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Introduction

The theory of subanalytic sets is an excellent tool in various analytic-geometric con-
texts; see, for example, Bierstone and Milman [1]. Regrettably, certain “nice” sets—like
{ (x, xr) : x > 0 } for positive irrational r, and { (x, e−1/x) : x > 0 }—are not suban-
alytic (at the origin) in R2. Here we make available an extension of the category of
subanalytic sets that has these sets among its objects, and that behaves much like the
category of subanalytic sets. The possibility of doing this emerged in 1991 when Wilkie
[27] proved that the real exponential field is “model complete”, followed soon by work of
Ressayre, Macintyre, Marker and the authors; see [21], [5], [7] and [19]. However, there
are two obstructions to the use by geometers of this development: (i) while the proofs
in these articles make essential use of model theory, many results are also stated there
(efficiently, but unnecessarily) in model-theoretic terms; (ii) the results of these papers
apply directly only to the cartesian spaces Rn, and not to arbitrary real analytic mani-
folds. Consequently, in order to carry out our goal we recast here some results in those
papers—as well as many of their consequences—in more familiar terms, with emphasis on
results of a geometric nature, and allowing arbitrary (real analytic) manifolds as ambient
spaces. We thank W. Schmid and K. Vilonen for their suggestion that this would be a
useful undertaking; indeed, they gave us a “wish list” (inspired by Chapters 8 and 9 of
Kashiwara and Schapira [12]; see also §10 of [22]) which strongly influenced the form and
content of this paper.

We axiomatize in Section 1 the notion of “behaving like the category of subanalytic
sets” by introducing the notion of “analytic-geometric category”. (The category Can of
subanalytic sets is the “smallest” analytic-geometric category.) We also state in Section 1
a number of properties shared by all analytic-geometric categories. Proofs of the more
difficult results of this nature, like the Whitney-stratifiability of sets and maps in such
a category, often involve the use of charts to reduce to the case of subsets of Rn. For
subsets of Rn, there already exists the theory of “o-minimal structures on the real field”
(defined in Section 2); this subject is developed in detail in [4] and is an abstraction of

*This is a revised version of the paper of the same name appearing in Duke Math. J. 84 (1996),

497–540. References have been updated, and the proof of the “Cp Zero Set” theorem has been corrected

and improved. Unfortunately, a gap has been discovered in the proof of Cp Whitney stratification of
maps—see D.16—but this gap can be repaired (a corrigendum will be available one of these days). –CLM
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the theory of semialgebraic sets (see e.g. Bochnak et al. [2]). Each analytic-geometric
category arises in a natural way from an o-minimal structure on the real field. On
the other hand, every o-minimal structure on the real field gives rise to a “geometric
category”, a notion more general than “analytic-geometric category”. In Section 3 we
explain this correspondence between geometric categories and o-minimal structures, and
introduce two analytic-geometric categories CR

an and Can,exp, with CR
an strictly larger than

Can, and Can,exp strictly larger than CR
an. The subsets { (x, xr) : x > 0 } of R2, r ∈ R, are

objects of CR
an, while the subset { (x, e−1/x) : x > 0 } of R2 is an object of Can,exp but not

of CR
an. (Work is underway to construct still larger analytic-geometric categories.)

In Section 4, we list many of the nice properties of o-minimal structures on the real field
(some of which are described here for the first time in print). Using the correspondence
established in Section 3, it is usually a routine matter to transfer these properties to
corresponding properties of geometric categories.

The categories CR
an and Can,exp have certain special properties, some of which we discuss

in Section 5.
We stress that much of the substance of this article derives from the partly model-

theoretic papers mentioned above, as well as from the (almost model-theory-free) book
[4]; to avoid distraction, we defer to appendices the proofs of assertions made without ref-
erence to these (or other) sources. The reader may find it useful to first read Appendix A
before consulting other appendices.

Shiota’s announcement [24]* lists several results that seem closely related to some
of the material presented here. The different axiomatic setting of [24] makes detailed
comparisons cumbersome We do consider our setting—where we make a clear distinction
between analytic-geometric categories and o-minimal structures—as more convenient.

To make this article accessible to a wider audience we explicitly define some geometric
notions like “Whitney stratification”.

1. Analytic-geometric categories

We use the following notation: Given a topological space X and A ⊆ X, we let cl(A),
int(A), bd(A) (= cl(A) \ int(A)) and fr(A) (= cl(A) \A) denote respectively the closure,
interior, boundary and frontier of A in X.

Throughout this paper, each manifold is assumed to be Hausdorff, with a countable
basis for its topology, and of the same (finite) dimension at all of its points. Also,
“manifold” will mean “real analytic manifold” unless otherwise specified.

We say that an analytic-geometric category C is given if each manifold M is equipped
with a collection C(M) of subsets of M such that the following five conditions are satisfied
for all manifolds M and N :
AG1. C(M) is a boolean algebra of subsets of M , with M ∈ C(M).
AG2. If A ∈ C(M), then A× R ∈ C(M × R).
AG3. If f : M → N is a proper analytic map and A ∈ C(M), then f(A) ∈ C(N).
AG4. If A ⊆ M and (Ui) is an open covering of M (i in some index set I), then

A ∈ C(M) if and only if A ∩ Ui ∈ C(Ui) for all i ∈ I.

*Shiota’s book “Geometry of Subanalytic and Semialgebraic Sets” (Birkhäuser, 1997) is more current.
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AG5. Every bounded set in C(R) has finite boundary.
This indeed gives rise to a category C, as we show in detail in Appendix D. An object

of C is a pair (A,M) with M a manifold and A ∈ C(M). A morphism (A,M) → (B,N)
is a continuous map f : A→ B whose graph

Γ (f) := { (a, f(a)) : a ∈ A } ⊆ A×B

belongs to C(M ×N). Composition of morphisms is given by composition of maps, and
1(A,M) is the identity map on A for each object (A,M). We usually refer to an object
(A,M) of C as the C-set A in M , or even just the C-set A if its ambient manifold is clear
from context. Similarly, a morphism f : (A,M) → (B,N) is called a C-map f : A → B
if M and N are clear from context.

All subanalytic subsets of a manifold are C-sets in that manifold; in particular, each
finite subset of a manifold is a C-set. (See Appendix D.) Since the subanalytic sets
(in manifolds) satisfy axioms AG1 through AG5, it follows that the category Can of
subanalytic sets and continuous subanalytic maps is the “smallest” analytic-geometric
category.

We now record some basic properties (proved in Appendix D).

For the rest of this section we fix an analytic-geometric category C. We let M , N be
manifolds of dimension m, n respectively, and let A ∈ C(M), B ∈ C(N).

1.1. Every analytic map f : M → N is a C-map.

1.2. Given an open covering (Ui) of M , a map f : A→ N is a C-map if and only if each
restriction f |Ui ∩A : Ui ∩A→ N is a C-map.

1.3. A×B ∈ C(M ×N), and the projections A×B → A and A×B → B are C-maps.

1.4. If f : A→ N is a proper C-map and X ⊆ A is a C-set, then f(X) ∈ C(N).

1.5. If A is closed in M and f : A→ N is a C-map, then f−1(B) ∈ C(M).

1.6. If B1, . . . , Bk are C-sets (in possibly different manifolds), then a map

f = (f1, . . . , fk) : A→ B1 × · · · ×Bk

is a C-map if and only if each fi : A→ Bi is a C-map.

1.7. cl(A), int(A) ∈ C(M).

Convention. Throughout this paper, we let p range over {1, 2, 3, . . . ,∞, ω}.
To state the next few properties, we define for each p the set Regp(A) of Cp smooth

points of A (where “Cω” means “analytic”). More precisely, Regp(A) is the set of all
x ∈ A such that there is an open neighborhood U of x with U ∩ A a Cp submanifold of
M . (Here and throughout this paper, submanifolds are embedded—not just immersed—
submanifolds; in particular, they are locally closed in their ambient manifolds.) Also for
each k ∈ N we let Regp

k(A) be the set of all x ∈ A such that there is an open neighborhood
U of x with U ∩A a Cp submanifold of M of dimension k; so we have the disjoint union

Regp(A) = Regp
0(A) ∪ · · · ∪ Regp

m(A).
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1.8. For each k ∈ N and positive p ∈ N, Regp
k(A) ∈ C(M).

Remark. 1.8 holds with p = ω for the analytic-geometric categories Can and CR
an. We

don’t know if there are analytic-geometric categories for which 1.8 fails with p = ω. (See
Section 5 for further information.)

Recall that the tangent bundle TM and the cotangent bundle T ∗M of M are again
manifolds (of dimension 2m). If A is a C1 submanifold of M we consider its tangent
bundle

TA =
⋃

x∈A

TxA

as a subset of the tangent bundle TM , and we define the conormal bundle T ∗AM of A in
M by

T ∗AM =
⋃

x∈A

{ ξ ∈ T ∗xM : ξ|TxA = 0 },

a subbundle of T ∗M |A.

1.9. If A is a C1 submanifold of M , then TA ∈ C(TM) and T ∗AM ∈ C(T ∗M). If in
addition f : A→ N is a C-map of class C1, then Tf : TA→ TN is a C-map.

The properties listed so far are elementary consequences of axioms AG1 through AG4,
unlike the following somewhat deeper results, which also depend on AG5.

1.10. A has locally only a finite number of components (that is, each point
x ∈ M has an open neighborhood U such that U ∩ A has finitely many connected
components).

1.11. If C is a connected component of A, then C ∈ C(M).

1.12. A is locally connected (hence every component of A is open in A).

1.13. If A is connected, then A is path connected.

1.14. If A is relatively compact and f : A → N is a C-map, then for each compact set
Y ⊆ N there exists KY ∈ N such that each fiber f−1(y) with y ∈ Y has at most KY

connected components.

Recall that a collection F of subsets of M is said to be locally finite if each point in M
has a neighborhood that intersects only finitely many sets in F , or equivalently, if every
compact subset of M intersects only finitely many sets in F . Note that if F ⊆ C(M) is
locally finite, then

⋂
F ∈ C(M) and

⋃
F ∈ C(M).

1.15. The set of connected components of A is a locally finite subcollection of C(M).

We define the dimension dimA of a nonempty set A ∈ C(M) to be the maximum of all
d ∈ N such that A contains a d-dimensional C1 submanifold of M (so
0 ≤ dimA ≤ m). We also put dim ∅ := −∞. (For C1 submanifolds of M , this agrees
with the usual manifold dimension.)
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1.16.

(1) If A ⊆ C(M) is locally finite, A 6= ∅, then dim
⋃
A = max{dimA : A ∈ A}.

(2) If f : A→ N is a proper C-map, then dimC ≥ dim f(C) for all C-sets C ⊆ A.
(3) If A 6= ∅, then dim fr(A) < dimA.

In the subanalytic category one often reduces problems to the one-dimensional case,
where extra tools are available. This works also in our setting, as the next two results
show.

1.17. Curve selection. If x ∈ fr(A), then there is a C-map γ : [0, 1) → M such that
γ(0, 1) ⊆ A and γ(0) = x.

Here we consider [0, 1) as a C-set in R. Given any positive integer p we can always
choose γ to be injective and Cp. If C = CR

an or C = Can,exp we can choose γ to be injective,
and analytic on (0, 1). If C = Can we can choose γ such that it extends to an analytic
function from (−1, 1) into M , but this fails in general for C = CR

an or C = Can,exp.

1.18. Local parametrization of 1-dimensional C-sets. Let x ∈ M , p be a positive
integer and dimA = 1. Then there is a relatively compact open U ∈ C(M) with x ∈ U
and there are injective C-maps γ1, . . . , γk : [0, 1) → M of class Cp such that γi(0) = x
for i = 1, . . . , k and U ∩A \ {x} is the disjoint union of γ1(0, 1), . . . , γk(0, 1). (Of course,
k = 0 if x /∈ cl(A).)

Remark. In fact, the γi’s can be chosen such that in addition each γi maps the interval
(0, 1) Cp diffeomorphically onto a Cp submanifold of M .

Before we can state the next result, we need several definitions and some notation.
For k,m ∈ N, let Gk(Rm) denote the Grassmannian of the k-dimensional vector sub-

spaces of Rm; in particular, G1(Rm) = Pm−1(R).
Let X,Y be C1 submanifolds of Rm with dimX = k and let y ∈ Y . We say that

the triple (X,Y, y) has the Whitney property if the following holds: for every sequence
(xi) of points in X converging to y and every sequence (yi) of points in Y converging to
y with xi 6= yi for all i such that the sequence (TxiX) converges to some τ ∈ Gk(Rm)
and the sequence of secant lines (R.(xi − yi)) converges to a line ` ∈ G1(Rm), we have
` ⊆ τ . We now extend this definition to arbitrary ambient manifolds M . Let X,Y be C1

submanifolds of M with dimX = k and let y ∈ Y . We say that the triple (X,Y, y) has the
Whitney property if for some (equivalently, for every) C1 diffeomorphism ϕ of an open
neighborhood U of y onto an open subset ϕ(U) ⊆ Rm, the triple (ϕ(U∩X), ϕ(U∩Y ), ϕ(y))
has the Whitney property. Put

W (X,Y ) := { y ∈ Y : (X,Y, y) has the Whitney property }.

We say that the pair (X,Y ) has the Whitney property if W (X,Y ) = Y .

Remark. What we call the Whitney property is often referred to as “Whitney’s condition
(b)”.

A Cp stratification of a closed subset S of M is a locally finite partition P of S into Cp

submanifolds of M , called strata, such that if X,Y ∈ P with X 6= Y and cl(X) ∩ Y 6= ∅,
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then Y ⊆ fr(X) and dimY < dimX. A single member of a stratification is called a
stratum. For p = ω we also say “analytic stratification”. (We are mainly interested in
the case that S ∈ C(M) and P ⊆ C(M), and in that case the condition “dimY < dimX”
in the definition is automatic by 1.16(3).) A Cp Whitney stratification of a closed set
S ⊆ M is a Cp stratification W of S such that for all X,Y ∈ W, if Y ⊆ fr(X), then
(X,Y ) has the Whitney property.

