
~ Computer Graphics, Volume 24, Number 4, August 1990
l l l l | m

Geometric Collisions for Time-Dependent Parametric Surfaces

Brian Von Herzen, Alan H. Barr, and Harold R. Zatz

California Institute of Technology
Pasadena, CA 91125

Abstract

We develop an a lgor i thm to de tec t geometr ic collisions be-
tween pairs of t ime-dependen t pa rame t r i c surfaces. The
a lgor i thm works on surfaces t h a t are cont inuous and have
bounded der ivat ives , and includes objec ts t h a t move or de-
form as a funct ion of t ime. The a lgor i thm numerical ly
solves for the pa rame t r i c values cor responding to coincident
poin ts and near-misses between the surfaces of two pa rame t -
ric functions.

Upper bounds on the pa rame t r i c der ivat ives make i t pos-
sible to guaran tee the successful de tec t ion of collisions and

near-misses; we descr ibe a me thod to find the der ivat ive
bounds for many surface types. To compute collisions be-

tween new types of surfaces, the m a t h e m a t i c a l collision anal-
ysis is needed only once per surface type, r a the r than ana-
lyzing for each pair of surface types.

The a lgor i thm is hierarchical , first f inding po ten t ia l col-
lisions over large volumes, and then refining the solut ion to
smal ler volumes. The user may specify the desired accuracy
of the solution. A C-code imp lemen ta t i on is descr ibed, with
results for several non-bicubic and bicubic t ime-dependen t
pa r ame t r i c funct ions. An an ima t ion of the collision compu-
t a t ion demons t r a t e s collisions between complex pa rame t r i c
funct ions.

CIZ C a t e g o r i e s : 1 . 3 .5 - -Compu ta t i ona l G e o m e t r y and Ob-
jec t Modeling; 1 .3 .7 - -Three-Dimens iona l Graphics and Re-
al ism

A d d i t i o n a l K e y w o r d s : Collision Detect ion, Pa rame t r i c
Surfaces, A d a p t i v e Sampl ing , Simulat ion, Dynamics , Con-
s t ra ints , Deformat ions , C o m p u t e r Modeling.

1 Introduction

In compu te r an ima t ion and physical s imulat ion i t is fre-
quent ly i m p o r t a n t for ob jec t s to in te rac t with one another .
One form of in te rac t ion between objec t s is a collision, which
is i n i t i a t ed by geometr ic contac t s t ha t arise between two or
more bodies . We dis t inguish the geometr ic contact of the
ob jec t s from the forces t h a t influence the mot ion of the ob-
jec ts after the collision; we call these contac ts the geometric
pa r t of the collision.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

V • k ~ n

~L

(b) Increasing t ime (t)
>

Increas ing t ime (t)
>

Figure 1: Geometric collision of time-dependent parametric sur-
faces. (a) A tlme-dependent parametric surface] (u , v, t). (b) A

pair of deforming surfaces](ug, vg, t) and ~(ug, vg, t) that collide
at time tin_in. The algorithm returns the paraaneters u f, vll, ug, v 9 ,
and train corresponding to the collision point on the two surfaces.

In the physical world, collisions occur when two objec ts

move through space and hit one another . To s imulate this
behavior in a compute r graphics environment , we need a
m a t h e m a t i c a l descr ip t ion of the ob jec t s and a coxrespond-
ing geometr ic collision p rocedure to de te rmine t ha t contact
has occurred. Many compute r graphics ob jec t s are com-
posed of polygons; geometr ic collision a lgor i thms have been
developed for these (for example [Moore et al. 88].)

A l though it is possible to represent v i r tua l ly any surface
wi th sufficient numbers of polygons, i t is somet imes more
convenient to use higher-level surface representa t ions . Some
people prefer to use b icnbic patches for thei r appl ica t ions
because the pa tches can be a more compac t representa t ion
t han polygons, and can be easier to work with.

Jus t as bicubic pa tches are somet imes more conve-
nient t han polygons, there exist higher-level representa t ions
of pa rame t r i c surfaces tha t a t t imes are more convenient
t han bicubic patches . Examples include some forms of lo-
cal and global deformat ions [Burr 84], [Sederberg et al. 86],
[Snyder 90]. These surfaces are typica l ly funct ions of two

© 1 9 9 0 ACM-O-89791-344-2/90/O08/O039 $00.75 39

SIGGRAPH '90, Dallas, August 6-10, 1990

surface parameters, u, and v, as in f (u ,v) ; A few inter-
section algorithms for these surfaces have been developed
[Filip et al. 86]. However, no results have been reported
for dynamic collisions of general time-dependent paramet-
ric functions.

1 .1 Overview

In this paper we describe a collision algorithm for time-
dependent parametric surfaces that are described by para-
metric functions of three arguments, u, v, and t as in

f (u , v, t) (see Figures 1 and 2). These types of functions
arise frequently in the context of physically-based modeling
and simulation, as a body translates, rotates and possibly
deforms as a function of time. In this algorithm, we com-
pute the u and v collision parameters at the earliest time of
collision t~i,.

Unfortunately, for arbitrary parametric functions it can
be proven that no algorithm (based solely on function eval-
uation) can be constructed that is guaranteed to find the
earliest time of collision (See Section 1.3). A restriction on
the functions is needed in order to construct a workable col-
lision algorithm. In this paper, we require the functions to
have computable bounds on their regional rates of change.
These bounds on the rates of change are called "Lipschitz"
values. Such surfaces and functions with computable Lip-
schitz values will likely become increasingly important for
computer graphics rendering, both in terms of software,
but also in terms of future computer graphics hardware
[Kalra et al. 89], [Kaufman 87], and [Von Herzen et al. 87].

The potential hardware applications arise from an inter-
esting feature of the algorithm. The reader may be aware
that many other algorithms for intersecting parametric sur-
faces use special cases: a different procedure is needed for
each pair of surface types. For instance, the reader can
imagine an algorithm that computes interactions between
spheres and cylinders but does not compute interactions be-
tween other surface types (say, ellipsoids and cylinders).

Unlike the case-by-case algorithms in which a different
procedure is needed for each pair of surface types, our algo-
rithm works uniformly for all of its available surfaces. Each
surface is analyzed by itself, to compute bounds on its rates
of change (see Appendix B). From these bounds on the sur-
face's rates of change, we can find geometric collisions with
other surface types. Thus, we do not need to perform O(N 2)
analyses (for each possible pair of N surface types) but in-
stead we can analyze each function once, in isolation. Then
it automatically interacts with all of our previously imple-
mented surface types with no extra work.

1.2 Problem Statement

The parametric surfaces may be considered to be vector

functions of three parametric variables: f (u s , v / , t) and
~(ug, va, t), where ui and vi are parametric variables that
span each of the surfaces, and t is time. For suitable types
of surfaces, we want to find the earliest time tmi,, within
bounds, such that

[(U s, VS, tmirt) = g(UO, V o, grain). (1)

We also want to find ul,vl,ug , and vg at some point of

first collision on each surface. We assume that the surfaces

are continuous, and that they are embedded in three spatial

dimensions and one temporal dimension.

