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Abstract 

We develop an a lgor i thm to de tec t  geometr ic  collisions be- 
tween pairs  of t ime-dependen t  pa rame t r i c  surfaces. The  
a lgor i thm works on surfaces t h a t  are cont inuous  and have 
bounded  der ivat ives ,  and includes objec ts  t h a t  move or de- 
form as a funct ion of t ime.  The  a lgor i thm numerical ly  
solves for the  pa rame t r i c  values cor responding  to coincident  
poin ts  and near-misses  between the surfaces of two pa rame t -  
ric functions.  

Upper  bounds  on the  pa rame t r i c  der ivat ives  make i t  pos- 
sible to  guaran tee  the  successful de tec t ion  of collisions and 

near-misses;  we descr ibe  a me thod  to find the  der ivat ive 
bounds  for many  surface types.  To compute  collisions be- 

tween new types  of surfaces, the  m a t h e m a t i c a l  collision anal-  
ysis is needed only once per  surface type,  r a the r  than  ana-  
lyzing for each pair  of surface types.  

The  a lgor i thm is hierarchical ,  first f inding po ten t ia l  col- 
lisions over large volumes,  and then  refining the solut ion to 
smal ler  volumes.  The  user  may  specify the  desired accuracy 
of the  solution.  A C-code  imp lemen ta t i on  is descr ibed,  with 
results  for several  non-bicubic  and bicubic  t ime-dependen t  
pa r ame t r i c  funct ions.  An an ima t ion  of the  collision compu-  
t a t ion  demons t r a t e s  collisions between complex  pa rame t r i c  
funct ions.  

CIZ C a t e g o r i e s :  1 . 3 .5 - -Compu ta t i ona l  G e o m e t r y  and Ob- 
jec t  Modeling;  1 .3 .7 - -Three-Dimens iona l  Graphics  and Re- 
al ism 

A d d i t i o n a l  K e y w o r d s :  Collision Detect ion,  Pa rame t r i c  
Surfaces, A d a p t i v e  Sampl ing ,  Simulat ion,  Dynamics ,  Con- 
s t ra ints ,  Deformat ions ,  C o m p u t e r  Modeling.  

1 Introduction 

In compu te r  an ima t ion  and physical  s imulat ion i t  is fre- 
quent ly  i m p o r t a n t  for ob jec t s  to  in te rac t  with one another .  
One form of in te rac t ion  between objec t s  is a collision, which 
is i n i t i a t ed  by geometr ic  contac t s  t ha t  arise between two or 
more bodies .  We dis t inguish the  geometr ic  contact  of the 
ob jec t s  from the forces t h a t  influence the  mot ion  of the  ob- 
jec ts  after the  collision; we call these contac ts  the  geometric 
pa r t  of the collision. 
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Figure  1: Geometric collision of time-dependent parametric sur- 
faces. (a) A tlme-dependent parametric surface ] (u ,  v, t). (b) A 

pair of deforming surfaces ](ug, vg, t) and ~(ug, vg, t) that  collide 
at  time tin_in. The algorithm returns the paraaneters u f, vll, ug, v 9 , 
and train corresponding to the collision point on the two surfaces. 

In  the  physical  world,  collisions occur when two objec ts  

move through  space and hit  one another .  To s imulate  this  
behavior  in a compute r  graphics  environment ,  we need a 
m a t h e m a t i c a l  descr ip t ion  of the  ob jec t s  and a coxrespond- 
ing geometr ic  collision p rocedure  to  de te rmine  t ha t  contact  
has  occurred.  Many  compute r  graphics  ob jec t s  are com- 
posed of polygons;  geometr ic  collision a lgor i thms have been 
developed for these (for example  [Moore et al. 88].) 

A l though  it  is possible to represent  v i r tua l ly  any surface 
wi th  sufficient numbers  of polygons,  i t  is somet imes  more 
convenient  to  use higher-level  surface representa t ions .  Some 
people  prefer  to  use b icnbic  patches  for thei r  appl ica t ions  
because  the  pa tches  can be  a more  compac t  representa t ion  
t han  polygons,  and  can be easier to  work with.  

Jus t  as bicubic pa tches  are somet imes  more conve- 
nient  t han  polygons,  there  exist  higher-level  representa t ions  
of pa rame t r i c  surfaces tha t  a t  t imes  are more  convenient 
t han  bicubic  patches .  Examples  include some forms of lo- 
cal and global  deformat ions  [Burr 84], [Sederberg et al. 86], 
[Snyder 90]. These  surfaces are typica l ly  funct ions of two 
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surface parameters, u, and v, as in f (u ,v ) ;  A few inter- 
section algorithms for these surfaces have been developed 
[Filip et al. 86]. However, no results have been reported 
for dynamic collisions of general time-dependent paramet- 
ric functions. 

1 .1  Overview 

In this paper we describe a collision algorithm for time- 
dependent parametric surfaces that  are described by para- 
metric functions of three arguments, u, v, and t as in 

f (u ,  v, t) (see Figures 1 and 2). These types of functions 
arise frequently in the context of physically-based modeling 
and simulation, as a body translates, rotates and possibly 
deforms as a function of time. In this algorithm, we com- 
pute the u and v collision parameters at the earliest time of 
collision t~i,. 

Unfortunately, for arbitrary parametric functions it can 
be proven that no algorithm (based solely on function eval- 
uation) can be constructed that  is guaranteed to find the 
earliest time of collision (See Section 1.3). A restriction on 
the functions is needed in order to construct a workable col- 
lision algorithm. In this paper, we require the functions to 
have computable bounds on their regional rates of change. 
These bounds on the rates of change are called "Lipschitz" 
values. Such surfaces and functions with computable Lip- 
schitz values will likely become increasingly important for 
computer graphics rendering, both in terms of software, 
but also in terms of future computer graphics hardware 
[Kalra et al. 89], [Kaufman 87], and [Von Herzen et al. 87]. 

The potential hardware applications arise from an inter- 
esting feature of the algorithm. The reader may be aware 
that many other algorithms for intersecting parametric sur- 
faces use special cases: a different procedure is needed for 
each pair of surface types. For instance, the reader can 
imagine an algorithm that computes interactions between 
spheres and cylinders but does not compute interactions be- 
tween other surface types (say, ellipsoids and cylinders). 

