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Abstract This article is survey of recent developments in, and a tutorial on, the
approach to P v. NP and related questions called geometric complexity theory (GCT).
It is written to be accessible to graduate students. Numerous open questions in alge-
braic geometry and representation theory relevant for GCT are presented.
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1 Introduction

This is a survey of problems dealing with the separation of complexity classes that
translate to questions in algebraic geometry and representation theory. I will refer to
these translations as geometric complexity theory (GCT), although this term has been
used both more broadly and more narrowly. I do not cover topics such as the complexity
of matrix multiplication (see [45] for an overview and [48,53] for the state of the art),
matrix rigidity (see [28,41]), or the GCT approach to the complexity of tensors (see
[11]), although these topics in complexity theory have interesting algebraic geometry
and representation theory associated to them.

The basic problem (notation is explained in Sect. 1.2 below): Let V be a vector
space, let G C GL(V) be a reductive group, and let v, w € V. Consider the orbit
closures G - [v], G - [w] C PV. Determine if G - [v] C G - [w].
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In more detail: First, for computer science one is interested in asymptotic geometry,
so one has a sequence of vector spaces V,,, and sequences of vectors and groups, and
one wants to know if the inclusion fails for infinitely many (or even all) n greater than
some ng. Second, usually G,, = GL(W,)), where W,, = C/® for some function f(n)
(usually f(n) = n®) and V,, = S"W, is a space of polynomials on W, Third, the
points v, w will be of a very special nature - they will (usually) be characterized by
their stabilizers (see Definition 2.17).

The most important example will be V = S”(C”z, G = GL,2, w = det,, the
determinant, and v = ¢"7" perm,,, the padded permanent (see Sect. 2.1 for the
definition).

The article is part a survey of recent developments and part tutorial directed at
graduate students. The level of difficulty of the sections varies considerably and is
not monotone (for example Sect.11 is elementary). I have placed the most emphasis
on areas where there are open questions that appear to be both tractable and inter-
esting. The numerous open questions scattered throughout the article are labeled by
“Problem”. Most of the sections can be read independently of the others.

1.1 Overview

Section 2 serves as a detailed introduction to the rest of the paper. In it I describe
the flagship conjecture on determinant versus permanent and related conjectures,
introduce relevant algebraic varieties, and establish basic information about GCT.
In Sect. 3, I cover background from representation theory. GCT has deep connec-
tions to classical algebraic geometry - a beautiful illustration of this is how solving an
old question regarding dual varieties led to lower bounds for the flagship conjecture,
which is discussed in Sect. 4, along with a use of differential geometry to get lower
bounds for a conjecture of Valiant. The boundary of the variety Det,, := GL,2 - det,
is discussed in Sect. 5. The classical problem of determining the symmetries of a
polynomial and how it relates to the GCT program is discussed in Sect. 6, including
geometric computations of the stabilizers of the determinant and permanent polyno-
mials. I believe the Chow variety of polynomials that decompose into a product of
linear factors will play a central role in advancing GCT, so I discuss it in detail in
Sect. 7, including: unpublished results of Ikenmeyer and Mkrtchyan on the kernel
of the Hermite-Hadamard-Howe map, a history of what is called the Foulkes-Howe
Conjecture (essentially due to Hadamard), recent work with S. Kumar related to the
Alon-Tarsi Conjecture, a longstanding conjecture in combinatorics, and an exposition
of Brion’s proof of an asymptotic version of the Foulkes-Howe Conjecture. In Sect. 8
I translate recent results in computer science [31] to geometric language—they allow
for two new, completely different formulations of Valiant’s conjecture VP # VNP, one
involving secant varieties of the Chow variety, and another involving secant varieties
of Veronese re-embeddings of secant varieties of Veronese varieties. An exposition
of S. Kumar’s results on the non-normality of Det, and GL,2 - "~ perm,, is given
in Sect. 9. In Sect. 10, I present unpublished results of Li and Zhang, using work of
Maulik and Pandharipande [55], that the degree of the hypersurface of determinantal
quartic surfaces is 640, 224. My feeling is that any near-term lower bounds for the
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flagship conjecture 2.1 will come from classical geometry and linear algebra. I discuss
this perspective in Sect. 11 which consists of unpublished joint work with L. Manivel
and N. Ressayre. Finally Sect. 12 is an appendix of very basic complexity theory: the
origin of P v. NP, definitions regarding circuits, and Valiant’s conjectures.

1.2 Notation

Throughout V, W are complex vector spaces of dimensions v, w. The group of invert-
ible linear maps W — W is denoted GL(W), and SL(W) denotes the maps with
determinant one. Since we are dealing with G L(W)-varieties, their ideals and coor-
dinate rings will be G L(W)-modules. The G L(W)-modules appearing in the tensor
algebra of W are indexed by partitions, 7 = (p1, ..., py), where if 7 is a partition of
d,ie,pi+---+py; =dand py > p > --- > p,; > 0, the module S; W appears in
W®4 and in no other degree. In particular the d-th symmetric power is SV = Sa)V
and the d-th exterior power is AYV = Sy )V =: SyaV. Write || = d and
£() = gq. The symmetric algebra is denoted Sym (V) := @,5¢V. For a group G, a
G-module V,andv € V,G, := {g € G | gv = v} C G denotes its stabilizer, and
for a subgroup H € G, VH := {v € V | hv = v} C V denotes the H-invariants
in V. The irreducible representations of the permutation group on n elements &,, are
also indexed by partitions, and [7] denotes the &,,-module associated to 7. Repeated
numbers in partitions are sometimes expressed as exponents when there is no danger
of confusion, e.g. (3,3, 1,1,1,1) = (32, 1%).

Projective space is PV = (V\0)/C*. For v € V, [v] € PV denotes the corre-
sponding point in projective pace and for any subset Z C PV, Z C V is the cor-
respondlng cone in V. For a variety X C PV, I(X) C Sym(V*) denotes its ideal,
(C[X] = Sym(V*)/1(X) is the ring of regular functions on X, which is also C[x1],
the homogeneous coordinate ring of X. The singular locus of X is denoted Xj;,g
and Xmoors denotes its smooth points. More generally, for an affine variety Z, C[Z]
denotes its ring of regular functions. For x € Xguo01h» fo C V denotes its affine
tangent space. For a subset Z C V or Z C PV, its Zariski closure is denoted Z.

ForP € $9V,and 1 <k < L%J, the linear map Py 4 : Skv* — §9-ky ig called
the polarization of P, where Py 4— € S*V®89-kV is P considered as a bilinear
form, see Sect. 2.3 for more details. I write P for the complete polarization of P, i.e.
considering P as a multilinear form and Z(P) C PV* for the zero set.

Repeated indices appearing up and down are to be summed over.

Let Ty C SL(V) denote a torus (diagonal matrices), and I write T = Ty if V is
understood. WhendimV = n,letT", := Tx&, = {g € SL(V) | ghg™' € TVh € T}
denote its normalizer in SL(V'), where G,, acts as permutation matrices.

For a reductive group G, A‘g denotes the set of finite dimensional irreducible G-
modules. Since I work exclusively over C, a group is reductive if and only if every
G-module admits a decomposition into a direct sum of irreducible G-modules.

The set {1, ..., m} will be denoted [m]. log denotes log,.

Let f, g : R — R be functions. Write f = Q(g) (resp. f = O(g)) if and only
if there exists C > 0 and xo such that | f(x)| > C|g(x)| (resp. | f(x)| < Clg(x)])
for all x > xo. Write f = w(g) (resp. f = o(g)) if and only if for all C > O there

,,,,,
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exists xo such that | f(x)| > C|g(x)| (resp. | f(x)| < Clg(x)|) for all x > x¢. These
definitions are used for any ordered range and domain, in particular Z. In particular,
for a function f(n), f = (1) means f goes to infinity as n — oo.

Exercise 1.1 Show that asymptotically, for any constants C, D, E > 1,

2
nC < p¥n = pvnlogn _ pn _yn . pn*

2 Geometric complexity theory
2.1 The flagship conjecture

2 . .
Let W = C", and let det, € S"W denote the determinant polynomial. Let n > m
2 .
and let perm,, € S C"" denote the permanent. In coordinates,

det, = Z sgn(a)x;(l) S X )
eSS,

1
perm,, = Z Yoty Yo (m)-
eSS,

. . . . . . 2
Let ¢ be a linear coordinate on C! and consider any linear inclusion CleCc™ - w,
so in particular £"~" perm,, € S"W. Let

Det, := GL(W) - [det,]

and let

Perm)) := GL(W) - [£*~" perm,,,].

Conjecture 2.1 (Mulmuley-Sohoni [62]) Let n = m© for any constant c. Then for all
sufficiently large n,

Perm)! ¢ Det,.

While this flagship conjecture appears to be out of reach, I hope to convince the
reader that there are many interesting intermediate problems that are tractable and that
these questions have deep connections to geometry, representation theory, combina-
torics, and other areas of mathematics.

Itis convenient to introduce the following notation: For a homogeneous polynomial
P of degree m, write dc(P) for the smallest n such that [£7~™ P] € Det,, called the
border determinental complexity of P. Define dc(P) to be the smallest n such that
=" P ¢ End(W) - det,, so dc(P) < dc(P). Conjecture 2.1 can be restated that
%(permm) grows faster than any polynomial in m. For example, %(perm2) =2, and
it is known (respectively [30] and [49]) that 5 < d_c(perm3) < dc(permy) < 7. The
known general lower bound is
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Theorem 2.2 [49] %(permm) > mTZ

See Sect. 4.2 for a discussion.
Conjecture 2.1 is a stronger version of a conjecture of L. Valiant [75] that dc(perm,,)
grows faster than any polynomial in m. The best lower bound for dc(perm,,) is

2

Theorem 2.3 [57] dc(perm,,) > 5.

See Sect. 4.1 for a discussion.

Problem 2.4 Determine dc(perms).

If you were to prove either Valiant’s conjecture or Conjecture 2.1, it would be by far
the most significant result since the dawn of complexity theory. Proving Conjecture
2.1 for ¢ = 3 would already be a huge accomplishment. If you disprove Valiant’s
conjecture plus (1) the projections from det,, to perm,, use only rational constants of
polynomial bit-length, and (2) the projection (for some n = m¥) is computable by a
polynomial time algorithm, then you can claim the Clay prize for showing P = NP.

A geometer’s first reaction to Conjecture 2.1 might be: “well, the determinant is
wonderful, it has a nice geometric description, but what about this permanent? It is
not so wonderful at first sight”.

In fact that was my first reaction. If you had this reaction, you probably think
of the determinant, not in terms of its formula, but, letting A, B = C”", as the
unique point in PS"(A®B) invariant under SL(A) x SL(B), i.e., a point in the
trivial SL(A) x SL(B)-module A"AQA"B C S"(A®B). If you think this way,
then consider, instead of the permanent, the four factor Pascal Determinant (also
called the combinatorial determinant): and let A; = C" for j = 1,...
The 4-factor Pascal determinant Pasdety ,, spans the unique trivial SL(A1) x - --
SL(A4)-module in S"(A;®---® Asg), namely A"A|® - Q@ A™Ay. Assume n
m*, choose a linear embedding C ® A|®---® A4 C W, and define Pasdet)
GL(W) - [¢£"—™Pasdety ,,]. Then, a consequence of an observation of Gurvits [32] is
that Conjecture 2.1 is equivalent to:

v x &

Conjecture 2.5 Let n = m© for some constant c. Then for all sufficiently large n,
Pasdet) ¢ Det,,.

That being said, I have since changed my perspective and have come around to
admiring the beauty of the permanent as well. In Remark 6.15 we will see it is the
“next best” polynomial in $” (C"®C") after the determinant.

There are many similarities between the permanent and the 4-factor Pascal deter-
minant. Two examples: for both, the dimension of the hypersurfaces they define is
roughly the dimension of the symmetry group G p squared (in contrast to the determi-
nant where the dimension of the symmetry group is roughly the same as the dimension
of the hypersurface), and in both cases the tangent space Tp (GL(W)- P) is areducible
G p-module (for the determinant it is irreducible).
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Remark 2.6 For all even k one can define the k-factor Pascal determinant as a point
in the unique trivial SL(Aj) X --- X SL(Ag)-module in S (A|® - - - ® Ag), namely
A"A1® -+ Q@ A™Ag. When k = 2 this is just the usual determinant.

Exercise 2.7 For P = det,, perm,,, and Pasdety ,,, determine the structure of
Tp(GL(W) - P) as a Gp-module. Hint: for any orbit, G - v = G/H, one has
T,G/H =~ g/b as an h-module.

2.2 Relevant algebraic varieties

Two important varieties for our study will be the Veronese variety v,(PW) C PS"W
and a certain Chow variety Ch, (W) C PS"W. These are defined as

v (PW) = {[z] € PS"W | z = w" for some w € W} (1
Chy(W) ={[z1 e PS"W | z = w; - - - w,, for some w; € W}. 2)

Note that the first variety is a subvariety of the second, and if we consider the Segre
variety

Seg®PW x - x PW) = {[T] e P(W®") | T =w1®-- ® wy
for some w; € W} C P(W®"),

then v, (PW)==Seg(PW x- - - xPW)NP(S" W) and Ch, (W) = projpga . (Seg(PW x

- x PW)), where SIWe c WO is the G L(W)-complement to SYW, and projr
denotes linear projection from the linear space L. (Here I am respectively considering
S"W as a subspace and as a quotient of W®",) The Veronese is homogeneous, so
in particular its ideal and coordinate ring are well understood. The Chow variety is
an orbit closure when n < w. Determining information about its ideal is a topic of
current research, and has surprising connections to different areas of mathematics,
including a longstanding conjecture in combinatorics, see Sect. 7.9. There is a natural
map hg, : SA(S"W*) — §"(S?W*), dating back to Hermite and Hadamard, such
that I;(Ch,(W)) = ker(hq ), see Sect. 7.

