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Environments using Images

Aparna Taneja, Student Member, IEEE, Luca Ballan, Member, IEEE, and Marc Pollefeys, Fellow, IEEE

Abstract—We propose a method to detect changes in the geometry of a city using panoramic images captured by a car driving around

the city. The proposed method can be used to significantly optimize the process of updating the 3D model of an urban environment

that is changing over time, by restricting this process to only those areas where changes are detected. With this application in mind,

we designed our algorithm to specifically detect only structural changes in the environment, ignoring any changes in its appearance,

and ignoring also all the changes which are not relevant for update purposes such as cars, people etc. The approach also accounts

for the challenges involved in a large scale application of change detection, such as inaccuracies in the input geometry, errors in the

geo-location data of the images as well as the limited amount of information due to sparse imagery. We evaluated our approach on

a small scale setup using high resolution, densely captured images and a large scale setup covering an entire city using instead the

more realistic scenario of low resolution, sparsely captured images. A quantitative evaluation was also conducted for the large scale

setup consisting of 14000 images.

Index Terms—Change detection, image registration, Streetview image application

✦

1 INTRODUCTION

Due to the success of navigation applications and several other

services benefiting from 3D visualizations of urban scenarios,

a lot of work has taken place in the recent past to obtain ac-

curate 3D reconstructions of cities. Many efficient techniques

have been proposed to obtain such models from imagery

and/or range measurements captured from groundbased ve-

hicles [1], [2], [3], [4], [5], as well as aerial platforms [6], [7],

[8]. In fact, most city administrations already maintain such

information for cadastral applications such as city planning,

real estate evaluation and so on.

However, cities are dynamic in nature, evolving over time.

While the main structures in a city remain unchanged for very

long periods of time (decades or even centuries), on the scale

of a city new structures are continuously being erected and old

taken down. This fourth dimension of an urban environment

was also observed in works like [9], [10].

As structural changes occur in the city, any previously

reconstructed 3D model becomes obsolete. Considering the

vast number of applications that rely on the accuracy of such

data, there is a need to explore efficient solutions to keep these

models consistent with the current state of the environment.

The naı̈ve solution of updating these models by repeating

the process of data collection and reconstruction on the whole

environment on a regular basis is not only time consuming

but also very expensive. In fact, while reconstruction algo-

rithms are getting faster day by day exploiting parallelism

on GPUs [11] or dedicated clusters of computers [12], the

collection of the data necessary for these algorithms still
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needs dedicated setups (multiple cameras, sensors, scanners

etc.) mounted on cars, driving around the city or on aerial

vehicles flying over the area of interest with the sole intention

of capturing data for reconstruction. The time and effort

involved in this exhaustive data collection makes this approach

impractical for a frequent update. A way to incrementally

update these models which does not completely discard the

existing information needs to be explored.

This motivates our effort to leverage the existing 3D model

and some images representing the current state of the scene to

efficiently determine which areas have undergone significant

changes and which parts of the model are still accurate. An

update process can then be planned by adding the locations of

the observed changes to a list of sites, to be visited during a

future run with the scanning vehicle to capture data with high

quality sensors.

In this paper we propose a method to exploit spherical

panoramic images captured all over the city to detect changes

in the 3D model of a city. These images are generally recorded

from cameras mounted on vehicles driving around the city.

There are several challenges associated with such a large

scale change detection application. Firstly, the image geo-

location data provided by the GPS and IMU units is typically

noisy. These sensors in fact, produce errors that can be as high

as ±5 meters in the location and as much as ±5 degrees in

the orientation. Despite the fact that these values may seem

low, such inaccuracies in the position and orientation are not

tolerable for the purpose of change detection.

Secondly, since the acquired images are not just representing

a few streets in an urban environment but actually entire cities,

their spatial capturing rate might not be very dense. Therefore

a building well visible in one image will be only partially

visible in a nearby image. A large scale change detection

system should therefore be able to perform well even with

such sparsely captured imagery.
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Thirdly, the algorithm should be able to differentiate be-

tween real changes in the geometry and changes induced by

inaccuracies in the original 3D models. 3D models can in fact,

be very accurate when they are acquired from laser scanners

for instance, or they can also be an approximate representation

of the environment, as in the case of cadastral 3D models.

For the latter, the level of detail is generally quite basic with

simple bounding boxes approximating the buildings shapes,

augmented sometimes with features like roofs and chimneys.

In the end, the algorithm has to discriminate between the

changes that are relevant and irrelevant for the purpose of

updating a 3D model. In other words, the algorithm must

understand what has really changed in the structure of the

urban environment and what changes are instead temporary or

due to dynamic objects like vehicles, pedestrians or changes

in vegetation.

In this work, we propose a method to detect changes in the

geometry of a city explicitly addressing all the above men-

tioned challenges. In particular, we use cadastral 3D models

provided by the city administration and Google StreetView

images which besides being publicly available, are also a good

example of panoramic images captured with a driving vehicle

on the scale of a city.

2 RELATED WORK

Since the goal is to detect changes in the geometry of an

environment, an intuitive first approach would be to apply

multi-view stereo (MVS) on these images to recover a local

updated geometry of the scene. Geometric changes can then be

detected by performing a 3D-to-3D comparison between this

new model and the original one. For instance, [13] proposed a

probabilistic framework to analyze the progress of construction

of a building by comparing the geometry recovered from

current images of the construction site with a known 3D

model. The accuracy of such a comparison however, relies on

the quality of the obtainable MVS reconstruction which may

be low in cases, particularly when only sparse wide baseline

imagery is available, as is the case for the addressed scenario.