In practice, we determine when the distance between ob-
jects becomes less than a tolerance r:

vg, tmi=)ll < r. (2)

This event is termed a 7.collision, and includes collisions
and near-misses closer than "y.

Most dynamic modeling systems [Baraff 89],
[Barzel et al. 88] can readily utilize the approximate colli-
sion parameters available with large values of r . The user
requests a value of r that is roughly the largest value satis-
factory for the particular application (smaller values would
cause the collision-detection algorithm to put in more work
than necessary); this value of r is typically much larger than
the machine precision, ¢. Thus we are able to avoid the prob-
lem of finite machine precision by explicitly using a value of
7 much larger than e.

Eqn. 2 represents a difficult, non-linear, 5-dimensional,
root-finding problem. The algorithm based on]3qn. 2 pre-
sented in Section 4 can quickly produce results at a coarse
tolerance r, and later produce results at finer tolerances.

Sometimes the r-collision algorithm terminates after a
single sample has been taken from each surface: it becomes
computationally trivial to reject potential collisions between
distant objects. For additional efficiency, we develop a new
method to produce bounding boxes for parametric func-
tions, using a "Jacobian'-style matrix of Lipschitz condi-
tions on the parametric function. This method produces
much tighter bounds on the surface than does the standard
Lipschitz condition, and enhances the effectiveness of the
algorithm for computing collisions between parametric sur-

faces.
The next subsection describes some of the difficulties in

detecting collisions, and potential solution methods. Sec-
tion 2 describes other work in collision detection. Section 3
and Appendix A develop a new method to form a hierar-
chy of bounding volumes for parametric surfaces. Section 4
describes the algorithm and computational results, and Sec-
tion 5 describes methods for computing Jacobian maxima
for parametric surfaces, useful in bounding box formation.

1 . 3 Problems with Arbitrary Surfaces

The collision problem for parametric surfaces can be made
arbitrarily difficult for suitably extreme parametric surfaces,
such as the spike function of Figure 2. For suitably sharp
spikes, finite sets of samples will probably miss the spikes
completely. Finding a narrow spike becomes arbitrarily dif-
ficult as the parametric width of the spike approaches zero.

The spike problem exists in time as well as space for geo-
metric collisions. If the location of a surface is discontinuous
in time then it becomes impossible to detect collisions, be-
cause it becomes impossible to know the location of a surface
over a time interval. There must be some additional con-
straint on a parametric surface in order to guarantee that
the first collision is detectable.

1.3.1 A Method that Doesn't Work

A simplistic approach for collision detection would be to
position two surfaces at time tl and see if they intersect,
and then move the surfaces to final positions at time t2 and
see if they intersect. We could then split the time difference
and sample the two surfaces at time (tz + t2)/2, or some
other time between tl and t2. Recursing in this manner, we
would sample the paths of the two surfaces. The problem
with this technique for any finite number of samples is that

40

~ Computer Graphics, Volume 24, Number 4, August 1990

X

Figure 2: Parametric spike functions can be made arbitrarily
sharp, so that their detection is extremely difficult. A fourth
spike in this figure is invisible, since it falls between the grid
points. Collision detection becomes arbitrarily difficult for such
parametric surfaces. We need some other information in addition
to the function values at isolated points in order to guarantee the
detection of the first intersection.

we have no information about the positions of the surfaces
between the sampling times. Wi thou t this information, we
can never be sure tha t we have not missed an intersection.
The problem is analogous to the spike problem of Figure 2.

1.3.2 A Method that Works

To solve the collision-determination problem, we require a
constraint on the max imum velocity of any point on the sur-
face. Similarly, we require constraints on parametr ic deriva-
tives other than time. If velocity is unconstrained, then the
position of a surface may be discontinuous as a function
of time, and the collision determinat ion problem is insol-
uble [Von Herzen 89, Appendix A.5]. With knowledge of
the max imum velocity of two surfaces, we can find the first
collision of the surfaces.

1.4 Solution using Lipschitz Conditions

We can construct bounding volumes of parametr ic surfaces
with Lipschitz conditions. Given a continuous parametr ic

surface f(ffff), the L i p s c h i t z c o n d i t i o n states tha t

- ;(1311 _< L 11 2 - 111, (3)

for some finite number L in some region R of f . The Lips-

chitz condition is implied if the function f(~7) has finite par-
tial derivatives [L i n e t al. 74, p. 58]. The Lipschitz value L

is a generalization of the derivative of ~(ff). We can also find
Lipschitz values for some surfaces tha t are not differentiable
[Von Herzen 89, Appendix B.3]. The Lipschitz condition on
a surface is sufficient to create sets of bounding volumes tha t
are guaranteed to bound the parametr ic surface.

I t is possible to develop a similar constraint on the tem-
poral aspects of the collision-determination problem. We

can have a moving parametr ic surface f(gg), g = (u, v, $)T,
tha t changes as a function of time. We can construct a set
of bounding volumes for the changing surface, in a manner
analogous to the method for s ta t ionary surfaces. In this
case, L sets an upper bound for the velocity of the paramet-
ric surface as well as for the other parametr ic derivatives.
This inequality is depicted graphically in Figure 3.

Given parametr ic functions f (g) and ~(g), along with
their Lipschitz values L I , and L~, we have proven in

Parametr ic Space Modeling Space

Figure 3: Graphical illustration of the Lipschitz inequality for
parametric functions of three variables. If D is the d.istoame from
f (~ 2) t o f (~ l) , a n d ,t = ll~2 - ~zl l , we h a v e D _< Ld, where L is
a Lipschitz value for ~, as in Eqn. 3.

[Von Herzen 89] a me thod to determine the earliest colli-
sion between two surfaces. Alternatively, we can confirm
tha t two objects do not collide. In addition, we will gener-
alize the not ion of a Lipschitz value so as to provide tighter
bounding volumes for the computat ions .

2 Previous Work

Previous techniques have used velocity and distance bounds
for collision detection of rigid objects [Culley et al. 86]. Up-
per bounds on velocity and lower bounds on distance can
determine the min imum time until the next collision be-
tween objects. Here we extend the work to functions that
can deform over time.

There has been some work on determining lower bounds
on distance for convex polygons and polyhedra [Schwarz 81],
[Cameron et al. 86]. A number of collision algorithms have
been developed for polyhedra [Moore el al. 88], [Canny 84],
[Hopcroft et al. 83], [Uchiki et al. 83], but collision algo-
r i thms have not been developed for more general time-
dependent parametr ic surfaces.

Other work has developed techniques to compute the
intersections of parametr ic functions based on derivative
bounds [Filip et al. 86]. Their work applies to static ob-
jects tha t do not move as a function of time. In Section 4,
we describe a method tha t works for t ime-dependent sur-

faces, including deformable surfaces.
The Lipschitz condit ion has been applied to problems in

scan-conversion [Kauf_man 87], ray- t racing [Kalra et al. 89],
and adaptive sampling [Von Herzen et al. 87].

