a lsser range finder
mounted on the CMU Navisb.
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