Unlike the case-by-case algorithms in which a different 
procedure is needed for each pair of surface types, our algo- 
rithm works uniformly for all of its available surfaces. Each 
surface is analyzed by itself, to compute bounds on its rates 
of change (see Appendix B). From these bounds on the sur- 
face's rates of change, we can find geometric collisions with 
other surface types. Thus, we do not need to perform O(N 2) 
analyses (for each possible pair of N surface types) but in- 
stead we can analyze each function once, in isolation. Then 
it automatically interacts with all of our previously imple- 
mented surface types with no extra work. 

1.2 Problem Statement 

The parametric surfaces may be considered to be vector 

functions of three parametric variables: f ( u s , v / , t  ) and 
~(ug, va, t), where ui and vi are parametric variables that 
span each of the surfaces, and t is time. For suitable types 
of surfaces, we want to find the earliest time tmi,, within 
bounds, such that 

[(U s, VS, tmirt) = g(UO, V o, grain). (1) 

We also want to find ul,vl,ug , and vg at some point of 

first collision on each surface. We assume that the surfaces 

are continuous, and that they are embedded in three spatial 

dimensions and one temporal dimension. 

In practice, we determine when the distance between ob- 
jects becomes less than a tolerance r:  

vg, tmi=)ll < r. (2) 

This event is termed a 7.collision, and includes collisions 
and near-misses closer than "y. 

Most dynamic modeling systems [Baraff 89], 
[Barzel et al. 88] can readily utilize the approximate colli- 
sion parameters available with large values of r .  The user 
requests a value of r that is roughly the largest value satis- 
factory for the particular application (smaller values would 
cause the collision-detection algorithm to put in more work 
than necessary); this value of r is typically much larger than 
the machine precision, ¢. Thus we are able to avoid the prob- 
lem of finite machine precision by explicitly using a value of 
7 much larger than e. 

Eqn. 2 represents a difficult, non-linear, 5-dimensional, 
root-finding problem. The algorithm based on ]3qn. 2 pre- 
sented in Section 4 can quickly produce results at a coarse 
tolerance r,  and later produce results at finer tolerances. 

Sometimes the r-collision algorithm terminates after a 
single sample has been taken from each surface: it becomes 
computationally trivial to reject potential collisions between 
distant objects. For additional efficiency, we develop a new 
method to produce bounding boxes for parametric func- 
tions, using a "Jacobian'-style matrix of Lipschitz condi- 
tions on the parametric function. This method produces 
much tighter bounds on the surface than does the standard 
Lipschitz condition, and enhances the effectiveness of the 
algorithm for computing collisions between parametric sur- 

faces. 
The next subsection describes some of the difficulties in 

detecting collisions, and potential solution methods. Sec- 
tion 2 describes other work in collision detection. Section 3 
and Appendix A develop a new method to form a hierar- 
chy of bounding volumes for parametric surfaces. Section 4 
describes the algorithm and computational results, and Sec- 
tion 5 describes methods for computing Jacobian maxima 
for parametric surfaces, useful in bounding box formation. 

1 . 3  Problems with Arbitrary Surfaces 

The collision problem for parametric surfaces can be made 
arbitrarily difficult for suitably extreme parametric surfaces, 
such as the spike function of Figure 2. For suitably sharp 
spikes, finite sets of samples will probably miss the spikes 
completely. Finding a narrow spike becomes arbitrarily dif- 
ficult as the parametric width of the spike approaches zero. 

The spike problem exists in time as well as space for geo- 
metric collisions. If the location of a surface is discontinuous 
in time then it becomes impossible to detect collisions, be- 
cause it becomes impossible to know the location of a surface 
over a time interval. There must be some additional con- 
straint on a parametric surface in order to guarantee that 
the first collision is detectable. 

1.3.1 A Method that Doesn't Work 

A simplistic approach for collision detection would be to 
position two surfaces at time tl and see if they intersect, 
and then move the surfaces to final positions at time t2 and 
see if they intersect. We could then split the time difference 
and sample the two surfaces at time (tz + t2)/2, or some 
other time between tl and t2. Recursing in this manner, we 
would sample the paths of the two surfaces. The problem 
with this technique for any finite number of samples is that 
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Figure 2: Parametric spike functions can be made arbitrarily 
sharp, so that their detection is extremely difficult. A fourth 
spike in this figure is invisible, since it falls between the grid 
points. Collision detection becomes arbitrarily difficult for such 
parametric surfaces. We need some other information in addition 
to the function values at isolated points in order to guarantee the 
detection of the first intersection. 

we have no information about  the positions of  the surfaces 
between the sampling times. Wi thou t  this information, we 
can never be sure tha t  we have not  missed an intersection. 
The  problem is analogous to the spike problem of Figure 2. 

1.3.2 A Method that Works 

To solve the collision-determination problem, we require a 
constraint  on the max imum velocity of any point  on the  sur- 
face. Similarly, we require constraints  on parametr ic  deriva- 
tives other  than  time. If velocity is unconstrained,  then the 
position of  a surface may be discontinuous as a function 
of time, and the collision determinat ion problem is insol- 
uble [Von Herzen 89, Appendix  A.5]. With  knowledge of  
the max imum velocity of two surfaces, we can find the first 
collision of the surfaces. 

1.4 Solution using Lipschitz Conditions 

We can construct  bounding volumes of parametr ic  surfaces 
with Lipschitz conditions. Given a continuous parametr ic  

surface f(ffff), the L i p s c h i t z  c o n d i t i o n  states tha t  

- ;( 1311 _< L 11 2 -  111, (3) 

for some finite number  L in some region R of f .  The  Lips- 

chitz condition is implied if the function f(~7) has finite par- 
tial derivatives [ L i n e t  al. 74, p. 58]. The Lipschitz value L 

is a generalization of the derivative of ~(ff). We can also find 
Lipschitz values for some surfaces tha t  are not  differentiable 
[Von Herzen 89, Appendix  B.3]. The  Lipschitz condition on 
a surface is sufficient to create sets of bounding volumes tha t  
are guaranteed to bound the parametr ic  surface. 

I t  is possible to develop a similar constraint  on the tem- 
poral aspects of  the collision-determination problem. We 

can have a moving parametr ic  surface f(gg), g = (u, v, $)T, 
tha t  changes as a function of time. We can construct  a set 
of bounding volumes for the changing surface, in a manner  
analogous to the method  for s ta t ionary surfaces. In this 
case, L sets an upper  bound for the velocity of the paramet-  
ric surface as well as for the other parametr ic  derivatives. 
This inequality is depicted graphically in Figure 3. 