On the other hand, change detection literature offers a

lot of solutions based on 2D-to-2D comparisons between

images representing the old state of a scene and images

representing its current state [14]. These approaches however

are sensitive to changes in illumination and weather conditions

across the old and the new images. To partially overcome

these issues [15] proposed to learn from the old images, a

probabilistic appearance model of the 3D scene, to be used

for comparison with the new images. [16] instead proposed to

detect changes based on the appearance and disappearance of

3D lines detected in the images. [17] also compares two set of

images captured at different time instants by first recovering a

coarse structure of the scene. The images are segmented into

superpixels for this purpose and the corresponding superpixels

across the old and new images are compared to reveal changes.

These methods however, focus on generic appearance

changes across the old and new images, which may or may

not correspond to changes in the geometry of the scene. Since

our aim is to keep the geometry of an urban environment up

to date, we need to focus only on geometric changes that may

have occurred, ignoring any changes in the appearance such as

different paints on a wall, new posters or new advertisements

on boards etc. Therefore we propose a method to detect

changes in the geometry of an environment using only the

images observing the current state of the environment.

However, to be able to use these images, they first need to

be registered with respect to the geometry. In the considered

scenario of a car driving around a city capturing panoramic

images, the geo-location information providing the position

and orientation where each of these images were taken, is

typically captured using sensors like GPSs and IMUs. The

data recorded by these sensors is in general noisy, with errors

being on the order of ±5 meters in the location and ±5 degrees

in the orientation.

One way to refine these estimates is to exploit the available

3D model and register each image with respect to it. A lot of

research has been devoted to this particular problem, both for

general objects, where the goal is to perform joint segmenta-

tion and pose estimation of the object in an image, [18], [19],

[20], [21], [22], [23] as well as for urban scenes in particular,

where both visual [24], [25], [26] and geometric informa-

tion [27], [28] have already been exploited to approximately

localize images in an environment. If the geometry contains

texture information, feature correspondences like SIFT [29],

VIPS [30] or orthophoto-correspondences [27] can be used.

Since each correspondence is related to a 3D point in the

geometry, the images can be registered using Direct Linear

Transform (DLT) followed by a refinement step based on the

reprojection error [31].

However, due to the typical absence of texture information

in cadastral 3D models, the above mentioned features are not

applicable. In such a scenario features like lines [32], building

bounding boxes [33] and skylines [34] can be used instead.

Once these features are matched with the corresponding points

on the 3D model, a 2D-to-3D registration of the image is

performed.

Another class of methods includes the 3D-to-3D registration

approaches which instead make use of multiple images to

perform a coarse 3D reconstruction of the scene and regis-

tering this reconstruction with the geometry using rigid [35]

or non-rigid ICP [36], [37]. As mentioned earlier, such a

reconstruction in general cannot be recovered due to the sparse

sampling nature of the captured images.

In this work, we use a generative approach aiming at

aligning an input spherical panoramic image with respect to a

3D model exploiting features, in particular, building outlines.

However, unlike 3D-to-2D registration approaches, our method

does not rely on 3D-to-2D feature correspondences, but instead

it uses a shape matching metric to quantify the accuracy of

the alignment between the building outlines extracted from the

images and from the model. Unlike the work of [34], which

assumes images captured from an upward facing camera in

urban canyons, we address the more challenging scenario of

ground imagery, where occluders such as trees, vehicles, or

construction sites, can corrupt the visual information signifi-

cantly.
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3 ALGORITHM

We formulate both the registration and the change detection

using two measures: building outlines consistency and color

consistency. The building outlines consistency corresponds to

the relative alignment between building outlines visible in the

image and building outlines obtained from the cadastral model

at the corresponding image location. The color consistency

term on the other hand implies that for a pair of images

observing a location in the cadastral 3D model, the colors

of one image projected into the second image should be

consistent with the second image. (Clearly, this holds true

only in case of Lambertian surfaces as well as assuming fixed

camera settings.) Therefore, aligning the building outlines as

well as ensuring color consistent reprojected images would

result in accurately registered images, and any inconsistencies

in these cues thereafter, would correspond to a change. The

notations used in the paper are defined in the next section.

3.1 Notation

Let ξt = (θt, ρt) denote the pose of the camera shooting

a spherical image It, where θt and ρt denote the camera

orientation and position respectively, and t is an image index.

Camera orientation θt ∈ R
3 is encoded using an angle-axis

representation, relative to a reference system oriented in such

a way that its Y-axis points towards the north pole, and its

Z-axis is parallel to the normal of the ground, i.e. the local

East-North-Up (ENU) coordinate system. The camera position

ρt ∈ R
3 is expressed in the same reference system. The origin

of this coordinate system is at the old observatory of Bern in

Switzerland.

Camera extrinsic parameters corresponding to the pose ξt
can then be simply computed using the exponential map as

Et =

[

eθ̂t ρt
T

0 1

]−1

(1)

Let πt be the projection function mapping 3D points in the

world coordinate system to 2D points in the image coordinate

system of image It, defined as follows

πt(P ) = φ

(

Et

(

P
1

))

(2)

where P ∈ R
3 and φ maps 3D points to corresponding 2D

spherical coordinates on the unit sphere in R
3.

Let Zt denote the depth map seen from the viewpoint of

image It. Precisely, Zt(q) represents the distance of the closest

3D point in the geometry that projects to pixel q in image It.
Zt can be easily computed in GPU by rendering the geometry

from the point of view of image It and by extracting the

resulting Z-buffer.

Let π←t represent the inverse projection function mapping

each pixel q in image It to the corresponding closest 3D point

in the geometry, i.e.

π←t (q) = Et
−1

(

Zt(q)φ
−1(q)

1

)

(3)

where φ−1 : R2 → R
3 is the function mapping 2D spherical

coordinates to 3D points on the unit sphere in R
3.