The Chow variety is a good testing ground for GCT, so it is discussed in detail
in Sect. 7. In particular, the coordinate rings of the Chow variety, its normalization,
and the orbit GL(W) - (x1, ..., x,,) are compared. Since Ch,(W) C Det,, we can
get some information about the coordinate ring of Det,, from the coordinate ring of
Chp(W).

We will often construct auxiliary varieties from our original varieties. Let X C PV
be a variety, which we assume to be irreducible and reduced.

Define the dual variety of X:

XV :={H € PV* | 3x € Xgnoorn, PT,X € H} C PV*,

In the special case V = S"W* and X = v, (PW™) is the Veronese variety, then the
hypersurface v, (PW*)¥ C PS" W may be identified with the variety of hypersurfaces
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of degree n in PW* that are singular. To see this, for a hypersurface Z(P) C PW*

(the zero set of the polynomial P), [x] € Z(P)ging if and only if P(x”_ly) = 0 for all

y € W*. But f[xn]vn(IP’W*) = {x""ly | y € W*}. See [45, §8.2.1] for more details.
The set

arO(X) = U (X1,...,x) CPV,
X yeers xreX
where (x1, ..., x,) denotes the (projective) linear span of the points xi, ..., x,, is

called the set of points of X-rank at most r. The variety o, (X) := o2(X) is called
the r-th secant variety of X (or the variety of secant P"~!"s to X). Assume X is not
contained in a hyperplane. Given z € PV, define the X-border rank of z to be the
smallest r such that z € 0, (X), and one writes Ry (z) = r. Similarly, if z has X-rank
r, one writes Ry (z) = r.

When X = v, (PW), the v, (PW)-rank is called the Waring rank (or symmetric ten-
sor rank) and the Waring rank and border rank of a polynomial are first measures of its
complexity. One writes Rg = Ry, (pw) and Rg = R, pyyy. We call the Ch, (W)-rank
the Chow rank. The Chow rank is an important measure of complexity, it is related
to the size of the smallest homogeneous depth 3 circuit (sometimes called a homoge-
neous XI1X circuit) that can compute a polynomial, and even more importantly, as
the smallest depth 3 circuit that can compute a padded polynomial, see Sect. 8.

2.3 First equations

Equations for the secant varieties of Chow varieties are mostly unknown, and even
for the Veronese very little is known. One class of equations is obtained from the
so-called flattenings or catalecticants, which date back to Sylvester: for P € S9V,
and1 <k < L%J, consider the linear map Py 4 : Skv* — §9=ky _ obtained from
the polarization of P, where, from a tensorial point of view, Py 4—x € S ky@si—ky is
P considered as a bilinear form on SKV* x S4=%V*_ The image of Py 4—i, considered
as amap SKV* — §97kV s the space of all k-th order partial derivatives of P, and
is studied frequently in the computer science literature under the name the method of
partial derivatives (see, e.g., [14] and the references therein). To see this description
of the image, note that S¥V* may be identified with the space of k-th order constant
coefficienthomogeneous degree k differential operators on $” V. In bases, if xoooxY
is a basis of V, then %, e, % is a basis of V*. The kernel and image of Pk ,— is
often easy to compute, or at least estimate.

If [P] € vg(PV), the rank of Py 4— is one, so the size (r 4 1)-minors of Py 4
furnish some equations in I, 4 (o, (vg (PV))). The only other equations I am aware of
come from Young flattenings, see [18,46] for a discussion of the Young flattenings and
the state of the art. If P € Chy(V), then the rank of Py g4 is (‘,f), so the size r (‘Z) +1
minors furnish some equations for o, (Chg(V)).

For P € $?V, the Young flattening, Pr.d—k[e) - SkV*R8LV — §9-k+Ly obtained
by tensoring Py g— with the identity map Idgey : SV — SV, and projecting
(symmetrizing) the image in SY ¥V @S¢V to $47¥+V goes under the name “method
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of shifted partial derivatives” in the computer science literature. It is the main tool for
proving the results discussed in Sect. 8.4. It’s skew cousin led to the current best lower
bound for the border rank of matrix multiplication in [48].

2.4 Problems regarding secant varieties related to Valiant’s conjectures
Problem 2.8 Find equations in the ideal of o,.(Ch,(W)). This would enable one to
prove lower complexity bounds for depth 3 circuits.

The motivation comes from:

Conjecture 2.9 For all but a finite number of m, for all r, n withrn = 2v/mlogma (1),
[€"=" perm,, ] & 0, (Chy (C" 1)), 3)

As explained in Sect. 8.4, Conjecture 2.9 would imply Valiant’s conjecture that
VP # VNP. (Valiant’s conjecture is explained in Sect. 12.)

Another variety of interest is o, (vs (0, (v, (PW)))) C PS"W. If dimW = rp, and
W has basis xj5, | <i <r,1 <s < p, this variety is the G L(W)-orbit closure of the
polynomial >°7_, (x7 + -+ -+ x/)%.

Problem 2.10 Find equations in the ideal of o, (vs (0, (v, (PW)))).

Such equations would enable one to prove lower complexity bounds for the
Y AYAY circuits defined in Sect. 8. The motivation comes from:

Conjecture 2.11 For all but a finite number of m, for all § >~ /m and all r, p with
rp = 2v/mlogmo(l)

2
[perm,, ] & o (vs (0 (v (™~ 1))). €
As explained in Sect. 8.4 Conjecture 2.11 would also imply Valiant’s conjecture
that VP # VNP.

Note that although the variety appearing in (4) is more complicated than the one
appearing in (3), we do not have to deal with cones and padding, which I discuss next.

2.5 Cones and padding

. . 2 2, . . .
The inclusion C" t1 < C", indicates we should consider the variety of cones, or
subspace variety

Suby(S"W) := {[P] e PS"W | 3U* c W, P e S"U},

and the £"~"™ factor in both (3) and Conjecture 2.1 indicates we should consider the
variety of padded polynomials

Padt(SnW) = {[P] S PS”W | P = etQ for some ¢ € W’ Q e Sn_tW}.
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The ideal of Suby(S"W) in degree d consists of the isotypic components of all
S W* with £(rr) > k, see, e.g. [45, §7.1]. The ideal is generated in degree k + 1 by
the minors of flattenings [47]. The ideal of Pad,;(S" W) is not known completely. We
do know:

Theorem 2.12 [39] For all d, 1;(Pad,;(S"W*)) contains the isotypic component of
S Win Sd(S”W)for all m = (p1, ..., pa) (so || = nd) with py < dt. It does not
contain a copy of any Sy W where p1 > min{d(n — 1),dn — (n — t)}.

Although we know for dimension reasons that Pad,_, (Subm2+1(S’"C"2)) a
Det, asymptotically when n = m® by counting dimensions, it would be useful to
have a proof using equations.

2.6 GCT useful modules

One could break down the problem of separating the determinant from the padded
permanent into three steps: separating the determinant from a generic cone, separating
the determinant from a cone over a padded polynomial, and finally separating the
determinant from the cone over the padded permanent. That is, to separate Det,, from
Perm]’, we should not just look for modules in the ideal of Detz,, but modules in the

ideal that are not in the ideal of Sub,,> | (S"W) or Pad,_, (S”(Cszrl ).

Definition 2.13 A GL(W)-module module M such that M C I(Det,) and M ¢
I(Sub,,2,(S"W)) and not known to be in the ideal of Pad), (S”(C’"Z“), is called
(n, m)-GCT useful.

More precisely, one should speak of modules that are, e.g. “April 2013 GCT use-
ful”, since what is known will change over time, but I ignore this in the notation. To
summarize:

Theorem 2.14 [39] Necessary conditions for a module S; W with || = dn to be
(n, m)-GCT useful are

(1) L(wr) <m+1and
(2) pr =dmn—m).

Problem 2.15 Find a (5, 3)-GCT useful module.

2.7 The program of [62]

The algebraic Peter-Weyl theorem (see Sect. 3.1) implies that for a reductive algebraic
group G and a subgroup H, that the ring of regular functions on G/H, denoted

C[G/H], as G-module is simply

CIG/H1= @ vievH.

reA
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Here Ag indexes the irreducible G-modules, V;, is the irreducible module associated
to A, and for a G-module W, WH# := {w € W | h- w = wVh € H} denotes the
subspace of H-invariants. Here G acts on the V, and (V/\*)H is just a vector space
whose dimension records the multiplicity of V; in C[G/H].

Let v € V and consider the homogeneous space G - v = G/ G, C V. Then there
is an injection C[G -v] — C[G / Gy] by restriction of functions. Thus if we can find
a module V) that occurs in Sym(V*) that does not occur in C[G/G,], the isotypic
component of V, in Sym(V*) must be in the ideal of G - v. More generally, if the
multiplicity of V; in Sym (V™) is higher than its multiplicity in C[G/G,], at least
some copy of it must occur in /(G - v).

Definition 2.16 Let v € V as above. An irreducible G-module Vj, is an orbit occur-
rence obstruction for G - v if Vi, C Sym(V*) and (V;)*C» = 0. The module V; is
an orbit representation-theoretic obstruction if mult(V;, Sym(V*)) > dim(V;)*Cv.
More generally, an irreducible G-module V), is an occurrence obstruction if V, C
Sym(V*) and V, ¢ C[G - v]. The module Vj is a representation-theoretic obstruc-
tion if mult(V;, Sym(V*)) > mult(V, C[G - v]).

Note the implications: M is an orbit occurrence obstruction implies M is an orbit
representation-theoretic obstruction implies M is a representation-theoretic obstruc-
tion and M is an occurrence obstruction implies M is a representation-theoretic
obstruction.

To summarize: The isotypic component of an occurrence obstruction in Sym (V*)
is in the ideal of G - v, and at least some copy of a representation-theoretic obstruction
must be in the ideal of G - v.

The program initiated in [62] and continued in [61,63] and other articles, was to
find such obstructions via representation theory, perhaps using canonical bases for
nonstandard quantum groups, see especially [59,60].

Definition 2.17 P € S?V is characterized by G p if any Q € S?V with Gp 2 Gp
is of the form Q = ¢ P for some constant c.

In our situations (where G p is reductive), the orbit closure of a polynomial
characterized by its symmetry group is essentially determined by multiplicity data,
which makes one more optimistic for representation-theoretic, or even occurrence
obstructions.

In the negative direction, C. Ikenmeyer [38, Conj. 8.1.2] made numerous compu-
tations that lead him to conjecture that all modules that occur in Sym (S" W*) when n
and the partitions are both even, also occur in C[GL(W) - det,,].

2.8 The boundary of Det,

When Conjecture 2.1 was first proposed, it was not known if the inclusion End (W) -
det, C Det, was proper. In Sect. 5, I describe an explicit component of dDet,, (found
in [49]) that is not contained in End(W) - det,. Determining the components of the
boundary should be very useful for GCT. It also relates to a classical question in linear
algebra: determine the unextendable linear spaces on {det, = 0}.
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2.9 Bad news

Hartog’s theorem states that a holomorphic function defined off of a codimension
two subset of a complex manifold extends to be defined on the complex manifold.
Its analog in algebraic geometry, for say affine varieties, is true in the sense that a
function defined off of a codimension two subvariety of an affine variety Z extends
to be defined on all of Z as long as the affine variety Z is normal (see Sect. 7.6 for
the definition of normal). When studying a normal orbit closure, the only difference
between C[G - v] and C[G - v] comes from functions having poles along a component
of the boundary. With non-normal varieties the situation is far subtler. The following
theorem and its proof are discussed in Sect. 9.

Theorem 2.18 (Kumar [43]) Det, is not normal for n > 3. Perm)' is not normal for
n > 2m.

Remark 2.19 In [65] an algorithm is described that in principle can distinguish when

one orbit closure is contained in another.

3 Representation theory
3.1 The algebraic Peter-Weyl theorem

Let G be a reductive algebraic group and V a G-module. Given « € V* and v € V
we get an algebraic function

fa®v . G — (C
g a(gv).

Note this is linearin V and V* (e.g. f(a,+a2)@v = foy@v + farov €tc..), and commutes
with the action of G, so we obtain an injective G-module map V*®V — C[G].

Exercise 3.1 Show the map V*®V — C[G] is indeed injective.

The linearity shows that it is sufficient to consider irreducible modules to avoid
redundancies. We have shown: C[G] 2 @, . AL VIQVi.

Theorem 3.2 (Algebraic Peter-Weyl) (see, e.g [66, Ch. 7, §3.1.1]) As a left-right
G x G module, C[G] = @AeAJGr VI®V,.