Given a C1 map f : X → Y between C1 manifolds X and Y , we define the function
rk f : X → N by rk f(x) := rank(Txf), where Txf : TxX → Tf(x)Y is the induced linear
map between the tangent spaces.

Given a closed set S ⊆ M and f : S → N , a Cp Whitney stratification of f is a pair
(S, T ), where S and T are Cp Whitney stratifications of S and N respectively, such that
for each P ∈ S, the map f |P : P → N is Cp with f(P ) ∈ T and (rk f |P )(x) = dim f(P )
for all x ∈ P .

Given collections A, B of subsets of a set C, we say that A is compatible with B if for
all A ∈ A and B ∈ B, either A ∩B = ∅ or A ⊆ B.

1.19. Whitney stratification. Let S ∈ C(M) be closed and p be a positive integer.

(1) For every locally finite A ⊆ C(M) there is a Cp Whitney stratification P ⊆ C(M)
of S, compatible with A, with each stratum connected and relatively compact.

(2) Let f : S → N be a proper C-map and F ⊆ C(M), G ⊆ C(N) be locally finite.
Then there is a Cp Whitney stratification (S, T ) of f with connected strata such
that S ⊆ C(M) is compatible with F and T ⊆ C(N) is compatible with G.

Remarks.
In (2) above, we may require f |A to be injective for each A in S with

rk f |A = dimA.
Whitney stratification holds with p = ω for the analytic-geometric categories Can, CR

an

and Can,exp. We don’t know if there are analytic-geometric categories for which 1.19 fails
with p = ω.

1.20. If A ∈ C(M) is closed and p is a positive integer, then there is a C-map f : M → R
of class Cp with A = Z(f) := {x ∈M : f(x) = 0 }.

Bierstone, Milman and Paw lucki gave a proof of this for the case C = Can, which
generalizes to arbitrary C; see Appendices C and D for details.

Remark. We do not know if the uniformization and rectilinearization properties of sub-
analytic sets (see 0.1, 0.2 of [1]) have suitable analogs for C-sets.

2. Structures on (R,+, ·)

Proofs of properties of C-sets often involve charts to reduce to the case where the
ambient manifold is Rm. For the cartesian spaces Rm there is available a notion of
“globally nice” set, which is more convenient to deal with than the strictly local notion
of C-set, and is also better behaved: we don’t need properness or (relative) compactness
assumptions, and “locally finite” can often be replaced by “finite”. “Semialgebraic set in
Rm” is an example of such a notion of “globally nice” set, but “subanalytic set in Rm”
is not.
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In developing the theory of analytic-geometric categories from scratch it is most effi-
cient to first deal systematically with this equivalent but better-behaved global notion of
nice set (restricting oneself to ambient spaces Rm). Once the properties of these “nice”
sets are available, one can then use these sets as “affine models” to define the C-sets
of analytic-geometric categories and obtain all relevant properties. Proceeding this way
is also more convenient for actually constructing analytic-geometric categories. In this
sense, things in this paper are partly done in reverse; the next three sections introduce
tools that enable us to prove the properties listed in the previous section. (In the appen-
dices, we follow the strictly “logical” order.)

Definition. A structure on the real field (R,+, ·) is a sequence S = (Sn)n∈N such that
for each n ∈ N:

S1. Sn is a boolean algebra of subsets of Rn, with Rn ∈ Sn.
S2. Sn contains the diagonals { (x1, . . . , xn) ∈ Rn : xi = xj } for 1 ≤ i < j ≤ n.
S3. If A ∈ Sn, then A× R and R×A belong to Sn+1.
S4. If A ∈ Sn+1, then π(A) ∈ Sn, where π : Rn+1 → Rn is the projection on the first

n coordinates.
S5. S3 contains the graphs of addition and multiplication.

Below, S denotes a structure on (R,+, ·). We say that a set A ⊆ Rn belongs to S if
A ∈ Sn, and that a (not necessarily continuous) map f : A→ Rn with A ⊆ Rm belongs
to S if its graph Γ (f) ⊆ Rm+n belongs to S. Instead of “A belongs to S” we also say
“S contains A”, and similarly for maps.

2.1. Although the definition of “structure on (R,+, ·)” is not symmetric with respect
to the coordinates x1, x2, x3, . . . , we obtain this symmetry and other basic facts by very
elementary ‘logical’ arguments in Appendix B. Here we just state some of these facts.

If B ∈ Sn and i(1), . . . , i(n) ∈ {1, . . . ,m} (repetitions allowed), then the set{
(x1, . . . , xm) ∈ Rm :

(
xi(1), . . . , xi(n)

)
∈ B

}
belongs to S. (Thus, we can permute and identify variables.) If A ⊆ Rm and f =
(f1, . . . , fn) : A→ Rn is a map, then f belongs to S if and only if f1, . . . , fn belong to S;
in that case also A ∈ Sm, f(A) ∈ Sn, f−1(B) ∈ Sm for all B ∈ Sn, and each restriction
f |A′ : A′ → Rn with A′ ⊆ A and A′ ∈ Sm belongs to S. If A = A1 ∪ · · · ∪Ak with each
Ai ∈ Sm, then a map f : A→ Rn belongs to S if and only if all f |Ai belong to S.

If S contains the set S ⊆ Rm+n and the singleton {a} with a ∈ Rm, then the fiber
Sa := { y ∈ Rn : (a, y) ∈ S } belongs to S.

Let A ⊆ Rm and B ⊆ Rn. If f : A → Rn and g : B → Rq belong to S, then
the composition g ◦ f : f−1(B) → Rq belongs to S. If f : A → Rn belongs to S
and is injective, then its compositional inverse f−1 : f(A) → Rm belongs to S. If
A ∈ Sm, then for each rational number r the constant function x 7→ r : A → R belongs
to S and the set { f : A → R : f belongs to S } is a ring under pointwise addition
and multiplication of functions with multiplicative identity x 7→ 1 : A → R. For each
polynomial f(X1, . . . , Xn) ∈ Q[X1, . . . , Xn] the corresponding function x 7→ f(x) : Rn →
R belongs to S. The order relation < belongs to S, that is, { (x, y) ∈ R2 : x < y } ∈ S2.
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If A ∈ Sm, then cl(A), int(A) ∈ Sm. Given a function f : U → R belonging to S with
U open in Rn, the set of points in U where f is differentiable belongs to S, and if f is
differentiable on U , then each partial derivative also belongs to S.

For the next two results we fix a set A ⊆ Rn. We also let p be a positive integer
and k ∈ {0, . . . , n}. We view Rn as the ambient manifold, and identify both its tangent
bundle TRn and its cotangent bundle T ∗Rn with R2n in the obvious way. In particular,
the point (a, b) ∈ R2n = T ∗Rn corresponds to the linear form x 7→ b.x on Rn = TaRn. If
A is a C1 submanifold of Rn then these identifications make its tangent bundle TA and
conormal bundle T ∗ARn subsets of R2n.

2.2. If A belongs to S then Regp
k(A) belongs to S.

2.3. If A belongs to S and is a C1 submanifold of Rn then the tangent bundle TA and
the conormal bundle T ∗ARn belong to S.

2.4. Let X,Y be C1 submanifolds of Rn belonging to S with Y ⊆ fr(X). Then the set
W (X,Y ) (as in §1) belongs to S.

Given structures S = (Sn) and S′ = (S′
n) on (R,+, ·) we put S ⊆ S′ if Sn ⊆

S′
n for all n ∈ N; this defines a partial order on the set of all structures on (R,+, ·).

Given functions fj : Rn(j) → R (j in some index set J) we let (R,+, ·, (fj)j∈J) denote
the real field equipped with the functions fj as extra “basic operations”, and we let
S(R,+, ·, (fj)j∈J) denote the smallest structure on (R,+, ·) containing the graphs of all
functions fj ; we call S(R,+, ·, (fj)j∈J) the structure on (R,+, ·) generated by the fj’s.
(A function f : R0 = {0} → R is identified with the corresponding real constant f(0).)

Note. In model theory, (R,+, ·, (fj)j∈J) itself is called a structure, and A ⊆ Rm is said
to be definable in (R,+, ·, (fj)j∈J) if A belongs to S(R,+, ·, (fj)j∈J).

2.5. Examples.
(1) There is evidently a largest structure on (R,+, ·), namely the structure obtained

by letting Sn be the collection of all subsets of Rn, for each n ∈ N. This structure is of
no further relevance in this paper.

(2) The smallest structure on (R,+, ·) is by definition S(R,+, ·). By results stated
above, S(R,+, ·)n must contain all finite unions of sets of the form

{x ∈ Rn : f(x) = 0, g1(x) > 0, . . . , gk(x) > 0 }

with f, g1, . . . , gk ∈ Q[X1, . . . , Xn]. The collection of these finite unions (for n ∈ N)
clearly satisfies axioms S1, S2, S3 and S5, and by Tarski’s theorem, also axiom S4.
Hence S(R,+, ·)n consists exactly of these finite unions. (One might call these sets
“semialgebraic sets defined over Q”.) Note that a singleton {r} with r ∈ R belongs to
this structure if and only if r is algebraic.

(3) The smallest structure on (R,+, ·) that contains all singletons {r} with r ∈ R is (by
definition) S(R,+, ·, (r)r∈R). (Note that (R,+, ·, (r)r∈R) is just (R,+, ·) equipped with
the constant functions R0 = {0} → R as additional basic operations.) By the Tarski-
Seidenberg theorem, S(R,+, ·, (r)r∈R)n is precisely the collection of all semialgebraic sets
in Rn for n ∈ N.
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(4) Let Ran := (R,+, ·, (f)) where f ranges over all restricted analytic functions, that
is, over all functions Rn → R (n ranging over N) that vanish identically off [−1, 1]n and
whose restrictions to [−1, 1]n are analytic. We call Ran the field of real numbers with
restricted analytic functions; S(Ran) consists of the so-called finitely subanalytic sets
introduced in [3], and again in [13] under the name of “globally subanalytic” sets. The
reason for this terminology is that a set A ⊆ Rn belongs to S(Ran) if and only if A is
subanalytic in the projective space Pn(R), where we identify Rn with an open subset of
Pn(R) via

(y1, . . . , yn) 7→ (1 : y1 : · · · : yn) : Rn → Pn(R).

In the next section, we will see that this fact is a special case of a 1-1 correspondence
between “o-minimal” structures on Ran and analytic-geometric categories. (A structure
on Ran is a structure S on (R,+, ·) with S(Ran) ⊆ S.)

(5) Let RR
an := (R,+, ·, (f), (xr)r∈R), where f ranges over all restricted analytic func-

tions as in (4), and the function xr : R → R is given by

a 7→
{
ar, a > 0
0, a ≤ 0.

(6) Let Ran,exp := (R,+, ·, (f), exp), where f ranges over all restricted analytic func-
tions as before, and exp : R → R is given by exp(x) = ex. Note that S(Ran,exp) contains
the logarithm function log : (0,∞) → R, as well as each function xr from (5), since
ar = exp(r log a) for a > 0.

All of S(Ran), S(RR
an) and S(Ran,exp) are structures on Ran, and we have

S(R,+, ·) ⊆ S(R,+, ·, (r)r∈R) ⊆ S(Ran) ⊆ S(RR
an) ⊆ S(Ran,exp).

These inclusions are strict: {e} does not belong to S(R,+, ·); exp |[−1, 1] is not semialge-
braic; the function x

√
2 is not finitely subanalytic, since its graph is not subanalytic at the

origin; exp does not belong to S(RR
an), since by [19] every function f : R → R belonging

to S(RR
an) either ultimately vanishes identically or is asymptotic at +∞ to some function

cxr, c 6= 0. We conjecture that there are no structures on (R,+, ·) lying strictly between
S(RR

an) and S(Ran,exp).
If a structure S on (R,+, ·) contains each real singleton {r}, then it contains all

intervals of all kinds (that is, all nonempty connected subsets of R), and hence all finite
unions of intervals of all kinds.

Definition. A structure S on (R,+, ·) is o-minimal (short for “order-minimal”) if S1

consists exactly of the finite unions of intervals of all kinds (including singletons).

Sets and functions belonging to o-minimal structures on (R,+, ·) have many nice topo-
logical and geometric and metric properties, many of which we list in §4. The structure
S(Ran,exp) is o-minimal, hence (by the inclusions listed above) so are the structures
S(R,+, ·, (r)r∈R), S(Ran) and S(RR

an).
We also say that (R,+, ·, (fj)j∈J) is o-minimal if S(R,+, ·, (fj)j∈J , (r)r∈R) is o-minimal.

Thus, (R,+, ·), (R,+, ·, (r)r∈R), Ran, RR
an and Ran,exp are all o-minimal, even though

S(R,+, ·) is not (since it doesn’t contain {e}).
9



3. Analytic-geometric categories
correspond to o-minimal structures on Ran

From an analytic-geometric category C we obtain an o-minimal structure
S = S(C) on Ran by defining

Sn = S(C)n := {X ⊆ Rn : X ∈ C(Pn(R)) },

where we identify the analytic manifold Rn with an open subset of the projective space
Pn(R) via

(y1, . . . , yn) 7→ (1 : y1 : · · · : yn) : Rn → Pn(R).

In particular, Sn ⊆ C(Rn) and all bounded C-sets in Rn (as well as their complements)
belong to S. An equivalent way of defining S(C) is by means of the semialgebraic maps
τn : Rn → Rn given by

τn(x1, . . . , xn) :=

(
x1√

1 + x2
1

, . . . ,
xn√

1 + x2
n

)
.

Note that τn is an analytic isomorphism of Rn onto (−1, 1)n. Then for A ⊆ Rn we have:

A ∈ S(C)n ⇔ τn(A) ∈ C(Rn).

Conversely, from an o-minimal structure S = (Sn) on Ran we obtain an analytic-
geometric category C = C(S) by defining the C-sets in an m-dimensional manifold M to
be those sets A ⊆M such that for each point x ∈M there is an open neighborhood U of
x, an open V ⊆ Rm and an analytic isomorphism h : U → V such that h(U ∩ A) ∈ Sm.
(In that case, we can always take V = Rm.)