Let St denote the building outlines extracted from the

panoramic image. Given the current estimate for the camera

pose ξt, let us denote the corresponding building outlines

extracted from the cadastral 3D model as B(ξt).
For each pair of images (It, Is), a new image It←s is

rendered by projecting the colors of the source image Is into

the target image It using the geometry and the registration

parameters for both It and Is.

3.2 Inconsistencies

In the following text, we describe how the building outline

and color consistency cues are useful for both registration and

change inference.

Building outline inconsistency: Let’s say an image It is

registered accurately with a 3D model, then if the 3D model

is overlaid on this image, it would overlap exactly with the

buildings in the image. On the contrary, if there are errors

in the registration, there will be a clear misalignment. An

example of the latter scenario is shown in the left image in

Figure 1 where the initial registration was recovered from GPS

and IMU data, and due to noise typically present in such data,

the registration is not accurate. However, if the registration is

precise, and there is no change in the geometry, then not only

do the building outlines in the image align well with those

from the model but they are also exactly consistent with each

other, as is the case in the right image in Figure 1. Let Ct

be the building outline inconsistency map which is computed

as the pixel-wise inconsistency map between the building

outlines extracted from the image and from the cadastral model

respectively, i.e.,

Ct = |St −B (ξt) | (4)

where | · | indicates the pixel-wise absolute value. If the image

It is registered accurately with respect to the model, most of

the pixels in the inconsistency map Ct would ideally be equal

to zero. For a well aligned image, any pixels with value 1 in

Ct would then indicate a possible change in the geometry.

Color inconsistency: While the inconsistency map Ct

compares each image individually with the model, the color

inconsistency map instead compares the color consistency

across pairs of images. Precisely, to generate the image It←s

each ray corresponding to a pixel in It is cast to the geometry

and reprojected back into the image plane of Is to retrieve a

pixel color.

More formally, given a pixel q in It←s, we know by

definition that π←t (q) represents the coordinates of the closest

3D point in the geometry which projects into q. Hence, the

pixel in image Is corresponding to the projection of this 3D

point, has coordinates equal to πs(π
←
t (q)). Therefore, we

define the color of pixel q in image It←s as follows

It←s(q) = Is(πs(π
←
t (q))) (5)

The color inconsistency map denoted by Mt←s, is then

defined as

Mt←s(q) = |It←s(q)− It(q)| (6)

With this definition, if the images It and Is are accurately

registered with respect to the 3D geometry, then each pixel
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(Pose obtained from StreetView data) (Pose refined using our algorithm)

Fig. 1. Overlay of a Google StreetView image with a cadastral 3D model before (left) and after (right) applying our

algorithm.

It¬s

It
Mt¬s

Is

Fig. 2. Image formation process of a 2D inconsistency

map Mt←s given a pair of image Is and It observing the

same location.

from Is is projected onto its correct position in It. Therefore,

if there is no change in the geometry, and assuming that the

two images were captured at almost the same time instant,

the color in each pixel in It will be similar to those in It←s,

and hence the corresponding values in the Mt←s map will be

close to zero. An example of this is shown in Figure 2.

On the other hand, if there is a change in the geometry,

then the pixels corresponding to the change are back-projected

onto the geometry corresponding to the pixels occluded by the

change in Is. For example, in Figure 3, where a new structure

was added to the scene which was not a part of the geometry,

the pixels corresponding to the structure get projected on to

the wall and the floor in It←s (blue circle in Figure 3). The

resulting Mt←s map clearly reveals an inconsistency with the

geometry in this case (pixels indicated by red and blue circles

in Figure 3). One must note that, the formation of the It←s

image is done using the depth map Zt and Zs and hence,

an object visible in one image and occluded in another image

does not generate inconsistencies in the Mt←s image. Also, the

It←s image computation is only performed for pairs of images

with significant overlap in field of view. Pixels in It outside

the field of view of Is, are labeled as uninformative in the

Mt←s map and hence not used during the change inference.

Its

It
Mts

Is

Fig. 3. Image formation process of a 2D inconsistency

map Mt←s computed for the scene shown in Figure 2.

Since the new structure in front of the building was not

modeled by the original geometry, the resulting image

Mt←s reveals some inconsistencies in the corresponding

pixels. The red and blue circles indicate the evidence of

change coming from images It and Is respectively.

Hence the building outlines and color inconsistencies pro-

vide strong evidence to evaluate both the quality of the

registration as well as the correctness of the geometry.

We now explain the registration and the change detection

modules in detail in the following sections.

3.3 Image Registration

Building outlines are very informative cues for registration

because they represent multiple features in the scene such as

the sky line, the road line, and the intra-building lines. While

building outlines can be extracted easily from the cadastral 3D

model, estimating the same from natural images, such as the

ones downloaded from StreetView, is not as trivial.

In fact, the variety of elements typically present in an

urban environment (e.g. traffic lights, shops, advertisements,

construction sites, bus stops and rivers), as well as, different

weather and lighting conditions which change the appearance

of the scene, make the task of segmentation very challeng-

ing. Moreover, occluders such as vegetation, vehicles and
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Fig. 4. Overview of the registration algorithm.

pedestrians, often present in an urban environment, drastically

contribute towards erroneous segmentations.

To cope for this, we propose an iterative pose estimation

approach aiming at jointly optimizing for both the camera pose

and the building outlines. Figure 4 shows a schematic overview

of the proposed algorithm.

3.3.1 Initial Segmentation

In the first step, an object class segmentation is performed on

the input panoramas in order to label each of its pixels as

belonging to sky, buildings, roads, trees, vehicles or pedestri-

ans. At this point of the algorithm, we chose to ignore the

pose provided by StreetView, since it is quite inaccurate to

help in this process. Once this pose estimate becomes more

accurate, it will be used in the subsequent refinement of the

segmentation. This segmentation is performed following the

approach presented in [38], which aims at classifying each

pixel of an image by maximizing the posterior probability of a

conditional random field considering multiple image features

extracted at different quantization levels. This classifier was

trained on 70 manually labeled images representing examples

of the different classes of objects to be recognized. The

obtained classifier is then run on each input panorama.