The G x G module structure is given by (g1, g2) f(g) = f(g1gg2). For the proof
of the equality (which is not difficult), see [66, pp. 160, 180].
We will need the following Corollary:

Corollary 3.3 Let H C G be a closed subgroup. Then, as a G-module,

@d‘ \A H
CIG/H] = CIGI" = @, s Vi) =@, V7"
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3.2 Representations of GL(V)

The irreducible representations of G L (V') are indexed by sequences & = (py, ..., p1)
of non-increasing integers with / < dimV. Those that occur in V®¢ are partitions of
d, and we write || = d and S, V for the module. V@ i also an &S, module, and the
groups GL(V) and &, are the commutants of each other in V®d which implies the
famous Schur-Weyl duality that yed — ®\r|=d.t(m)<v[T1QS; V asa (Sg x GL(V))-
module, where [7r] is the irreducible G ;-module associated to 7. Repeated numbers in
partitions are sometimes expressed as exponents when there is no danger of confusion,
e.g. (3.3, 1,1,1,1) = (3%, 1*). For example, S¢)V = S?V and S0,V = A9V. The
modules S;vV = (AYV)®* are exactly the SL(V)-trivial modules. The module S22,V
is the home of the Riemann curvature tensor in Riemannian geometry. See any of
[45, Chap. 6], [24, Chap 6] or [66, Chap. 9] for more details on the representations of
G L(V), Schur-Weyl duality, and what follows.
Assuming v, w are sufficiently large, we may write:

S(Vew)= P S.Ves,w)w ®)
Il+Hvl=l]

S,(Vew)= (S, Ves,w)Pe (6)
lnl=Ivi=|r]

for some non-negative integers CZV, kzv. On the left hand side one respectively has
GL(V & W) and GL(V®W) modules and on the right hand side GL(V) x GL(W)-
modules. The constants cj;, are called Littlewood-Richardson coefficients and the
kx v are called Kronecker coefficients. They are independent of the dimensions of the
vector spaces as long as v, w are larger than the lengths of the partitions. They also

(via Schur-Weyl duality) admit descriptions in terms of the symmetric group:

¢,y = dim(Homg, x g, ([7], [1]1®[V]) (7

ko = dim([T]@[u1@[v]) ™ ®)

where in the first line || = || + |v| and in the second line || = |u| = |v| = d, so
in particular Kronecker coefficients are symmetric in their three indices.

Often one writes partitions in terms of Young diagrams, where m = (p1, ..., p;)

is represented by a collection of boxes, left justified, with p; boxes in the j-th row
(Fig. 1). There is a nice pictorial recipe for computing Littlewood-Richardson coeffi-
cients in terms of Young diagrams (see, e.g., [23, Chap. 5]).

Fig.1 Young diagram for
T=(421
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A useful special case of the Littlewood Richardson coefficients is the Pieri formula

1 if v is obtained from A by adding d boxes to
CK,( 4 = the rows of A with no two in the same column; O]
0 otherwise.

Exercise 3.4 Show that (5" V)®? does not contain any SL(V)-invariants for d < v.

Exercise 3.5 Show that k;,, = dim(Homg, ([7], [u]®[v])).

3.3 A duality theorem for weight zero spaces and plethysms

For any S, V, the Weyl group Gy acts on the sl-weight zero space, which I will denote
(87 V)o. This is by definition the subspace of S;; V on which the torus Ty acts trivially.
Recall that G acts on V®4 and is the commutator of GL(V).

Exercise 3.6 Show that the weight zero space of V® is zero unless v divides d, in
which case we write d = vs.

Note that S, (S*V) C V@slil We have the following duality theorem:
Theorem 3.7 [26] For |[m| =d = vs and ||t| =V,

multg, ([], (SzV)o) = multGLv)(SzV, Su(S*V)).

In particular,
Corollary 3.8 Let || =d.

(1) Whend = v, (S;V)o = [r].
(2) Forany d = vs, dim[(S; V)0]1%¢ = mult(S, V, SY(S*V)).

To get an idea of the proof, note that S, V = Homg, ([ ], V®d) and thus (S; V) =
Homg, ([7r], (V®9)g), so the lefthand side is multg, ([11], Homg, (7], (V&%)0)). On
the other hand, S*V = (V®)Ss and (S*V)® = (V&V$)Gsxx6&s \where we have v
copies of G;. So the right hand side is multg, ([7], Homg, ([i], (V&¥9)SsxxSs),
Now (V®d)o is an &, and an Gy-module and has a basis ¢;,®---® ¢;;, with
{i1,...,ig} = [v]®* where d = vs. Moreover the &, and &y actions commute, and
the S, action is transitive on the set of basis elements. Letting H = &Y C &y,
D. Gay shows the normalizer of H divided by H is Nor(H)/H = Gy and the
centralizer of &4 in Ggyjy(yed), is Sy. The result follows by applying a combi-
nation of Frobenius reciprocity and Schur-Weyl duality to go from &;-modules to
GL(V)-modules. A key point is noting that H is also the stabilizer of the vector
X = e1®-~-®e1®ez®~~-®ez®-~-®ev®-~-®ev:e?s®-~-®e§5.

Exercise 3.9 We may realize Sv)V as C{(e; A --- A ey)®%}. Show that Gy acts on
S¢sv)V by the sign representation when s is odd and acts trivially when s is even.
Conclude SY(S°V) has a unique SL(V)-invariant when s is even and none when s is
odd, and that [S?V(S*V)]SL() £ O forall s > 1. This had been observed in [36, Prop.
4.3al.
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Exercise 3.10 Show that the SL(V)-invariant P € S¥(S*V) from the previous prob-
lem has the following expression. Let z = (xl1 . ~xsl) -+ (x}---x]). Then

(Pozy= D dety(x) gy Xmyr) Aoty (o) oo Yo ey)- (10)

o1,...,0v€Sy

To compute P (u) for any u € S*V*, consider u* and expand it out as a sum of terms
of the form z. Then P(u) = (P, u").

4 Lower bounds via geometry

4.1 The second fundamental form and the ’%2 bound for Valiant’s conjecture

For hypersurfaces in affine space, one can attach a differential invariant, the second
fundamental form, to each point. This form is essentially the quadratic term in an
adapted Taylor series for the hypersurface graphed over its tangent space at that point.
The rank of this quadratic form gives an invariant that can not increase on the image
of general points under affine linear projections. It is straight-forward to compute that
for smooth points of {det, = 0} the rank of the quadratic form is 2n — 2 whereas,
if one chooses a judicious point of {perm,, = O} one finds the rank is the maximal
m? — 2. Combining these two gives:

Theorem 4.1 [57] dc(perm,,) > ™, i.e., if perm,, € End(C"" - det,), then n > "

7
Valiant’s conjecture [75] that motivated the work of Mulmuley and Sohoni is that
n must grow faster than any polynomial in m to have perm,, € End((C"2 - dety,).

4.2 Dual varieties and the ”‘72 lower bound for Conjecture 2.1

Define Dualy 4 n C P(S?W*) as the Zariski closure of the set of irreducible hyper-
surfaces of degree d in PW ~ PN ~! whose dual variety has dimension at most k. (I
identify a hypersurface (as a scheme) with its equation.)

It had been a classically studied problem to determine set-theoretic equations for
Dualy 4, n. Motivated by GCT, Manivel, Ressayre and I were led to solve it. I follow
[49] in this subsection.

Let P € SYW* be irreducible. The B. Segre dimension formula [68] states that for
[w] € Z(P)general,

dim Z(P)" = rank(Py_».1.1(w?™%)) — 2.

The bilinear form Pd,z,l‘l(wd_z) is called the Hessian of P at w. Write Hp for
P;_»1,1;1n bases it is an n X n symmetric matrix whose entries are polynomials of
degree d — 2.
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Thus dim(Z(P)V) < k if and only if, for all w € 2(P) and F e G(k+ 3, W),

detyy3(Hp(w)|F) = 0.

Equivalently, P must divide det;4+3(Hp|F). Note that P +— dety43(Hp|F) is a poly-
nomial of degree (k + 3)(d — 2) on S¢W*.

By restricting first to a projective line L C PW, and then to an affine line A! C L
within the projective line, one can test divisibility by Euclidean division. The remainder
will depend on our choice of coordinates on A', but the leading coefficient of the
remainder only depends on the choice of point in L that distinguishes the affine line.

Set theoretically, the equations obtained from the invariant part of the remainder
as one varies A!, L, F suffice to define Dualy 4 y on the open subset parameterizing
irreducible hypersurfaces, as once the plane L is fixed, by varying the line A! one
obtains a family of equations expressing the condition that P|; divides det(Hp|Fr)|L.
A polynomial P divides Q if and only if when restricted to each plane P divides Q,
so the conditions imply that the dual variety of the irreducible hypersurface Z(P) has
dimension at most k.

By keeping track of weights along the flag A! L? ¢ F*3 one concludes:

Theorem 4.2 [49] The variety Dualy N C P(S?(CN)*) has equations given by a
copy of the G L y-module Sn(k,d)(CN, where

nk,d) = ((k+2)(d*>—2d)+ 1, d(k +2) — 2k — 3, 2Kt1).

Since || = d(k +2)(d — 1), these equations have degree (k +2)(d — 1).

If P is not reduced, then these equations can vanish even if the dual of the reduced
polynomial with the same zero set as P is non-degenerate. For example, if P = R?
where R is a quadratic polynomial of rank 2s, then det(Hp) is a multiple of R>*. The
polynomial £~ perm,, is neither reduced nor irreducible, but fortunately we have
the following lemma:

Lemma 4.3 [49] Let U = CM and L = C, let R € S"U* be irreducible, let £ € L*
be nonzero, let U* & L* C W* be a linear inclusion, and let P = ¢4~ R € SIW*.

If [R] € Dualy i and [R] & Dual,—1 m m, then [P] € Dual, 4 n and [P] &
Dualc—1.4,N-

Checking that {perm,, = 0}" is indeed a hypersurface by computing the second
fundamental form of {perm,, = 0} is of full rank at the matrix all of whose entries are
1 except, e.g., the (1, 1) slot which is 1 —n (the kernel of the second fundamental form

has the same dimension as the kernel of the Hessian), it follows Perm™, ¢ Det ,»
5 2
proving Theorem 2.2.

The main theorem of [49] is:

Theorem 4.4 [49] The scheme Dualy,_, , 2 is smooth at [det,], and Det, is an
irreducible component of Dualy, _; , 2.
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For polynomials in N’ < N variables, the maximum rank of the Hessian is N’
so the determinant of the Hessian will vanish on any F of dimension N’ + 1. Thus
Suby42(S"W) C Dualg ,, n. The subspace variety Subk+2(Sd(CN), which has dimen-
sion (k+Z+1) ~+(k+2)(N —k—2)—1, also forms an irreducible component of Dualy , n
(see [49]), so Dualy,_, , 42 is not irreducible.

Theorem 4.4 is proved by computing the Zariski tangent space to both varieties
at [det,]. To carry out the computation, one uses that the Zariski tangent spaces are
G get,, -modules, so one just needs to single out a vector in each S; EQ S, F. On then
uses immanants (see Sect. 6.15) to get a preferred vector in each module to test.

In particular, Theorem 4.4 implies that the GL(W)-module of highest weight
7w (2n — 2, n) given by Theorem 4.2 gives local equations at [det,] of GL,> - [det,],
of degree 2n(n — 1).

5 The boundary of Det,

Itis expected that understanding the components of the boundary of Det,, will be useful
for GCT. There is the obvious component obtained by eliminating a variable, which is
contained in End((C"2 - det,), and is related to Valiant’s conjecture. To understand the
difference between Valiant’s conjecture and the Conjecture 2.1, one needs to examine
the other components of the boundary.

Determining additional components of the boundary relates to yet another classi-
cal question: determine unextendable linear spaces on the hypersurface {det, = 0}.
Roughly speaking, given one such, call it L C (C”z, write C"° = L @ L€ where L€
is some choice of complement to L. Then compose the determinant with a (suitably
normalized) curve f; = Idp +tldrc € GL,>. In the limit as # — 0 one may arrive
at a new component of the boundary.

For an explicit example, write cP=w = Ws @ Wy, where we splitup the n x n
matrices into symmetric and skew-symmetric matrices. When #n is odd, the curve

1
g(t) = ;(IdWA + t1dwyg)

determines a polynomial P, := lim;—¢ g(¢) - det,. To see P, explicitly, decompose
a matrix M into its symmetric and skew-symmetric parts Mg and M. Then

PA(M) = detn(MAv MR} MA? MS)
More explicitly, P5 can be expressed as follows. Let Pf; (M) denote the Pfaffian of

the skew-symmetric matrix, of even size, obtained from M, by suppressing its i-th
row and column. Then

PA(M) =" (Ms)ij Pfi(Mp) Pfj(My).
iJj
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Proposition 5.1 [49] The orbit closure GL(W) - Py is an irreducible codimension
one component of dDet, that is not contained in End(W) - [det,]. In particular
dc(Pam) =m < dc(Pp m).

Proposition 5.1 indicates that Conjecture 2.1 could be strictly stronger than Valiant’s
conjecture. To prove the second assertion, one computes the stabilizer G p, explicitly
and sees it has dimension one less than the dimension of Gey,, -

The hypersurface Z(Px) C PW has interesting properties, for example:

Proposition 5.2 [49]

Z(Py)Y =P2@vAwe S2C @ A2C", v, w e C"} C PW™.

Note that Z (PA)v resembles Seg(P"~! x P*~1)_ It can be defined as the image of
the projective bundle 7 : P(E) — P*~1, where E = O(—1) @ Q is the sum of the
tautological and quotient bundles on P"~!, by a sub-linear system of O (1) @7 *O(1).
This sub-linear system contracts the divisor P(Q) C P(E) to the Grassmannian
G(2,n) C PAC".