Recent developments in constraint methods for flexi-
ble models [Platt et al. 88] stress the impor tance of ac-
commoda t ing elastic and moldable objects in a physical
simulation. Examples of plastic and inelastic deforma-
tions appear in recent work on modeling inelastic defor-
mat ion [Terzopoulos et al. 88]. Collisions between flexible
objects are also impor tan t for deformable animated char-
acters [Chadwick et al. 89], [Going Bananas 88]. The algo-
r i thm presented in Section 4 can form a basis for a uniform
environment in which varied objects may interact. The en-
vironment can accommodate rigid surfaces, bicubic patches,
moving surfaces, and deforming surfaces, all within the same
framework for collisions and near-misses.

Efficient collision determinat ion involves the adaptive
sampling of t ime-dependent parametr ic functions. Previous
work in adaptive sampling includes [Catmull 75], [Bllnn 78],
[Lane et aL 79], [Lane et aL 80], [Schweitzer et aL 82],
[Schmitt et al. 86], [Besl et al. 88], and [Von Herzen 85]. It

41

O SIGGRAPH '90, Dallas, August 6-10, 1990

is important to mention that the preceding articles do not
deal with time at all, and therefore are not adequate for
collisions of deformable time-dependent surfaces. As stated
previously, the collision determination problem is insoluble
for arbitrary time-dependent surfaces (Section 1.3), but in
Section 4 we provide a solution for all surfaces that satisfy
the Lipschitz condition, including all differentiable paramet-
ric surfaces.

The notion of an upper bound on velocity is generalized
to parametric dimensions other than time (see Appendix
A). We can automatically find a lower bound on the sep-
aration distance between objects, given upper bounds on
the parametric derivatives of the functions. The deriva-
tive constraints enable us to sparsely sample a paramet-
ric function that deforms over time [Barr 83], [Barr 84],
[Sederberg et al. 86], and determine -r-collisions with other
objects.

3 Bounding Volumes for Time-Dependent Para-
metric Surfaces

We develop a set of bounding volumes for time-dependent
parametric surfaces. The method presented here is general
enough to determine collisions of flexible objects that change
shape over time. We develop a subdivision method over
parametric rectangular prisms, and traverse the parametric
volumes of two surfaces to verify that they do not collide.

3.1 k-d Trees in Parametric Space

A variety of subdivision mechanisms are possible, includ-
ing quadtrees of squares or bintrees of triangles [Samet 84],
[Von Herzen 89]. We need a method that extends eas-
ily to k dimensions, and that controls the aspect ratio
of the parametric subregions. We choose to use an al-
ternative to the quadtree, which generalizes to k dimen-
sions, called the k-d tree (for k-dimensional binary search
tree, [Bentley et al. 79], [Samet 90a], [Samet 90b]). In the
k-d tree method, k-dimensional space is divided into k-
dimensional boxes, using planes perpendicular to each of
the parametric axes. Each subdivision level splits the k-
dimensional box along one of the dimensions to form two
descendant boxes (Figure 4).

3.2 Lipschitz Bounding Spheres

We can constrnct bounding spheres from the Lipschitz equa-
tion. Figure 5 shows the bounding sphere for a paramet-
ric region R, and its corresponding projection in modeling
space. The radius r of the bounding sphere in modeling
space is given by r >_ L (A u + Lxv + At). A sufficient value
for L is

(°'1 I 0' °'l) L_>maxR 2' 2 2 (4)

It is important to emphasize that a liierarchy of bounding
spheres is generated from the k-d tree hierarchy. Each sub-
region in the k-d tree has its own bounding sphere. As
subdivision proceeds, the bounding spheres become smaller.

3.3 Jacoblan Bounding Boxes

While the Lipschitz spheres will suffice as bounding volumes,
we can reduce the size of the bounding volumes, and con-
sequently the average number of interference computations,

42

,lkl

t
~3

u~---- .~

Parametric Space Modeling Space

Figure 4: Successive subdivision of a 2-dirnensional k-d tree in
parametric and modeling space. The function fmaps parametric
space onto modeling space. Each individual subrectangle is called
a node of the k-d tree. The aspect ratio of the rectangles may be
adjusted by factors of 2.

using the Jacobian of a parametric function. See Appendix
A for a derivation of the Jacobian bounding boxes.

To create the Jacobian bounding boxes, we find the max-
imum of each component of the Jacobian over the region to
be bounded, as described in Appendix B. The resulting ma-
trix is called the rate matr ix M, and places bounds on each
of the parametric derivatives over the region R. A sufficient
value for the rate matrix M is a constant matrix with all
entries set to the value for L in Eqn. 4. Better results are
obtained by deriving each component of M separately.

The next section uses the rate matrix M to create bound-
ing boxes for each parametric surface. If the boxes do not
overlap, then we confirm that no collision occurs. If they
do overlap, then we adaptively subdivide the surfaces to de-
termine if a 7-collision has occurred. As with the bounding
spheres, an adaptive hierarchy of bounding boxes is formed
based on the k-d tree of each surface.

4 Collision Algorithm

We compute collisions using a bounding volume hierarchy
for each parametric surface. The collision algorithm has an
important property: parametric surfaces that are far apart
will be shown not to collide, using a single sample from
each surface. This computation is extremely short, making
it trivial to reject collisions between distant objects. Para-
metric surfaces that do collide will cause the algorithm to
adaptively sample each surface near the collision point, us-
ing the k-d trees to guide the sampling. In this way the
collision is refined until the desired accuracy 7 is reached.

To set up the collision algorithm, we are given the para-

metric functions f (u f , v l , t) and ~(ug,vg,t). We are also
given a function that returns the rate matrix M over a para-
metric region R.

The task is to compute whether two objects collide, as

~ Computer Graphics, Volume 24, Number 4, August 1990

P a r a m e t r i c Node

Lipschi tz

F igure 5: Constructing a bounding sphere about a parametric

node. The center of the sphere] (gc) in modeling space comes
from the center ~c in parametric space. The radius r is based on
the size of the node in parametric space, and the Lipschitz value
for the function. A sphere of radius r = L (A u + LXv + ~ t) bounds
the region in modeling space, where &u, &v, and At represent
half-widths of the parametric rectangle.

de t e rmined by the loss of sepa ra t ion of the two pa rame t r i c
surfaces. We assume in i t ia l ly tha t the two ob jec t s are dis-
joint . We are given a th resho ld d is tance to lerance 7, below
which we should r epo r t a collision, inc luding the pa r a me te r s

uS, e l , ug, %, and t ime t.

4 . 1 Collision Algorithm Approach

In i t ia l ly we use one node to represent each surface. We sub-
d ivide as necessary to de te rmine if a geometr ic collision oc-
curs wi th in any pa r t i cu l a r subregion. Pa rame t r i c sampl ing
is concen t ra ted where i t is needed the most , near po ten t i a l
in tersect ions .