Given parametr ic  functions f ( g )  and ~(g), along with 
their Lipschitz values L I ,  and L~, we have proven in 

Parametr ic  Space Modeling Space 

Figure 3: Graphical illustration of the Lipschitz inequality for 
parametric functions of three variables. If D is the d.istoame from 
f ( ~ 2 )  t o  f ( ~ l ) ,  a n d  ,t = ll~2 - ~zl l ,  we  h a v e  D _< Ld, where L is 
a Lipschitz value for ~, as in Eqn. 3. 

[Von Herzen 89] a me thod  to determine the earliest colli- 
sion between two surfaces. Alternatively, we can confirm 
tha t  two objects do not  collide. In addition, we will gener- 
alize the not ion of a Lipschitz value so as to provide tighter 
bounding volumes for the computat ions .  

2 Previous Work 

Previous techniques have used velocity and distance bounds 
for collision detection of rigid objects [Culley et  al. 86]. Up- 
per bounds on velocity and lower bounds  on distance can 
determine the min imum time until the next  collision be- 
tween objects.  Here we extend the work to functions that  
can deform over time. 

There  has been some work on determining lower bounds 
on distance for convex polygons and polyhedra  [Schwarz 81], 
[Cameron et al. 86]. A number  of collision algorithms have 
been developed for polyhedra  [Moore el al. 88], [Canny 84], 
[Hopcroft  et al. 83], [Uchiki et al. 83], but  collision algo- 
r i thms have not  been developed for more general time- 
dependent  parametr ic  surfaces. 

Other  work has developed techniques to compute  the 
intersections of  parametr ic  functions based on derivative 
bounds [Filip et  al. 86]. Their  work applies to static ob- 
jects tha t  do not move as a function of time. In Section 4, 
we describe a method tha t  works for t ime-dependent  sur- 

faces, including deformable surfaces. 
The  Lipschitz condit ion has been applied to problems in 

scan-conversion [Kauf_man 87], ray- t racing [Kalra et al. 89], 
and adaptive sampling [Von Herzen et al. 87]. 

Recent developments in constraint  methods  for flexi- 
ble models [Platt  et al. 88] stress the impor tance  of ac- 
commoda t ing  elastic and moldable objects in a physical 
simulation. Examples of plastic and inelastic deforma- 
tions appear  in recent work on modeling inelastic defor- 
mat ion [Terzopoulos et al. 88]. Collisions between flexible 
objects are also impor tan t  for deformable animated char- 
acters [Chadwick et al. 89], [Going Bananas  88]. The algo- 
r i thm presented in Section 4 can form a basis for a uniform 
environment in which varied objects may interact.  The  en- 
vironment  can accommodate  rigid surfaces, bicubic patches, 
moving surfaces, and deforming surfaces, all within the same 
framework for collisions and near-misses. 

Efficient collision determinat ion involves the adaptive 
sampling of t ime-dependent  parametr ic  functions. Previous 
work in adaptive sampling includes [Catmull  75], [Bllnn 78], 
[Lane et aL 79], [Lane et  aL 80], [Schweitzer et aL 82], 
[Schmitt et al. 86], [Besl et al. 88], and [Von Herzen 85]. It 
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is important to mention that the preceding articles do not 
deal with time at all, and therefore are not adequate for 
collisions of deformable time-dependent surfaces. As stated 
previously, the collision determination problem is insoluble 
for arbitrary time-dependent surfaces (Section 1.3), but in 
Section 4 we provide a solution for all surfaces that satisfy 
the Lipschitz condition, including all differentiable paramet- 
ric surfaces. 

The notion of an upper bound on velocity is generalized 
to parametric dimensions other than time (see Appendix 
A). We can automatically find a lower bound on the sep- 
aration distance between objects, given upper bounds on 
the parametric derivatives of the functions. The deriva- 
tive constraints enable us to sparsely sample a paramet- 
ric function that deforms over time [Barr 83], [Barr 84], 
[Sederberg et al. 86], and determine -r-collisions with other 
objects. 

3 Bounding Volumes for Time-Dependent Para- 
metric Surfaces 

We develop a set of bounding volumes for time-dependent 
parametric surfaces. The method presented here is general 
enough to determine collisions of flexible objects that change 
shape over time. We develop a subdivision method over 
parametric rectangular prisms, and traverse the parametric 
volumes of two surfaces to verify that they do not collide. 

3.1 k-d Trees in Parametric Space 

A variety of subdivision mechanisms are possible, includ- 
ing quadtrees of squares or bintrees of triangles [Samet 84], 
[Von Herzen 89]. We need a method that extends eas- 
ily to k dimensions, and that controls the aspect ratio 
of the parametric subregions. We choose to use an al- 
ternative to the quadtree, which generalizes to k dimen- 
sions, called the k-d tree (for k-dimensional binary search 
tree, [Bentley et al. 79], [Samet 90a], [Samet 90b]). In the 
k-d tree method, k-dimensional space is divided into k- 
dimensional boxes, using planes perpendicular to each of 
the parametric axes. Each subdivision level splits the k- 
dimensional box along one of the dimensions to form two 
descendant boxes (Figure 4). 

3.2 Lipschitz Bounding Spheres 

We can constrnct bounding spheres from the Lipschitz equa- 
tion. Figure 5 shows the bounding sphere for a paramet- 
ric region R, and its corresponding projection in modeling 
space. The radius r of the bounding sphere in modeling 
space is given by r >_ L ( A u  + Lxv + At). A sufficient value 
for L is 

(°'1 I 0' °'l) L_>maxR 2' 2 2 (4) 

It is important to emphasize that a liierarchy of bounding 
spheres is generated from the k-d tree hierarchy. Each sub- 
region in the k-d tree has its own bounding sphere. As 
subdivision proceeds, the bounding spheres become smaller. 

3.3 Jacoblan Bounding Boxes 

While the Lipschitz spheres will suffice as bounding volumes, 
we can reduce the size of the bounding volumes, and con- 
sequently the average number of interference computations, 
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Figure 4: Successive subdivision of a 2-dirnensional k-d tree in 
parametric and modeling space. The function fmaps  parametric 
space onto modeling space. Each individual subrectangle is called 
a node of the k-d tree. The aspect ratio of the rectangles may be 
adjusted by factors of 2. 

using the Jacobian of a parametric function. See Appendix 
A for a derivation of the Jacobian bounding boxes. 

To create the Jacobian bounding boxes, we find the max- 
imum of each component of the Jacobian over the region to 
be bounded, as described in Appendix B. The resulting ma- 
trix is called the rate matr ix  M, and places bounds on each 
of the parametric derivatives over the region R. A sufficient 
value for the rate matrix M is a constant matrix with all 
entries set to the value for L in Eqn. 4. Better results are 
obtained by deriving each component of M separately. 