These operations C 7→ S(C) and S 7→ C(S) are inverse to each other: for each analytic-
geometric category C and each o-minimal structure S on Ran we have C(S(C)) = C and
S(C(S)) = S.

(For proofs of the above statements see Appendix D.)
This correspondence allows us to establish facts (such as 1.7 through 1.20) about the

analytic-geometric category C by passing to the o-minimal structure S(C). Under this
correspondence the analytic-geometric category Can of subanalytic sets corresponds to
S(Ran), the class of finitely (or globally) subanalytic sets. We let CR

an and Can,exp denote
respectively the analytic-geometric categories C(S(RR

an)) and C(S(Ran,exp)).

Let S be an o-minimal structure on (R,+, ·), not necessarily extending S(Ran). Then
we can still define a “geometric” category of “S-manifolds”, remaining moreover in a
strictly finite setting (in contrast to the “locally finite” setting of analytic-geometric
categories). To be precise, define an S-atlas on a manifold M to be an atlas (gi)i∈I with
finite index set I such that each chart gi : Ui → Vi is an analytic isomorphism from open
Ui ⊆M onto open Vi ⊆ Rm with Vi ∈ Sm and such that all transition maps

gij = gj ◦ g−1
i : gi(Ui ∩ Uj) → gj(Uj ∩ Ui) (i, j ∈ I)

10



belong to S as well. (In particular, the domains gi(Ui ∩ Uj) of these transition maps
belong to S.) Two S-atlases (gi) and (hj) are said to be S-equivalent if all “mixed”
transition maps hj ◦ g−1

i belong to S; then “S-equivalence” is an equivalence relation
on the collection of S-atlases on M . An S-manifold is a manifold M equipped with
an S-equivalence class of S-atlases. Each space Rm is considered as an S-manifold by
taking the S-atlas consisting of just one chart, the identity map on Rm. Each projective
space Pn(R) is considered as an S-manifold by taking as S-atlas the usual atlas of n+ 1
affine coordinate charts

gi : Ui = {x = (x0 : · · · : xn) ∈ Pn(R) : xi 6= 0 } → Rn (i = 0, . . . , n)

given by

gi(x) =
(
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn

xi

)
.

Let M,N be S-manifolds given by an S-atlas (gi) on M and an S-atlas (hj) on N .
Then M ×N is an S-manifold given by the S-atlas (gi×hj). The tangent bundle TM is
made into an S-manifold by taking the S-atlas consisting of the charts Tgi : TUi → TVi,
where gi : Ui → Vi ⊆ Rm and TVi is identified with a subset of R2m (as in §2). In the
same way, we make the cotangent bundle T ∗M into an S-manifold. Define a set A ⊆M
to be an S-set in M if gi(Ui ∩ A) ∈ Sm for all i ∈ I; given S-sets A in M and B in N ,
define a map f : A → B to be an S-map if it is continuous and its graph is an S-set
in M ×N . (These notions are independent of the choice of S-atlases (gi) and (hj) that
make M and N into S-manifolds.)

The S-sets in S-manifolds are the objects of a category with the S-maps between
them as morphisms, and composition of morphisms given by the usual composition of
maps. The S-sets in Rm are exactly the sets belonging to Sm.

Theorem. Each S-set in an S-manifold M is isomorphic in this category to an S-set
in Rn for some n.

(See Ch. 10 of [4].)

If S(Ran) ⊆ S and M is compact—for example, M = Pn(R)—then the S-sets in M
are exactly the C(S)-sets in M .

Example. Let S consist of the semialgebraic sets in Rm for m ∈ N. Then the S-
manifolds are exactly the so-called (analytic) Nash manifolds (see [23]), and the S-sets
in a Nash manifold are exactly its semialgebraic subsets.

4. Some properties of o-minimal structures on (R,+, ·)

We now list a few of the important properties of o-minimal structures on (R,+, ·);
unless otherwise stated, proofs can be found in [4]. Several results in this section are new
and proved in Appendix C.

Throughout this section S denotes some fixed, but arbitrary, o-minimal structure on
(R,+, ·), and, unless indicated otherwise, p denotes a positive integer.

11



4.1. Monotonicity theorem. Let f : (a, b) → R belong to S, −∞ ≤ a < b ≤ ∞. Then
there are a0, a1, . . . , ak+1 with a = a0 < a1 < · · · < ak < ak+1 = b such that f |(ai, ai+1)
is Cp, and either constant or strictly monotone, for i = 0, . . . , k.

Remark. For every presently-known o-minimal structure on (R,+, ·), the above holds
with “analytic” in place of “Cp”.

Cells and cell decomposition. We define the Cp cells in Rn as certain Cp submanifolds
of Rn belonging to Sn; the definition is by induction on n:

(1) The Cp cells in R (= R1) are just the points {r} and the open intervals (a, b),
−∞ ≤ a < b ≤ +∞;

(2) Let D ∈ Sn be a Cp cell. Then D × R is a Cp cell in Rn+1. Let f : D → R
of class Cp belong to S; then the sets Γ (f), { (x, r) ∈ D × R : r < f(x) } and
{ (x, r) ∈ D × R : f(x) < r } are Cp cells in Rn+1. Let g : D → R of class Cp

belong to S such that f(x) < g(x) for all x ∈ D; then

{ (x, r) ∈ D × R : f(x) < r < g(x) }

is a Cp cell in Rn+1.
(We also consider R0 = {0} as a cell in R0; so (2) even holds for n = 0.)

For p = ω we usually say “analytic cells” instead of “Cω cells”.
A Cp decomposition of Rn is a special kind of partition of Rn into finitely many Cp

cells. Definition is by induction on n:
(1) A Cp decomposition of R is a collection of intervals and points of the form

{(−∞, a1), (a1, a2), . . . , (ak,+∞), {a1}, . . . , {ak}},

with a1 < · · · < ak real numbers. (For k = 0 this is just {(−∞,∞)}.)
(2) A Cp decomposition of Rn+1 is a finite partition D of Rn+1 into Cp cells such

that the set of projections {π(D) : D ∈ D } is a decomposition of Rn, where
π : Rn+1 → Rn is the projection on the first n coordinates.

Note that each Cp cell D in Rn is connected, and there exist integers i1, . . . , im with
1 ≤ i1 < · · · < im ≤ n such that the map x 7→ (xi1 , . . . , xim) : D → Rm is a Cp

diffeomorphism onto an open cell in Rm (where m = dimD).

Note. Cells and decompositions are always defined relative to some particular structure
on (R,+, ·) (the structure S throughout this section).

4.2. Cell decomposition.
(1) Given A1, . . . , Ak ∈ Sn, there is a Cp decomposition of Rn compatible with

{A1, . . . , Ak}.
(2) For every function f : A→ R belonging to S, A ⊆ Rn, there is a Cp decomposition

D of Rn compatible with {A} such that f |D : D → R is of class Cp for each D ∈ D
with D ⊆ A.

We also say that S has C∞ decomposition if the above holds with p = ∞, and that
S has analytic decomposition if the above holds with p = ω. The structures S(RR

an) and
S(Ran,exp) have analytic decomposition; see [7] and [19].
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4.3. Component theorem. Every A belonging to S has finitely many connected
components, each belonging to S.

4.4. Uniform bounds on fibers. Let A ⊆ Rm+n belong to S. Then there exists
N ∈ N such that for all x ∈ Rm the set Ax := { y ∈ Rn : (x, y) ∈ A } has at most N
connected components.

4.5. Definable choice. Let A ⊆ Rm+n belong to S, and let πA ⊆ Rm be the projection
of A onto the first m coordinates. Then there is a map f : πA→ Rn belonging to S such
that Γ (f) ⊆ A. In particular, if B ⊆ Rm and g : B → Rn belongs to Sm+n then there
exists f : g(B) → Rm belonging to S such that f(g(x)) = x for all x ∈ B.

4.6. Curve selection (with parameters). Let A ∈ Sn. Then fr(A) is a disjoint
union of connected Cp submanifolds B1, . . . , Bl of Rn, each belonging to S, and there
is a map f : fr(A) × (0, 1) → A belonging to S such that f |(Bi × (0, 1)) is Cp for
1 = 1, . . . , l, and for each x ∈ fr(A) the function t 7→ f(x, t) : (0, 1) → Rn is injective,
with limt→0+ f(x, t) = x.

4.7. Dimension is well behaved. Let A ∈ Sn be nonempty. Then:
(1) dim fr(A) < dimA.
(2) If f : A→ Rm belongs to S, then dim f(A) ≤ dimA.

4.8. Whitney stratification.

(1) Given A1, . . . , Ak ∈ Sm, there is a finite Cp Whitney stratification of Rm com-
patible with {A1, . . . , Ak}, with each stratum a Cp cell in Rm.

(2) Let f : A→ Rn belong to S with A ⊆ Rm closed; let F and G be finite subcollec-
tions of Sm and Sn respectively. Then there is a finite Cp Whitney stratification
(S, T ) of f with connected strata such that S ⊆ Sm is compatible with F and
T ⊆ Sn is compatible with G. The strata of T can be taken to be Cp cells in Rn.

(See Appendix D.18.)

Remarks.
(1) If S has C∞ decomposition then 4.8 holds with p = ∞; similarly with p = ω if

S has analytic decomposition.
(2) In 4.8(2), we may require in addition that f |A be injective for each A ∈ S with

rk f |A = dimA.

4.9. Good directions. Let A ∈ Sn with dimA ≤ k ≤ n. Then there exist a k-
dimensional linear subspace U of Rn and N ∈ N such that card(π−1(x) ∩A) ≤ N for all
x ∈ U , where π is the orthogonal projection from Rn onto U .

Remark. In fact, the set of all such U as above is dense in the Grassmannian Gk(Rn).

4.10. Triangulation. Let A,A1, . . . , Al ∈ Sn with A1, . . . , Al ⊆ A. Then there exist
a finite simplicial complex K in Rn and a map ϕ : A → Rn belonging to S such that ϕ
maps A and each Ai homeomorphically onto a union of open simplices of K.

13



Definition. Let A ⊆ Rm. A map f : A→ Rn in Sm+n is called S-trivial if there exist
k ∈ N and g : A → Rk in Sm+k such that a 7→ (f(a), g(a)) is a homeomorphism of A
onto f(A)× g(A).

4.11. Generic triviality. Let A ⊆ Rm and f : A → Rn in Sm+n be continuous.
Then there is a partition {C1, . . . , Cl} ⊆ Sn of f(A) such that f |f−1(Ci) is S-trivial for
i = 1, . . . , l.

Remark. In the semialgebraic case, generic triviality is due to Hardt [10].
A striking feature of o-minimal structures on (R,+, ·) has to do with the possibilities

for asymptotic behaviour of functions f : R → R belonging to the structure.

Definition. A structure on (R,+, ·) is polynomially bounded if for every function f :
R → R belonging to the structure, there exists some N ∈ N (depending on f) such
that f(t) = O(tN ) as t → +∞. A structure on (R,+, ·) is exponential if it contains
exp. We also say that (R,+, ·, (fj)j∈J) is polynomially bounded if S(R,+, ·, (fj)j∈J) is
polynomially bounded; similarly with “exponential”.

4.12. Growth dichotomy. Either S is polynomially bounded, or it is exponential. If S
is polynomially bounded, then for every f : R → R belonging to S, either f is ultimately
identically equal to 0, or there exist c, r ∈ R, c 6= 0, such that x 7→ xr : (0,∞) → R
belongs to S and f(t) = ctr + o(tr) as t→ +∞.

(See [18].)

This dichotomy appears in many guises in the study of o-minimal structures on
(R,+, ·).
In 4.13 through 4.17 we assume moreover that S is polynomially bounded.

4.13. Piecewise uniform asymptotics. Let f : A × R → R belong to S, A ⊆ Rm.
Then there exist r1, . . . , rl ∈ R such that for all x ∈ A, either f(x, t) = 0 for all sufficiently
small (depending on x) positive t, or f(x, t) = ctri+o(tri) as t→ 0+ for some i ∈ {1, . . . , l}
and c = c(x) ∈ R \ {0}.
(See [19].)

It follows immediately that there exists N ∈ N depending only on f such that for
every x ∈ A we have |f(x, t)| ≤ tN for all sufficiently large (depending on x) positive t.
Some consequences of this are the following closely related results, all generalizations of
certain well-known metric properties of subanalytic subsets of euclidean spaces.

Notation. We put |x| := sup{ |xi| : i = 1, . . . , n } and ||x|| :=
√
x2

1 + · · ·+ x2
n for

x ∈ Rn.
Given f : A → R, A ⊆ Rm, put Z(f) := { a ∈ A : f(a) = 0 }. Note that if f belongs

to S, then so does Z(f).

4.14. Hölder continuity and  Lojasiewicz inequality. Let A ∈ Sn be compact, and
let f : A→ R be a continuous function belonging to S.

(1) There exist r, C > 0 such that |f(x)− f(y)| ≤ C|x− y|r for all x, y ∈ A.
(2) Let g : A→ R belonging to S be continuous with Z(f) ⊆ Z(g). Then there exist

N > 0 and C > 0 such that |g(x)|N ≤ C|f(x)| for all x ∈ A.
14



(This follows from 4.20 below; see also Appendix C.15.)

Paths.
A path in Rn is a continuous map g : [a, b] → Rn (−∞ < a < b < +∞); we then

say that g is a path from x to y where g(a) = x and g(b) = y. The length of such
a path, denoted by length(g), is by definition the supremum of all sums of the form∑k

i=1 ||g(ai) − g(ai−1)||, taken over all finite partitions a = a0 < a1 < · · · < ak = b of
[a, b]. The path g is said to be rectifiable if length(g) < +∞. If g belongs to S then g is
rectifiable. (See Appendix C.)