The accuracy of this classifier is in general good, but it may

result in over or under segmentation of some regions. Despite

these labeling errors, the segmentation is accurate enough as

a starting point for the pose estimation problem.

3.3.2 Pose estimation

The building outlines St are extracted from the panoramic

image during the segmentation process, and let us assume

that a pixel value of 1 indicates that the corresponding point

on the panorama belongs to a building silhouette, and 0
otherwise. Given the current estimate for the camera pose

ξt, the corresponding building outlines of the cadastral 3D

model B(ξt) are generated by means of rendering. Ideally,

for a correct pose estimate, the building outlines B(ξt) should

align perfectly with the outlines St. We therefore need to find

the pose ξt which maximizes the overlap between these two

images, St and B(ξt), or in other words, we need to minimize

the following function

argmin
ξt

‖Ct‖0 (7)

where Ct is defined as in Equation 4, and ‖ · ‖0 represents

the L0-”norm”, counting the number of mismatching pixels in

the two images. Equivalently, this corresponds to minimizing
∑

Ct(q) since both St and B (ξt) are binary, and this can be

quantified using either L0, L1 or L2 norm.

In general, minimizing for Equation 7 results in an accurate

registration of the input images with respect to the cadastral 3D

model. However, pose ambiguities can still arise in case of not

sufficiently discriminative building outlines, like in the case

of buildings with repetitive structures (e.g. rooftop chimneys

and rooftop windows) or similarly shaped buildings in a

row. Moreover, while the individual errors in the registration

might be small, these errors quickly accumulate during the

reprojection process. Since the proposed change detection

algorithm also bases its inference on the reprojected images

It←s, even small errors in the registration are not tolerable,

since they will generate false evidence of a change in the

inconsistency maps Mt←s.

Minimizing for Equation 7 is therefore insufficient for our

purpose, and a registration technique accounting also for the

relative alignment between neighboring images, needs to be

designed.

To cope with this, we exploit the color consistencies be-

tween nearby images as well. In principle, if a set of images

are correctly registered with the cadastral 3D model, the colors

of these images projected into each other should be consistent

as well. Previous works like [39], [40], [41] have shown that

such an approach can be used to recover dynamic elements in

a scene.

We incorporate this color inconsistency into Equation 7 by

adding an extra term, accounting for the reprojection error

Mt←s = |It←s−It|. We then perform the pose estimation over

a window of n = 5 consecutive panoramic images. Precisely,

let I1, . . . , In be n consecutive images, and let ξ1, . . . , ξn
represent their related pose parameters, the joint registration of
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these images is obtained by minimizing the following function

argmin
ξ1,...,ξn

∑

t∈[1,...,n]



‖Ct‖0 + α
∑

s∈[1,...,n]

‖Mt←s‖1



 (8)

where ‖Mt←s‖1 represents the sum of all the pixel-wise

absolute differences between the image It←s and the image

It. The weight α was set to 0.07/n, since the term ‖Ct‖0 on

average is between 0.05-0.08 (i.e. 5% to 8% inconsistencies)

when the optimization is close to convergence, i.e. when the

images are reasonably well aligned. Since a window of size

n = 5 was used in Equation 8, the optimization is performed

on a block of 5 adjacent images at once, and this optimization

is then repeated sequentially for the next block of images.

Therefore, the pose parameters of each image are involved in

5 disjoint optimizations (4 centered at neighboring images +

1 self), and hence the parameters get updated 5 times.

This joint minimization considers both the individual align-

ment error, of an image with the 3D model, and the relative

alignment error of an image with respect its neighbors. This

makes the pose estimation more robust to outliers, such as

changes in the geometry and/or segmentation errors in the

images. In order to be robust with respect to the presence of

occluders such as cars, pedestrians and vegetation, this score

is not evaluated for pixels belonging to one of these classes.

One must note that, the second term in Equation 8 provides

information also in cases when feature matching is prohibitive

due to wide baselines. For instance, Figure 7 shows a scenario

where feature matching fails while the color consistency term

still provides a good indication of correct alignment between

the two images.

Due to the large non-linearities present in this functional, we

chose to use an evolutionary sampling technique to optimize

it. In particular, we chose to use Particle Swarm Optimization

(PSO) [42]. PSO achieves optimization through the simulation

of the social interactions happening in a population of particles

evolving over time, i.e., the swarm. These particles move freely

in the solution space influenced by their personal experience

(the individual factor) as well as, the experience of the other

particles (the social factor).

Every particle holds its current position (current candidate

solution, set of parameters) in a vector χj and its current

velocity in a vector vj . The ith particle stores in vector pi
the position which corresponds to the best evaluation of its

objective function up to the current generation j. All particles

of the swarm become aware of the current global optimum pg ,

the best position encountered across all particles of the swarm.

In every generation j, the velocity of each particle is updated

according to

vj = vj−1 + c1r1(pi − χj−1) + c2r2(pg − χj−1) (9)

and its position according to

χj = χj−1 +Kvj (10)

In the above equations, c1 defines the individual component

while c2 defines the social component and r1, r2 are random

variables with uniform distribution between 0 and 1.In all our

experiments, the values c1 = 2.8, c2 = 1.3 were used and

K =
2

|2− ψ −
√

ψ2 − 4ψ|
(11)

with ψ = c1 + c2 as described in [42].