The next section uses the rate matrix M to create bound- 
ing boxes for each parametric surface. If the boxes do not 
overlap, then we confirm that no collision occurs. If they 
do overlap, then we adaptively subdivide the surfaces to de- 
termine if a 7-collision has occurred. As with the bounding 
spheres, an adaptive hierarchy of bounding boxes is formed 
based on the k-d tree of each surface. 

4 Collision Algorithm 

We compute collisions using a bounding volume hierarchy 
for each parametric surface. The collision algorithm has an 
important property: parametric surfaces that are far apart 
will be shown not to collide, using a single sample from 
each surface. This computation is extremely short, making 
it trivial to reject collisions between distant objects. Para- 
metric surfaces that do collide will cause the algorithm to 
adaptively sample each surface near the collision point, us- 
ing the k-d trees to guide the sampling. In this way the 
collision is refined until the desired accuracy 7 is reached. 

To set up the collision algorithm, we are given the para- 

metric functions f ( u f , v l , t )  and ~(ug,vg,t).  We are also 
given a function that returns the rate matrix M over a para- 
metric region R. 

The task is to compute whether two objects collide, as 
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P a r a m e t r i c  Node 

Lipschi tz  

F igure  5: Constructing a bounding sphere about a parametric 

node. The center of the sphere ] (gc)  in modeling space comes 
from the center ~c in parametric space. The radius r is based on 
the size of the node in parametric space, and the Lipschitz value 
for the function. A sphere of radius r = L ( A u  + LXv + ~ t )  bounds 
the region in modeling space, where &u, &v, and At  represent 
half-widths of the parametric rectangle. 

de t e rmined  by the  loss of  sepa ra t ion  of the  two pa rame t r i c  
surfaces. We assume in i t ia l ly  tha t  the  two ob jec t s  are dis- 
joint .  We are given a th resho ld  d is tance  to lerance  7, below 
which we should r epo r t  a collision, inc luding  the  pa r a me te r s  

uS, e l ,  ug, %,  and  t ime  t. 

4 . 1  Collision Algorithm Approach 

In i t ia l ly  we use one node  to represent  each surface. We sub- 
d ivide  as necessary  to  de te rmine  if a geometr ic  collision oc- 
curs wi th in  any pa r t i cu l a r  subregion.  Pa rame t r i c  sampl ing  
is concen t ra ted  where  i t  is needed the  most ,  near  po ten t i a l  
in tersect ions .  

The  a lgor i thm mus t  find the  earl iest  collision between 
two surfaces. This  implies  t ha t  we should  t raverse the nodes 
of the  k-d t rees  in fo rward- t ime  order.  We can schedule 
pairs  of  nodes  (one from each surface) to  be compared  ac- 
cording  to the  ear l ies t  poss ible  collision t ime,  de t e rmined  
from the  m i n i m a  of the  t ime  bounds  of the  pa rame t r i c  sub- 

regions.  The  two pa rame t r i c  regions cannot  collide unt i l  
they  bo th  have come into existence.  So the m a x i m u m  of  the  

two s t a r t i ng  t imes  represents  the  ear l ies t  possible  collision 

t ime.  Given the t ime  in terval  tA :h A t A  of node  A, and the  
t ime  interval  tB • A t 9  of node B,  we sort  the  node-pa i rs  
according to  the  ear l ies t  possible  in tersect ion t ime  tmin: 

tmi= = max( tA - &tA, tB -- & t s ) .  (5) 

We ma in ta in  a heap d a t a  s t ruc tu re  [Knuth  69] of pairs  of 
nodes to be compared ,  sor ted  in ascending order ,  using 
train as the  sort-key.  T h e  d is tance  between the centers  of 
the  nodes is used as a secondary  sor t -key to focus effort 
on the  most  p robab le  collision cand ida tes .  We successively 
pop  node-pa i r s  off the  heap for compar ison ,  in ascending 
order ,  according to tml, .  The  node  compar ison  genera tes  
new node-pa i r s  whenever  there  is an overlap in the  bound-  
ing volumes. The  pa i rs  are pushed onto the  heap,  and  the 

process  continues unti l  all pa i rs  are evaluated .  This  m e t h o d  
guaran tees  t ha t  we will find the ear l ies t  collision between 
the surfaces. 

4.2 C Implementation 

Figure  6 shows an a lgor i thm wr i t t en  in C for comput ing  
the collision between two pa r ame t r i c  surfaces. The  n o d e  

typedef  double v e c t o r [ 3 ] ,  mat r lx[3]  [3] ; 
A node is a piece of a parametric sur]ace. 

typedef  s t r u c t  n o d e _ s t r u c t  { 
vector parameters; (u,v,t) coords in parametric apace. 
v e c t o r  width;  (u,v,t) width in parametric space. 
v e c t o r  p o s l t l o n ;  (x,y,z) eoords in modeling space .  

v e c t o r  r a d i i ;  (x,y,z) width in modeling space. 
node  c h i l d l  , ch i ld2 ;  The two subreglons of this node. 
in t  s p l i t _ d i r e c t i o n ;  The splitting axis ]or the node. 

} *node  ; 

v e c t o r  s u r f a c e _ c o l l i s i o n ( ] n 1 ,  fn2 ,  Jmaxl, Jmax2, gzumaa) 

v e c t o r  f n l ( ) ,  f n 2 0 ;  The functions to be collided. 
matrix JmaxlO, Jmax20 ; The maximum of the Jaeo~ians. 
float gamma; Collision tolerance. 
{ One node from each ]unction; used for comparison. 

node  n o d e 1 ,  n o d e 2 ;  

heap_flushO ; Empty the heap of nodes. 
Put the initial node pair on the heap ]or evaluation. 
schedule_node_pair (init ial_node (fnl, Jmaxl), 

initial.xtode(fn2, Jmax2)) ; 
As long as nodes are on the heap, compare them. 
while (heap_pop(knode/,  knode2)) { 

i f  (nodes_coll ide_e i th in_ t  o le rance  (node 1 ,node2, ganmm) ) 
r e t u r n  ( ¢ o l l l s i o n _ i n f o  ( n o d e 1 ,  n o d e 2 ) )  ; 

The nodes are too large, 
if (norm(nodel->radii) > norm(node2->radii)) { 

node_split(node1, fnl, Jmaxl) ; 

schedule_node_pair(nodel->childl, node2) ; 

schedule_node_palr (nodel->child2, node2) ; } 
else {node.split (node2, fn2, Jmax2) ; 

a~hedu_le_node_pair (node1, node2-> child/) ; 
schedule_node_pair(node/, node2->child2) ; } 