The a lgor i thm mus t find the earl iest collision between
two surfaces. This implies t ha t we should t raverse the nodes
of the k-d t rees in fo rward- t ime order. We can schedule
pairs of nodes (one from each surface) to be compared ac-
cording to the ear l ies t poss ible collision t ime, de t e rmined
from the m i n i m a of the t ime bounds of the pa rame t r i c sub-

regions. The two pa rame t r i c regions cannot collide unt i l
they bo th have come into existence. So the m a x i m u m of the

two s t a r t i ng t imes represents the ear l ies t possible collision

t ime. Given the t ime in terval tA :h A t A of node A, and the
t ime interval tB • A t 9 of node B, we sort the node-pa i rs
according to the ear l ies t possible in tersect ion t ime tmin:

tmi= = max(tA - &tA, tB -- & t s) . (5)

We ma in ta in a heap d a t a s t ruc tu re [Knuth 69] of pairs of
nodes to be compared , sor ted in ascending order , using
train as the sort-key. T h e d is tance between the centers of
the nodes is used as a secondary sor t -key to focus effort
on the most p robab le collision cand ida tes . We successively
pop node-pa i r s off the heap for compar ison , in ascending
order , according to tml, . The node compar ison genera tes
new node-pa i r s whenever there is an overlap in the bound-
ing volumes. The pa i rs are pushed onto the heap, and the

process continues unti l all pa i rs are evaluated . This m e t h o d
guaran tees t ha t we will find the ear l ies t collision between
the surfaces.

4.2 C Implementation

Figure 6 shows an a lgor i thm wr i t t en in C for comput ing
the collision between two pa r ame t r i c surfaces. The n o d e

typedef double v e c t o r [3] , mat r lx[3] [3] ;
A node is a piece of a parametric sur]ace.

typedef s t r u c t n o d e _ s t r u c t {
vector parameters; (u,v,t) coords in parametric apace.
v e c t o r width; (u,v,t) width in parametric space.
v e c t o r p o s l t l o n ; (x,y,z) eoords in modeling space .

v e c t o r r a d i i ; (x,y,z) width in modeling space.
node c h i l d l , ch i ld2 ; The two subreglons of this node.
in t s p l i t _ d i r e c t i o n ; The splitting axis]or the node.

} *node ;

v e c t o r s u r f a c e _ c o l l i s i o n (] n 1 , fn2 , Jmaxl, Jmax2, gzumaa)

v e c t o r f n l () , f n 2 0 ; The functions to be collided.
matrix JmaxlO, Jmax20 ; The maximum of the Jaeo~ians.
float gamma; Collision tolerance.
{ One node from each]unction; used for comparison.

node n o d e 1 , n o d e 2 ;

heap_flushO ; Empty the heap of nodes.
Put the initial node pair on the heap]or evaluation.
schedule_node_pair (init ial_node (fnl, Jmaxl),

initial.xtode(fn2, Jmax2)) ;
As long as nodes are on the heap, compare them.
while (heap_pop(knode/, knode2)) {

i f (nodes_coll ide_e i th in_ t o le rance (node 1 ,node2, ganmm))
r e t u r n (¢ o l l l s i o n _ i n f o (n o d e 1 , n o d e 2)) ;

The nodes are too large,
if (norm(nodel->radii) > norm(node2->radii)) {

node_split(node1, fnl, Jmaxl) ;

schedule_node_pair(nodel->childl, node2) ;

schedule_node_palr (nodel->child2, node2) ; }
else {node.split (node2, fn2, Jmax2) ;

a~hedu_le_node_pair (node1, node2-> child/) ;
schedule_node_pair(node/, node2->child2) ; }

}
returnCIULL) ; I/ there are no nodes left to
} compare, the surfaces don't collide.

i n t s c h e d u l e _ n o d e _ p a i r (n o d e l , n o d e 2)

node n o d e l , n o d s 2 ;
{
i f (! ~ i m e _ o v e r l a p (n o d e l , n o d e 2)) r e t u rn ;
i f (! ~ p a c e _ o v e r l a p (n o d e l , n o d e 2)) r e t u r n ;

h e a p _ p u s h (n o d e 1 , n o d e 2) ; Heap is sorted by tmi n-
}

Figure 6: An algorithm and da ta structure to determine colli-

sions for time-dependent parametric surfaces.

d a t a s t ruc tu re represents a region of a p a r a m e t r i c surface.
The s u r f a c e _ c o l l i s i o n funct ion computes a 7-sphere tha t
conta ins poin ts from bo th surfaces, or else confirms tha t the
two surfaces do not collide.

The s u r f a c e _ c o l l i s i o n func t ion calls several o the r func-
t ions. The funct ion i n i t i a l _ n o d e compu te s an in i t ia l node
for the ent i re surface at loca t ion (u , v , t) = (0.5,0.5,0.5) .
The funct ion s c h e d u l e _ n o d e _ p a i r takes a pa i r of nodes,
sees if they overlap in t ime and in space, and pushes them
onto the heap to be scheduled for eva lua t ion according to

tmi=. The funct ion s p a c e _ o v e r l a p re tu rns false if the min-
imum dis tance be tween two bound ing boxes is greater t han

7. The opera t ion h e a p _ p o p pops a pair of nodes off the
heap for evaluat ion. The funct ion c o l l i s i o n A n f o re turns
the collision p a r a m e t e r s and t ime if a 7-colhsion took place.
Final ly , the funct ion n o d e _ s p l i t subd iv ides a node into
two smal ler nodes along the p a r a m e t r i c d imens ion with the
grea tes t con t r ibu t ion to the b o u n d i n g - b o x size. Deta i led
proofs of the a lgor i thms may be found in [Von Herzen 89,
A p p e n d i x A].

43

O SIGGRAPH '90, Dallas, August 6-10, 1990

4.3 Termination Condition

The function nodes_co l l ide_wl th in_ to le rance determines
whether a 7-sphere contains both surfaces. For termina-
tion, we compute the smallest isothetic rectangle (a rectan-
gle aligned with the coordinate axes) that contains the two
bounding boxes. If the largest dimension of the isothetic
rectangle is smaller than the separation tolerance, we report
the loss of separation of the two surfaces, down to the tol-
erance specified. Expressed mathematically, for bounding
boxes (XA, yA, ZA) =~ (Z~XA, &yA, ZXZA) and (~ , y~, ,~) =~
(ZXxB, &YB, &zB), and tolerance 7, we require

(JzA- z B I + L X X A + ~ = ~ , \
max lya - y s l + &VA + ZXyB,) _< 7. (6)

[za - zB[+ AzA + AzB

4.4 Complexity for Interacting Spheres

We can test the colhsion algorithm using two parametric
spheres. We would expect that as the separation distance
decreases between the two spheres, the number of bound-
ing box comparisons should increase. In particular, if the
separation distance drops by a factor of two, we will have
to create bounding boxes twice as small to confirm that the
surfaces do not intersect. For the parametric k-d tree hi-
erarchy, every halving of the separation distance requires a
constant number of additional subdivision levels. Assum-
ing that CPU time should be proportional to the number of
subdivision levels, the CPU time t should scale as

t ~ logs ((r + S)/S), (7)

where r is the radius of each sphere, and S is the minimum
separation between spheres.