The only other components of dDet, that I am aware of were found by J. Brown, N.
Bushek, L. Oeding, D. Torrance and Y. Qi, as part of an AMS Mathematics Research
Community in June 2012. They found two additional components of dDet4.

Problem 5.3 Find additional components of dDet,,.

Problem 5.4 Determine all components of dDet3.

6 Symmetries of polynomials and coordinate rings of orbits

Throughout this section G = GL(V) and dimV = n. Given P € S9V, let
Gp:={geGL(V)|g-P=P}={geGL(V)| P(g-x) = P(x)Vx € V*}

denote the symmetry group of P. We let G[p) := {g € GL(V) | g - [P] = [P]}.
Determining the connected component of the identity G(}, is simply a matter of linear
algebra, as the computation of gp is a linear problem. However one can compute G p
directly in only a few simple cases.

Throughout this section, let V = C" and use index ranges 1 < i, j, k < n.Examples
6.1, 6.2, 6.3, and 6.4 follow [14].

6.1 Two easy examples

Example 6.1 Let P = xil e siv. Letg = (gj») € GL(V).Then g - (xil) = (g{xj)d

soif g - (xf) = xf, then g{ =0forj > 1and gll must be a d-th root of unity. There
are no other restrictions, thus

@ Springer



Ann Univ Ferrara

W * *
Gp=18€GL(V)|g= . ol =11,

0 =x *

* % *

0 =x *
Gipr=18€GL(V) | g=

0 *x --- x

The GL(V) orbit of [xf ] is closed and equal to the Veronese variety vy (PV).

Exercise 6.2 Use Corollary 3.3 to determine C[vy(PV)] (even if you already know
it by a different method).

Example 6.3 Let P = chow, = x;---x, € S$"V, which I will call the “Chow
polynomial”. It is clear I, := TnSL X &, C Gchow,, We need to determine if the

stabilizer is larger. Again, we can work by brute force: g - chow, = (gij) e (g,{xj).
In order that this be equal to xj - - - xp, by unique factorization of polynomials, there
must be a permutation o € &, such that for each k, we have g,ﬁ Xj = MXg (k) for some

Ak € C*. Composing with the inverse of this permutation we have g,ﬂ = 8%)\ j» and
finally we see that we must further have A; - - - A, = 1, which means it is an element
of TnSL, so the original g is an element of I';,. Thus Gchow, = .

The orbit closure of chow,, is the Chow variety Ch, (V) C PS"V. The coordinate
ring of GL(V) - chow,, is discussed in Sect. 7.

6.2 Techniques

We can usually guess a large part of G p. We then form auxiliary objects from P which
have a symmetry group H that one can compute, and by construction H contains G p.
If H = G p, we are done, and if not, we simply have to examine the difference between
the groups.

Remark 6.4 The very recent preprint [25] describes further techniques for determining
stabilizers of points.

Consider the hypersurface Z(P) := {[v] € PV* | P(v) = 0} C PV*. If all the
irreducible components of P arereduced, then Gz(p)y = G|p),as areduced polynomial
may berecovered up to scale fromits zero set, and in general Gz(py 2 G| p). Moreover,
we can consider its singular set Z(P);ng, which may be described as the zero set of
the image of P; 4—; (which is essentially the exterior derivative dP). If P = a ixt,
where a;,,._;, is symmetric in its lower indices, then Z(P)sin, = {[v] € PV* |
iy iy.....iyX2(v) - - - x4 (v) = 0 Viy}. While we could consider the singular locus of
the singular locus etc.., it turns out to be easier to work with what I will call the very
singular loci. For an arbitrary variety X C PV, define Xyerysing = Xverysing,1 1=
{x €e PV | dP, = OVP € I(X)}. If X is a hypersurface, then Xing = Xyerysing
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but in general they can be different. Define Xyerysing k := (Xverysing,k—1)verysing-
Algebraically, if X = Z(P) for some P € S9V, then the ideal of Z(P)verysing.k 18
generated by the image of Py, : S¥V* — §"7%V . The symmetry groups of these
varieties all contain G p.

6.3 The Fermat

Let fermati = xf + -+ xff. The GL(V)-orbit closure of [fermatg] is the n-th
secant variety of the Veronese variety o, (vg(PV)) C PS"V, see Sect. 2.2. It is clear
S, C Grermat, as well as the diagonal matrices whose entries are d-th roots of unity.
We need to see if there is anything else. The first idea, to look at the singular locus,
does not work, as the zero set is smooth, so we consider fermat 4 = x12®xd’2 +
st x,%@xd’z. Write the further polarization P j 4—2 as a symmetric matrix whose
entries are homogeneous polynomials of degree d — 2 (the Hessian matrix). We get

X

d=2

Xn

Were the determinant of this matrix G L (V)-invariant, we could proceed as we did with
chow,,, using unique factorization. Although it is not, it is close enough as follows:
Recall that for a linear map f : W — V, where dimW = dimV = n, we have [ €
A"W*QA"V andanelement (h, g) € GL(W)xGL(V)actson f by (h, g)- fN' =
(det(h)) =" (det(g)) f*". In our case W = V* so Py¥_,(x) = det(g)* Py, (g - x),
and the polynomial obtained by the determinant of the Hessian matrix is invariant up
to scale. ) .

Arguing as above, (g{xj)d_2 .. (g,ﬁxj)d_2 = xf_z - ~x,‘f_2 and we conclude
again by unique factorization that g is in I';,. Composing with a permutation matrix
to make g € T, we see that, by acting on the Fermat itself, that the entries on the
diagonal are d-th roots of unity.

Exercise 6.5 Show that the Fermat is characterized by its symmetries.

6.4 The sum-product polynomial
The following polynomial, called the sum-product polynomial, will be important when

studying depth-3 circuits. Its G L(mn)-orbit closure is the m-th secant variety of the
Chow variety o, (Ch, (C"™)):

m
Sp= > T_x;j € S"(C™).
i=1

Exercise 6.6 Determine G» and show that S, is characterized by its symmetries.

@ Springer



Ann Univ Ferrara

6.5 The determinant

I follow [15] in this section. Write an = EQF with E, F = C".

Theorem 6.7 (Frobenius [22]) Let ¢ € p(Gl,2) C GL(S"(C”z) be such that
¢ (det,) = det,,. Then, identifying (C”2 ~ Mat,xn,

| X gXh
¢(X) = [X — gXTh

where g, h € GL,, and det, (g) det,,(h) = 1. Here XT denotes the transpose of X.

Corollary 6.8 Let u, denote the n-th roots of unity embedded diagonally in SL(E) x
SL(F). Then Gget, = (SL(E) x SL(F))/n % Zy

To prove the Corollary, just note that the C* and p, are in the kernel of the map
C* x SL(E) x SL(F) - GL(EQF).

Exercise 6.9 Prove the n = 2 case of the theorem. Hint: in this case the determinant
is a smooth quadric.

Write (C”2 = W = A®B = Hom(A*, B). The following lemma is standard, its
proof is left as an exercise:

Lemma 6.10 Let U C W be a linear subspace such that U C {det, = 0}. Then
dimU < n* — n and the subvariety of the Grassmannian G(n* — n, W) consisting
of maximal linear spaces on {det, = 0} has two components, call them L, and Zg,
where

o = {X | ker(X) = L for some L € PA}, and (11)
¥g = {X | Image(X) = H for some H € PB*}. (12)

Moreover, for any two distinct Xj € Xy, j = 1,2, and Y; € Xg we have

dim(X; N X2) = dim(Y; N Y2) = n® — 2n, and (13)
dim(X; NY;) =n? —2n+ 1. (14)

Proof of Theorem 6.7 Let ¥ = X, U Xg. Then the map on G (n* —n, W) induced by
¢ must preserve X. By the conditions (13), (14) of Lemma 6.10, in order to preserve
dimensions of intersections, every X € X, must map to a point of X, orevery X € X,
must map to a point of X4, and similarly for Xg. If we are in the second case, replace
¢bypoT,where T(X) = X!, so we may now assume ¢ preserves both ¥, and Xg.

Now X, =~ PA, so ¢ induces an algebraicmap ¢4 : PA — PA.If Ly, Ly, L3 € PA
lie on a P!, in order for ¢ to preserve the dimensions of triple intersections, the images
of the L; under ¢4 must also lie on a P!. By Exercise 6.9 we may assume n > 3
so the above condition is non-vacuous. But then, by classical projective geometry
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¢a € PGL(A), and similarly, ¢ € PGL(B), where ¢pp : PB* — PB* is the
corresponding map. Write aAb 4 € GL(A) for any choice of lift and similarly for B.
Consider the map qB € p(GL(W)) given by ci(X) = qASA_lqb(X)qAﬁB_l. The map q~$
sends each X; € X, toitself as well as each Y; € Xg, in particular it does the same
for all intersections. Hence it preserves Seg(PA x PB) C P(A®B) point-wise, so it
is up to scale the identity map. O

Remark 6.11 For those familiar with Picard groups, M. Brion points out that there is
a shorter proof of Theorem 6.7 as follows: In general, if a polynomial P is reduced
and irreducible, then G z(pyv = G z(py = G|p). (This follows as (Z(P)")" = Z(P).)
The dual of Z(det,) is the Segre Seg(P"~! x P*~1). Now the automorphism group
of P*~! x P*~! = PE x PF acts on the Picard group which is Z x Z and preserves
the two generators Opg«pr (1, 0) and Opg «pr(0, 1) coming from the generators on
PE, PF. Thus, possibly composing with Z, swapping the generators (corresponding
to transpose in the ambient space), we may assume each generator is preserved. But
then we must have an element of Aut(PE) x Aut(PF) = PGL(E) x PGL(F).
Passing back to the ambient space, we obtain the result.

6.6 The coordinate ring of GL(W) - det,

For m = (p1,..., pp2) with p; > .- > p,o, recall that the multiplicity of S, W
in C[GL(W) - det,] is dim(S; W)S%deu | where Get, = (SL(E) X SL(F))/pin X Zs.
Following Sect. 3.2, write the SL(E) x SL(F)-decomposition S;(EQF) =
DS ERS, F)@k"/w .Tohave SL(E) x SL(F)-trivial modules, weneed © = v = (")
for some & € Z. Recalling the interpretation kr,, = dim(Homg,([7], [1]®[V])),
when = v, [u]R[u] = S2[,u]®A2[u]. Define the symmetric Kronecker coefficient
SkZu := dim Homg, ([7], Sz[u]). It is not hard to check (see [12]) that

((Ssn EQSgn F)®kronom) 22 — (S50 EQ Sgn F) P Kinan

We conclude:

Proposition 6.12 [12] Let W = C". The coordinate ring of the G L(W)-orbit of det,
is

CIGL(W) - det,] = @ @ (S, W) DK

SeZ m | |m|=né

Thus partitions 7 of dn such thatsk(’{,, s <mult(S; W, S9(S"W)) are representation-
theoretic obstructions, and if moreover mult(S, W, S?(S"W)) = 0, Sy W is an
occurrence obstruction. C. Ikenmeyer [38] has examined the situation for Det3. He
found on the order of 3, 000 representation-theoretic obstructions, of which on the
order of 100 are occurrence obstructions in degrees up to d = 15. There are two
such partitions with seven parts, (13%,2%) and (15, 5°). The rest consist of parti-
tions with at least 8 parts (and many with 9). Also of interest is that for approxi-
mately 2/3 of the partitions sk(’;3 53 < kzs353. The lowest degree of an occurrence

@ Springer



Ann Univ Ferrara

obstruction is d = 10, where 7 = (92, 2%) has skfo3103 = ky103103 = O but
mult(S; W, S10(S3W)) = 1. In degree 11, m = (112,23, 1) is an occurrence obstruc-

tion where mult(S, W, S''(S*W)) = k1133 =1>0= kY330

6.7 The permanent

Write (C”2 = EQF. Then it is easy to see (I‘,ﬁE X I‘,f) X Za C Gperm,» where the
nontrivial element of Z; acts by sending a matrix to its transpose and recall Ff =
Tr x &, . We would like to show this is the entire symmetry group. However, it is
not when n = 2.

Exercise 6.13 What is Gperm, ? Hint: {perm, = 0} is a smooth quadric.
Theorem 6.14 [52] Forn > 3, Gperm, = (TF x T'})/pin » Zy.

Remark 6.15 From Theorem 6.14, one can begin to appreciate the beauty of the per-
manent. Since det,, is the only polynomial invariant under SL(E) x SL(F), to find
other interesting polynomials on spaces of matrices, we will have to be content with
subgroups of this group. But what could be a more natural subgroup than the product
of the normalizer of the tori? In fact, say we begin by asking simply for a polyno-
mial invariant under the action of Tr x Tr. We need to look at S"(EQF)q, where
the O denotes the sl-weight zero subspace. This decomposes as @ (Sy E)o® (S F)o.
By Corollary 3.8(i), these spaces are the Gf X 65 -modules [ ]®[mr]. Only one of
these is trivial, and that corresponds to the permanent! More generally, if we consider
the diagonal &, C GE x &I, then both []’s are modules for the same group, and
since [7r] >~ [xr]*, there is then a preferred vector corresponding to the identity map.
These vectors are Littlewood’s immanants, of which the determinant and permanent
are special cases.