} 
returnCIULL) ; I/ there are no nodes left to 
} compare, the surfaces don't collide. 

i n t  s c h e d u l e _ n o d e _ p a i r  ( n o d e l , n o d e 2 )  

node  n o d e l , n o d s 2  ; 
{ 
i f  ( ! ~ i m e _ o v e r l a p ( n o d e l ,  n o d e 2 ) )  r e t u rn ;  
i f  ( ! ~ p a c e _ o v e r l a p ( n o d e l ,  n o d e 2 ) )  r e t u r n ;  

h e a p _ p u s h ( n o d e 1 ,  n o d e 2 )  ; Heap is sorted by tmi n- 
} 

Figure  6: An algorithm and da ta  structure to determine colli- 

sions for time-dependent parametric surfaces. 

d a t a  s t ruc tu re  represents  a region of a p a r a m e t r i c  surface. 
The  s u r f a c e _ c o l l i s i o n  funct ion computes  a 7-sphere  tha t  
conta ins  poin ts  from bo th  surfaces, or else confirms tha t  the 
two surfaces do not  collide. 

The  s u r f a c e _ c o l l i s i o n  func t ion  calls several  o the r  func- 
t ions.  The  funct ion i n i t i a l _ n o d e  compu te s  an in i t ia l  node 
for the  ent i re  surface at  loca t ion  ( u , v , t )  = (0.5,0.5,0.5) .  
The  funct ion s c h e d u l e _ n o d e _ p a i r  takes  a pa i r  of nodes,  
sees if they  overlap in t ime and in space,  and  pushes  them 
onto the  heap  to be scheduled  for eva lua t ion  according to 

tmi=. The  funct ion s p a c e _ o v e r l a p  re tu rns  false if  the  min- 
imum dis tance  be tween two bound ing  boxes is greater  t han  

7. The  opera t ion  h e a p _ p o p  pops  a pair  of nodes off the  
heap  for evaluat ion.  The  funct ion c o l l i s i o n A n f o  re turns  
the  collision p a r a m e t e r s  and t ime  if a 7-colhsion took place. 
Final ly ,  the  funct ion  n o d e _ s p l i t  subd iv ides  a node  into  
two smal ler  nodes  along the  p a r a m e t r i c  d imens ion  with the  
grea tes t  con t r ibu t ion  to  the  b o u n d i n g - b o x  size. Deta i led  
proofs of the  a lgor i thms  may  be found in [Von Herzen 89, 
A p p e n d i x  A]. 
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4.3 Termination Condition 

The function nodes_co l l ide_wl th in_ to le rance  determines 
whether a 7-sphere contains both surfaces. For termina- 
tion, we compute the smallest isothetic rectangle (a rectan- 
gle aligned with the coordinate axes) that contains the two 
bounding boxes. If the largest dimension of the isothetic 
rectangle is smaller than the separation tolerance, we report 
the loss of separation of the two surfaces, down to the tol- 
erance specified. Expressed mathematically, for bounding 
boxes (XA, yA, ZA) =~ (Z~XA, &yA, ZXZA) and ( ~ ,  y~, ,~)  =~ 
(ZXxB, &YB, &zB), and tolerance 7, we require 

(JzA-  z B I + L X X A + ~ = ~ ,  \ 
max lya  - y s l  + &VA + ZXyB, ) _< 7. (6) 

[za - zB[ + AzA + AzB 

4.4 Complexity for Interacting Spheres 

We can test the colhsion algorithm using two parametric 
spheres. We would expect that  as the separation distance 
decreases between the two spheres, the number of bound- 
ing box comparisons should increase. In particular, if the 
separation distance drops by a factor of two, we will have 
to create bounding boxes twice as small to confirm that the 
surfaces do not intersect. For the parametric k-d tree hi- 
erarchy, every halving of the separation distance requires a 
constant number of additional subdivision levels. Assum- 
ing that CPU time should be proportional to the number of 
subdivision levels, the CPU time t should scale as 

t ~ logs ((r + S)/S), (7) 

where r is the radius of each sphere, and S is the minimum 
separation between spheres. 

4.5 Results for Interacting Spheres 

As an illustration of the relationship between computation 
time and separation distance S, we determine collisions for 
two spheres while varying S. The total computation time 
is a function of the minimum separation distance between 
the two objects. The graph in Figure 7 shows an example 
of the computation time as a function of S. For an object 
of radius r and minimum separation distance S = 2r, we 
require only a few samples to be taken from each surface. 
As the minimum separation distance decreases, we notice an 
increase in CPU time proportional to the negative logarithm 
of the separation distance• In this computation we assume 

7<S. 

4.6 Results for Other Objects 

As a demonstration of results for surfaces more complicated 
than polynomials or quadrics, the collision method is demon- 
strated for two spiked objects illustrated in Figure 8. The 
parametric equation for the spike function is 

~(u, v) = r(u, v) sin(2ru) sin(rv) , (8) 
v) cos(  ) 

where the radius is given by 

i < n  

= + ,1 (9) 

i = 0  
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Figure 7: CPU time for two interacting spheres of radius r as 
a function of log S, where S is the minimum separation between 
two objects• In this example, ~ < S. 

The value n is the number of spikes on the sphere, (ui, vi) is 
the parametric location of the {-th spike, and w0 determines 
the radius of the spikes• 

Without knowing something about the parametric 
derivatives of the spike function, it would be very difficult to 
solve the collision problem for two moving spike functions. 
As it is, we are able to construct a set of bounding volumes 
as the computation requires, in order to verify the paths of 
the two objects. 

We illustrate the results of the collision computation. In 
Figure 8.a, we see two spherical spike functions approaching 
each other• In Figure 8.b, the algorithm computes a colhsion 
between two of the spikes. A physical simulation program 
computes the recoil as shown in Figure 8.c (see Section 6). 
This collision computation would have been very difficult 
to solve without knowing the rate matrix M for the spike 
function. With this information, we can solve difficult col- 
lision problems, using a straightforward application of the 
collision algorithm of Figure 6. The appendices discuss the 
creation of M. 

5 Constraints on Jacoblans 

For the collision technique to be most useful, we need to de- 
termine constraints on the Jacobian of the parametric func- 
tions (See Appendix A). A variety of methods are possible. 