4.15. Whitney regularity. Let A ∈ Sn be nonempty , compact and connected. Then
there exist r, C > 0 and a map γ : A2 × [0, 1] → A belonging to S such that for every
x, y ∈ A,

γx,y := t 7→ γ(x, y, t) : [0, 1] → A

is a path from x to y, with length(γx,y) ≤ C||x− y||r.

(See 4.21 below.)

Definition. A subring S ⊆ C∞(U,R) with U an open connected subset of Rn is quasi-
analytic if for each nonzero f ∈ S and x ∈ U the Taylor series at x of f is not zero (for
example, the set of all real analytic functions f : U → R is quasianalytic). Note that
then S is necessarily an integral domain.

4.16. Quasianalyticity. Let U ∈ Sm be open and connected. Then the ring of all C∞

functions f : U → R belonging to S is quasianalytic.

(See [20].)

4.17. Descending chain condition for zero sets. Suppose that S has C∞ decom-
position. Let (fi : U → R)i∈N be a family of C∞ functions, each belonging to S, U open
in Rn. Then there exists N ∈ N such that⋂

i∈N
Z(fi) =

⋂
i≤N

Z(fi).

(See [8].)

Note. By results of Tougeron [26], 4.17 holds for families of analytic functions belonging
to S without the assumptions that S be polynomially bounded or have C∞ decomposi-
tion.

The remaining results of this section are new. They are all closely related, and gener-
alize certain important metric properties of subanalytic subsets of euclidean spaces. (See
Appendix C for proofs and further information.) Note that in these results we make no
assumption of polynomial boundedness on S.

4.18. Uniform bounds on growth. Let A ⊆ Rm and g : A × R → R belong to
S. Then there exist functions ψ : R → R and ρ : A → R belonging to S such that
|g(x, t)| < ψ(t) for all x ∈ A and t > ρ(x).
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Notation. Let Φp
S denote the set of all odd, strictly increasing bijections

φ : R → R belonging to S that are Cp on R and p-flat at 0 (that is, φ(k)(0) = 0 for
k = 0, . . . , p).

4.19. Cp multipliers. Let f, g : Rn → R belonging to S be continuous, of class Cp on
Rn \ Z(g), with Z(f) ⊆ Z(g). Then there exists φ ∈ Φp

S and a Cp function h : Rn → R
belonging to S such that φ ◦ g = hf .

4.20. Generalized  Lojasiewicz inequality. Let f, g : A → R belonging to S be
continuous, with Z(f) ⊆ Z(g) and A ⊆ Rn compact. Then there exists φ ∈ Φp

S such
that |φ(g(x))| ≤ |f(x)| for all x ∈ A.

4.21. Uniform path-connectedness. Let A ∈ Sn be nonempty and connected.

(1) There exists a map γ : A2×[0, 1] → A belonging to S such that for every x, y ∈ A,
γx,y (notation as in 4.15) is a path from x to y.

(2) If A is compact, then there exists γ as in (1) and φ ∈ Φp
S such that for every

x, y ∈ A, length(γx,y) ≤ φ−1(||x− y||).

Remark. 4.14 and 4.15 are easy corollaries of 4.20 and 4.21.

4.22. Closed sets are zero sets. Let A ∈ Sn be closed. Then there exists a Cp

function f : Rn → R belonging to S with A = Z(f).

Remark. Clearly, 4.22 fails with p = ω for A = [0, 1] ⊆ R. It also fails with p = ∞ and
A = [0, 1] if S is polynomially bounded, by quasianalyticity (4.16). We do not know if
4.22 holds with p = ∞ if S is exponential.

5. Some special properties of S(RR
an) and S(Ran,exp)

Let functions fj : Rn(j) → R (j in some index set J) be given, and let R denote
(R,+, ·, (fj)j∈J), the field of real numbers equipped with the functions fj for j ∈ J .

We define the R-functions on Rn inductively as follows:
(1) The projection functions x 7→ xi : Rn → R (i = 1, . . . , n) are R-functions on Rn.
(2) If g, h : Rn → R are R-functions, then −g, g+ h and g · h are R-functions on Rn.
(3) If j ∈ J and g1, . . . , gn(j) are R-functions on Rn, then fj(g1, . . . , gn(j)) is an

R-function on Rn.
Note that all R-functions belong to S(R,+, ·, (fj)j∈J).

5.1. Let R be either RR
an or (Ran,exp, log) (where we put log(x) := 0 for x ≤ 0); put

S = S(R) and let n ∈ N.

(1) Every set in Sn is a finite union of sets of the form

{x ∈ Rn : f(x) = 0, g1(x) < 0, . . . , gl(x) < 0 }

where f, g1, . . . , gl are R-functions on Rn.
(2) Given f : A → R in Sn+1, there are R-functions f1, . . . , fl on Rn such that for

every x ∈ Rn there is an i ∈ {1, . . . , l} with f(x) = fi(x); that is, f is given
piecewise by R-functions.

(3) S has analytic decomposition.
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(See [7], [5] and [19].)

For RR
an, we have an analog of Puiseux expansion of 1-variable subanalytic functions:

5.2. Let f : (0, ε) → R belong to S(RR
an) with f(t) 6= 0 for all t ∈ (0, ε). Then there exist

d ∈ N, a convergent real power series F (Y1, . . . , Yd) with F (0) 6= 0, and r0, r1, . . . , rd ∈ R
with r1, . . . , rd > 0 such that f(t) = tr0F (tr1 , . . . , trd) for all sufficiently small positive t.

(See [19].)

There is also a stronger version of this fact in which f depends on parameters (see
[8]); it is used to establish the following extension of Tamm’s theorem [25]:

5.3. Let f : A → R belong to S(RR
an), A ⊆ Rm+n. Then there exists N ∈ N such that

for all x ∈ Rm and all open sets U ⊆ Rn with

U ⊆ Ax := { y ∈ Rn : (x, y) ∈ A },

if fx is CN on U , then fx is analytic on U .

(Here, fx denotes the function y 7→ f(x, y) : Ax → R.)
This result extends Tamm’s theorem simultaneously in two ways: (i) the domain Ax

and the function fx varies with x, with an N independent of x; (ii) the function f need
not be subanalytic. It follows easily—see Appendix B.8(5)—that the set { (x, y) ∈ A :
fx is analytic at y } belongs to S(RR

an). Using this fact, it is not hard to show that every
structure S on (R,+, ·) with S ⊆ S(RR

an) has analytic decomposition.

5.4. Note. The preceding type of result never holds in o-minimal structures S on
(R,+, ·) which are not polynomially bounded, even with “C∞” in place of “analytic”:
By growth dichotomy (4.12), the exponential function belongs to every such S, and thus
the function F : (−1, 1)2 → R given by

F (x, y) :=
{ |y|1/|x| · exp

(
−1/(x2 + y2)

)
, xy 6= 0

0, otherwise

belongs to S. For x ∈ (−1, 1) we have that Fx is C∞ at y = 0 if and only if x = 0 or
x = 1/(2k) with k a nonzero integer, so the set

{ (x, y) ∈ (−1, 1)2 : Fx is C∞ at y }

does not belong to S. Also note that for each positive integer k, F is Ck on some open
neighborhood Uk of (0, 0), but is not C∞ on any neighborhood of (0, 0); consequently,

Reg1(Γ (F )) ⊃ Reg2(Γ (F )) ⊃ · · · ⊃ Regk(Γ (F )) ⊃ · · ·

is a strictly decreasing chain, whose intersection strictly contains Reg∞(Γ (F )). This
provides a counterexample to a conjecture of Shiota; see §2 of [24].
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5.5. Exponential bounds. Let f : R → R belong to S(Ran,exp). Then there exists
some compositional iterate expN of exp such that f(t) = O(expN (t)) as t→ +∞.

(See [6].)

Applying this together with 4.18, 4.20 and 4.21, one obtains for S(Ran,exp) “expo-
nential” versions of the  Lojasiewicz inequality and Hölder continuity (4.14) as well as
Whitney regularity (4.15). (See also Loi [14] for various refinements and applications of
exponential  Lojasiewicz inequalities.)

Remark. Let S be a structure on (R,+, ·) and suppose that the statement of 5.5 holds
with “S” in place of “S(Ran,exp)”; we then say that S is exponentially bounded. We
do not know if there are o-minimal structures on (R,+, ·) that are not exponentially
bounded.
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Appendices

We here provide proofs of assertions made earlier for which no references were given.
We do not prove these assertions in quite the same form or order in which they were
made.

Recall that |x| denotes sup{ |xi| : i = 1, . . . , n } for x ∈ Rn. For x, y ∈ Rn we let x.y
denote the dot product x1y1 + · · ·+ xnyn.

Appendix A. Logical formalism

There is one easy technique that we use over and over again to show that certain
constructions on sets belonging to a structure on (R,+, ·) give again sets belonging to
the same structure, and hence (via the correspondence of §3) that certain constructions
on C-sets give again C-sets. (For example, we will apply this technique in a routine way
to show that the conormal bundle of a smooth C-set is again a C-set.) To explain this, let
x and y be variables ranging over sets X and Y respectively and let ϕ(x, y) and ψ(x, y)
be formulas (conditions on (x, y)) defining subsets Φ and Ψ of X × Y . Then we have the
following correspondence between formulas on the left and sets on the right:

¬ϕ(x, y) defines the complement of Φ in X × Y ,

ϕ(x, y) ∨ ψ(x, y) defines the union Φ ∪Ψ,

ϕ(x, y) ∧ ψ(x, y) defines the intersection Φ ∩Ψ,

∃xϕ(x, y) defines the projection πΦ ⊆ Y , where π is the
projection map X × Y → Y ,

∀yψ(x, y) defines {x ∈ X : {x} × Y ⊆ Ψ}.

What is the point of using logical symbols, when the more standard set notation serves
the same purpose? An advantage of the logical notation is that it appeals to our natural
linguistic and logical abilities. For instance, given a function f : X → Y the set f(X) is
defined by the equivalence

y ∈ f(X) ⇔ ∃x[ f(x) = y ].

Since the formula “f(x) = y” defines Γ (f), this equivalence exhibits f(X) as the image
of Γ (f) under the projection map X × Y → Y according to the correspondence above
between formulas and sets. This reduction of arbitrary maps to projection maps is used
all the time; the bland set notation “f(X)” fails to suggest this reduction. Note also that
the familiar equivalence

∀yψ(x, y) ⇔ ¬∃y¬ψ(x, y)

shows the subset of X defined by ∀yψ(x, y) to be obtained from Ψ by first taking the
complement of Ψ, then projecting this to X, and again taking the complement. The
logical formalism does part of our thinking for us, if we pay attention! This technique
is particularly useful when dealing with logically complicated notions like continuity and
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differentiability, which we simply express in the usual way with ε’s and δ’s, and quantifiers
over them. In such cases we often deal with formulas with more than two variables, and
repeated quantifiers, like in ∀y∃zξ(x, y, z), where z ranges over some set Z: this formula
defines the set

{x ∈ X : for all y ∈ Y there is z ∈ Z such that ξ(x, y, z) holds }.

The correspondence above between formulas and sets shows this set to be obtained by
a series of projections and complementations from the set Ξ ⊆ X × Y × Z defined by
ξ(x, y, z).

The following notational conventions are also employed: A condition θ(x) on elements
x ∈ X defining a set Θ ⊆ X may in some cases be more conveniently viewed as a condition
on pairs (x, y) ∈ X×Y , so that it then defines the set Θ×Y . Instead of ϕ(x, y)∧ψ(x, y)
we also write ϕ(x, y) & ψ(x, y). We use the implication sign, as in ϕ(x, y) → θ(x), to
abbreviate (¬ϕ(x, y)) ∨ θ(x). We write ∃v1 · · · vk instead of ∃v1 · · · ∃vk and similarly for
the universal quantifier ∀.

Appendix B. Results about structures on (R,+, ·)

Throughout this appendix, let S be a given structure on (R,+, ·).

B.1. If A ∈ Sm and B ∈ Sn, then A×B ∈ Sm+n.

Proof. Note that A×B = (A× Rn) ∩ (Rm ×B) and use S1 and S2 of §2. �

B.2. Let B ∈ Sn, and let i(1), . . . , i(n) be a sequence in {1, . . . ,m} (possibly with
repetitions). Then the set A ⊆ Rm defined by the condition

(x1, . . . , xm) ∈ A⇔
(
xi(1), . . . , xi(n)

)
∈ B

belongs to S. (“Permuting and identifying variables is allowed.”)

Proof. Note that

(x1, . . . , xm) ∈ A
⇔

∃y1 · · · yn

[
xi(1) = y1 & · · · & xi(n) = yn & (y1, . . . , yn) ∈ B

]
. �

B.3. Let f = (f1, . . . , fn) : A→ Rn with A ⊆ Rm belong to S. Then:

(1) A ∈ Sn.
(2) f(A) ∈ Sm.
(3) If B ∈ Sn, then f−1(B) ∈ Sm.
(4) If A′ ∈ Sm and A′ ⊆ A, then f |A′ belongs to S.
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Proof.
(1) For all x ∈ Rm,

x ∈ A⇔ ∃y1 · · · yn [ (x, y1, . . . , yn) ∈ Γ (f) ] .

(2) For all y ∈ Rn,

y ∈ f(A) ⇔ ∃x1 · · ·xm [ (x1, . . . , xm, y) ∈ Γ (f) ] .

(3) For all x ∈ Rm,

x ∈ f−1(B) ⇔ ∃y [ (x, y) ∈ Γ (f) & y ∈ B ] .

(4) For all (x, y) ∈ Rm+n,

(x, y) ∈ Γ (f |A′) ⇔ x ∈ A′ & (x, y) ∈ Γ (f). �

B.4. A map f = (f1, . . . , fn) : A → Rn with A ⊆ Rm belongs to S if and only if each
fi : A→ R belongs to S.

Proof. Suppose that f = (f1, . . . , fn) : A → Rn belongs to S, A ⊆ Rm. Let i ∈
{1, . . . , n}; then for all (x, y) ∈ Rm+1 we have

y = fi(x)
⇔

x ∈ A & ∃z1 · · · zn [ y = zi & (x, z1, . . . , zn) ∈ Γ (f) ] .