4.5 Results for Interacting Spheres

As an illustration of the relationship between computation
time and separation distance S, we determine collisions for
two spheres while varying S. The total computation time
is a function of the minimum separation distance between
the two objects. The graph in Figure 7 shows an example
of the computation time as a function of S. For an object
of radius r and minimum separation distance S = 2r, we
require only a few samples to be taken from each surface.
As the minimum separation distance decreases, we notice an
increase in CPU time proportional to the negative logarithm
of the separation distance• In this computation we assume

7<S.

4.6 Results for Other Objects

As a demonstration of results for surfaces more complicated
than polynomials or quadrics, the collision method is demon-
strated for two spiked objects illustrated in Figure 8. The
parametric equation for the spike function is

~(u, v) = r(u, v) sin(2ru) sin(rv) , (8)
v) cos()

where the radius is given by

i < n

= + ,1 (9)

i = 0

44

120 -
110 -
100 -
90-

CPU 8 0 -
Time 7 0 -

t 6 0 -
(sec.) 5 0 -

4 0 -
3 0 -
2 0 -
10-

02-s 2-:-7 2&6 2&s 2'-4 2'-3 2'-2 2'-1 2'0 2'1 2'2

Log Separation Distance S, in units of r.

Figure 7: CPU time for two interacting spheres of radius r as
a function of log S, where S is the minimum separation between
two objects• In this example, ~ < S.

The value n is the number of spikes on the sphere, (ui, vi) is
the parametric location of the {-th spike, and w0 determines
the radius of the spikes•

Without knowing something about the parametric
derivatives of the spike function, it would be very difficult to
solve the collision problem for two moving spike functions.
As it is, we are able to construct a set of bounding volumes
as the computation requires, in order to verify the paths of
the two objects.

We illustrate the results of the collision computation. In
Figure 8.a, we see two spherical spike functions approaching
each other• In Figure 8.b, the algorithm computes a colhsion
between two of the spikes. A physical simulation program
computes the recoil as shown in Figure 8.c (see Section 6).
This collision computation would have been very difficult
to solve without knowing the rate matrix M for the spike
function. With this information, we can solve difficult col-
lision problems, using a straightforward application of the
collision algorithm of Figure 6. The appendices discuss the
creation of M.

5 Constraints on Jacoblans

For the collision technique to be most useful, we need to de-
termine constraints on the Jacobian of the parametric func-
tions (See Appendix A). A variety of methods are possible.

The simplest approach is to compute the maximum of
any component of the Jacobian over the entire surface, and
then to set each entry of the rate matrix M equal to the
maximum value• This does not provide particularly tight
bounds on the parametric surface, but is sufficient to com-
pute collisions•

Alternatively, we can compute a global maximum for
each parametric variable (u, v, *). It is common for the time
derivatives, such as ax]Ot, to have separate scaling from the
spatial parametric derivatives, such as Ox/Ou and Ox/av. It
is also common for the u and v derivatives to have separate
scaaings. If we define

w, =-- max , , ,
R

and w~ and w, similarly, then the following matrix con-
strains the Jacobian of the parametric surface:

M (R) = w,, w~ w~ . (11)

'IVu 'Wu ~,//t

~ Computer Graphics, Volume 24, Number 4, August 1990

Figure 8: A pair of spike functions before, during, and after a
collision.

Each column of M has a separate entry: either a constant for
the whole surface, or a function of subregion R. We obtain
a tighter set of bounding volumes than with the approach
using a single constant.

Perhaps the most general and flexible way to compute
constraints on the Jacobian matrix is to create a special
function that computes maxima of the derivatives of each
parametric function. Frequently we can find analytical ex-
pressions of the $acobian of the parametric function, and
the maximum of every component in the Ja¢obian over some
parametric range. In these eases we can produce very tight
bounds around a surface. It is frequently possible to find.an
exact analytic solution to the M function. In other cases

.

we may need to use approximation rules to the varmus com-
ponents (Appendix B). We must satisfy only the condition
that

mi," _> mnax IJiA . 02)

In this case, R may be any subregion of the parametric do-
main of the function. Note that if m i j is much larger thaat
Jij, the algorithm will still work, but will take longer to
terminate.

Composition rules such as the triangle inequality in
Eqn. 23 can simplify the computation of 3acobian max-
ima. The rate matrix IV[for several objects is computed
in [Von Herzen 89], aloug with identities for simplifying the
analysis (Appendix B).

6 Potential Application to Physlcally-Based Simu-
lators

Many physically-based modeling systems need to have an
implicit function to tell when a pair of objects come together
in a collision. The function should be positive when the two
objects do not interfere, negative when the objects overlap,
and zero when the objects are just barely in contact. In
addition, the function should be continuous.

A simple solution is h (t) = to - t , where to is the col-
lision time [Platt 89]. Before the collision, h(t) is positive,
and after the collision, h (t) is negative. The function is lin-
ear in time, which is very helpful for numerical analysis of
physically-based modeling systems. The value of to is com-
puted by the algorithm presented in this paper, whereupon
the forces of the collision are computed by the physical sim-
ulation system (See, for example [Barzel et al. 88]).

7 Conclusion

We have demonstrated a method to determine collisions be-
tween time-dependent parametric functions. The method is
guaranteed to find the earliest collision for those functions
with computable bounds on parametric derivatives. The
collision theory and algorithms developed here may poten-
tially apply to robotics and to ray-tracing problems as in
[Kalra et al. 89]. Even for such difficult functions as the
spike functions of Figure 8, the method is practical and ro-
bust and easily determines potential collisions between ob-
jects.

7.1 Advantages of' the Method

In summary, tile collision algorithm presente d here has the
following advantages:

• robust method
• works for deforming time-dependent surfaces
• computes to user-specified accuracy
• finds the earliest collision or near-miss

45

SIGGRAPH '90, Dallas, August 6-10, 1990

• works wi th many types of surfaces, including pa tches
• interfaces to physical model ing sys tems
• needs analys is only once per surface type, vs. O (N 2)

compar isons be tween all pMrs of surface types

7.2 Disadvantages

Disadvantages of the a lgor i thm include:
* mus t anMyze der ivat ives for each surface type
. c a n ' t guaran tee collisions for surfaces wi th unbounded

der ivat ives

Acknowledgments

We would like to t h a n k Caro lyn Coll ins and Pete Wenzel
for thei r assis tance. The work presented in this pape r was
sponsored in pa r t by In t e rna t iona l Business Machines, Inc.,
Hewle t t -Packa rd Co., App le Compute r , Inc., and the Fannie

and John Hertz Founda t ion .

References
[Baraff 89] David Baraff, "Analytical Methods for Dynamic Sim-

ulation of Non-penetrating Rigid Bodies," Computer Graph-
ics 23, 3, July 1989, 223-232.

[Barr 83] Alan H. Barr, Geometric Modeling and Fluid Dy-
namic Analysis of Swimming Spermatozoa, Ph.D. Disserta-
tion, Rensselaer Polytechnic Institute, 1983.

[Barr 84] Alan H. Barr, "Local and Global Deformations of Solid
Primitives," Computer Graphics 18, 3, July 1984, 21-30.