Consider Z(perm,)siny C P(E®F)*. It consists of the matrices all of whose
size n — 1 submatrices have zero permanent. (To see this, note the permanent has
Laplace type expansions.) This seems even more complicated than the hypersurface
Z(perm,,) itself. Continuing, Z(perm,,)yerysing,k consists of the matrices all of whose
sub-matrices of size n — k have zero permanent. In particular Z (perm,,)verysing,n—2 1S
defined by quadratic equations. Its zero set has many components, but each component
is easy to describe:

Lemma 6.16 Let A be an n x n matrix all of whose size 2 submatrices have zero
permanent. Then one of the following hold:

(1) all the entries of A are zero except those in a single size 2 submatrix, and that
submatrix has zero permanent.

(2) all the entries of A are zero except those in the j-th row for some j. Call the
associated component C/.

(3) all the entries of A are zero except those in the j-th column for some j. Call the
associated component C;.
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The proof is straight-forward. Take a matrix with entries that don’t fit that pattern,
e.g., one that begins

a b e
* d %

and note that it is not possible to fill in the two unknown entries and have all size two
sub-permanents, even in this corner, zero. There are just a few such cases since we are
free to actby G, x G,,.

Proof of Theorem 6.14 (I follow [78].) Any linear transformation preserving the per-
manent must send a component of Z(perm,,)verysing,n—2 0f type (1) to another of
type (1). It must send a component C/ either to some C* or some C;. But if
i # 7, C/ Nt = 0 and for all i, j, dlm(C’ N C;) = 1. Since intersections must
be mapped to intersections, either all components Ci are sent to components Cy or
all are permuted among themselves. By composing with an element of Z,, we may
assume all the C?’s are sent to C'’s and the C;’s are sent to C;’s. Similarly, by com-
posing with an element of S, x &,, we may assume each C; and C’ is sent to itself.
But then their intersections are sent to themselves. So we have, for all 7, j,

(%) > (fxh) (15)

for some 1A', and there is no summation in the expression. Consider the image of a size
2 submatrix, e.g.,

xoxy o Ml Agx
2 2700 (16)
ATX

2.2°
T Asx;

In order that the map (15) be in Gperm,, When (xi) € Z(perm,,)yerysing,n—2» the
permanent of the matrix on the right hand side of (16) must be zero. The permanent
of the right hand side of (16) when (x ) € Z(perm,)verysing,n—2 18 A A%x1x§ +

Azkéxlez = x1 (A AZ )szl) which 1mp11es Aj Az A )L% = 0, thus all the 2 x 2
minors of the matrix ()\;) are zero, so it has rank one and is the product of a column
vector and a row vector, but then it is an element of T x TF. O

6.8 Iterated matrix multiplication

Let IM M,’j e §" ((Ckz”) denote the iterated matrix multiplication operator for k x k
matrices, (X1, ..., X,) > trace(Xy --- X,). Letting V; = Ck, invariantly

IMM} = 1dy,® - ® Idy, € (Vi®@VH)®(V2@V)® - ® (Vi 1®V,)R(V,®V])
CS"((Vi®Vy) & (VaQVi) @ -+ ® (Vau1®V,) @ (Va®V)),

and the connected component of the identity of Gy C GL((CkZ") is clear.
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Problem 6.17 Determine G ;3.

The case of IM Ms is important as this sequence is complete for the complexity
class VP, see Sect. 12. Moreover I/ M M)} is complete for the class VPy.

Problem 6.18 Find equations in the ideal of GLg,, - IM Mn3. Determine lower bounds
for the inclusions Perm!!! C GLo, - IMM; and Det!} C GLo, - IMM;.

7 The Chow variety

If one specializes the determinant or permanent to diagonal matrices and takes the
orbit closure, one obtains the Chow variety defined in Sect. 2.2. Thus I (Det,) C
I(Ch, (W)). The ideal of the Chow variety has been studied for some time, dating
back at least to Gordan and Hadamard. The history is rife with rediscoveries and errors
that only make the subject more intriguing.

The secant varieties of the Chow variety are also important for the study of depth
3 circuits, as described in Sect. 8. It is easy to see that 0o (Ch,(W)) C Det,, and
a consequence of the equations described in Sect. 4.2 is that 03(Ch,(W)) is not
contained in Det,. I do not know if it is contained in Perm]..

Problem 7.1 Determine if 03(Ch,(W)) C Perm,,.

Problem 7.2 Determine equations in the ideal of o2 (Ch,(W)). Which modules are
in the ideal of Det,,?

7.1 History

A map, which, following a suggestion of A. Abdessalem, I now call the Hermite-
Hadamard-Howe map, hg , = S¢(S"W) — S"(SYW) was defined by Hermite [35]
when dimW = 2, and Hermite proved the map is an isomorphism in this case. His
celebrated reciprocity theorem (Theorem 7.22) is this isomorphism. Hadamard [33]
defined the map in general and observed that its kernel is I;(Ch,(W*)), the degree d
component of the ideal of the Chow variety (see Sect. 7.2). Originally he mistakenly
thought the map was always of maximal rank, but in [34] he proved the map is an
isomorphism when d = n = 3 and posed determining if injectivity holds in general
when d < n asaopen problem. (Injectivity ford < n is equivalent to surjectivity when
d > n, see Exercise 7.5.) Brill wrote down set-theoretic equations for the Chow variety
of degree n + 1, via a map that I denote Brill : S, W®S"2_” W — ST W), see
[27] or [45]. There was a gap in Brill’s argument, that was repeated in [27] and finally
fixed by E. Briand in [7]. The map hy , was rediscovered by Howe in [36] where
he also wrote “it is reasonable to expect” that /4, is always of maximal rank. This
reasonable expectation dating back to Hadamard has become known as the “Foulkes-
Howe conjecture”. Howe had been investigating a conjecture of Foulkes [21] that
for d > n, the irreducible modules counted with multiplicity occurring in §"(S?W)
also occur in §¢ (S"W). Howe’s conjecture is now known to be false, and Foulkes’
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original conjecture is still open. An asymptotic version of Foulke’s conjecture was
proved by Manivel [51], and asymptotic versions of Howe’s conjecture by Brion
[8,9] as discussed below. The proof that Howe’s conjecture is false follows from a
computer calculation of Miiller and Neunhoffer [58] related to the symmetric group.
A. Abdessalem realized their computation showed the map /5 s is not injective. (In
[58] they mistakenly say the result comes from [6] rather than their own paper.)
This computation was mysterious, in particular, the modules in the kernel were not
determined. As part of an AMS Mathematics Research Community in June 2012 and
follow-up to it, C. Ikenmeyer and S. Mkrtchyan determined the modules in the kernel
explicitly. In particular the kernel does not consist of isotypic components. In his
PhD thesis [6], Briand announced a proof that if 4, is surjective, then hgyg , is
also surjective. Then A. Abdesselam found a gap in Briand’s argument. Fortunately
this result follows from results of T. McKay [56], see Sect. 7.4. Brion [8,9], and
independently Weyman and Zelevinsky (unpublished) proved that the Foulkes-Howe
conjecture is true asymptotically (see Corollary 7.18), with Brion giving an explicit,
but very large bound for d in terms of n and dimW, see Equation (19).

Problem 7.3 What is the kernel of Brill : S,,,nW®S”2*”W — S (§PW)?

7.2 The ideal of the Chow variety

Consider the map hy , : S4(S"W) — S"(S?W) defined as follows: First include
S4(S"W) c W® Next, regroup the copies of W and symmetrize the blocks to
(SYW)®" . Finally, thinking of S W as a single vector space, symmetrize again.

For example, putting subscripts on W to indicate position:

S2(SPW) € WE = Wi @W2@ W30 W4@Ws@ W
= (W1@W4)R(W2@Ws)®(W3@Ws)
— SWRS*WRS*W
— $3(82w)

Note that i14 , is a linear map, in fact a G L(W)-module map.

Exercise 7.4 Show that /g, (x} - -~ x}}) = (x1---xq)".

Note that the definition of /4, depends on one’s conventions for symmetrization
(whether or not to divide by a constant). Take the definition of &4 , so that this exercise
is true.

Exercise 7.5 Show that h; , : S4(8"V) — $"(89V) is “self-dual” in the sense that
hgn =hpa:S" (§4V*) — S4(§"V*). Conclude that ha.n surjective if and only if
hp.q 1s injective.

Proposition 7.6 [33] kerh, , = I;(Ch,(W*)).

Proof Say P = ij?j~-~x2‘j.Letﬂl,...,£” e W
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P -0y = (P, 09
= Z(x?j Co Xl @' ... gmydy
J

- Z(xfj’ @y (xf;. ... my)
J

= ZH?=1H?=1xij(£s)
J

= D> (xrj e xgy, () - Gy e, (7))
J

= (han(P), (€HT - (%)

If h4 »(P) is nonzero, there will be some monomial it will pair with to be nonzero.
On the other hand, if &4 ,(P) = 0, then P annihilates all points of Ch, (W*). m|

Exercise 7.7 Show that if kg, : S9(S"C™) — S$"(S¢C™) is not surjective, then
han i S4(S"CK) — §"(S4C*) is not surjective for all k > m, and that the partitions
describing the kernel are the same in both cases if d < m.

Exercise 7.8 Show that if hg4 ), : sd(srCmy — §"(S4C™) is surjective, then han :
s4(s"Cky — $™(S9Ck) is surjective for all k < m.

Proposition 7.9 (Ikenmeyer, Mkrtchyan)

(1) The kernel of hss : S3(S3C3) — S$3(S°CY) consists of irreducible modules
corresponding to the following partitions:

{(14,7,2,2),(13,7,2,2,1),(12,7,3,2,1), (12,6, 3, 2, 2),
(12,5,4,3,1),(11,5,4,4,1), (10,8,4,2, 1), (9,7, 6, 3)}.

All these occur with multiplicity one in the kernel, but not all occur with multiplicity
one in S°(S°C?), so in particular, the kernel is not an isotypic component.

(2) The kernel of hee : S6(S0CO) — SO(SOC®) contains, with high probability, a
module corresponding to the partition (20,7,6, 1, 1, 1).

The phrase “with high probability” means the result was obtained numerically, not
symbolically.

7.3 Multi-symmetric function formulation

Given any GL(V)-module map f : U — W, where U, W are modules with support
in the root lattice of GL(V), e.g., U, W C V& for some a € Z, the injectivity
(or surjectivity) of f is equivalent to the injectivity (or surjectivity) of f restricted
to the sl-weight zero subspaces f|o: Ugp — Wy, that is the subspaces of GL(V)-
weight (aV). On these subspaces the Weyl group Gy acts, and so the assertion about a
G L(V)-module map can be converted to an assertion about an Gy-module map, and
vice-versa. This was Briand’s approach in [6].
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7.4 &4,-formulation

Foulke’s conjecture has been well-studied in the combinatorics literature in the follow-
ing form: One compares the multiplicities of the G 4,-module induced from the trivial
representation of & ;" with the &4,-module induced from the trivial representation
of &X4. Moreover there is an explicit map between these modules whose kernel in
terms of S4,-modules corresponds to the kernel of 44, as long as the dimension of
V is sufficiently large, as this map between G4,-modules is just i, , restricted to the
sl-weight zero subspace. Some results, such as Hermite reciprocity 7.22 and Exer-
cises 7.7, 7.8 are less transparent from this perspective and are the subject of research
articles in combinatorics. However I do not know of a “G L”- proof of the following
Theorem of T. McKay [56]:

Theorem 7.10 [56, Thm. 8.1] If hq  is surjective, then hy , is surjective for all
d' > d. In other words, if hy, 4 is injective, then h, g is injective for all d’ > d.

The two statements are equivalent by Exercise 7.5.

7.5 Coordinate ring of the orbit

Recall from Sect. 2.2, that if dimW > n, then C’hn(W) =GL(W)-xq---x;,.Assume
dimW = n, then G,,..,, = T5F x &, =: T,. By the algebraic Peter-Weyl theo-
rem 3.1,

CIGLW) - (x1 - x)] = @) (S, WH)@dimS=W™,

L(m)<n

where 7 = (p1, ..., py) is such that py > p» > --- > p, and p; € Z. We are only
interested in those 7 that are partitions, i.e., where p, > 0, as only those could occur
in the coordinate ring of the orbit closure. Define the G L-degree of a module S; W
tobe p1 + -+ + py and for a GL(W)-module M, define M,y to be the sum of the
isotypic components of the S, W in M with 7 a partition. The space of 75 invariants
is the s[(W)-weight zero space, so we need to compute (S, W)O6 ". By Corollary 3.8(ii)
this is mult(S, W, S"(S*W)). If we consider all the 7’s together, we conclude

CIGLW) - (x1 -+ xn)]poty = BsS" (S*W™).

In particular, &;S5" (S$* W*) inherits a ring structure.

7.6 Coordinate ring of the normalization
In this section I follow [8]. There is another variety whose coordinate ring is as com-

putable as the coordinate ring of the orbit, the normalization of the Chow variety. We
work in affine space.
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An affine variety Z is normal if C[Z] is integrally closed, that is if every element
of C(Z), the field of fractions of C[Z], that is integral over C[Z] (i.e., that satisfies a
monic polynomial with coefficients in C[Z]) is in C[Z]. To every affine variety Z one
may associate a unique normal affine variety Nor(Z), called the normalization of Z,
such that there is a finite map Nor(Z) — Z (i.e. C[Nor(Z)] is integral over C[Z])
that is generically one to one, in particular it is one to one over the smooth points of
Z. For details see [69, Chap IL.5].