If f1, . . . , fn : A→ R belong to S, then for all (x, y1, . . . , yn) ∈ Rm+n we have

(x, y1, . . . , yn) ∈ Γ (f)
⇔

x ∈ A & (x, y1) ∈ Γ (f1) & · · · & (x, yn) ∈ Γ (fn). �

The other facts listed in the first four paragraphs of 2.1 are proved similarly and are
left as exercises.

B.5. If A ∈ Sm, then cl(A), int(A) ∈ Sm.

Proof. Note that

(x1, . . . , xm) ∈ cl(A)
⇔

∀y1 · · · ym∀z1 · · · zm[ (y1 < x1 < z1 & · · · & ym < xm < zm) →
∃a1 · · · am(y1 < a1 < z1 & · · · & ym < am < zm & (a1, . . . , am) ∈ A) ].

Now use the interpretation of the logical symbols in terms of operations on sets. �
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B.6. Let A,B belong to S, with A ⊆ B ⊆ Rm and A (relatively) open in B. Then there
is an open U ⊆ Rm that belongs to S with U ∩B = A.

Proof. Let U be the union of all open boxes in Rm whose intersection with B is contained
in A. The equivalence

(x1, . . . , xm) ∈ U
⇔

∃y1 · · · ym∃z1 · · · zm[∀a1 · · · am(y1 < a1 < z1 & · · · & ym < am < zm) →
(a1, . . . , am) ∈ A) & (y1 < x1 < z1 & · · · & ym < xm < zm) ]

shows that U belongs to S. �

In the following we identify an R-linear map from Rn into Rm with itsm×nmatrix with
respect to the standard bases, and identify the R-linear space of real m×n matrices with
Rmn via some linear ordering of the set of pairs (i, j) with 1 ≤ i ≤ m and 1 ≤ j ≤ n. In
particular, if a function f : U → Rm with U ⊆ Rn is differentiable at a point x ∈ int(U),
its derivative Df(x) is considered as an element of Rmn.

B.7. Let U ⊆ Rn and let f : U → Rm belong to S (in particular U ∈ Sn).
(1) The set {x ∈ U : f is continuous at x } belongs to S.
(2) The set U ′ := {x ∈ int(U) : f is differentiable at x } belongs to S.
(3) The derivative Df : U ′ → Rmn belongs to S.
(4) The set consisting of all x ∈ U such that f is C1 on an open neighborhood of x

contained in U belongs to S.
(5) For each positive integer p the set consisting of all x ∈ U such that f is Cp on an

open neighborhood of x contained in U belongs to S.
(6) If f : U → Rm is C1, then the sets {x ∈ U : rk f(x) = i } belong to S for

i = 1, . . . ,m.

Proof. Let x, y range over U . Then (1) follows from the equivalence

f is continuous at x
⇔

∀ε [ ε > 0 → ∃δ{δ > 0 & ∀y(|y − x| < δ → |f(y)− f(x)| < ε)} ] .

(From now on we write “∀ε > 0 . . . ”, et cetera, to abbreviate “∀ε[ ε > 0 → . . . ]”.) To
prove (2) and (3) we may reduce to the case m = 1 (which is notationally simpler), and
in this case we note that (2) and (3) follow from the equivalence

Df(x) = r

⇔
x ∈ int(U) &

∀ε > 0 ∃δ > 0 ∀y[ |y − x| < δ → |f(y)− f(x)− r.(y − x)| < ε|y − x| ].
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Note that the set defined in (4) is simply the interior of the set of points x ∈ U ′ at
which Df is continuous; hence (4) follows from applying (1) to Df . For (5), use (4) p
times. For (6), note that by (3) the map Df : U → Rmn belongs to S. Now use that for
all x ∈ U and i ∈ N we have

rk f(x) = i⇔ some i× i minor of the m× n matrix Df(x) is nonzero

and all (i+ 1)× (i+ 1) minors of Df(x) are zero. �

We actually need these results “with parameters”.

Notation. Given U ⊆ RN+n and a ∈ RN , put Ua := {x ∈ Rn : (a, x) ∈ U } and given a
map f : U → Rm define fa : Ua → Rm by fa(x) := f(a, x).

B.8. Let f : U → Rm belong to S, U ⊆ RN+n.

(1) The set { (a, x) ∈ U : fa is continuous at x } belongs to S.
(2) The set U ′ := { (a, x) ∈ U : x ∈ int(Ua) and fa is differentiable at x } belongs to

S.
(3) The map (a, x) 7→ D(fa)(x) : U ′ → Rmn belongs to S.
(4) The set of all (a, x) ∈ U such that fa is C1 on an open neighborhood of x contained

in Ua belongs to S.
(5) For each positive integer p the set of all (a, x) ∈ U such that fa is Cp on an open

neighborhood of x contained in Ua belongs to S.

The proofs are just like those for B.7.
For the next three results we fix a set A ⊆ Rn. We also let p be a positive integer and

k ∈ {0, . . . , n}.

B.9. If A belongs to S then Regp
k(A) belongs to S.

Proof. Let λ range over the strictly increasing functions {1, . . . , k} → {1, . . . , n}, and let
πλ : Rn → Rk be given by

πλ(x1, . . . , xn) :=
(
xλ(1), . . . , xλ(k)

)
.

Then
Regp

k(A) =
⋃
λ

Regp
k,λ(A)

where Regp
k,λ(A) is the set of all a ∈ A for which there is an ε > 0 such that the map

πλ|B(a, ε) ∩A : B(a, ε) ∩A→ Rk

is injective with open image πλ(B(a, ε)∩A) in Rk and that the inverse from πλ(B(a, ε)∩A)
into Rn is Cp. Routine “logical” arguments show that S contains the set Uλ of all
(ε, a, x) ∈ R1+n+k such that ε > 0, a ∈ A,

πλ|B(a, ε) ∩A : B(a, ε) ∩A→ Rk
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is injective with open image πλ(B(a, ε) ∩ A) in Rk, and x ∈ πλ(B(a, ε) ∩ A). Define the
function fλ : Uλ → Rn by letting fλ(ε, a, x) be the unique y ∈ B(a, ε)∩A with πλ(y) = x.
Then fλ belongs to S. The above description of Regp

k,λ(A) amounts to the following
equivalence, where the variable a ranges over Rn:

a ∈ Regp
k,λ(A) ⇔ a ∈ A & ∃ε > 0

[
(fλ)(ε,a) is Cp on int((Uλ)(ε,a))

]
.

By B.8(5) we obtain Regp
k,λ(A) ∈ Sn, and thus Regp

k(A) belongs to S. �

By a similar argument, we have:

B.10. If A ⊆ RN+n belongs to S then { (a, x) ∈ RN+n : x ∈ Regp
k(Aa) } belongs to S.

Note. Tamm’s theorem [25] implies that B.9 holds with p = ω for S(Ran), and in [8]
this fact is extended to show that B.10 holds with p = ω for S(RR

an).

B.11. Suppose that A belongs to S and is a C1 submanifold of Rn. Then the tangent
bundle TA and the conormal bundle T ∗ARn belong to S.

Proof. We use the notation of the preceding proof. Let dimA = k. Note that
A =

⋃
λA(λ), where A(λ) := Reg1

k,λ(A) is clearly open in A. Hence TA =
⋃

λ TA(λ).
With variables a, b ranging over Rn we have:

(a, b) ∈ TA(λ) ⇔ a ∈ A(λ) & b = Dfλ(πλ(a)),

which shows that TA(λ) belongs to S. Hence TA belongs to S. Similarly,

T ∗ARn =
⋃
λ

T ∗A(λ)R
n,

and with a, b and x ranging over Rn we have the equivalence

(a, b) ∈ T ∗A(λ)R
n ⇔ a ∈ A(λ) & ∀x [ (a, x) ∈ TA(λ) → b.x = 0 ] ,

which shows that T ∗A(λ)R
n belongs to S. Hence T ∗ARn belongs to S. �

B.12. Let X,Y be C1 submanifolds of Rn belonging to S with Y ⊆ fr(X). Then the
set W (X,Y ) belongs to S.

The proof in [15] for S = S(R,+, ·, exp, (r)r∈R) goes through for arbitrary structures
on (R,+, ·).

Appendix C. Results about o-minimal structures on (R,+, ·)

Throughout this appendix we let p be a fixed positive integer and S be an o-minimal
structure on (R,+, ·). The reader is advised to recall the monotonicity and cell decom-
position theorems (4.1 and 4.2); we will use these results often.

The next two results are essential for proving Whitney stratifiability in the o-minimal
and analytic-geometric contexts.
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C.1. Proposition. Let X,Y be nonempty C1 submanifolds of Rn belonging to S with
Y ⊆ fr(X). Then dim(Y \W (X,Y )) < dimY .

The proof of this in [15] for the special case that S = S(R,+, ·, exp, (r)r∈R) goes
through for arbitrary o-minimal structures on (R,+, ·).

C.2. Lemma. Let f : S → Rn belong to S, ∅ 6= S ⊆ Rm. Then there is a finite
collection A ⊆ Sm of disjoint Cp cells in Rm, each contained in S, such that dim(S \⋃
A) < dimS, and for each A ∈ A the map f |A : A→ Rn is Cp and rk f |A is constant.

Proof. First, by cell decomposition we take a finite partition P ⊆ Sm of S into Cp cells
in Rm such that for each P ∈ P the map f |P : P → Rn is Cp. Note that for each P ∈ P
we have P = P0 ∪ · · · ∪ Pn, where

Pi := {x ∈ P : (rk f |P )(x) = i };

by B.7(6) each such Pi belongs to S. Next (again by cell decomposition) we refine P to
a finite partition P ′ ⊆ Sm of S into disjoint Cp cells in Rm such that P ′ is compatible
with {Pi : P ∈ P & i ∈ {0, . . . , n} }. Then

A := {A ∈ P ′ : dimA = dimS }

has the desired properties. To see this, let A ∈ A and take P ∈ P and i ∈ {0, . . . , n}
such that A ⊆ Pi. Then A and P are submanifolds of Rm of equal dimension dimS, so
A is open in P and thus (rk f |A)(x) = i for all x ∈ A. �

Remarks.
(1) In C.2 we may require in addition that f |A be injective for each A ∈ A with

rank f |A = dimA. To see this, let A ∈ A and rk f |A = dimA. Then the fibers A∩f−1(y)
(y ∈ Rn) of f |A are discrete subsets of A, hence by 4.4 there exists N ∈ N such that
card(A ∩ f−1(y)) ≤ N for all y ∈ Rn. An N -fold application of “definable choice” (4.5),
followed by a cell decomposition, gives a finite partition PA of A into Cp cells on each of
which f is injective. Now replace each A as above by the cells in PA that have the same
dimension as A.

(2) The rest of Whitney stratification in the o-minimal context is more efficiently
treated in Appendix D, since the arguments are just variants of those needed in the
setting of analytic-geometric categories; see D.18.

C.3. Note. Let A ⊆ Rm be locally closed but not closed. Then

x 7→ (x, 1/d(x, fr(A))) : A→ Rm+1

maps A homeomorphically onto the closed set

B := { (x, y) ∈ Rm+1 : x ∈ cl(A) & y > 0 & d(x, fr(A)) = 1/y }.

(Here, d(x, Y ) := inf{ |x− y| : y ∈ Y } for x ∈ Rn and ∅ 6= Y ⊆ Rn.) Note that A is the
projection of B on the first m coordinates and that if A belongs to S then so does B.

The next result grew from correspondence between Miller and T.L. Loi.
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C.4. Proposition. Let g : A × R → R belong to S with A ⊆ Rm. Then there exist
functions ψ : R → R and ρ : A → R belonging to S such that |g(x, t)| < ψ(t) for all
x ∈ A and t > ρ(x).

Proof. Replacing g by |g|, we assume that g is everywhere nonnegative. The set

{x ∈ A : lim
t→+∞

g(x, t) = +∞}

belongs to S, so we may reduce to the case that limt→+∞ g(x, t) = +∞ for every x ∈ A.
By monotonicity, for each x ∈ A there exists s > 0 (depending on x) such that t 7→ g(x, t)
is strictly increasing on (s,∞); let ξ(x) be the infimum of all such s. Note that ξ : A→ R
belongs to S. By cell decomposition, we may reduce to the case that ξ is continuous, g
is continuous on { (x, t) ∈ A × R : t > ξ(x) } and A is locally closed; indeed by C.3 we
may even assume that A is closed. Define ψ : (0,∞) → R by

ψ(t) := sup{ g(x, ξ(x) + t) : x ∈ A & |x| ≤ t }.

Then ψ belongs to S, and for all x ∈ A and t > ρ(x) := max{ξ(x), |x|} we have

g(x, t) < g(x, ξ(x) + t) ≤ ψ(t). �

Recall that Φp
S denotes the set of all odd, increasing bijections f : R → R belonging

to S that are Cp on R and p-flat at 0.

C.5. Lemma. Let a > 0 and f : [0, a] → R belonging to S be continuous and strictly
increasing with f(0) = 0. Then there exists φ ∈ Φp

S such that φ(t) < f(t) for all
sufficiently small positive t.

Proof. If there exists n ∈ N such that f(t) ≥ tn as t→ 0+, then take φ(t) = tm where m
is any odd integer strictly greater than n and p. So suppose that limt→0+ t−nf(t) = 0 for
every n ∈ N. By cell decomposition, we may assume that f is Cp on (0, a) and that a < 1.
Put φ(t) := tf(at2/(1+t2)); then φ is clearly Cp on R\{0}, φ(t) < f(t) for all sufficiently
small t > 0, and limt→0 φ(t)/tp = 0. By l’Hospital’s rule, we have limt→0 φ

(k)(t) = 0 for
k = 0, . . . , p, and hence φ ∈ Φp

S. �

C.6. Corollary. Let f : R → R belong to S. Then there exists φ ∈ Φp
S such that

|f(t)| < 1/φ(1/t) for all sufficiently large positive t.