[Barzel et al. 88] Rosen Barzel and Alan H. Barr, "A Modeling
System Based on Dynamic Constraints," Computer Graphics
$2, 4, August 1988, 179-188.

[Bentley et al. 79] Jon L. Bentley and Jerome H. Fried_man,
"Data Structures for Range Searching," ACJIf Computing
Surveys 11, 4, December 1979, 397-409.

[Besl et al. 88] Paul J. Besl and Ramesh C. Join, "Segmentation
through Variable-Order Surface Fitt ing," IEEE Transactions
on Pattern Analysis and Machine Intelligence 1 O, 2, March
1988, 167-192.

[Bezier 74] Pierre Bezier, "Mathematical and Practical Possibil-
ities of UNISURF," in Computer-Aided Geometric Design,
edited by Robert E. Barnhill and Richard F. Riesenfeld, Aca-
demic Press, New York, 1974, pp. 127-152.

[Blinn 78] Jim Blinn, Computer Display of Curved Surfaces,
Ph.D. Dissertation, University of Utah, 1978.

[Cameron et al. 86] S. A. Cameron and R. K. Culley, "Determin-
ing the Minimum Translational Distance Between Two Con-
vex Polyhedra," IEEE International Conference on Robotics
and Automation, 1986.

[Canny 84] John Canny, "Collision Detection for Moving Poly-
hedra," MIT Artificial Intelligence Lab Memo 806, October,
1984.

[Catmull 75] CatmuU, Ed, "Computer Display of Curved Sur-
faces," IEEE Conference Proceedings on Computer Graph-
ics, Pattern Recognition and Data Structures, May 1975, 11.

[Chadwick et al. 89] John E. Chadwick, David R. Haumann and
Richard E. Parent, "Layered Construction for Deformable
Animated Characters," Computer Graphics 23, 3, July 1989,
243-252.

[Cu]_ley et aL 86] R. K. Culley and K. G. Kempf, "A Colli-
sion Detection Algorithm Based on Velocity and Distance
Bounds," Proceedings 1986 IEEE International Conference
on Robotics and Automation, Volume 2, pp. 1064-1069.

[Filip ctal. 86] Daniel Filip, Robert Magedson and Robert
Markot, "Su_face Algorithms using Bounds on Derivatives,"
Computer Aided Geometric Design 3, 1986, 295-311.

[Gear 71] C. Will iam Gear, Numerical Initial Value Problems in
Ordinary Differential Equations, Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey, 1971, p. 55.

[Going Bananas 88] John Snyder, fed Lengyel, Devendra Kah'a,
Ronen Barzel, John C. Platt , Alan H. Barr and
Brian Von Herzen, Going Bananas, 1988 Siggraph Film
Show.

46

[Hopcroft et al. 83] J .E . Hopcroft, J. T. Schwartz and M. Sharir,
"Efficient Detection of Intersections among Spheres," The
International Journal of Robotics Research 2, 4, Winter
1983, 77-80.

[Kalra ctal. 89] Devenclra KMra and Alan H. Barr, "Guaranteed
Ray Intersections with Implicit Surfaces," Computer Graph-
ics 23, 3, July 1989, 297-306.

[Kaufman 87] Aria Kaufman, "Efficient Algorithms for 3D Scan-
Conversion of Parametric Curves, Surfaces, and Volumes,"
Computer Graphics $i, 4, July 1987, 171-180.

[Knuth 69] Donald Knuth, The Art of Computer Programming;
Vol. 1, Fundamental Algorithms, Addison-Wesley, Menlo
Park, CA, 1969, Section 2.2.4.

[Lane et al. 79] Jeff Lane and Loren Carpenter, "A Generalized
Scan Line Algorithm for the Computer Display of Parametri-
cally Defined Surfaces," Computer Graphics and Image Pro-
cessln.q 11, 1979. 290.

[Lane et a[. 80] Jeff Lane and Richard F. Rieserffeld, "A Theo-
retical Development for the Computer Generation and Dis-
play of Piecewise Polynomial Surfaces," IEEE Transactions
on Pattern Analysis and Machine Intelligence 2, 1, January
1980.35-46.

[Lee et a[. 84] D. T. Lee and FFranco P. Preparata , "Computa-
tional Geomet ry- - A Survey," IEEE Transactions ou Com-
puters C-33, 12, December 1984, 1072.

[Linet aL 74] C. C. Lin and L. A. Segel, Mathematics Applied to
Deterministic Problems in the Natural Sciences, Macmillan
Publishing .C9. J Inc., New York, 1974, pp. 57-58.

[Moore et aL gS] Matthew Moore and Jane Wilhelms, "Collision
Detection and Response for Computer Animation," Com-
puter Graphics 22, 4, August 1988, 289-298.

[NAG] NAG Fortran Library, Numerical Algorithms Group, 1400
Opus Place, Suite 200, Downers Grove, IL 60515 (312) 971-
2337.

[P l a t t e t aL 88] John C. P la t t and Alan H. Barr, "Constraint
Methods for Flexible Models," Computer Graphics 22, 4,
August 1988, 279-288.

[Platt 8~] John C. Plat t , personal communication.
[Samet 84] Hanan Saxaet, "The Quadtree and Related Hierarchi-

cal Data Structures," Computing Surveys 1 6, 2, June 1984,
187-260.

[Samet 90a] Hanan Sonnet, The Design and Analysis of Spatial
Data Structures, Addison-Wesley, Menlo Park, CA, 1990,
Section 2.4, pp. 66.--80.

ISomer 90b] Hanan Samet, Applications of Spatial Data Struc-
tures, Addison-Wesley, Menlo Park, CA, 1990, Section 1.3,
pp. 15-16.

[Schnfitt et al. 86] Francis Schmitt, Brian Barsky and Wen-Hut
Du. "An Adaptive Subdivision Method for Surface-Fitting
from Seanpled Data," Computer Graphics 20, 4, August
1986, 179-188.

[Schwarz 81] J. T. Schwarz, "Finding the Minimum Distance Be-
tween Two Convex Polygons," Information Processing Let-
ters 13, 4, 1981, 168-170.

[Schweitzer et al. 82] D. Schweitzer and E. S. Cobb, "Scardine
Rendering of Parametric Surfaces," Computer Graphics 16,
3, July 1982, 265.

[Sederberg et al. 86] Tom Sederberg and Scott Parry, "Free-Form
Deformation of Solid Geometric Models," Computer Graph-
ics 20 4, August 1986, 151-160.

[Snyder 90] John Snyder Generative Models, Ph.D. Dissertation,
California Insti tute of Technology, in progress.

[Terzopoulos ct al. 88] Demetri Terzopoulos and Kurt Fleischer,
"Modeling Inelastic Deformation: Viscoelasticity, Plasticity,
Fracture," Computer Graphics 22, 4, August 1988, 269-278.

[Uchlkl et al. 83] Tetsuya Uchlkl, Toshlakl Ohashl and Marlo
Tokoro, "Collision Detection in Motion Simulation," Com-
puters and Graphics 7, 3,1983, 285-293.