In particular, there is an inclusion C[Z] — C[Nor(Z)]. If the non-normal points
of Z form a finite set, then the cokernel is finite dimensional. If Z is a G-variety, then
Nor(Z) will be too.

Recall Ch,, (W) is the projection of the Segre variety, but since we want to deal with
affine varieties, we will deal with the cone over it. So instead consider the product map

G W — S'W

Wy, ... up) > up---uy

Note that i) the image of ¢, is C h, (W), ii) ¢, is I, = Ty X &,, equivariant.

For any affine algebraic group I' and any I'-variety Z, one can define the GIT
quotient Z//T" which by definition is the affine algebraic variety whose coordinate
ring is C[Z]". (When T is finite, this is just the usual set-theoretic quotient. In the
general case, ["-orbits will be identified in the quotient when there are no I'-invariant
regular functions that can distinguish them.) If Z is normal, then sois Z// T (see, e.g.
[16, Prop 3.1]). In our case W*" is an affine I',,-variety and ¢, factors through the
GIT quotient because it is [',-equivariant, so we obtain a map

Y W/ T, — S"W

whose image is still Chy,(W). Also note that by unique factorization, v, is generically
one to one. (Elements of W*" of the form (0, us, ..., u,) cannot be distinguished
from (0, ..., 0) by I';, invariant functions, so they are identified with (0, ..., 0) in the
quotient, which is consistent with the fact that ¢, (0, uz, ..., u,) = 0.) Observe that
¢, and ¥, are GL(W) = SL(W) x C* equivariant.

Consider the induced map on coordinate rings:

Yt C[S"W] — C[W>"//T,] = C[W>*"]"n,
Recall that for affine varieties, C[Y x Z] = C[Y]®C[Z], so

C[W*"] = C[W]®"
=Sym(WH®--- Q@ Sym(W™)

= @ SUWr® ... @ S W*.
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Taking torus invariants gives

cw i = Pswre- @ SWH,

1

and finally
(€W S = 57 (sTW*).
In summary,
Y Sym(S"W*) — @; (8" (S'W*)),

and this map respects G L-degree, so it gives rise to maps ﬁd,n D S4STWE) —
ST(SIwH).

Proposition 7.11 fzd,n = h4p.

Proof Since elements of the form x7 - - - x/; span §4(S"W) it will be sufficient to prove
the maps agree on such elements. By Exercise 7.4, hg,(x] - x}) = (x1---x)".
On the other hand, in the algebra C[W]®", the multiplication is (fi® --- ® f,) ®
GI® - ®g) = fig1®---® fngn and this descends to the algebra (C[W]®")In
which is the target of the algebra map ', i.e.,

Rapn(x] - xl) = gl - xlh)
=Y, (x{) @ © Y, (x})
:xi’l @ . @x:il

= (x1---x)".

Proposition 7.12 ¢, : W*"// T, — C‘h,,(W) is the normalization of C‘h,,(W).

Recall (see, e.g. [69, p. 61]) that a regular (see, e.g. [69, p.27] for the definition of
regular) map between affine varieties f : X — Y such that f(X) is dense in Y is
finite if C[X] is integral over C[Y]. To prove the proposition, we will need a lemma:

Lemma 7.13 Let X, Y be affine varieties equipped with polynomial C*-actions with
unique fixed points 0x € X,0y € Y, and let f : X — Y be a C*-equivariant
morphism such that as sets, f~'(0y) = {Ox}. Then f is finite.

Proof of Proposition 7.12 Since W*"//T",, is normal and v, is regular and generi-
cally one to one, it just remains to show 1, is finite.

Write [0] = [0, .. ., 0]. To show finiteness, by Lemma 7.13, it is sufficient to show
¥, 71 (0) = [0] as a set, as [0] is the unique C* fixed point in W*"// T, and every C*
orbit closure contains [0]. Now u - - - u, = 0if and only if some u; = 0, say u; = 0.
The T -orbit closure of (0, us, ..., u,) contains the origin so [0, ua, ..., u,] = [0].

O
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Proof of Lemma 7.13 C[X], C[Y] are Zx¢-graded, and the hypothesis f~Yoy) =
{Ox} states that C[X]/f*(C[Y]-0)C[X] is a finite dimensional vector space. We want
to show that C[X] is integral over C[Y]. This is a graded version of Nakayama’s
Lemma (the algebraic implicit function theorem). O

In more detail (see, e.g. [43, Lemmas 3.1,3.2], or [19, p136, Ex. 4.6a]):

Lemma 7.14 Let R, S be Z>o-graded, finitely generated domains over C such that
Ro = So =C, and let f* : R — S be an injective graded algebra homomorphism.
Iff’l(R>o) = {S-0} as sets, where f : Spec(S) — Spec(R) is the induced map
on the associated schemes, then S is a finitely generated R-module. In particular, it is
integral over R.

Proof The hypotheses on the sets says that S~ is the only maximal ideal of S con-
taining the ideal m generated by f*(R-), so the radical of m must equal S, and
in particular S‘io must be contained in it for all d > dy, for some dy. So S/m is
a finite dimensional vector space, and by the next lemma, S is a finitely generated
R-module. O

Lemma 7.15 Let S be as above, and let M be a Zx-graded S-module. Assume
M/(S=o - M) is a finite dimensional vector space over S/S~o >~ C. Then M is a
finitely generated S-module.

Proof Choose a set of homogeneous generators {X1, ..., x,} C M/(S~o - M) and
let x; € M be a homogeneous lift of x;. Let N C M be the graded S-submodule
Sx14+---+ Sx,. Then M = S.oM + N,asleta € M, considera € M/(S-oM) and
lift it to some b € N,soa —b € S-oM, and a = (a — b) + b. Now quotient by N to
obtain

S.o-(M/N)= M/N. (17)

If M/N # 0, let dy be the smallest degree such that (M/N)%® = 0. But S- -
(M/N)z% < (M/N)Z%+1 50 there is no way to obtain (M/N)% on the right hand
side. Contradiction. O

Remark 7.16 The referee points out that one can avoid the use of the graded Nakayama
lemma in the proof of Lemma 7.13 by first observing that the map is finite to one as
a set map, which is clear, and then using Zariski’s main theorem in the form that a
quasi-finite morphism between affine varieties is open in a finite morphism. Then the
assumption that there is only one fixed point implies that the open immersion is an
isomorphism.

Theorem 7.17 [8] For all n > 1, i, restricts to a map
Yy o (WX T)\[0] — S"W\O (13)

such that y* : C[S"W\0] — C[(W*"//T)\[O]] is surjective.
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Corollary 7.18 [8] The Hermite-Hadamard-Howe map
han: SUS"W*) — S"(STW)
is surjective for d sufficiently large.

Proof of Corollary Theorem 7.17 implies ()4 is surjective for d sufficiently large,
because the cokernel of v is supported at a point and thus must vanish in large
degree. O

The proof of Theorem 7.17 will give a second proof that the kernel of /" is indeed
the ideal of Ch,, (W).

Proof of Theorem Since v, is C*-equivariant, we can consider the quotient to projec-
tive space

¥, (WX /JTONOD/C* — (S"W\0)/C* = PS"W

and show that ﬁ: is surjective. Note that (W*"*//T",)\[0])/C* is G L(V)-isomorphic
to (PW)*"/&,, as

(WX"//T)\[0] = (W\O)*"/ T,
and I';, x C* = (C*)*" x G,,. So we have
ﬂn :(PWY" /6, — PS"W

It will be sufficient to show w* is surjective on affine open subsets that cover the spaces.
Let wy, ..., wy be a basis “of W and consider the affine open subset of PW given by
elements where the coordinate on w is nonzero, and the corresponding induced affine
open subsets of (PW)*" and PS" W, call these (PW);"" and (PS" W);. We will show
that the algebra of &,,-invariant functions on (PW){" is in the image of (PS"W);.
The restriction of the quotient by &, of (PW)*" composed with £n to these open
subsets in coordinates is just

w w
(wo + Zx;wx) > I, (w() + Zx;wx).
s=2 1<i<n s=2

Finally, by e.g., [77, §11.3], the coordinates on the right hand side generate the algebra
of &,-invariant functions in the n sets of variables (x!);—1 O

.....

With more work, in [9, Thm 3.3], Brion obtains an explicit (but enormous) function
do(n, w) which is

(n+w 1)
do(n,w) = (n — )(w — D)((n — 1) {WT”J —n) (19)
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for which the /4 , is surjective for all d > dp where dimW = w.
Problem 7.19 Improve Brion’s bound to say, a polynomial bound in n when n = w.

Problem 7.20 Note that C[Nor(Ch,(W))] = C[GL(W)- (x1 - - - x,)]>0 and that the
the boundary of the orbit closure is irreducible. Is it true that whenever a G L(W)-orbit
closure with reductive stabilizer has an irreducible boundary, that the coordinate ring
of the normalization of the orbit closure equals the positive part of the coordinate ring
of the orbit?

Remark 7.21 An early use of geometry in the study of plethysm was in [76] where J.
Wabhl used his Gaussian maps (local differential geometry) to study the decomposition
of tensor products of representations of reductive groups. Then in [51], Manivel used
these maps to determine “stable” multiplicities in S¢(S" W), where one fixes either d
or n and allows the other to grow. Brion then developed more algebraic versions of
these techniques to obtain the results above.

7.7 The case dimW =2

When dimW = 2, every polynomial decomposes as a product of linear factors, so the
ideal of Ch,(C?) is zero. We recover the following theorem of Hermite:

Theorem 7.22 (Hermite reciprocity) The map hq p : $4(§"C2%) — §"(S9C2) is an
isomorphism for all d, n. In particular S (S"C?) and S"(S?C?) are isomorphic G L,-
modules.

Often in modern textbooks only the “In particular” is stated.

7.8 Thecased =n =3

Theorem 7.23 (Hadamard [34]) The map h3 3 : S*(S?C") — S3(S3C") is an iso-
morphism.

Proof Without loss of generality, assume n = 3 and x1, x2, x3 are independent. Say
we had P € I3(Ch3(C?)). Consider P(;L(x]3 + x% + x33) — AX1x2x3) as a cubic
polynomial on P! with coordinates [, A]. Note that it vanishes at the four points
[0, 11, [1, 3], [1, 3w], [1, 3w?] where w is a primitive third root of unity. Thus it must
vanish identically on the P!, in particular, at [1, 0], i.e., on xf + x%’ + x33. Hence it
must vanish identically on o3(v3(P?)). But 03(v3(P?)) C PS3C3 is a hypersurface
of degree four. A cubic polynomial vanishing on a hypersurface of degree four is
identically zero. O

Remark 7.24 The above proof is due to A. Abdesselam (personal communication).
It is a variant of Hadamard’s original proof, where instead of xf + xg + xg one uses
an arbitrary cubic f, and generalizing x1x;x3 one uses the Hessian H (f). Then the
curves f = 0and H(f) = 0 intersect in 9 points (the nine flexes of f = 0) and there
are four groups of three lines going through these points, i.e. four places where the
polynomial becomes a product of linear forms.
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7.9 The Chow variety and a conjecture in combinatorics

From Exercise 3.9, the trivial S L, -module S,,» C" occurs in $” (S"C") with multiplicity
one when 7 is even and zero when 7 is odd.

Conjecture 7.25 (Kumar [42]) Let n be even, then for all i < n,S,C" C

C[Ch,(C")].
It is not hard to see that the i = n case implies the others. Adopt the notation that
if r = (p1,..., pr), then mm = (mpy, ..., mpy). By taking Cartan products in the

coordinate ring, the conjecture would imply:

Conjecture 7.26 (Kumar [42]) For all partitions 7w with £(i) < n, the module S;,; C"
occurs in C[Ch,,(C")]. In particular, S,,;T(C”2 occurs in C[Det,] and C[Perm}].

Conjecture 7.25 turns out to be related to a famous conjecture in combinatorics: an
n X n matrix such that each row and column consists of the integers {1, . . ., n} is called
a Latin square. To each row and column one can associate an element o € G,, based
on the order the integers appear. Call the products of all the signs of these permutations
the sign of the Latin square.

Conjecture 7.27 (Alon-Tarsi [2]) Let n be even. The number of sign — I Latin squares
of size n is not equal to the number of sign +1 Latin squares of size n.

In joint work, Kumar and I have shown:

Proposition 7.28 Fix n even. The following are equivalent:

(1) The Alon-Tarsi conjecture for n.
(2) Conjecture 7.25 for n withi = n.
(3) fgeSU(n)(permn (g)"du # 0, where du is Haar measure.

2 . ; ; ;
(4) Let C*" have coordinates x} and the dual space coordinates y}, then

((perm,, ()", (det, (x))") # 0

which may be thought of as a pairing between homogeneous polynomials of degree

n? and homogeneous differential operators of order n’.

The following two statements are equivalent and would imply the above are true:
(i) fgeSU(n) H]Si’angz-d/L # 0, where d is Haar measure.
(ii) (Mijy}, dety (x)") # 0.

Currently the Alon-Tarsi conjecture is known to be true for n = p &+ 1, where p is
a prime number [17,29].