Proof. If f is bounded as t→ +∞ then the result is clear, so suppose (by monotonicity)
that limt→+∞ |f(t)| = +∞. Apply the preceding lemma to t 7→ |1/f(1/t)| (which is
defined, continuous and strictly increasing on some interval (0, a) and belongs to S). �

C.7. Lemma. Let f : A× (0,∞) → R belong to S, A ⊆ Rm. Then there exists φ ∈ Φp
S

such that limt→0+ φ(t)f(x, t) = 0 for each x ∈ A.

Proof. Applying C.4 and C.6 to the function

(x, t) 7→ f(x, 1/t) : A× (0,∞) → R,

we obtain θ ∈ Φp
S such that limt→0+ θ(t)f(x, t) ∈ [−1, 1] for every x ∈ A. Now put

φ := θ3 (where θ3 denotes the cube of θ). �
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C.8. Lemma. Let g : A→ R, f1, . . . , fl : A \Z(g) → R belong to S and be continuous,
with A locally closed in Rm. Then there exists φ ∈ Φp

S such that φ(g(x))fi(x) → 0 as
x→ y, x ∈ A \ Z(g), for each y ∈ Z(g) and i = 1, . . . , l.

Proof. By C.3 we may suppose that A is closed. For y ∈ Z(g) and t > 0 put

A(y, t) := {x ∈ A : |x− y| ≤ 1 & |g(x)| = t }.

Note that A(y, t) is compact and belongs to S, and if x ∈ A(y, t) then x ∈ A \ Z(g).
Define G : Z(g)× (0,∞) → R by

G(y, t) :=
{

max{ |(f1(x), . . . , fl(x))| : x ∈ A(y, t) }, if A(y, t) 6= ∅
0, otherwise.

Take φ as in C.7 and note that |φ ◦ g| = φ ◦ |g|. �

Notation. Let Cp
S(Rn) denote the set of all Cp functions Rn → R belonging to S.

C.9. Proposition. Let f, g : Rn → R belonging to S be continuous, of class Cp on
Rn \ Z(g), with Z(f) ⊆ Z(g). Then there exist φ ∈ Φp

S and h ∈ Cp
S(Rn) such that

φ ◦ g = hf .

Proof. We just do the case p = 1; the proof for p an arbitrary positive integer is similar
but notationally cumbersome.

Put U := Rn\Z(g). By C.8, there exists θ ∈ Φ1
S such that for each function σ : U → R

from the collection

{1/f |U,D1f |U, . . . ,Dnf |U,D1g|U, . . . ,Dng|U}

and every y ∈ bd(Z(g)) we have limx→y θ(g(x))σ(x) = 0. (Note that Z(f)∩U = ∅.) Put
φ := θ3 and define h : Rn → R by

h(x) :=
{

(φ(g(x))/f(x), x ∈ U
0, otherwise.

Then for i = 1, . . . , n and x ∈ U we have

Dih(x) =
f(x)3(θ(g(x)))2θ′(g(x))Dig(x)−Dif(x)(θ(g(x)))3

f(x)2
.

Let y ∈ bd(Z(g)). Since θ′(0) = 0 and g(x) → 0 as x→ y, it follows that Dih(x) → 0 as
x→ y, x ∈ U . Hence, by monotonicity and l’Hospital’s rule, each partial of h exists at y
with value 0. Thus, h ∈ C1

S(Rn). �
(In general, for a fixed positive integer p one specifies a finite subset S of the ring of

functions on U generated over Z by 1/f |U and all partials of f |U and g|U of order less
than or equal to p. One then obtains some θ ∈ Φp

S as in C.8 applied to S and then puts
φ := θM for some suitable odd integer M > p.)
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C.10. Corollary. Let g : Rn → R belonging to S be continuous and Cp on Rn \ Z(g).
Then there exists φ ∈ Φp

S such that φ ◦ g ∈ Cp
S(Rn).

Proof. Apply the preceding result with f = 1. �

The next result was established by Bierstone, Milman and Paw lucki for the subanalytic
category [unpublished]. The proof below is patterned after theirs; we thank Deirdre
Haskell for pointing out an error in an earlier version.

C.11. Theorem. Let A ∈ Sn be closed. Then there exists f ∈ Cp
S(Rn) with A = Z(f).

Proof. We proceed by induction on n ≥ 0 and dimA. The case n = 0 is trivial. Assume
now that n > 0 and A ∈ Sn is closed with dimA = d ≥ 0.

First, suppose that d = n. Then dim bd(A) < n, so inductively we may assume there
exists g ∈ Cp

S(Rn) with Z(g) = bd(A). By C.10, there exists φ ∈ Φp
S such that the

function

f(x) :=
{
φ(g(x)), x /∈ int(A)
0, x ∈ int(A)

belongs to Cp
S(Rn) and Z(f) = A.

Now suppose that d < n. Replacing A with cl(τn(A)) (τn as in §3), we reduce to the
case that A is compact. By cell decomposition there are finitely many Cp maps

ψ1 : U1 → Rn−d(1), . . . , ψk : Uk → Rn−d(k)

belonging to S, each Ui open in Rd(i) with 0 ≤ d(i) ≤ d, such that

A = cl(Γ (ψ1)) ∪ · · · ∪ cl(Γ (ψk)).

It suffices to consider the case that k = 1, for if we have f1, . . . , fk ∈ Cp
S(Rn) with

Z(fi) = cl(Γ (ψi)) for i = 1, . . . , k then the product f1 · · · fk belongs to Cp
S(Rn) and has

zero set equal to A.
We have now reduced to the case that A is the closure of the graph of a Cp map

ψ : U → Re belonging to S with e = n− d and U open in Rd, U 6= ∅. Inductively, there
exists g ∈ Cp

S(Rd) with Z(g) = bd(U). Squaring, we may assume that g is everywhere
nonnegative. For (x, y) ∈ Rd × Re put

G(x, y) :=
{ ||y − ψ(x)||g(x), x ∈ U
g(x), otherwise.

(Recall that ||v|| denotes the euclidean norm of v ∈ Rn.) Note that G belongs to S, and
is continuous, nonnegative and Cp off its zero set Z(G) = (bd(U) × Re) ∪ A. Applying
C.10, there exists F1 ∈ Cp

S(Rn) with

Z(F1) = (bd(U)× Re) ∪A.

To finish the proof, it now suffices to find F2 ∈ Cp
S(Rn) such that Γ (ψ) ⊆ Z(F2) and

F2(x, y) > 0 for all (x, y) ∈ (bd(U)×Re) \A; by continuity we then have A ⊆ Z(F2) and
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thus A = Z(F 2
1 +F 2

2 ). Since A\Γ (ψ) = fr(Γ (ψ)) is closed, by the inductive assumptions
and 4.7 there exists h ∈ Cp

S(Rn) with h ≥ 0 and

Z(h) = A \ Γ (ψ) = (bd(U)× Re) \A.

Define H : Rd → R by

H(x) :=
{
h(x, ψ(x)), x ∈ U
0, x ∈ Rd \ U.

Applying C.10, we obtain φ ∈ Φp
S such that φ ◦H ∈ Cp

S(Rd). Then F2 : Rn → R given
by (x, y) 7→ φ(h(x, y))− φ(H(x)) has the required properties. �

C.12. Corollary. Let A,B ∈ Sn be disjoint and closed. Then there exists g ∈ Cp
S(Rn)

with Z(g) = A, Z(g − 1) = B and 0 ≤ g ≤ 1.

Proof. There exist f1, f2 ∈ Cp
S(Rn) with Z(f1) = A and Z(f2) = B. Now put gi :=

f2
i /(1 + f2

i ) for i = 1, 2, and g := (g1 + g1g2)/(g1 + g2). �

An argument similar to (but easier than) that of C.9 yields the following:

C.13. Proposition. Let f, g : A → R belonging to S be continuous, ∅ 6= A ⊆ Rn

locally closed, with Z(f) ⊆ Z(g). Then there exists φ ∈ Φp
S and h : A → R continuous

belonging to S with φ ◦ g = hf .

C.14. Generalized  Lojasiewicz inequality. Let f, g : A → R belonging to S be
continuous, with Z(f) ⊆ Z(g) and ∅ 6= A ⊆ Rn compact. Then there exists φ ∈ Φp

S such
that |φ(g(x))| ≤ |f(x)| for all x ∈ A.

Proof. There exist θ ∈ Φp
S and h : A → R continuous such that θ ◦ g = hf . Put

C := 1 + max{ |h(x)| : x ∈ A } and φ := θ/C. �

C.15. Generalized Hölder continuity. Let f : A→ R belonging to S be continuous,
∅ 6= A ⊆ Rn compact. Then there exists φ ∈ Φp

S such that

|f(x)− f(y)| ≤ φ−1(|x− y|)

for all x, y ∈ A.

Proof. Applying C.14 to the functions

(x, y) 7→ |x− y| : A2 → R, (x, y) 7→ |f(x)− f(y)| : A2 → R

we obtain θ ∈ Φp
S and C > 0 such that θ(|f(x)− f(y)|) ≤ C|x− y| for all x, y ∈ A. Then

|f(x)− f(y)| ≤ θ−1(C|x− y|) for all x, y ∈ A. Put φ := θ/C. �

We now set out to prove the results on paths of 4.21.
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C.16. Lemma. Let g = (g1 . . . , gn) : [a, b] → Rn be a path.

(1) If each gi is monotone, then g is rectifiable with length(g) ≤ ||g(b)−g(a)||1, where
||x||1 :=

∑n
i=1 |xi| for x = (x1, ..., xn) ∈ Rn.

(2) If g belongs to S, then g is rectifiable.

Proof. For (1), we may reduce to the case that each gi is increasing, so that with a =
a0 < a1 < · · · < ak = b we have:

k∑
i=1

||g(ai)− g(ai−1)|| ≤
k∑

i=1

||g(ai)− g(ai−1)||1 = ||g(b)− g(a)||1.

Now (2) is immediate from (1) and the monotonicity theorem. �

We need a slightly more precise result. Let g = (g1, . . . , gn) : [a, b] → Rn be a path
belonging to S. Define

Mono(g) := { t ∈ (a, b) : there exist a′, b′ with a < a′ < t < b′ < b such that

some gi is increasing on (a′, t) and strictly decreasing on (t, b′),

or some gi is decreasing on (a′, t) and strictly increasing on (t, b′) }.

Note that Mono(g) is finite, and that if a = t0 < t1 < · · · < tk = b and all points of
Mono(g) are among t1, . . . , tk−1, then length(g) ≤

∑k
i=1 ||g(ti)− g(ti−1)||1.

C.17. Lemma. Let B ∈ Sn be compact and h : B → Rm be a continuous map
belonging to S. Then there exists ψ ∈ Φp

S such that length(h ◦ g) ≤ Nψ−1(length(g))
for all paths g : [a, b] → B belonging to S, where N = 1 + card(Mono(h ◦ g)).

Proof. By C.15, there exists ψ ∈ Φp
S such that ||h(x) − h(y)||1 ≤ ψ−1(||x − y||) for all

x, y ∈ B. Let g : [a, b] → B be a path belonging to S. Let t1 < · · · < tN−1 be the
elements of Mono(h ◦ g) and put t0 := a and tN := b. Then

length(h ◦ g) ≤
N∑

i=1

||h(g(ti))− h(g(ti−1))||1

≤
N∑

i=1

ψ−1(||g(ti)− g(ti−1)||) ≤ Nψ−1(length(g)). �

C.18. Generalized Whitney regularity. Let A ∈ Sn be nonempty , compact and
connected. Then there exist φ ∈ Φp

S and a map γ : A2 × [0, 1] → A belonging to S such
that for every x, y ∈ A,

γx,y := t 7→ γ(x, y, t) : [0, 1] → A

is a path from x to y, with length(γx,y) ≤ φ−1(||x− y||).

Proof. By the triangulation theorem there is a finite simplicial complex K in Rn spanning
the polyhedron |K| and a homeomorphism h : |K| → A belonging to S. By an elementary
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argument there is a semialgebraic map σ : |K|×|K|× [0, 1] → |K| and a positive constant
C such that for all p, q ∈ |K| the map σp,q : [0, 1] → |K| given by t 7→ σ(p, q, t) is a path
from p to q with length(σp,q) ≤ C||p− q||. In particular, for all x, y ∈ A we have

length
(
σh−1(x),h−1(y)

)
≤ C||h−1(x)− h−1(y)||,

so by C.15 there exists φ1 ∈ Φp
S such that

length
(
σh−1(x),h−1(y)

)
≤ φ−1

1 (||x− y||)

for all x, y ∈ A. Define γ : A×A× [0, 1] → A by

γ(x, y, t) := h(σ(h−1(x), h−1(y), t)).

Now γ belongs to S, so the set

{ (x, y, t) ∈ A×A× [0, 1] : t ∈ Mono (γx,y)}

also belongs to S. Since for every x, y ∈ A we have that card(Mono(γx,y)) is finite, by
uniform bounds (4.4) there exists N ∈ N such that 1 + card(Mono(γx,y)) ≤ N for all
x, y ∈ A. Applying C.17 (with B = |K|) we get φ2 ∈ Φp

S such that for x, y ∈ A:

length(γx,y) = length
(
h ◦ σh−1(x),h−1(y)

)
≤Nφ−1

2

(
length

(
σh−1(x),h−1(y)

))
≤Nφ−1

2

(
φ−1

1 (||x− y||
)
.

Now put φ(t) := φ1(φ2(t/N)) for t ∈ R. �

Remarks.
(1) Proposition 4.21(1) is obtained by a similar use of triangulation (4.10).
(2) Various refinements of 4.21 are easily obtained by choosing the map σ in the proof

to have extra properties; see e.g. [11].
(3) The argument above is somewhat more elementary than the proofs for the sub-

analytic case in [1] and [11].

C.19. Let A ∈ Sn, dimA = 1. Then there exist an open neighborhood U ∈ Sn of 0 and
injective Cp maps γ1, . . . , γk : [0, 1) → Rn belonging to S such that U ∩ A \ {0} is the
disjoint union of γ1(0, 1), . . . , γk(0, 1).