[Von Herzen et al. 87] Brian Von Herzen and Alan H. Barr, "Ac-
curate Triangulations of Deformed, Intersecting Surfaces,"
Computer Graphics 21, 4, July 1987, 103-110.

[Von Herzen 85] Brian Von Herzen, Sampling Deformed, In-
tersecting Surfaces with Quadtrees, Masters Thesis, Cal-
ifornia Insti tute of Technology, Computer Science Dept.,
5179:TR:85, 1985.

[Von IIerzen 89] Brian Von Herzen, Applications of Surface
Networks to Sampling Problems in Computer Graphics,
PhD. Dissertation, California Inst i tute of TeclmoloKy , Com-
puter Science Dept., Caltech-CS-TR-88-15, 1989.

@ ~ Computer Graphics, Volume 24, Number 4, August 1990
uuuumu ill

A Appendix: Jacobian Bounding Boxes

Here we derive a set of b o u n d i n g boxes for p a r a m e t r i c funct ions
us ing the J acob i an of the funct ion. These boxes f requent ly pro-
duce t igh te r b o u n d s on a p a r a m e t r i c surface t h a n the Lipschi tz
b o u n d i n g spheres. We s t a r t w i th the original defini t ion of the
Lipsckitz condi t ion for p a r a m e t r i c funct ions ([Gear 71]):

- DIl, - , cll. (, 3)

Assume t h a t t he condi t ion holds over some pa rmne t r l c subregion
R : u l ~ u _< u2, Vl < v < v2, and t l < t < t2. We define para-
met r ic coordina tes fie = (ue, vc, to) a t the center of region R, a n d

model ing space coordinates (~cc,yc, zc) = f (g c) . We choose a n
L1 n o r m for the r ight side of Eqn . 13, a n d we apply the condi t ion

to each c o m p o n e n t of ~ separa te ly :

I ~ - x d _< L ~ (l u - u d + l " - v c l + l t - t e D ,
I V - V¢I _< L~ (l~ - ~ 1 + I" - " d + I t - t~[), (14)
I ~ - ~cl < L~ (lu - u~l + I" - ~d + It - t d) ,

for some sui table values of ILl. We d i s t r ibu te the values Li and
r e n a m e t h e m to arr ive a t a more general inequali ty:

I:-~ol <_ M:,lu-u¢l+M:~lv-vcl+M~tlt-t¢l,
iv-vd _< M~,.lu-=¢l+M~,,Iv-v.l+M~tlt-tcl,
Iz-z¢l _< M~lu-u, l+M~lv-v , l+M~t l t - t , l .

(15)
We can solve for each i i j by choosing appropr ia t e values of
(u, v, t). We i l lus t ra te w i th Mxu:

I~(u,v,t)-z(uc, v,t)l_<M=~lu-~l, 06)

o r

I Z (U l V ' t) - ~ (u * ' v ' t) l Uc U # U O (17)

Assuming t h a t x(u , v, t) is differentiable, a sufficient value of Mxu
is

M z u ~ m ~ x l O X (u ' v ' t) " (18)

Mxu iS a n u p p e r b o u n d on the p a r a m e t r i c der ivat ive over the
region R. In general , a sufficient value of the r a t e m a t r i x M is:

/ I r ~ x - ~ m ax "~1 " (1 9) R l o t M=-

Jus t as the Lipschitz value L is a genera l iza t ion of the derivative,
so the r a t e m a t r i x M is a genera l iza t ion of the Jacobiar t m a t r i x
for pa rame t r i c vector funct ions of several variables [L ine* aL 74,
p. 355]. The m a t r i x M consists of uppe r bounds on all the para-

met r ic der ivat ives of all the componen t s of vector f tmct ion J .
We define A u _= I~t2 - Ucl, ~ v .~ Iv2 - Vcl, and At =-- It2 - %1.

Since u l < u _< u2, we have lu - ucl _< &u. Similarly, Iv - Vcl _<
Av, a n d it - tel < At . S u b s t i t u t i n g in to Eqn. 15, we have the
ra te c o n d i t i o n :

I x - x e l < M=uAu + M z v A v + M x t & t ,
lY - ycl < M ~ u & u + M u o A v + M u r A t ,
Iz - - zcl < M z u h u + M z v A v + M z t A t .

(20)

We define the b o u n d i n g b o x r a d i i to be

A x _= Mxu&U + M x v A v + ~¢xtAt ,
A y _= M u u A u + M u o A v + M v t A t ,
h z ~ M z u h U + M z v h v + ~ l r t h t .

(21)

Now we can cons t ruc t a bound ing volume in model ing space
f rom the b o u n d i n g box radii , based on Au , Av, At , a n d the r a t e
mat r ix . We form a r ec t angu la r p r i sm tha t is al igned wi th the x,

y, a n d z axes, cen te red a b o u t mode l ing coordina tes (aZc, yc,zc) .
Combin ing Eqn. 21 wi th Eqn. 20, we get the b o u n d i n g b o x
i n e q u a l i t y :

I = - ~cl _< A~
Iv-u.I _< Av (22)
Iz-z~l 5 zx~.

Such a r ec t angu la r region is cal led an iso~hetic rectanfle, a rect-
angle whose sides axe paral lel to coord ina te axes [Lee et al. 84].
The set of points sat isfying Eqn. 22 form a b o u n d i n g box contain-
ing the p a r a m e t r i c region. We now have art efficient hound ing box
useful for compu t ing collisions be tween moving pa rame t r i c sur-
faces. We are free to compu te the J acob i an m a x i m a over the
ent i re surface, the reby compu t ing w i th a single-valued cons tan t
m a t r i x across the surface. Al ternat ively , we m a y compu te the Ja-
cobians over subregions in order to ta i lor the b o u n d i n g volumes
more closely to pa r t i cu la r var ia t ions in the surface. These boxes
f requent ly p roduce t igh te r b o u n d s on the pa rame t r i c funct ions
t h a n does the Lipschitz cond i t ion of Eqn . 3.

B Appendix: Bounds on Parametric Derivatives

Here we describe how to compu te the entr ies in the m a t r i x M
from Eqn. 19. In add i t i on to the different iable surfaces, some
non-different iable surfaces also have c o m p u t a b l e Lipsehitz values
f rom which to derive r a t e mat r ices ([Von Herzen 89, Append ix
B.3]). In th is sect ion we will focus our a t t e n t i o n on differentiahle
p a r a m e t r i c surfaces.

B.1 Maxima of scalars

We frequent ly have a closed-form descr ip t ion of x (u , v , t) t ha t
pe rmi t s us to compu te t he der ivat ive ~:t(u, v, t) directly. T h e n
we can use the following ident i t ies to compute the m a x i m a of
fuxtctions:

Eqn. 23 is known as the t r iangle inequali ty. I t is equivalent
to the law t h a t the l eng th of the longest side of a t r iangle mus t
b e less t h a n the l eng ths of the two shor t e r sides added together :

maxR 17(n) + i(R) l _< r~x If(R)l + r~ax I¢(n) l, (23)

Similar laws ho ld for the opera t ions of sub t rac t ion , mul t ip l icat ion,
and divis ion of funct ions .

maxR I f (R) - g()1 _ ~ a x < I] (n) l + ~ a x I~(R)I, (24)

maxR If(R)C(R)I _< ~ a x I f (n) l ~ x Iff(n)l, (25)

m a x I f (R) l
maxlf(R)l~(R)l < n (26)

n - m i n l ~ (R) l '
R

for all.] (R) and i f (n) .