The simplest approach is to compute the maximum of 
any component of the Jacobian over the entire surface, and 
then to set each entry of the rate matrix M equal to the 
maximum value• This does not provide particularly tight 
bounds on the parametric surface, but is sufficient to com- 
pute collisions• 

Alternatively, we can compute a global maximum for 
each parametric variable (u, v, *). It is common for the time 
derivatives, such as ax]Ot, to have separate scaling from the 
spatial parametric derivatives, such as Ox/Ou and Ox/av. It 
is also common for the u and v derivatives to have separate 
scaaings. If we define 

w, =-- max , , , 
R 

and w~ and w, similarly, then the following matrix con- 
strains the Jacobian of the parametric surface: 

M ( R ) =  w,, w~ w~ . (11) 

'IVu 'Wu ~,//t 
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Figure 8: A pair of spike functions before, during, and after a 
collision. 

Each column of M has a separate entry: either a constant for 
the whole surface, or a function of subregion R. We obtain 
a tighter set of bounding volumes than with the approach 
using a single constant. 

Perhaps the most general and flexible way to compute 
constraints on the Jacobian matrix is to create a special 
function that computes maxima of the derivatives of each 
parametric function. Frequently we can find analytical ex- 
pressions of the $acobian of the parametric function, and 
the maximum of every component in the Ja¢obian over some 
parametric range. In these eases we can produce very tight 
bounds around a surface. It is frequently possible to find.an 
exact analytic solution to the M function. In other cases 

. 

we may need to use approximation rules to the varmus com- 
ponents (Appendix B). We must satisfy only the condition 
that 

mi," _> mnax IJiA . 02)  

In this case, R may be any subregion of the parametric do- 
main of the function. Note that if m i j  is much larger thaat 
Jij, the algorithm will still work, but will take longer to 
terminate. 

Composition rules such as the triangle inequality in 
Eqn. 23 can simplify the computation of 3acobian max- 
ima. The rate matrix IV[ for several objects is computed 
in [Von Herzen 89], aloug with identities for simplifying the 
analysis (Appendix B). 

6 Potential Application to Physlcally-Based Simu- 
lators 

Many physically-based modeling systems need to have an 
implicit function to tell when a pair of objects come together 
in a collision. The function should be positive when the two 
objects do not interfere, negative when the objects overlap, 
and zero when the objects are just barely in contact. In 
addition, the function should be continuous. 

A simple solution is h ( t )  = to - t ,  where to is the col- 
lision time [Platt 89]. Before the collision, h(t) is positive, 
and after the collision, h ( t )  is negative. The function is lin- 
ear in time, which is very helpful for numerical analysis of 
physically-based modeling systems. The value of to is com- 
puted by the algorithm presented in this paper, whereupon 
the forces of the collision are computed by the physical sim- 
ulation system (See, for example [Barzel et  al. 88]). 

7 Conclusion 

We have demonstrated a method to determine collisions be- 
tween time-dependent parametric functions. The method is 
guaranteed to find the earliest collision for those functions 
with computable bounds on parametric derivatives. The 
collision theory and algorithms developed here may poten- 
tially apply to robotics and to ray-tracing problems as in 
[Kalra et  al. 89]. Even for such difficult functions as the 
spike functions of Figure 8, the method is practical and ro- 
bust and easily determines potential collisions between ob- 
jects. 

7.1 Advantages of' the Method 

In summary, tile collision algorithm presente d here has the 
following advantages: 

• robust method 
• works for deforming time-dependent surfaces 
• computes to user-specified accuracy 
• finds the earliest collision or near-miss 
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• works wi th  many  types  of surfaces, including pa tches  
• interfaces  to physical  model ing  sys tems 
• needs analys is  only once per  surface type,  vs. O ( N  2) 

compar isons  be tween  all pMrs of surface types  

7.2 Disadvantages 

Disadvantages  of the  a lgor i thm include:  
* mus t  anMyze der ivat ives  for each surface type  
. c a n ' t  guaran tee  collisions for surfaces wi th  unbounded  

der ivat ives  
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A Appendix: Jacobian Bounding Boxes 

Here we derive a set of b o u n d i n g  boxes for p a r a m e t r i c  funct ions  
us ing  the  J acob i an  of the  funct ion.  These  boxes f requent ly  pro- 
duce t igh te r  b o u n d s  on  a p a r a m e t r i c  surface t h a n  the  Lipschi tz  
b o u n d i n g  spheres.  We s t a r t  w i th  the  original  defini t ion of the 
Lipsckitz condi t ion  for p a r a m e t r i c  funct ions  ( [Gear  71]): 

- DIl, - , cll. ( , 3 )  

Assume t h a t  t he  condi t ion  holds  over some pa rmne t r l c  subregion  
R : u l  ~ u _< u2, Vl < v < v2, and  t l  < t < t2. We define para-  
met r ic  coordina tes  fie = (ue, vc, to) a t  the  center  of region R, a n d  

model ing  space coordinates  (~cc,yc, zc) = f ( g c ) .  We choose a n  
L1 n o r m  for the  r ight  side of Eqn .  13, a n d  we apply  the  condi t ion  

to each c o m p o n e n t  of ~ separa te ly :  

I ~ - x d  _< L ~ ( l u - u d + l  " - v c l + l  t - t e D ,  
I V -  V¢I _< L~ (l~ - ~ 1  + I" - " d  + I t -  t~[),  (14) 
I ~ -  ~cl < L~ (lu - u~l + I" - ~d + It - t d ) ,  

for  some sui table  values of ILl. We d i s t r ibu te  the  values Li and 
r e n a m e  t h e m  to arr ive a t  a more  general  inequali ty:  

I:-~ol <_ M:,lu-u¢l+M:~lv-vcl+M~tlt-t¢l, 
iv-vd _< M~,.lu-=¢l+M~,,Iv-v.l+M~tlt-tcl, 
Iz-z¢l _< M~lu-u, l+M~lv-v , l+M~t l t - t , l .  

(15) 
We can  solve for each i i j  by choosing appropr ia t e  values of 
(u, v, t).  We i l lus t ra te  w i th  Mxu:  

I~(u,v,t)-z(uc, v,t)l_<M=~lu-~l, 06) 

o r  

I Z ( U l V ' t ) - ~ ( u * ' v ' t ) l  Uc U # U O  (17) 

Assuming  t h a t  x(u ,  v, t) is differentiable,  a sufficient value of Mxu 
is 

M z u  ~ m ~ x l O X ( u ' v ' t )  " (18) 

Mxu iS a n  u p p e r  b o u n d  on  the  p a r a m e t r i c  der ivat ive  over the  
region R. In  general ,  a sufficient value of the  r a t e  m a t r i x  M is: 

/ I r ~ x - ~  m ax  "~1  " ( 1 9 ) R  l o t  M=- 

Jus t  as the  Lipschitz  value L is a genera l iza t ion of the  derivative,  
so the  r a t e  m a t r i x  M is a genera l iza t ion of the  Jacobiar t  m a t r i x  
for pa rame t r i c  vector  funct ions  of several  variables [L ine*  aL 74, 
p. 355]. The  m a t r i x  M consists  of uppe r  bounds  on  all the  para-  

met r ic  der ivat ives  of all the  componen t s  of vector  f tmct ion  J .  
We define A u  _= I~t2 - Ucl, ~ v  .~ Iv2 - Vcl, and  At  =-- It2 - %1. 