To see the equivalence of (1) and (2), in [37] they showed that the Latin square
conjecture is true for even r if and only if the “column sign” Latin square conjecture
holds, where one instead computes the the products of the signs of the permutations of
the columns. Then expression (10) gives the equivalence. The equivalence of (3) and
(4) comes from the Peter-Weyl theorem and the equivalence of (2) and (3) from the
fact that one can restrict to a maximal compact, and integration over the group picks
out the trivial modules.
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Problem 7.29 Find explicit modules that either are or are not in the kernel of the
Hermite-Hadamard-Howe map. For example any module with at most two parts is
clearly not in the kernel.

8 Secant varieties of the Chow variety and depth three circuits

Recently there has been substantial progress regarding shallow circuits. I first define
a circuit, which is the model of computation generally used in algebraic complexity
theory, and then I describe the varieties associated to shallow circuits as well as recent
results and conjectures regarding shallow circuits in geometric language.

Definition 8.1 An arithmetic circuit C is a finite, acyclic, directed graph with vertices
of in-degree O or 2 and exactly one vertex of out-degree 0. The vertices of in-degree
0 are labeled by elements of C U {xy, ..., x,}, and called inputs. Those of in-degree
2 are labeled with + or * and are called gates. If the out-degree of v is 0, then v is
called an output gate. The size of C is the number of edges. From a circuit C, one can
construct a polynomial p¢ in the variables x1, ..., x, (Fig. 2).

Exercise 8.2 Show that if one instead uses the number of gates to define the size, the
asymptotic size estimates are the same. (Size is sometimes defined as the number of
gates.)

To each vertex v of a circuit C we associate the polynomial that is computed at v,
which will be denoted C,. In particular the polynomial associated with the output gate
is the polynomial computed by C. The depth of C is the length of (i.e., the number of

Fig.2 Circuit for (x + y)3
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edges in) the longest path in C from an input to an output. If a circuit has small depth,
the polynomial it computes can be computed quickly in parallel.

The formula size of f is the smallest tree circuit computing f. Tree circuits are
called formulas.

Circuits of bounded depth (called shallow circuits) are used to study the complexity
of calculations done in parallel. When one studies circuits of bounded depth, one must
allow gates to have an arbitrary number of edges coming in to them (“unbounded
fanin”). For such circuits, multiplication by constants is considered “free.”

There is a substantial literature dedicated to showing that given any circuit comput-
ing a polynomial, there is a “slightly larger” shallow circuit that computes the same
polynomial. Recently there have been significant advances for circuits of depths 3 [31]
and 4 [1,40,73] and a special class of circuits of depth 5 [31]. The circuits of bounded
depth that are trees have a nice variety associated to them which I now describe. In the
literature they deal with inhomogeneous circuits, but, as I describe below (following
a suggestion of K. Efremenko), this can be avoided, so we will deal exclusively with
homogeneous circuits, that is, those computing homogeneous polynomials at each
step along the way.

Following [44], for varieties X C PS“W and Y C PS’W, defined the multi-
plicative join of X and Y, MJ(X,Y) = {[xy] | [x] € X, [y] € Y} C Psatbw,
and define MJ(Xq, ..., Xx) similarly. Let ux(X) = MJ (X1, ..., Xx) when all
the X; = X, which is a multiplicative analog of the secant variety. Note that
wr(PW) = Chg(W). The varieties associated to the polynomials computable by
bounded depth formulas are of the form o, (g, (05, (- - - g PW) - --))), and
Mdy (Urk (/’Ldk_1 (Urk_z(' © Mdy (]P)W) e ))))

Remark 8.3 For those interested in circuits, note that if the first level consists of
addition gates, this is “free” from the perspective of algebraic geometry, as since we
are not choosing coordinates, linear combinations of basis vectors are not counted.
More on this below.

Useful depth three circuits are always trees where the first level consists of additions,
the second multiplications, and the third an addition that adds all the outputs of the
second level together. Such are called XITX circuits.

A circuit is homogeneous if the polynomial produced by each gate is homogeneous,
and otherwise it is inhomogeneous. The relation between secant varieties of Chow
varieties and depth three circuits is as follows:

Proposition 8.4 A polynomial P € S"W in aro (Chy, (W)) is computable by a homo-
geneous circuit of sizer +nr(1+w). If P & 0,0 (Ch, (W)), then P cannot be computed
by a homogeneous circuit of size n(r + 1) + (r + 1).

Proof In the first case, P = Z;:l (x} = ~x;?) for some x; € W. Expressed in terms

of a fixed basis of W, each xj. is a linear combination of at worst w basis vectors, thus
to create each one requires at worst nrw additions. Then to multiply them in groups
of n is nr multiplications, and finally to add these together is r further additions. In
the second case, at best P is in %, (Ch, (W)), in which case, even if each of the x;. ’s

r+1
is a basis vector (so no initial additions are needed), we still must perform n(r + 1)
multiplications and r + 1 additions. O
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I first explain why the computer science literature generally allows inhomogeneous
depth three circuits, and then why one does not need to do so.

8.1 Why homogeneous depth three circuits do not appear useful at first glance

Using the flattening (see Sect. 2.2), (det, )z, 1) : SI3Tw — sL3JW and writing
W = EQF = C"®C", the image of this map is easily seen to be ALIEQALLIF,
the minors of size | 5 |. For the permanent one similarly gets sub-permanents. Thus,
in the notation of Sect. 2.2,

n\? n\’?
Rg(det,) > (L%J) » Rg(perm,) > (L%’J) -

Recalling that (2,"1") ~ %, we have [det, ], [perm,,] ¢ T4y Vn Pw).

In [67] they showed
Rg(x) -+ x,) =21 (20)

The upper bound on Rg(x7 - - - x,,) follows from the expression

1
Xl Xn = S Z (x1+ex2+- -+ e1x)er €1, (21)
eef—1,1)n-!

a sum with 2"~! terms. (This expression dates at least back to [20].) In particular
0r(Chy(W)) C 0r2n (vy(PW)).
We conclude, for any constant C and n sufficiently large, that

det, & 0.0 (Chy(W)),

c
and similarly for the permanent. By Proposition 8.4, we conclude:

Proposition 8.5 [64] The polynomial sequences det, and perm, do not admit depth
three circuits of size 2".

(In [64] they consider all partial derivatives of all orders simultaneously, but the
bulk of the dimension is concentrated in the middle order flattening, so one does not
gain very much this way.) Thus homogeneous depth three circuits at first sight do not
seem that powerful because a polynomial sized homogeneous depth 3 circuit cannot
compute the determinant.

To make matters worse, consider the polynomial corresponding to iterated matrix
multiplication of three by three matrices IM M ,3 e SK(C%). 1t is complete for VP,,
polynomials with small formula sizes (see Sect. 12), and also has an exponential lower
bound for its Chow border rank.
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Exercise 8.6 Use flattenings to show R¢(/M M,f’) > (const.)3¥, and conclude
IMM; & 0 poty) (Chi(W)).

By Exercise 8.6, homogeneous depth three circuits (naively applied) cannot even
capture sequences of polynomials admitting small formulas.
Another benchmark in complexity theory are the elementary symmetric functions

k. . .
e, = E Xiy e Xig-

1clnl.|l|=k
To fix ideas, set n = 4k. Let k = 2p. Consider the flattening:

(eﬁk)li»[? . SPCHx . gPC2k

It has image all monomials x;, - - - Xi), with the i; distinct, so its rank is (4kk ) and since
X 2
(4kk ) / (lg) grows faster than any polynomial in k, we conclude even the elementary
2 2

symmetric function e’jk cannot be computed by a homogeneous depth three circuit of

polynomial size. This last assertion is [64, Thm. 0], where they show more generally
(by the same method) that e,%d & ag((i)d)(Cth((C”)).

1d
Remark 8.7 Strassen [72] proved a lower bound of €2(nlogn) for the size of any
arithmetic circuit computing all the ¢;, simultaneously.

8.2 Upper bounds for homogeneous depth three circuits

The most famous homogeneous depth three circuit is probably Ryser’s formula for
the permanent:

perm, =271 Z H Z €i€jXi ], (22)

ee{—1,1)" 1<i<n 1<j<n
e1=1

the outer sum is taken over n-tuples € = (€] = 1, €2, ..., €,). Note that each term in
the outer sum is a product of n independent linear forms and there are 2"~! terms. In

particular [perm,,] € ag,,_, (Chy, ((C"z)), and since Ch,, ((C”Z) C 020,,_] (vp (IP’”Z’I)), we

obtain Rg(perm,) < 4"~ 1,

8.3 Homogeneous depth three circuits for padded polynomials

At first glance it seems polynomial sized depth 3 circuits are useless, as they cannot
compute even simple sequences of polynomials as we just saw. However, if one allows
padded polynomials, the situation changes dramatically. (As mentioned above, in
[31] and elsewhere they consider inhomogeneous polynomials and circuits instead of
padding.) The following geometric version of a result of Ben-Or (presented below as
a Corollary) was suggested by K. Efremenko:
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Proposition 8.8 Let C"*! have coordinatest, x1,. . ., X andletefn =eﬁl X1y ey X))
Forallk < m, " %ek e 60(Ch,, (C™+1)).

Proof Fix an integer u € 7Z and define

gu(x, 0) = [ [(xi +ub)
i=1

= Z um_keﬁl (x)@m_k
k

Note g,(x,€) € Ch,,(C"t1). Letting u = 1,...,m, we may use the inverse of

the Vandermonde matrix to write each ¢"~* e,]j, as a sum of m points in Ch,, (Cmtlhy

because

10 b ooamy femlel g1(x,0)
200 2t ooom ) [gm=2e2 22(x, 0)
m® ml . omm Eoe;’; gm(x, )

m}

Corollary 8.9 (Ben-Or) Em*ke,]; can be computed by a homogeneous depth three
circuit of size 3m* + m.

Proof As remarked above, for any point of o, Ch, (C"™*!) one gets a circuit of size at
most r + nr 4+ rn(m + 1), but here at the first level all the addition gates have fanin
two (i.e., there are two inputs to each addition gate) instead of the possible m + 1. O

Problem 8.10 ([14] Open problem 11.1) Find an explicit sequence of polynomials
P,, € S"C%! such that £"~™ P,, & o,(Ch,(W)), whenever r, w, n are polynomials
in m and m is sufficiently large.

Remark 8.11 The best lower bound for computing the e',g viaa SIIY circuit is Q(n?)
[70], so Corollary 8.9 is very close to (and may well be) sharp.

8.4 Depth reduction

The following theorem combines results of [1,5,31,40,73] as explained in the discus-
sion below. (The circuit bounds stated in the theorem come from [73].) A TAXAX
circuit is a depth 5 circuit where the first level consists of additions, the second of
“powering gates”, where a powering gate takes f to f% for some & (the size of the
circuit takes the size of § into account), the third additions, the fourth powering gates
and the fifth an addition. See [31] for more details. The ¥ AX A X circuits are related
to the variety o, (v d (o, (vs(PV))) C PS?V in the same way that the XI1¥ circuits

are related to o, (Ch,(V)).
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Theorem 8.12 Letd = n®Y andlet P € SYC" be a polynomial that can be computed
by a circuit of size s.
Then:

(1) P is computable by a homogeneous ST1STI circuit of size 20 @og(ds)log(n)

(2) P is computable by a $IIY circuit of size 20Wd0emlogds) =y phorsicular,
[eN=4 P] € 6,(Chy(C"+1)) with r N = 20/dioginlogds))

(3) P is computable, for some 8§ ~ /d, by a homogeneous SAXAY circuit of size
20 dlogds)loe) - 1y particular, [P) € orl(v%z(arz(vg(]P)”_l)))) with rira(8 +

D= 20(4/d10g(ds)log(n))_

The “in particular” of (2) follows by setting the circuit size equal to r + Nr (the
smallest, i.e., worst case size of a circuit for a point of &, (Chy(C"*t1)) that is not in
a smaller variety). The “in particular” of (3) follows similarly, as the smallest circuit
for a point of o, (Vg—s (07, (Vs (P"~1))) not in a smaller variety is r1r2(8 + 1) + %rl.

Corollary 8.13 [31] [¢"~" dety] € 0, (Chy(C"™F1)) where rn = 20W/mlogm),

Proof The determinant admits a circuit of size m?, so it admits a ZT1Y circuit of size
20(«/m10g(m)10g(m*m4)) ~ 20(ﬁlogm)

so its padded version lies in a,(Ch,,((C’"zH)) where rn = 20 W/mlogm) O

Corollary 8.14 [31] Iffor all but finitely many m and all r, n withrn = 2v/mlogma (1),
one has [£"~" perm,,| & 0,(Chy, ((Cm2+1)), then there is no circuit of polynomial size
computing the permanent, i.e., VP # VNP.

Proof In this case the s in (2) cannot be a polynomial. O

Corollary 8.15 [31] If for all but finitely many m, 8§ ~ /m, and all ry, r, such that
Firy = 2vmogmo) one hag [perm,,] & o, (vm/g(arz(v(;(IP”"z_l)))), then there is
no circuit of polynomial size computing the permanent, i.e., VP # VNP.

Proof In this case the s in (3) cannot be a polynomial. O

These Corollaries give rise to Conjectures 2.9 and 2.11 stated in Sect. 2.4.