The optimization is initialized using the pose provided by

StreetView and the particle velocities are set to zero. Since no

information is available regarding the altitude of the camera,

this is initialized as the altitude of the closest point on the

ground plane of the cadastral 3D model. The swarm is then

generated by adding noise to this initial pose. The search space

for the optimization is constrained by limiting the particles to

not move further than 20 meters and to not rotate more than 15
degrees. In particular, camera roll was restricted to ±1 degree.

Since a lot of renderings are involved during this optimiza-

tion procedure, we speed up this process by implementing

both the rendering of the building outline image B(ξt), and

the computation of the L0-norm on the GPU.

Despite its simplicity, PSO has been shown to be very effec-

tive for optimizing functionals in the domain of SE(3) [43],

as in the case of Equation 8. This is mainly due to the fact that

the social and individual behavior of the particles allows the

algorithm to explore the solution space along the geodesics

in SE(3) connecting the different particles. This outperforms

other particle based techniques since it interpolates between

promising particles instead of resampling only locally around

each of them.

3.3.3 Segmentation Refinement

Once a good estimate for the pose ξt is obtained from

the previous pose estimation, the building outlines St are

refined using, as prior information, St itself and the building

outlines of the model B(ξt), rendered using the pose ξt. This

refinement is then performed following the matting technique

proposed in [44].

A tri-map is first generated by marking each pixel of the

panorama as ’building’, ’not building’, or ’uncertain’, on

the basis of St and B(ξt). Specifically, we label a pixel as

’building’ if the corresponding pixels in both St and B(ξt)
are marked as ’building’ (i.e., 1). We label a pixel as ’not

building’ when the corresponding pixels in both St and B(ξt)
are marked as ’not building’ (i.e., 0). The remaining region is

marked as ’uncertain’ and is expanded with a dilation operator

of radius 21 pixels to increase the uncertainty on the labeling.

The matting algorithm then builds a local appearance model

for both the ’building’ and ’not building’ regions, and decides

whether the ’uncertain’ pixels belong to a building or not.

3.4 Change Detection

The residual of Equation 8 can be used as a hint for change

detection. To detect geometric changes, we again exploit the

building outline and color consistency cues. In order to localize

the occurred changes in the city, the entire city is discretized

into a grid of uniformly sized voxels, precisely of size 1
m3 each. The goal of the change detection algorithm is to

estimate a binary labeling L = {li}i for each voxel i in
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this grid, indicating the presence, or the absence, of a change

inside that voxel (with li = 1 and li = 0, respectively). An

estimate for this labeling can be obtained by maximizing the

posterior probability of L given the input images I = {Ik}k
as observation. By using the Bayes’ rule, this corresponds to

P (li|I) =
P (I|li)P (li)

P (I)
(12)

where the generative model P (I|li) is computed on the basis

of the inconsistency maps Mt←s and Ct. Precisely as

P (I|li) =
∏

t,s

P (Mt←s|li)
∏

t

P (Ct|li) (13)

This is based on the assumption that the image formation

processes of the different color inconsistency maps Mt←s

are independent, and the image formation processes of the

different building outlines inconsistency maps are independent

as well. Moreover we also assume independence between

formation of the inconsistency maps Ct and Mt←s.

The probability P (Mt←s|li) is modeled by a uniform dis-

tribution U in case of a change, and by a truncated Gaussian

distribution centered in 0 in case of no change, i.e.

P (Mt←s (q) = x|li) =

{

H (x) 2
σc

√
2π
e
− x

2

2σ2
c li = 0

U li = 1
(14)

where H (x) is the Heaviside step function.

In general, when a change in the geometry occurs, two

evidences of this change are visible in each Mt←s map: one

corresponding to the pixels of the change observed by It (red

circle in Figure 3), and the other being the pixels of the change

observed by Is projected into It (blue circle in Figure 3). Let

Vi be the set of the 3D points belonging to voxel i, then the

footprint of voxel i in image It is defined as κit = πt(Vi), and

indicated in red in Figure 5. The footprint of voxel i in image

Is (i.e., κis) back projected onto image It is defined as

ζit←s = πt(π
←
s (κis)) (15)

and indicated in blue in Figure 5. Equation 14 is then evaluated

for all pixels q ∈ κit ∪ ζ
i
t←s.

Further, assuming that the conditional probability of Ct

given a voxel label li is only influenced by the pixels in the

footprint of voxel i on Ct, we introduce an additional random

variable ηit representing the fraction of incorrectly labeled

pixels in this footprint. Formally, given ηit =
1
N

∑

Ct(q) for

all q ∈ κit, where N = #κit, P (Ct|li) is equal to P (ηit|li) and

P
(

ηit = x|li
)

=

{

H (x) 2
σs

√
2π
e
− x

2

2σ2
s li = 0

U li = 1
(16)

where H(x) is same as in Equation 14.

Since changes corresponding to vehicles, pedestrians and

vegetation are not relevant for the purpose of updating a 3D

model, pixels belonging to those classes are not considered

during the change inference process. Finally, voxel i is labelled

as a change if P (li|I) in Equation 12 is above 0.5.

This approach on its own is however not sufficient to deal

with the challenges involved in a large scale application of

Is

It

voxel

Geometry

Footprint of voxel in It

Footprint of voxel in Is

backprojected in It

Fig. 5. Image formation process for image It←s. Since

the region corresponding to the voxel is not a part of

the geometry, it generates a second evidence of change

on image It in pixels (blue) which are far away from the

region it should ideally project to (red) if it were a part of

the geometry.

Is

Is It

Its |I  - I |ts t 

 min|I   - I |   t ts
v



Fig. 6. Inconsistency maps corresponding to the pair of

images Is and It, obtained using Equation 6 and the

one obtained using Equation 17 (below), accounting for

geometric inaccuracies. False changes due to missing

details on the building facade disappear in the latter.

change detection. A large scale change detection algorithm

needs to be able to differentiate between real changes in the

geometry and changes induced by inaccuracies in cadastral 3D

models. Moreover, the algorithm needs to cope for the fact

that there may only be very few images observing a location.