Since u l  < u _< u2, we have  lu - ucl _< &u. Similarly, Iv - Vcl _< 
Av,  a n d  it - tel < At .  S u b s t i t u t i n g  in to  Eqn.  15, we have the  
ra te  c o n d i t i o n :  

I x - x e l  < M=uAu  + M z v A v  + M x t & t ,  
lY - ycl < M ~ u & u  + M u o A v  + M u r A t  , 
Iz - -  zcl < M z u h u  + M z v A v  + M z t A t .  

(20) 

We define the  b o u n d i n g  b o x  r a d i i  to be 

A x  _= Mxu&U + M x v A v  + ~¢xtAt ,  
A y  _= M u u A u  + M u o A v  + M v t A t  , 
h z  ~ M z u h U  + M z v h v  + ~ l r t h t .  

(21) 

Now we can  cons t ruc t  a bound ing  volume in model ing  space 
f rom the  b o u n d i n g  box radii ,  based  on  Au ,  Av,  At ,  a n d  the  r a t e  
mat r ix .  We form a r ec t angu la r  p r i sm tha t  is al igned wi th  the  x, 

y, a n d  z axes, cen te red  a b o u t  mode l ing  coordina tes  (aZc, yc,zc) .  
Combin ing  Eqn.  21 wi th  Eqn.  20, we get the  b o u n d i n g  b o x  
i n e q u a l i t y :  

I = -  ~cl _< A~ 
Iv-u.I _< Av (22) 
Iz-z~l 5 zx~. 

Such a r ec t angu la r  region is cal led an  iso~hetic rectanfle, a rect- 
angle whose sides axe paral lel  to coord ina te  axes [Lee et al. 84]. 
The  set of points  sat isfying Eqn.  22 form a b o u n d i n g  box  contain-  
ing the  p a r a m e t r i c  region. We now have art efficient hound ing  box 
useful for compu t ing  collisions be tween  moving  pa rame t r i c  sur- 
faces. We are free to compu te  the  J acob i an  m a x i m a  over the  
ent i re  surface, the reby  compu t ing  w i th  a single-valued cons tan t  
m a t r i x  across the  surface. Al ternat ively ,  we m a y  compu te  the  Ja- 
cobians  over subregions  in  order  to ta i lor  the  b o u n d i n g  volumes 
more  closely to pa r t i cu la r  var ia t ions  in  the  surface. These  boxes 
f requent ly  p roduce  t igh te r  b o u n d s  on  the  pa rame t r i c  funct ions 
t h a n  does the  Lipschitz cond i t ion  of Eqn .  3. 

B Appendix: Bounds on Parametric Derivatives 

Here we describe how to  compu te  the  entr ies  in  the  m a t r i x  M 
from Eqn.  19. In  add i t i on  to the  different iable  surfaces, some 
non-different iable  surfaces also have  c o m p u t a b l e  Lipsehitz  values 
f rom which  to  derive r a t e  mat r ices  ([Von Herzen  89, Append ix  
B.3]). In  th is  sect ion we will focus our  a t t e n t i o n  on differentiahle 
p a r a m e t r i c  surfaces. 

B.1 Maxima of scalars 

We frequent ly  have a closed-form descr ip t ion  of x ( u , v , t )  t ha t  
pe rmi t s  us to compu te  t he  der ivat ive  ~:t(u, v, t) directly. T h e n  
we can  use  the  following ident i t ies  to compute  the  m a x i m a  of 
fuxtctions: 

Eqn.  23 is known as the  t r iangle  inequali ty.  I t  is equivalent  
to  the  law t h a t  the  l eng th  of the  longest  side of a t r iangle  mus t  
b e  less t h a n  the  l eng ths  of the  two shor t e r  sides added  together :  

maxR 17(n) + i(R) l _< r~x If(R)l + r~ax I¢(n) l, (23) 

Similar  laws ho ld  for the  opera t ions  of sub t rac t ion ,  mul t ip l icat ion,  
and  divis ion of funct ions .  

maxR I f (R)  - g( )1 _ ~ a x  < I ] ( n ) l  + ~ a x  I~(R)I, (24) 

maxR If(R)C(R)I  _< ~ a x  I f ( n ) l  ~ x  Iff(n)l, (25) 

m a x  I f (R)  l 
maxlf(R)l~(R)l < n (26) 

n - m i n l ~ ( R ) l  ' 
R 

for all. ] ( R )  and i f (n) .  

B.2 Maxima of polynomials 

Given h(t) ,  a po lynomia l  func t ion  of degree n = 2,3, or more,  
we want  to  maximize  i ts  value over  a range  ta < t < tb. T h e  
po lynomia l  h( t )  is a s sumed  to b e  of the  fo rm h( t )  = ao + n i t  + 
a2t 2 + a3t 3 + a4t 4 + .... The  m a x i m u m  in h( t )  occurs  e i the r  a t  0, 
t0, or a t  the  points  of so lu t ion  for h'(t)  = O. 

We take the  der ivat ive  analy t ica l ly  and  t hen  solve the  result- 
ing po lynomia l  equa t ion  us ing  any  one of a var iety of numeri-  
cal analysis  p rograms (see [NAG]) for t, to  get a set of values 
t = t l , . . . , t N .  A d d  0 a n d  t0 to  the  set to  get 0, t l ,  . . . , tN,  tO. 

T h e n  we subs t i t u t e  these  values in to  tile def ini t ion for h(t).  
a n d  pick the  m a x i m u m  value of h(0) or  h ( t i ) ,  for 0 < i < N.  This  
is the  m a x i m u m  value for the  whole interval ,  ta _< t _< tb. 

For any in terval  ta _< t < tb we only need  to evaluate  h(t) at  
the  endpo in t s  ta and tb and  any values in  the  solut ion set be tween  
ta and  tb. Th i s  reca lcu la t ion  will reduce  the  m a g n i t u d e  of the  
Lipschitz  value as the  in terva l  decreases w i th  fu r the r  i tera t ions .  