Proof. By cell decomposition there is an open neighborhood U ∈ Sn of 0 such that
U ∩ A \ {0} is a finite disjoint union of 1-dimensional Cp cells D1, . . . , Dk ⊆ Rn with
0 ∈ fr(Di) for i = 1, . . . , k. Fix D := Di for some i ∈ {1, . . . , k}. It suffices to show
that there is an injective Cp map γ : [0, 1) → Rn belonging to S with γ(0) = 0 and
γ(0, 1) = D. By the definition of 1-dimensional Cp cells there is a Cp diffeomorphism
σ : (0, 1) → D in S ith limt→0+ σ(t) = 0. Now use C.5 to obtain a Cp diffeomorphism
ϕ : (0, 1) → (0, 1) belonging to S such that γ := σ ◦ϕ : (0, 1) → D satisfies |γ(t)| = o(tp)
as t→ 0+. Extending γ to 0 by setting γ(0) = 0 we obtain a Cp map γ : [0, 1) → Rn as
required (cf. the proof of C.5). �

Remark. It is clear that this proof provides γ1, . . . , γk such that each restriction γi|(0, 1)
is a Cp diffeomorphism onto a Cp cell.
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Appendix D. Results about analytic-geometric categories

Let C be an analytic-geometric category; M , N denote arbitrary manifolds of dimen-
sions m and n respectively; the variable x will range over M until further notice. Recall
that we identify the analytic manifold Rn with an open subset of the projective space
Pn(R) via

(y1, . . . , yn) 7→ (1 : y1 : · · · : yn) : Rn → Pn(R).

D.1. All subanalytic sets are C-sets; in particular, Rn ∈ C(Pn(R)).

Proof. By the local definition of subanalytic sets it suffices to show that semianalytic sets
are C-sets; since this question is again local it suffices to consider an analytic function
f : M → R and show that the sets {x : f(x) = 0 } and {x : f(x) > 0 } belong to C(M).
For the first set, use the equivalence

f(x) = 0 ⇔ ∃y ∈ P1(R)[ (x, y) ∈ Γ (f) & y = 0 ];

the fact that Γ (f),M × {0} ∈ C(M × P1(R)) (because

x 7→ (x, f(x)) : M →M × P1(R)

and
x 7→ (x, 0) : M →M × P1(R)

are proper analytic maps); and the properness of the projection map

(x, y) 7→ x : M × P1(R) →M.

To show that {x : f(x) > 0 } ∈ C(M), note the equivalence

f(x) > 0 ⇔ f(x) 6= 0 & ∃y = (y0 : y1) ∈ P1(R)[ f(x).y2
1 − y2

0 = 0 ],

and use that the set { (x, y) ∈M×P1(R) : f(x).y2
1−y2

0 = 0 } is locally given around every
point ofM×P1(R) by the vanishing of an analytic function, hence belongs to C(M×P1(R))
by AG4 of §1 and what we showed earlier. Note that Rn = Pn(R)\{ y ∈ Pn(R) : y0 = 0 },
and that { y ∈ Pn(R) : y0 = 0 } is the hyperplane at infinity. This hyperplane is analytic
in Pn(R), that is, locally given around each point of Pn(R) by the vanishing of an analytic
function. It follows that Rn is subanalytic in Pn(R), and hence a C-set in Pn(R). �

D.2. Each analytic map f : M → N is a C-map.

Proof. This follows from D.1 since Γ (f) is analytic, hence subanalytic in M ×N . �

D.3. Given an open covering (Ui) of M and A ∈ C(M), a map f : A→ N is a C-map if
and only if each restriction f |Ui ∩A : Ui ∩A→ N is a C-map.

Proof. This follows from the definition of C-map by applying axiom AG4 to the open
covering (Ui ×N) of M ×N . �
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D.4. Let A ∈ C(M) and B ∈ C(N). Then A×B ∈ C(M ×N) and the projection maps
A×B → A and A×B → B are C-maps.

Proof. Note first that A × B = (A × N) ∩ (M × B). To see that A × N ∈ C(M × N),
one can by axiom AG4 reduce to the case that N = Rn, and this case follows by n-fold
application of axiom AG2. Using the symmetry M × N ∼= N ×M it also follows that
M ×B is a C-set.

Let πA : A × B → A and πM : M × N → M be the projection maps. Then inside
the manifold (M ×N)×M we have Γ (πA) = Γ (πM )∩ ((A×B)×M). By D.2, we have
Γ (πM ) ∈ C((M ×N)×M). Hence πA is a C-map. �

D.5. Let A ∈ C(M), B ∈ C(N), f : A→ B be a C-map, and let A′ ⊆ A and B′ ⊆ B be
C-sets in M and N respectively , such that f(A′) ⊆ B′. Then f |A′ : A′ → B′ is a C-map.

Proof. Use D.4 and that Γ (f |A′) = Γ (f) ∩ (A′ ×B′). �

D.6. Let A,A′ ∈ C(M) with A′ ⊆ A, and let f : A → N be a proper C-map. Then
f(A′) ∈ C(N).

Proof. Using the properness of f , axiom AG4 and D.5, one easily reduces to the case
that M = Rm and A is compact, and then, with x ranging over Pm(R) and y over N , we
have

y ∈ f(A′) ⇔ ∃x[x ∈ A′ & (x, y) ∈ Γ (f) ].

Since A is bounded in Rm, the sets A′×N and Γ (f) are not only C-sets of Rm×N but also
of Pm(R)×N . Now use the properness of the (analytic) projection map Pm(R)×N → N
and axiom AG3. �

Remark. Assertion D.6 becomes false if the assumption that f : A→ N is a proper C-map
is replaced by the assumption that f : A → B is a proper C-map, for some B ∈ C(N).
To see this, take M = N = R2,

A = B = { (r, s) ∈ R2 : 0 < r < 1 & s < 0 },

A′ = { (r, log r) : 0 < r < 1 },
and define f : A → B by f(r, s) = (r, 1/s); then A, A′ and B are all subanalytic in R2,
and f is a proper subanalytic map, but f(A′) is not subanalytic (at the origin) in R2.

D.7. Let A ∈ C(M) be closed in M , f : A → N be a C-map and B ∈ C(N). Then
f−1(B) ∈ C(M).

Proof. With y ranging over N , we have

x ∈ f−1(B) ⇔ ∃y[(x, y) ∈ Γ (f) & y ∈ B ],

so f−1(B) is the image of the C-set Γ (f) ∩ (M ×B) under the map

(x, y) 7→ x : Γ (f) →M.

Now use D.4 and the fact that this map is a proper C-map. �

Remark. Assertion D.7 becomes false if we omit the assumption that A is closed. This is
shown by the same example as in the remark following D.6, except that now the target
space of f should be N = R2 and B = { (r, log r) : 0 < r < 1 }.
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D.8. Let f : A → B and g : B → C be C-maps. Then the composition g ◦ f : A → C
is a C-map. The identity map on A is a C-map. The map f is an isomorphism in the
category C if and only if f is a homeomorphism onto B.

Proof. Let C be a C-set in the manifold P . Using D.3 and the continuity of f we may
reduce to the case that N = Rn and B is bounded in Rn. Then Γ (f) ∈ C(M × Pn(R))
and Γ (g) ∈ C(Pn(R)×P ). Let the variables y and z range over Pn(R) and P respectively.
Then we have the equivalence

(x, z) ∈ Γ (g ◦ f) ⇔ ∃y[ (x, y) ∈ Γ (f) & (y, z) ∈ Γ (g) ],

which exhibits Γ (g ◦ f) as the image of the set (Γ (f) × P ) ∩ (M × Γ (g)) under the
projection map M × Pn(R) × P → M × P, which is a proper analytic map. Hence
Γ (g ◦ f) ∈ C(M × P ) by D.4 and AG3. That the identity on A is a C-map follows from
D.5 and the fact that the identity on M is a C-map by D.2. �

D.9. Let A,B1, . . . , Bk be C-sets. Then a map

f = (f1, . . . , fk) : A→ B1 × · · · ×Bk

is a C-map if and only if each component fi is a C-map.

Proof. The “if” direction is an easy consequence of D.4, while the “only if” direction
follows from D.4 and D.8. �

D.10. Let C be an analytic-geometric category and S an o-minimal structure on Ran.
Then:

(1) For each A ⊆ Rn, A ∈ S(C)n if and only if τn(A) ∈ C(Rn).
(2) S(C) is an o-minimal structure on Ran.
(3) C(S) is an analytic-geometric category.
(4) C(S(C)) = C and S(C(S)) = S.

Proof of (1).
Assume first that A ∈ S(C). With x ranging over Pn(R) and y over Rn we have:

y ∈ τn(A) ⇔ ∃x[x ∈ A & (x, y) ∈ Γ (τn) ],

which exhibits τn(A) as the image of (A×Rn)∩Γ (τn) under the projection map Pn(R)×
Rn → Rn, which is proper. But Γ (τn) is semialgebraic in Rn × Rn, hence semianalytic
in Pn(R)× Rn, in particular a C-set in Pn(R)× Rn. It follows that τn(A) ∈ C(Rn).

Conversely, suppose that τn(A) ∈ C(Rn). Then, with x and y both ranging over Pn(R),
we have:

x ∈ A⇔ ∃y[ y ∈ τn(A) & (x, y) ∈ Γ (τn) ],

which exhibits A as the image of (τn(A) × Pn(R)) ∩ Γ (τn) under the projection map
Pn(R) × Pn(R) → Pn(R) on the first factor, which is a proper map. Since τn(A) is
bounded in Rn, it is also a C-set in Pn(R). It follows that A ∈ C(Pn(R)), that is,
A ∈ S(C)n.
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Proof of (2). Note first that Rn ∈ S(C)n and that S(C)n is a boolean algebra.
The various diagonals and the graphs of addition and multiplication belong to S(C)n,

since these sets are Zariski-closed in their ambient real affine space and therefore semi-
analytic in the corresponding real projective space.

For A ⊆ Rn we have

τn+1(A× R) = τn(A)× (−1, 1) and τn+1(R×A) = (−1, 1)× τn(A),

so that if A ∈ S(C)n, then A × R and R × A belong to S(C)n+1 by (1). Let π :
Rn+1 → Rn be the projection map. It follows easily then from (1) and the fact that
τn(π(A)) = π(τn+1(A)) that if A ∈ S(C)n+1, then π(A) ∈ S(C)n.

If f : [−1, 1] → R is analytic, then Γ (f) is clearly a bounded semianalytic subset of
Rn+1, hence Γ (f) ∈ S(C)n+1.

If A ∈ S(C)1, then τ1(A) ∈ C(R), hence has finite boundary. Thus, A itself has finite
boundary.

Proof of (3).
The axioms AG1, AG2 and AG4 are clearly satisfied for the C(S)-sets of a manifold. To

verify AG3, consider a proper analytic map f : M → N and a C(S)-set A in M . We must
show that f(A) is a C(S)-set in N . Let y ∈ N . Take an open neighborhood V of y and
an analytic isomorphism h : V → h(V ) onto an open set in Rn containing [−1, 1]n. Let
V ′ := h−1([−1, 1]n), so that V ′ and f−1(V ′) are compact. Let any x ∈ f−1(V ′) be given
and take an open neighborhood Ux of x and an analytic isomorphism gx : Ux → gx(Ux)
onto an open set in Rm containing [−1, 1]m, such that gx(A∩Ux) belongs to S. Shrinking
Ux if necessary, we may assume that f(Ux) ⊆ V . Let U ′x := g−1

x ([−1, 1]m); then S
contains gx(A ∩ U ′x) = gx(A ∩ Ux) ∩ [−1, 1]m. The map

a 7→ h(f(g−1
x (a))) : [−1, 1]m → h(V ) ⊆ Rn

is analytic. The image of gx(A∩U ′x) under this map is h(f(A∩U ′x)), and so h(f(A∩U ′x))
belongs to S. Since f−1(V ′) is compact there are finitely many points x(1), . . . , x(k) ∈
f−1(V ′) such that

f−1(V ′) ⊆ U ′ := U ′x(1) ∪ · · · ∪ U
′
x(k).

Hence h(f(A ∩ U ′)) belongs to S, and so does h(f(A ∩ U ′)) ∩ (−1, 1)n. Let
V ′′ := h−1((−1, 1)n), so that

f(A) ∩ V ′′ = h−1[h(f(A ∩ U ′)) ∩ (−1, 1)n].

So V ′′ is an open neighborhood of y in N and h|V ′′ : V ′′ → (−1, 1)n is an analytic
isomorphism mapping f(A) ∩ V ′′ onto a set belonging to S. Since y was arbitrary this
shows that f(A) is a C(S)-set in N .

To verify AG5 we consider a bounded C(S)-set A in R and show that bd(A) is finite.
Since bd(A) is compact, it suffices to show that each x ∈ bd(A) is isolated in bd(A). Let
x ∈ bd(A). Take an open neighborhood U of x in R and an analytic isomorphism h from U
onto the open interval (−1, 1) such that h(U∩A) belongs to S; then h(x) ∈ bd(h(U∩A)).
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Hence, there is an open neighborhood V ⊆ (−1, 1) of h(x) such that V ∩bd(h(U ∩A)) =
{h(x)}. Thus, h−1(V ) is an open neighborhood of x and h−1(V ) ∩ bd(A) = {x}.
Proof of (4). First, we show that C(S(C)) = C. Let A be a C-set in the
m-dimensional manifold M . Let x ∈ M and take a chart around x (i.e., an open neigh-
borhood U of x and an analytic isomorphism h : U → V onto an open set V in Rm).
Then U ∩ A ∈ C(U), hence h(U ∩ A) ∈ C(V ). Choose ε > 0 such that the closure in Rm

of the euclidean ball B of radius ε and center h(x) is contained in V . Then h(U ∩A)∩B
is a bounded C-set in Rm, hence h(U ∩ A) ∩ B ∈ S(C)m. As x was arbitrary this shows
that A is a C(S(C))-set in M . Conversely, assume that A is a C(S(C))-set in the m-
dimensional manifold M . Let x ∈ M . Then there is an open neighborhood Ux of x and
an analytic isomorphism hx : Ux → Rm onto Rm such that hx(Ux ∩A) ∈ C(Rm). Hence,
Ux ∩A ∈ C(U). But

⋃
x∈M Ux covers M , so A ∈ C(M) by AG3.