The following sections address these challenges and propose

a solution to cope with each of them.
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3.4.1 Dealing with geometric inaccuracies

Cadastral 3D models typically show low level of detail. In

fact, while these models correctly represent the volume of the

buildings in a city as bounding boxes augmented with simple

features like roofs and chimneys, details like balconies, street-

side windows, extended roofs, and in general any protruding

structures on the building facades, are typically missing or

inaccurately represented. Consequently, the projections of each

of these structures from one image into another can result

in high inconsistency values in the Mt←s maps. This conse-

quently degrades the detection performance by increasing the

number of false detections.

To account for these geometric inaccuracies, we draw

multiple hypotheses on the real extent of the missing or the

inaccurately represented structures, by shifting the building

walls on the ground plane. For each of these hypotheses, the

corresponding inconsistency map is computed. In principle,

the inconsistency map Mt←s resulting from a geometry which

perfectly represents the actual building corresponds to the

pixel-wise minimum of the individual inconsistency maps

produced by each hypothesis. Formally, let I~vt←s be the image

projection obtained by translating the building walls by a

vector ~v, where ~v is a vector on the ground plane. Then the

value at a pixel q in the inconsistency map resulting from a

perfectly represented geometry is

Mt←s(q) = min
~v∈S

|I~vt←s(q)− It(q)| (17)

where S represents the set of translation vectors ~v used to

compensate for the inaccuracies in the geometry and min is

applied over all output values for each pixel independently.

In particular, we set S equal to all the possible ground

translations of an amount smaller than 0.5 meters with a step

of 25 cm along both the axes of the building parallel to the

ground plane. This way, we compensate for missing details

like protruding structures as well as side extensions on the

facades. The computation of the I~vt←s and the Mt←s images

is done on the GPU, making this process very fast.

Figure 6 shows the effects of the usage of this approach on

the generated Mt←s maps in a scenario where the balconies

and the extended roof of a building facade were missing

from the 3D model. It is visible in the bottom image, that

false inconsistencies disappear when multiple hypotheses are

evaluated for the location of these elements.

Inaccuracies in the geometry might also lead to false incon-

sistencies in the building outlines inconsistency map Ct. To

cope for this, we adopt a similar approach as for the Mt←s

maps, that is, we redefine Ct similarly as in Equation 17, i.e.,

Ct = min
~v∈S

|St −B~v (ξt) |. (18)

3.4.2 Dealing with sparse imagery

While the multiple hypotheses approach introduced in the

previous section allows us to account for small inaccuracies

in the cadastral 3D geometry, another issue needs to be

considered when projecting images captured very far apart.

In these cases in fact, high perspective distortions and

image sub-samplings corrupt the image It←s by generating

(a) Is (b) It

(c) It←s (d) min |I~vt←s − It|

(e) F~v (It) (f) min |I~vt←s −F~v (It) |

Fig. 7. Example scenario where the source image Is was

captured more than 30 m away from the target image It.
(c) Reprojected image. (d) Inconsistency map obtained as

a result of Equation 17. (e) Image obtained after filtering It
with the spatially varying kernel defined in Section 3.4.2.

(f) Inconsistency map obtained as result of Equation 19.

blurring artifacts (Figure 7(c)), and consequently decreasing

the accuracy of the detector by generating more false positives

(Figure 7(d)). In fact, in these situations, a pixel in the source

image Is does not project into a unique pixel in the target

image plane It, but instead, into multiple ones, causing the

blurring.

A work around to this problem is to avoid comparing images

that are farther than a certain distance. This however would

also reduce the amount of information at our disposal for the

change detection inference. Since we already have a limited

amount of data observing the same location, due to the sparse

imagery, we need to use all possible images inside a certain

radius even if that means considering images captured more

than 30 meters apart.

Therefore, we chose to explicitly account for the artifacts

generated in case of large baselines, by simulating them also in

the target image It. Precisely, we estimate the shape that each

pixel of the source image Is would have in the target image It.
This can be easily performed on the GPU by approximating

the original pixel shape with a circle of radius 0.5 pixel units.

Its projection on the target image would result in an ellipse

centered on a point p. This ellipse describes the amount of

blur that the image It←s is affected by in p.

Therefore, to better compare the reprojected image It←s

with the target image It, we simulate in It the same blurring

artifacts as in It←s, by applying to each pixel of It a spatial
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(a) (b)

(c) (d)

Fig. 8. Example output of the proposed algorithm. (a)

One of the images used to recover the initial geometry

of the scene, shown in (b). (c) One of the images of the

same location captured after some time: a new structure

was placed. (d) Computed volumetric inconsistency map

between the new images (c) and the initial geometry (b)

red indicates inconsistencies.

filter shaped accordingly to the ellipse projecting into p.

Basically, this corresponds to filtering It with a spatially

varying kernel. Let F~v (It) be the image resulting after this

process assuming a translation vector of ~v for the geometry.

Equation 17 becomes

Mt←s = min
~v∈S

|I~vt←s −F~v (It) | (19)

Figure 7(f) and (d) show the Mt←s images obtained with

and without the filtering operation. It is visible that accounting

for these distortions/blurring artifacts significantly improves

the Mt←s image by eliminating the false inconsistencies

caused by the large baseline between the two images.

4 RESULTS

We conducted multiple experiments to evaluate the effec-

tiveness of the approach. The algorithm was first run on

a small-scale dataset, evaluating multiple locations in the

city individually and then on a large-scale dataset spanning

an entire city. The data used in this paper is available at

http://www.cvg.ethz.ch/research/change-detection/.