B.2 Maxima of polynomials

Given h(t) , a po lynomia l func t ion of degree n = 2,3, or more,
we want to maximize i ts value over a range ta < t < tb. T h e
po lynomia l h(t) is a s sumed to b e of the fo rm h(t) = ao + n i t +
a2t 2 + a3t 3 + a4t 4 + The m a x i m u m in h(t) occurs e i the r a t 0,
t0, or a t the points of so lu t ion for h'(t) = O.

We take the der ivat ive analy t ica l ly and t hen solve the result-
ing po lynomia l equa t ion us ing any one of a var iety of numeri-
cal analysis p rograms (see [NAG]) for t, to get a set of values
t = t l , . . . , t N . A d d 0 a n d t0 to the set to get 0, t l , . . . , tN, tO.

T h e n we subs t i t u t e these values in to tile def ini t ion for h(t).
a n d pick the m a x i m u m value of h(0) or h (t i) , for 0 < i < N. This
is the m a x i m u m value for the whole interval , ta _< t _< tb.

For any in terval ta _< t < tb we only need to evaluate h(t) at
the endpo in t s ta and tb and any values in the solut ion set be tween
ta and tb. Th i s reca lcu la t ion will reduce the m a g n i t u d e of the
Lipschitz value as the in terva l decreases w i th fu r the r i tera t ions .

Similar solut ions are possible for po lynomia l pa tches t ha t
use a r a t iona l cubic r ep re sen t a t i on in one p a r a m e t r i c d i rec t ion
([Filip el al. 86, p. 307]). I t is s t r a igh t fo rward to e x t e n d these
resul ts to several d imensions .

47

O SIGGRAPH '90, Dallas, August 6-10, 1990

B.3 Product surfaces

P r o d u c t surfaces include superquadr ics , spheres, profile surfaces,
t r ans l a t i ona l sweeps, a n d spher ica l p roduc t s [Barr 83]. These sur-
faces take the m a t h e m a t i c a l form:

= ~ (= , v) = ~(v)c~(=) + d~(v), (27)

where i = 1 ,2 ,3 , a n d subscr ip t s 1,2 a n d 3 cor respond to compo-
nen t s x, y, a n d z.

The pa r t i a l der iva t ive of th is surface w i th respect to u is:

2/)
= ,~(V) - ~ "1- d i (V). (2 8)

0u

Suff ident values of the ent r ies of the r a t e m a t r i x M are:

=

i = 1, 2, 3. T h e r a t e m a t r i x entr ies w i th respect to parazneter v
are given by:

m . . = maxa ~ maxR Ic~(u)l + n ~ x . (30)

Final ly , all the t i m e der ivat ives are zero: m . = O. Given dif-

ferent iable scalar func t ions for } (v) , c~(u) , a n d d~(v), we c a n f ind

the rate m a t r i x for the p r o d u c t surface.

B.4 Surfaces with Translational Motion

Assuming t h a t we can c o m p u t e the r a t e m a t r i x for a s t a t i o n a r y

surface f (u , v), how can we com pu t e the r a t e m a t r i x for the same
surface t h a t is t r an s l a t i ng as a func t ion of t ime? ([Von Herzen 89,
A p p e n d i x B.2]). We define t he t r an s l a t i on func t ion to be s~t).

The t r a n s l a t i n g surface is g iven by func t ion ff(u, v, t) = f (u , v) +

g(t). I f t he value m i j r epresen t s the r a t e m a t r i x for f , t h e n the
new ra te m a t r i x Mg for t he mov ing surface ~(u, v, t) is

M g = . (31)

I

B.5 Surfaces with Rotational Motion

We now examine r o t a t i o n a l m o t i o n for r igid objects . G iven a

func t ion f (u , v), a n d a r o t a t i o n m a t r i x R.(t) as a func t ion of t ime,

we have if(u, v, t) = R (t) f (u , v). T h e p a r a m e t r i c der ivat ives of ff
are g iven by

Off(u, t)
= R (t) 0 % ' " v)," (32)

0u

Off(u, v, t) R (t) O f ~ v) ,
= (33)

Ov

o~(~, v, t) _ oR(0 ,~rr~,
V) . (34)

Ot Ot

B.6 Example of a deformation

As a n example of c o m p u t i n g the r a t e m a t r i x for a de forming
func t ion , we i l lus t ra te how to com pu t e the r a t e m a t r i x for a n
objec t w i th a var iable t a p e r as given in [Barr 84], a s suming we

have the r a t e m a t r i x for the unde fo rmed objec t . Let f (u , v) be
the tmde fo rmed objec t w i th componen t s (x, y, z). T he deformed
coord ina tes are given by X = r (z , t) v for the av componen t , Y =
r (z , t) y for the y componen t , a n d Z = z for the z componen t ,

where r (z , $) is the t a p e r i n g func t ion t h a t varies over t ime. T h e n
t h e der ivat ives for t he deformed coord ina tes are:

OX Or Oz Ox
Ou - - Oz ~ z + ~ r (z , t) , (35)

OX Or Oz Ox
. . . . =+ 7 - (t) , (36)
Ov Oz Ov ov r ' z '

0 X Or 0x t) . (37)
0--7 = + r(z,

The equa t ions are ana logous for t he Y c o m p o n e n t . All of the
der ivat ives for Z are equal to t he der ivat ives for z.

A typical t a p e r func t ion r (z , t) is a pieeewise l inear func t ion
t h a t t apers f rom r l to r 2 s t a r t i ng a t z l a n d end ing a t z2. We can
make the end ing values of the t a p e r vary as a func t ion of t ime,
r l (t) a n d r 2 (0 - T h e func t ion r(z, t) is g iven b y

Z<Zl,

= z,)r + - z)r , 31 _< _< (36)

r2 (t) z2 - 31 z > 32.

T h e der ivat ives of r (z , t) are g iven by

0 z < z l ,
O r r 2 - - r l
- - ~ Z 1 < Z < Z2,
Oz 32 -- Zl -- --

0 z > z 2 .

T h e t empora l der iva t ive is given b y

(30)

Or~(O
' Z < Z l ,

8 r , a t ,Or2 0 r l (40)

0 r 2 (t) 32 z l

z > z 2 .

Eqn. 40 is valid for d y n a m i c t ape r s of s t a t i c objec ts . T h e dif-

fe ren t ia t ion rule for p r o d u c t s leads to t he equa t i on for t apers of

d i s to r t ing objects . These equa t ions m a y b e s u b s t i t u t e d direct ly

in to Eqn . 19 for the r a t e m a t r i x to o b t a i n der iva t ive b o u n d s on

p a r a m e t r i c surfaces t ape r ing as a func t ion of t ime.

48