We next show that S(C(S)) = S. Let A ⊆ Rm belong to S. To show that A belongs
to S(C(S)) it suffices by (1) to show that τm(A) ∈ C(Rm). But τm(A) belongs to S, hence
τm(A) is indeed a C(S)-set in Rm. Conversely, suppose
A ⊆ Rm belongs to S(C(S)). Then τm(A) is a C(S))-set in Rm by (1). For each
x = (x1, . . . , xm) ∈ Rm there exist Ux open in Rm and an analytic isomorphism hx :
Ux → Vx onto an open subset Vx of Rm such that hx(Ux ∩ τm(A))) belongs to S. Take
ε > 0 such that the closed box

Bx := [x1 − ε, x1 + ε]× · · · × [xm − ε, xm + ε]

is contained in Ux. Note that the map hx|Bx : Bx → Rm belongs to S, and that

Bx ∩ τm(A) = (hx|Bx)−1(hx(Ux ∩ τm(A))).

Hence Bx ∩ τm(A) belongs to S. Since τm(A) is bounded, finitely many boxes Bx cover
τm(A). It follows that τm(A) belongs to S. Hence A belongs to S. �

Having now established the correspondence between o-minimal structures on Ran and
analytic-geometric categories, note that 1.7, 1.8 and 1.9 follow easily from 2.1 through
2.4; and that 1.10 through 1.18 are obtained in a routine way from various facts in §4
and Appendix C.

We next proceed to establish Whitney stratification. This is accomplished in D.16
below, after some lemmas.

We recall here some easy facts on locally finite collections. Let F be a locally finite
collection of subsets of M . If G is a locally finite collection of subsets of M , then so is
F ∪ G. If for each F ∈ F we have a locally finite collection AF of subsets of M such
that F =

⋃
AF , then {A : A ∈ AF for some F ∈ F } is locally finite. The collection

{ cl(F ) : F ∈ F } is locally finite and
⋃
{ cl(F ) : F ∈ F } = cl(

⋃
F).

We will repeatedly use the following facts about the Whitney property:
(1) Let X, Y , X ′, Y ′ be C1-submanifolds of M with X ′ open in X and Y ′ ⊆ Y . If

y ∈ Y ′ and y ∈W (X,Y ), then y ∈W (X ′, Y ′).
(2) Let X,Y ∈ C(M) be nonempty C1 submanifolds of M with Y ⊆ fr(X). Then

W (X,Y ) ∈ C(M) and dim(Y \W (X,Y )) < dimY .
(Item (1) is immediate from the definitions; (2) follows easily from B.12 and C.1 using
the correspondence of §3.)
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Throughout the rest of this paper put S := S(C) and let p denote a positive integer
(unless stated otherwise).

D.11. Let A ⊆ C(M) be locally finite. Then there is a locally finite partition P ⊆ C(M)
of M , compatible with A, consisting of connected, relatively compact Cp submanifolds
of M .

Proof. Since M has a countable basis for its topology, there exist an open covering (Ui)i∈N
of M , analytic isomorphisms (ϕi : Ui → Rm)i∈N and a sequence (Vi)i∈N of compact C-sets
in M such that (int(Vi))i∈N covers M and Vi ⊆ Ui for all i ∈ N. For each i ∈ N, take (by
cell decomposition) a finite partition Di ⊆ Sm of ϕi(Vi) into Cp cells in Rm compatible
with {

ϕi

(
A ∩

(
Vi \

⋃
k<i

Vk

))
: A ∈ A

}
,

a finite collection of bounded sets belonging to Sm. Now, for i ∈ N put

Pi :=

{
ϕ−1

i (D) : D ∈ Di & D ⊆ ϕi

(
Vi \

⋃
k<i

Vk

)}
,

a finite partition of Vi \
⋃

k<i Vk. Then P :=
⋃

i∈N Pi has the desired properties. (To
check that P is locally finite, use that (int(Vi))i∈N covers M .) �

D.12. Let A ⊆ C(M) be locally finite. Then there is a Cp stratification S ⊆ C(M) of M
that is compatible with A.

Proof. By D.11 there is a locally finite partition Pm ⊆ C(M) of M , compatible with A,
consisting of Cp submanifolds of M . Assume that for a certain k ∈ {1, . . . ,m} we have
constructed a locally finite partition Pk ⊆ C(M) of M consisting of Cp submanifolds of
M and compatible with A ∪ { fr(X) : X ∈ Pk,dimX > k }. (Note that this is trivially
the case for k = m if m > 0.) By D.11 there is a locally finite partition H ⊆ C(M) of⋃
{X ∈ Pk : dimX < k } compatible with Pk and with { fr(X) : X ∈ Pk,dimX = k }

and consisting of Cp submanifolds of M . Then

Pk−1 := {X ∈ Pk : dimX ≥ k } ∪ H

is a locally finite partition of M consisting of Cp submanifolds of M belonging to C(M)
and compatible with A∪{ fr(X) : X ∈ Pk−1,dimX > k−1 }. This inductive construction
leads in m steps to a Cp stratification S = P0 as required. �

D.13. Let S ∈ C(M) and f : S → N be a C-map. Then there is a locally finite collection
A ⊆ C(M) of disjoint Cp submanifolds of M contained in S such that dim(S \

⋃
A) <

dimS, and such that for each A ∈ A the map f |A : A→ N is Cp and rk f |A is constant.

This is proved much along the lines of D.11 using C.2.

By induction on dimension the preceding result leads to:
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D.14. Let S ∈ C(M) and f : S → N be a C-map. Then there is a locally finite
partition P ⊆ C(M) of S into Cp submanifolds of M such that for each P ∈ P the map
f |P : P → N is Cp and rk f |P is constant.

D.15. Let B ⊆ C(M) be a Cp Whitney stratification of the closed set S ⊆ M , with
p ≥ 2. Then the collection A of connected components of strata in B is a Cp Whitney
stratification of S.

Proof. It is clear that A is a partition of S into Cp submanifolds of M . Given x ∈ M ,
take a compact neighborhood K ∈ C(M) of x. Then K intersects only finitely many
B ∈ B, and for every such B the set K∩B has only finitely many connected components,
and each of these components is contained in only one set A ∈ A. This shows that A is
locally finite.

Suppose now that A1, A2 ∈ A with cl(A1) ∩ A2 6= ∅ and A1 6= A2. We must show
that: (i) (A1, A2, x) has the Whitney property for all x ∈ A2, and (ii) A2 ⊆ fr(A1). Take
B1, B2 ∈ B with A1 a component of B1 and A2 a component of B2. If B1 = B2 = B,
then A1 and A2 are connected components of B, hence closed in B, so cl(A1) ∩ A2 = ∅;
contradiction. Hence, we have B2 ⊆ fr(B1). Then (i) follows from the fact that (B1, B2, x)
has the Whitney property for all x ∈ B2. Applying Proposition 8.7 from [17] now yields
(ii). �

D.16. Let S ∈ C(M) be closed.

(1) For every locally finite F ⊆ C(M) there is a Cp Whitney stratification P ⊆ C(M)
of S compatible with F consisting of connected strata.

(2) Let f : S → N be a proper C-map and F ⊆ C(M), G ⊆ C(N) be locally finite.
Then there is a Cp Whitney stratification (S, T ) of f with connected strata such
that S ⊆ C(M) is compatible with F and T ⊆ C(N) is compatible with G.

Remark. The proof uses methods of  Lojasiewicz [16] and Hardt [9], but there are enough
differences to justify writing out the details.

Proof. We proceed directly to establish (2), during the course of which we also obtain
(1). We may and shall assume p ≥ 2. Let m = dimM as usual.

For inductive purposes we define a k-nice stratification for k = 0, . . . ,m to be a Cp

stratification P ⊆ C(M) of S such that: (i) P is compatible with F ; (ii) f |Q is Cp of
constant rank for all Q ∈ P with dimQ ≥ k; (iii) for all P,Q ∈ P with Q ⊆ fr(P ) and
dimQ ≥ k, the pair (P,Q) has the Whitney property.

We first show that there exist m-nice stratifications. By D.14 there is a locally finite
partition A ⊆ C(M) of S compatible with F and consisting of Cp submanifolds of M
such that f |A is Cp of constant rank for each A ∈ A. By D.12 there is a Cp stratification
P ⊆ C(M) of S compatible with A. Then P is an m-nice stratification.

Assume that for a certain k ∈ {1, . . . ,m} we have constructed a k-nice stratification
Pk. By D.14 we can choose for each Y ∈ Pk with dimY = k− 1 a locally finite partition
PY ⊆ C(M) of Y into Cp submanifolds of M such that for each H ∈ PY the map
f |H : H → N is Cp of constant rank. Let

Wk := {W (X,Y ) : X,Y ∈ Pk, dimY = k − 1, Y ⊆ fr(X) };
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note that Wk ⊆ C(M) is locally finite. By D.12 there is a Cp stratification H ⊆ C(M)
of the closed C-set

⋃
{Y : Y ∈ Pk, dimY < k } compatible with Pk, with Wk, and with

PY for each Y ∈ Pk such that dimY = k − 1. One easily checks that this gives the
(k − 1)-nice stratification

Pk−1 := {P ∈ Pk : dimP ≥ k } ∪ H.

This inductive construction leads inm steps to a 0-nice stratification P0 ⊆ C(M), which
is clearly a Cp Whitney stratification of S compatible with F . By D.15 the collection of
connected components of the strata of P0 is then a stratification as required in (1). This
proves (1) since we could have taken N = M and f to be the inclusion map S → M .
Continuing now with the proof of (2), the collection { f(P ) : P ∈ P0 } ⊆ C(N) is locally
finite (since f is proper). Hence we can choose by D.16(1) a Cp Whitney stratification
T ⊆ C(N) of N with connected strata compatible with G ∪ { f(P ) : P ∈ P0, P ⊆ S }.
Let

S ′ := {P ∩ f−1(T ) : P ∈ P0, T ∈ T , T ⊆ f(P ) }.

It is clear that S ′ ⊆ C(M) is a locally finite partition of S. Simple arguments using the
rank theorem show that in addition S ′ is a Cp Whitney stratification of S. Let S be the
collection of connected components of the strata in S ′. Then it follows again from the
rank theorem and D.15 that the pair (S, T ) has the desired properties. But this is not
true; there are counterexamples. A corrigendum will eventually be available. �

D.17. Improvements of D.16.

(1). Define a (Cp, C) cell in M to be a relatively compact C-set A in M for which there
is an open neighborhood U of cl(A) and an analytic isomorphism ϕ : U → Rm such that
ϕ(A) is a Cp cell in Rm with regard to S = S(C) (see §§3,4). In particular, a (Cp, C) cell
A in M is a Cp submanifold of M that is Cp diffeomorphic to Rd, d = dimA. We may
now require in D.16(1) in addition that the strata of P be (Cp, C) cells in M . In D.16(2)
we may require in addition that the strata of T be (Cp, C) cells in N and that the strata
of S be contained in (Cp, C) cells in M . To see this, note that the construction in the
proof of D.11 yields P ⊆ C(M) whose members are (Cp, C) cells in M . Consequently,
in D.12, D.13 and D.14 the members of S, A and P respectively can all be taken to be
(Cp, C) cells in M as well. In the proof of D.16 we merely have to require at appropriate
places that certain sets are (Cp, C) cells in M or N .

(2). In D.16(2) we may require, in addition to the property mentioned in D.17(1), that
f |A is injective for each A in S with rk f |A = dimA. To see this, note that by Remark
(1) following C.2 we may add this requirement in D.13, and hence in D.14. In the proof
of D.16 we then add the requirement for the restrictions f |Q in the definition of “k-nice
stratification”.

D.18. Whitney stratification in the o-minimal setting.

The proof of 4.8 (that is, Whitney stratification in the o-minimal setting) is quite
similar to the proof of D.16: Using C.1, C.2 and the obvious o-minimal version of D.14,
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one repeats the proof of D.16, working throughout with finite collections of Cp cells in
Rm and Rn, instead of locally finite collections contained in C(M) and C(N).

We remark that 4.8 is not a special case of D.16: the o-minimal structures do not have
to be of the form S(C); the maps f of 4.8(2) are not assumed to be proper; and we obtain
finite—rather than locally finite—stratifications.

Note. If S admits analytic decomposition, then D.11 through D.17 hold with p = ω for
C; in particular, if C = Can,exp or C = CR

an (by 5.1(3)). Similarly, if a given o-minimal
structure on (R,+, ·) has analytic (or C∞) decomposition, then D.18 holds with p = ω
(or p = ∞).

D.19. Let A ∈ C(M) be closed. Then there is a C-map f : M → R of class Cp with
A = Z(f) := {x ∈M : f(x) = 0 }.

Proof. By the correspondence of §3 (and because M is σ-compact and Lindelöf), there
exist a locally finite, countable open covering (Ui)i∈N of M and analytic isomorphisms hi :
Ui → Rm with hi(Ui ∩A) ∈ Sm. By C.12, for each i ∈ N there exists gi ∈ Cp

S(Rm) such
that Z(gi) = cl(B(1))∩hi(Ui∩A) and Z(gi−1) = Rm \B(2)—since cl(B(1))∩hi(Ui∩A)
is compact—where B(1) and B(2) denote respectively the euclidean open balls about the
origin of radii 1 and 2. For each i ∈ N, define fi : M → R by

fi(x) :=
{
gi(hi(x)), x ∈ Ui

1, otherwise.

Clearly, each fi is a C-map of class Cp. Note that each x ∈ M has a neighborhood U
such that fi|U = 1 for all but finitely many i ∈ N. Hence the map f : M → R given by
f(x) :=

∏
i∈N fi(x) is a C-map of class Cp with A = Z(f). �
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