4.1 Small scale setup

For these experiments, the initial geometry was recovered

using imagery, specifically using [45]. After some time had

elapsed, some new images of the same locations were captured

using a 0.8Mpixel consumer camera from the street side.

In the first location (Figure 8), we analyzed the case where

a new structure was placed in front of a building inside

a commercial area. As can be seen from the images in

Figure 8(a) and (c), the posters displayed on the windows

had changed between the first and the second round of

acquisition. This is frequent in urban environments, especially

in commercial areas, and would be a serious issue for those

methods which use the appearance from the last acquisition

to detect changes. Since our algorithm uses only the new

set of images for comparison, it correctly detects the new

structure, ignoring the changes on the posters, which we are

not interested in detecting. The detected changes are shown in

red in Figure 8(d).

In another experiment a sequence of images were captured

along a commercial street. But since no major change had

occurred in the geometry, we simulated a change by removing

a building from the 3d model and used this model instead to

detect changes (shown in Figure 9(b)).The algorithm was run

sequentially along the entire street. Additionally, we plotted a

graph indicating the percentage of inconsistent pixels detected

in the inconsistency maps Mt←s. In case of no change, this

value is relatively low and the graph reaches its peak value near

the location of the change. Such information could be used for

instance to discriminate between the change and no change

scenario, so that the more expensive volumetric framework is

only deployed in case of a significant change. Results for this

dataset can be better appreciated in the video.

4.2 Large scale setup

The proposed approach was then evaluated for a large scale

setup, of an entire city. In total, 14000 panoramic images

were used to detect changes in this environment. In particular,

we used images downloaded from Google StreetView. Each

of these images consists of a full spherical panorama with

resolution generally up to 3328×1664 pixels, covering a field

of view of 360 degrees by 180 degrees. In the tested location,

these images were captured on an average once every 10
meters, although this distance increased in some regions. Since

the primary application of these images is street navigation

their quality is, in general, not very high. In fact, besides being

low resolution, they display numerous artifacts mainly due to

blending errors and moving objects.

To register the images relative to the cadastral model, we ran

the minimization of Equation 8 using the same settings for all

the input images. The pose estimation and the segmentation

refinement loop was repeated three times per image. In the

first two stages, the optimization was run only for translation

and yaw angle (i.e., the rotation about the vertical axis). Only

at the final stage, the optimization was performed on all the

six degrees of freedom. This choice was made to compensate

for the fact that majority of the error in such data resides

in the position, while the orientation is relatively accurate,

particularly the pitch and the roll. Therefore, we preferred to

optimize first for only the position and the yaw, to avoid over-

fitting of the pose on to a coarse and generally not so accurate

initial segmentation. In each step, PSO was run on 80 particles

for 90 iterations. The initial swarm noise was set to 7 meters

in translation, and 6 degrees for rotation. This noise is reduced

to half, for the second and the third step. The processing time

on a single core machine was 8 minutes per image. The high

run-time is due to the fact that the algorithm is run for 90

iterations and repeated thrice for each image. As visible in

Figure 11(right), lesser iterations would be sufficient as well.

Moreover, while some parts of the code were implemented on

the GPU, there was no other significant optimization.
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Fig. 9. (a) Image observing a location, whose geometry is shown in (b). (c) The volumetric inconsistency map obtained

by the algorithm. (d) Graph displaying the percentage of inconsistent pixels in the Mt←s maps along the entire street,

a peak indicates a possible change near that location.

#1

#2

Pose obtained from StreetView data Pose refined using our algorithm

Fig. 10. Overlay of some Google StreetView images with the cadastral 3D model before (left) and after (right) running

Equation 8.

The graph in Figure 11 (right) shows the average residual

computed over the tested 14000 images in all the 90 PSO iter-

ations, at each individual step of the refinement process. The

residue value indicates the percentage of building silhouette

pixels that were found to be misaligned at each evolution and is

calculated as ‖Ct‖0/
∑

q B (ξt) (q). The residue drops quickly

during the first 30 iterations, and then reduces gradually over

the next iterations. After the first run of PSO, the percentage

dropped from approximately 11% to 8.1%. Since, the refined

building outlines (after matting) are used as input for step 2
and 3 of the process, the residue drops down to 5.2% and

finally to 3.9% at the end of step 3.

The graph in Figure 12 shows the camera pose corrections

estimated with our method in both translation and rotation.

On an average, the computed corrections have a standard

deviation of 3.7 meters for the translation, and 1.9 degrees

for the rotation.

Figures 1, 10 show for 3 different cases, the images obtained

by rendering the 3D model from the initial camera pose (left

column) and the images obtained by rendering the 3D model

from our refined camera pose (right column). For the image

in Figure 1 (captured in a commercial area), it can be seen

on the right image, that the edges around the windows on

the top of the building match perfectly with those on the

model. For image number 1 in Figure 10 captured in the

countryside, it can be noted that despite the fact that majority

of the scene is occupied by vegetation, the algorithm is able to

register the image well. For image number 2, the initial pose

estimate from Google has a very big error. Moreover, there

are major occlusions caused by trees, and in fact, the initial

segmentation did not indicate the presence of buildings in

those regions. Despite this, the algorithm performs reasonably



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

0 50
8

8.5

9

9.5

10

10.5

11

11.5

R
es

id
ue

 [%
]

Step 1

0 50
3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

R
es

id
ue

 [%
]

0 50
3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

R
es

id
ue

 [%
]

90 90 90
# Iteration

Step 2 Step 3

# Iteration# Iteration

Fig. 11. (Left) Coverage of the images used for the large-scale experiments displayed on the map. (Right) Average

residual error (Eq. 7) obtained during the 90 PSO iterations at each refinement step. The residue is visualized as the

percentage of misaligned building silhouette pixels. The end point of one plot varies from the starting point of the next

step, since the refined building outlines after matting are used as input in Step 2 and 3. The plots are zoomed in to

emphasize the drop in residual.
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Fig. 12. Histograms of orientation and position corrections estimated using our algorithm.

well, but clearly the resulting image is still not perfectly

aligned with the model.