Similar  solut ions are possible for po lynomia l  pa tches  t ha t  
use a r a t iona l  cubic r ep re sen t a t i on  in one p a r a m e t r i c  d i rec t ion 
([Filip el al. 86, p. 307]). I t  is s t r a igh t fo rward  to e x t e n d  these 
resul ts  to  several  d imensions .  
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B.3 Product surfaces 

P r o d u c t  surfaces include superquadr ics ,  spheres,  profile surfaces, 
t r ans l a t i ona l  sweeps, a n d  spher ica l  p roduc t s  [Barr  83]. These  sur- 
faces take  the  m a t h e m a t i c a l  form: 

= ~ ( = , v )  = ~(v)c~(=)  + d~(v),  (27)  

where i = 1 ,2 ,3 ,  a n d  subscr ip t s  1,2 a n d  3 cor respond  to compo-  
nen t s  x, y, a n d  z. 

The  pa r t i a l  der iva t ive  of th is  surface w i th  respect  to  u is: 

2/) 
= ,~(V) - ~  "1- d i  (V). ( 2 8 )  

0u  

Suff ident  values of the  ent r ies  of the  r a t e  m a t r i x  M are: 

= 

i = 1, 2, 3. T h e  r a t e  m a t r i x  entr ies  w i th  respect  to  parazneter  v 
are given by: 

m . .  = maxa ~ maxR Ic~(u)l + n ~ x  . (30) 

Final ly ,  all  the  t i m e  der ivat ives  are zero: m .  = O. Given  dif- 

ferent iable  scalar  func t ions  for } ( v ) ,  c~(u) ,  a n d  d~(v), we c a n  f ind 

the  rate  m a t r i x  for the  p r o d u c t  surface.  

B.4 Surfaces with Translational Motion 

Assuming  t h a t  we can  c o m p u t e  the  r a t e  m a t r i x  for a s t a t i o n a r y  

surface f ( u ,  v), how can  we com pu t e  the  r a t e  m a t r i x  for the  same 
surface t h a t  is t r an s l a t i ng  as a func t ion  of t ime? ([Von Herzen 89, 
A p p e n d i x  B.2]). We define t he  t r an s l a t i on  func t ion  to be  s~t). 

The  t r a n s l a t i n g  surface is g iven by  func t ion  ff(u, v, t)  = f (u ,  v) + 

g(t). I f  t he  value m i j  r epresen t s  the  r a t e  m a t r i x  for f ,  t h e n  the  
new ra te  m a t r i x  Mg for t he  mov ing  surface ~(u,  v, t)  is 

M g =  . (31)  

I 

B.5 Surfaces with Rotational Motion 

We now examine  r o t a t i o n a l  m o t i o n  for r igid objects .  G iven  a 

func t ion  f ( u ,  v), a n d  a r o t a t i o n  m a t r i x  R.(t)  as a func t ion  of t ime,  

we have  if(u, v, t) = R ( t ) f ( u ,  v). T h e  p a r a m e t r i c  der ivat ives  of ff 
are  g iven  by  

Off(u, t) 
= R ( t )  0 % ' "  v)," (32) 

0u  

Off(u, v, t) R ( t )  O f ~  v ) ,  
= (33) 

Ov 

o~(~, v, t) _ oR(0 ,~rr~, 
V ) .  (34) 

Ot Ot 

B.6 Example of a deformation 

As a n  example  of c o m p u t i n g  the  r a t e  m a t r i x  for a de forming  
func t ion ,  we i l lus t ra te  how to com pu t e  the  r a t e  m a t r i x  for a n  
objec t  w i th  a var iable  t a p e r  as given in [Barr  84], a s suming  we 

have  the  r a t e  m a t r i x  for the  unde fo rmed  objec t .  Let  f (u ,  v) be  
the  tmde fo rmed  objec t  w i th  componen t s  (x, y, z). T he  deformed  
coord ina tes  are given by X = r ( z , t ) v  for the  av componen t ,  Y = 
r ( z , t ) y  for the  y componen t ,  a n d  Z = z for the  z componen t ,  

where  r ( z ,  $) is the  t a p e r i n g  func t ion  t h a t  varies over t ime.  T h e n  
t h e  der ivat ives  for  t he  deformed coord ina tes  are:  

OX Or Oz Ox 
Ou - -  Oz ~ z  + ~ r ( z , t ) ,  (35) 

OX Or Oz Ox 
. . . .  =+ 7 -  ( t ) ,  (36) 
Ov Oz Ov ov  r ' z '  

0 X  Or 0x  t ) .  (37) 
0--7 = +  r(z, 

The  equa t ions  are ana logous  for t he  Y c o m p o n e n t .  All of the  
der ivat ives  for Z are  equal  to t he  der ivat ives  for  z. 

A typical  t a p e r  func t ion  r ( z ,  t)  is a pieeewise l inear  func t ion  
t h a t  t apers  f rom r l  to  r 2 s t a r t i ng  a t  z l  a n d  end ing  a t  z2. We can  
make  the  end ing  values of the  t a p e r  vary  as a func t ion  of t ime,  
r l ( t )  a n d  r 2 ( 0 -  T h e  func t ion  r(z,  t) is g iven  b y  

Z<Zl, 

= z,)r  + - z)r ,  31 _< _< (36) 

r2 (t) z2 - 31 z > 32. 

T h e  der ivat ives  of r ( z ,  t) are g iven  by  

0 z < z l ,  
O r  r 2  - -  r l  
- -  ~ Z 1 < Z < Z2,  
Oz 32 -- Zl -- -- 

0 z > z 2 .  

T h e  t empora l  der iva t ive  is given b y  

(30) 

Or~(O 
' Z < Z l ,  

8 r  , a t  ,Or2 0 r l  (40) 

0 r 2 ( t )  32 z l  

z > z 2 .  

Eqn.  40 is valid for d y n a m i c  t ape r s  of s t a t i c  objec ts .  T h e  dif- 

fe ren t ia t ion  rule  for p r o d u c t s  leads to  t he  equa t i on  for t apers  of 

d i s to r t ing  objects .  These  equa t ions  m a y  b e  s u b s t i t u t e d  direct ly 

in to  Eqn .  19 for the  r a t e  m a t r i x  to  o b t a i n  der iva t ive  b o u n d s  on  

p a r a m e t r i c  surfaces t ape r ing  as a func t ion  of t ime.  
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