For the change detection part instead, we chose the trans-

lation vectors in S to have a magnitude of up to 0.5 meters,

since the claimed accuracy of the cadastral 3D model was

0.5 meters. The parameters σc and σs, modeling the color

and building outline consistency respectively (see Equation 14

and Equation 16), were estimated on a set of 75 images where

each pixel was manually labeled as change or no change. The

probability distribution of the corresponding Mt←s and Ct

maps was then estimated from these images. In the end a

Gaussian distribution was fit onto those distributions.

Figure 14 shows the changes detected by our approach

on two small regions of the processed cadastral 3D model.

The green dots denote the locations of the input panoramas,

while the blue dots represent voxels labeled as change. The

green markers act as a reference for the images below. Each

of those images shows the cadastral 3D model (red) and the

voxels labeled as change (blue) overlaid on one of the input

panoramic images captured at that location.

It is visible that a high density of the blue voxels in the

map corresponds to a change revealed by the input images.

For instance, location (A) depicts a scenario where more floors

were added to a building. In the map in fact, blue voxels can

be seen on the top of the corresponding building. Locations

(B), (E), (D) and (F) show three scenarios where an entire

building had been constructed since the model acquisition. In

particular (F) shows a building under construction. Location

(C) reveals a relatively small change corresponding to a

new roof.Updating the model with such details might be

useful, for instance to generate a warning if a large truck

has to pass through this street. Locations (G) and (H) instead

show two examples of false changes that were detected due

to trees (mislabeled as building by the classifier), and due

to strong reflections, respectively. Moreover, the volume of

change detected using our approach always bounds the actual
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Fig. 13. Evaluation of the algorithm performance. (Or-

ange) ROC curve obtained considering only the color in-

consistency map Mt←s. (Red) ROC obtained considering

also the building outline inconsistency map in Ct. (Green)

ROC obtained considering the refinement of Section 3.4.2

and (Black) ROC curve obtained considering the refine-

ment of section 3.4.1. (Blue) ROC obtained considering

all the refinements together.

change. Since the method is in concept similar to a visual

hull technique, it inevitably inherits the limitations of such

techniques. Therefore, false positives may be detected in areas

surrounding a change in case these areas are not seen by at

least two images.

4.3 Quantitative evaluation

Pose estimation success rate was evaluated visually by ob-

serving the overlay of the 3D model onto the images using the

estimated pose. Precisely, we considered an image ’incorrectly

registered’ if the projection of the model was more than 40
pixels away from the building contour. On the tested images,

74.8% were accurately registered by the algorithm, while only

8.7% were incorrectly registered. In the remaining 16.5% of

the images, there was not enough visual information for us

to decide if the pose was correctly estimated or not (as an

example, when majority of the scene was occluded by trees).

Since we use 360o panoramas, even in the presence of a big

change (eg. a new building), there will be still some unchanged

buildings visible in the image, allowing for a good registration.

But clearly, in case of a huge change occupying majority of the

image, the registration will fail but the residual of Equation 8

will actually be very high, indicating a large inconsistency

with the 3D model, and therefore a possible change.

We also generated ground truth data for the change detection

algorithm by manually labeling each panoramic image as

corresponding to a change or not. The labeling was performed

on the basis that, an image represents a change if an actual

change in the geometry was visible from approximately 25
meters distance. In the set of well registered images, 300
images were labeled as change.

We compared this ground truth with the results obtained

using our change detection algorithm. Precisely, using the

same labeling methodology as for the ground truth, an image

was labeled as corresponding to a change if a sufficient number

of voxels were detected as change in a radius of 25 meters

from the image location. This threshold was set to 30 voxels

in our experiments.

We evaluated the usefulness of each individual component

of the algorithm using ROC curves which were generated by

varying the prior probability P (li). In particular, the orange

ROC curve in Figure 13 shows the performance of the method

considering only the color consistency term Mt←s in Equa-

tion 13. The red curve shows the performance of the above

method incorporating also the the building outline consistency

term Ct. The green curve shows the performance obtained

by also incorporating the robustness against distortion effects

mentioned in Section 3.4.2, while the black curve shows

the performance obtained by incorporating robustness against

geometric inaccuracies mentioned in Section 3.4.1 but not

incorporating the robustness against distortion effects. Finally,

the blue curve shows the performance of the method including

all the above mentioned refinements. Hence, the blue curve

shows the performance of the proposed algorithm. It is visible

that the lack of refinement against distortion effects degrades

the performance of the method significantly.

However, the method still results in a reasonable number of

false detections. This is mainly due to strong reflections and

errors in the segmentation, particularly on trees (and especially

those without foliage, as in Figure 14(G)). A bigger training

set accounting for different appearance of trees across seasons

would definitely improve the performance of the algorithm.

Another improvement can be obtained by detecting windows

as well which are typical sources of reflections.

5 CONCLUSIONS

We presented a method to detect changes in the geometry of a

city using panoramic images captured by a car driving around

the city. We showed how to deal with the errors in the geo-

location data of the input images, by proposing a registration

technique aimed at minimizing the absolute alignment error

of each image with respect to the 3D model, as well as

the relative alignment error with respect to its neighboring

images. We also showed how to deal with the geometric

inaccuracies typically present in a cadastral 3D model, by

evaluating different hypotheses on the correct geometry of the

buildings contained in it. To cope for the limited amount of

images observing a location, we proposed a robust comparison

method explicitly compensating for the image sub-sampling

artifacts and the high perspective distortions resulting in case

of large baseline imagery.
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