The results above follow from an extensive amount of research. Here is an overview:

In [74] it was show that if a polynomial of degree d can be computed by a circuit
of size s, then it can be computed by a circuit of depth O (logd * logs) and size sV,
In [31] they prove their upper bounds for the size of an inhomogeneous depth three
circuit computing a polynomial, in terms of the size of an arbitrary circuit computing
the polynomial, by first applying the work of [40, 1], which allows one to reduce an
arbitrary circuit of size s computing a polynomial of degree d in n variables to a
formula of size 2010851089 and depth d. Next they reduce to a depth four circuit of
size s’ = 20 (Vdlogdlogslogn) Thig second passage is via iterated matrix multiplication.
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From the depth four circuit, they use (21) to convert all multiplication gates to sums of
elements of the Veronese (what they call £ A ¥ circuits), to have a depth five circuit of
size O(s") and of the form ¥ AX A X. Finally, they use Newton’s identities to convert
power sums to elementary symmetric functions which keeps the size at O(s’) and
drops the depth to three.

Remark 8.16 In [31], they also show that, for a similar price, one can convert a depth
three circuit to a ¥ A X A ¥ circuit by using the inverse identities without substantially
increasing the size.

Remark 8.17 Ultimately, if one wants to separate VP,,; from VNP, one will have to
find polynomials that separate det,, from £~ perm,,. These auxiliary varieties arising
from shallow circuits should be viewed as a guide to how to look for such equations,
not as a way to avoid finding them.

Remark 8.18 Note the expected dimension of o (Chg(W)) is rdw +r — 1. If we take
d’ = d2" and work instead with padded polynomials ¢2" P, the expected dimen-
sion of 0,(Chy(W)) is 2"rdw + r — 1. In contrast, the expected dimension of
0y (Vg—a (0, (va (PW)))) does not change when one increases the degree, which gives
some insight as to why padding is so useful for homogeneous depth three circuits but
not for XAX AX circuits.

9 Non-normality

I follow [43] in this section. Throughout this section I make the following assumptions
and adopt the following notation:

Assumptions: (23)

(1) Visa GL(W)-module,

(2) P € V is such that the SL(W)-orbit of P is closed.

(3) Let P° := GL(W) - P and P := GL(W)-P C V denote its orbit and orbit
closure, and let 0P = P\PO denote its boundary, which we assume to be more
than zero (otherwise [P] is homogeneous).

(4) Assume the stabilizer Gp C GL(W) is reductive, which is equivalent (by a
theorem of Matsushima [54]) to requiring that P is an affine variety.

This situation holds when V = S"W, dimW = n? and P = det,, or perm,, as well
aswhendimW = rnand P = S; := 37_; x{ - - - x;, the “sum-product polynomial”,
in which case P = 6, (Ch,(W)).

Lemma 9.1 [43] Assumptions as in (23). Let M C C[P] be a nonzero GL(W)-
module, and let Z(M) = {y € P | f(y) = O0Vf € M} denote its zero set. Then
0C Z(M) C dP.

If moreover M C I (d'P), then as sets, Z(M) = dP.

Proof Since Z(M) is a GL(W)-stable subset, if it contains a point of PO it must
contain all of P° and thus M vanishes identically on P, which cannot happen as M
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is nonzero. Thus Z(M) < 0P. For the second assertion, since M C I(dP), we also
have Z(M) 2 9P. O

Proposition 9.2 [43] Assumptions as in (23). The space of SL(W)-invariants of pos-
itive degree in the coordinate ring of P, C[P]iﬁ(w), is non-empty and contained in
1(0P). Moreover,

(1) any element of (C[P]il(‘)(w) cuts out d'P set-theoretically, and

(2) the components of d'P all have codimension one in P.

Proof To study C[P]SLMW) | consider the GIT quotient P//SL(W) whose coordinate
ring, by definition, is C[P]5LW) . It parametrizes the closed SL(W)-orbits in P, so it
is non-empty. Thus C[P]3LW) is nontrivial.

We will show that every SL(W)-orbit in d P contains {0} in its closure, i.e., that
d’P maps to zero in the GIT quotient. This will imply any S L (W)-invariant of positive
degree is in 7 (dP) because any non-constant function on the GIT quotient vanishes
on the inverse image of [0]. Then (1) follows from Lemma 9.1. The zero set of a single
polynomial, if it is not empty, has codimension one, which implies the components of
d'P are all of codimension one, proving (2).

It remains to show 9P maps to zero in P//SL(W), where p : GL(W) — GL(V)
is the representation. This GIT quotient inherits a C* action via p(AId), for A € C*.Its
normalization is just the affine line A! = C. To see this, consider the C*-equivariant
map o : C — P given by z — p(zld) - P, which descends to amapo : C —
P//SL(W). Since the SL(W)-orbit of P is closed, for any A € C*, p(AId)P does
not map to zero in the GIT quotient, so we have o 1([0]) = {0} as a set. Lemma
7.13 applies so o is finite and gives the normalization. Finally, were there a closed
nonzero orbit in 9P, it would have to equal SL(W) - o (1) for some A € C* since &
is surjective. But SL(W) - o(1) c PC. O

Remark 9.3 That each irreducible component of d7P is of codimension one in P is
due to Matsushima [54]. It is a consequence of his result mentioned above.

The key to proving non-normality of Det, and PeArmZ isto find an SL(W)-invariant
in the coordinate ring of the normalization (which has a G L(W)-grading), which does
not occur in the corresponding graded component of the coordinate ring of S"W, so
it cannot occur in the coordinate ring of any G L(W)-subvariety.

Lemma 9.4 Assumptions as in (23). Let P € S"W be such that SL(W) - P is
closed and G p is reductive. Let d be the smallest positive G L(W)-degree such that
C[PO]SL(W) # 0. Ifnisevenand d < nw (resp. n is odd and d < 2nw) then P is not
normal.

Proof Since P C P isaZariski open subset, we have the equality of G L(W)-modules
C(P) = C(PY). By restriction of functions C[P] ¢ C[P] and thus C[P]SLW) <
C[PISEM) Now PO//SL(W) = PY/SL(W) ~ C*, so C[PISLW) ~ @ .7 C{zX}.
Under this identification, z has G L(W)-degree d. By Proposition 9.2, C[P]5LW) £ 0.
Let h € C[P]3LW) be the smallest element in positive degree. Then & = z* for some
k. Were P normal, we would have k = 1.
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But now we also have a surjection C[S"W] — C[P], and by Exercise 3.9 the
smallest possible G L(W)-degree of an SL(W)-invariant in C[S” W] when n is even
(resp. odd) is wn (resp. 2wn) which would occur in SV (S" W) (resp. SZW(S" W)). We
obtain a contradiction. O

Theorem 9.5 (Kumar [43]) For all n > 3, Det,, and Perm!: are not normal. For all
n > 2m (the range of interest), Perm. is not normal.

I give the proof for Det,, the case of Perm, is an easy exercise. Despite the variety
being much more singular, the proof for Perm!" with m > n is more difficult, see
[43].

Proof We will show that when n is congruent to 0 or 1 mod 4, (C[Detg];ff(cwz) #0

and when n is congruent to 2 or 3 mod 4, C[Detg]iﬂvgi # 0. Since n, 2n < (nz)n
Lemma 9.4 applies.

The SL(W)-trivial modules are (A"2 W) = S.2W. Write W = EQF. We
want to determine the lowest degree trivial SL(W)-module that has a Gge,, =
(SL(E) x SL(F)/u,) % Zy invariant. We have the decomposition (A"2 WH®s =
(B |=n2Sn EQ Sy F)®*, where 7’ is the conjugate partition to 7. Thus (A" W)®s
contains the trivial SL(E) x SL(F) module (A" E)®™ ®(A" F)®" with multiplicity
one. (In the language of Sect. 3.2, ksn2, (snyr (smyn = 1.) Now we consider the effect of
the Zp C Ggey, With generator T € GL(W). It sends ¢;® f; to e¢;® f;, so acting on W
it has +1 eigenspace ¢;® f; +e;® f; fori < j and —1 eigenspace ¢;Q f; — ¢;® f;
for | < i < j < n. Thus it acts on the one-dimensional vector space (A"2 W)®s
by ((—l)(;))s, ie., by —1 if n = 2,3mod4 and s is odd and by 1 otherwise. We
conclude that there is an invariant as asserted above. (In the language of Sect. 6.6,
skf:;n’ (smyr = 1 for all s when (5) is even, and skf:;,,’ (smyr = 1 for even s when (5)
is odd and is zero for odd s.) O

Exercise 9.6 Write out the proof of the non-normality of Perm,.
Exercise 9.7 Show the same method gives another proof that C/, (W) is not normal.

Exercise 9.8 Show that the proof of Theorem 9.5 holds for any reductive group with
a nontrivial center (one gets a Z*-grading of modules if the center is k-dimensional),
in particular it holds for G = GL(A) x GL(B) x GL(C). Use this to show that
0,(Seg(PA x PB x PC)) is not normal when dimA = dimB = dimC =r > 2.

10 Determinantal hypersurfaces

Classically, there was interest in determining which smooth hypersurfaces of degree
d were expressible as a d x d determinant. The result in the first nontrivial case shows
how daunting GCT might be.

Theorem 10.1 (Letao Zhang and Zhiyuan Li) The variety P{P € S*C* | [P] e
Dety} C PS*C? is a hypersurface of degree 640, 224.
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The following “folklore” theorem was made explicit in [3, Cor. 1.12]:

Theorem 10.2 Let U = C*! let P € S9U, and let Z = Z(P) C CP" be the
corresponding hypersurface of degree d. Assume Z is smooth and choose any inclusion
Ucce

If P ¢ End((Cdz) - [dety], we may form a map between vector bundles M :
Opn (—1)¢ — Ofpl,n whose cokernel is a line bundle L — Z with the properties:

i) Hi(Z,L(j))=0f0r1 <i<n—2andall j €7
ii) HO(X, L(=1)) = H" (X, L(j)) =0

Conversely, if there exists L — Z satisfying properties (i) and (ii), then Z is
determinantal via a map M as above whose cokernel is L.

If we are concerned with the hypersurface being in Det,, the first case where this
is not automatic is for quartic surfaces, where it is a codimension one condition:

Proposition 10.3 [3, Cor. 6.6] A smooth quartic surface is determinantal if and only
if it contains a nonhyperelliptic curve of genus 3 embedded in P3 by a linear system
of degree 6.

Proof of 10.1 From Proposition 10.3, the hypersurface is the locus of quartic surfaces
containing a (Brill-Noether general) genus 3 curve C of degree six. This translates
into the existence of a lattice polarization

AN B>

C
ho4 6
C 6 4

of discriminant — (4% —62) = 20. By the Torelli theorems, the K 3 surfaces with such a
lattice polarization have codimension one in the moduli space of quartic K 3 surfaces.

Let D3 ¢ denote the locus of quartic surfaces containing a genus 3 curve C of degree
six in P3* = P(S*C*). It corresponds to the Noether-Lefschetz divisor N Lyg in the
moduli space of the degree four K 3 surfaces. Here N L ; denotes the Noether-Lefschetz
divisor, parameterizing the degree 4 K3 surfaces whose Picard lattice has a rank 2
sub-lattice containing /& with discriminant —d. (h is the polarization of the degree four
K 3 surface, h? = 4.))

The Noether-Lefschetz number nyg, which is defined by the intersection number
of N Lyg and a line in the moduli space of degree four K 3 surfaces, equals the degree
of D36 in P3* = P(S*C*).

The key fact is that ny can be computed via the modularity of the generating series
for any integer d. More precisely, the generating series F(g) = >, naq?/® is a
modular form of level 8, and can be expressed by a polynomial of A(g) = >, q"z/ 8
and B(g) = 3.,(=1)"g"/%.

The explicit expression of F(g) is in [55, Thm 2]. As an application, the Noether-
Lefschetz number ny is the coefficient of the term qzo/ 8 = qs/ 2 which is 640, 224.

O
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11 Classical linear algebra and GCT

One potential source of new equations for Det,, is to exploit classical identities the
determinant satisfies. What follows are ideas in this direction. This section is joint
unpublished work with L. Manivel and N. Ressayre.

11.1 Cayley’s identity

Let C"* have coordinates x’, and the dual space coordinates y; The classical Cayley
identity (apparently first due to Vivanti, see [13]) is

(s +n)!

s!

((dety (y)), (det, (x)"*) = (dety (x))°

which may be thought of as a pairing between homogeneous polynomials of degree
n(s+ 1) and homogeneous differential operators of order n (compare with Proposition
7.28). This and more general Bernstein-Sato type identities (again, see [13]) appear as
if they could be used to obtain equations for Det,,. So far we have only found rational
equations in this manner.

In more detail, “det, (y)” depends on the choice of identification of " with C"**
given by the coordinates, but one could, e.g. ask for polynomials P € S"W such

that there exists some Q € S"W*, with Gp and G ¢ isomorphic and (Q, Psthy =
(s+n)!Ps
s! .

11.2 A generalization of the Sylvester-Franke Theorem

Let f : V — V be a diagonalizable linear map with distinct eigenvalues A, ..., Ay.

The induced linear map ¥ : A¥V — AKV has eigenvalues Aip e hi, 1 < <
- < ix < v.In particular f*V : AV — AVV is multiplication by the scalar

det(f) = A1 -- - Ay. Now consider AKV asavector space (ignoring its extra structure),
and

LFY0 0 AY (AR V) — AS(AFY).
Let

cps : VRV* - C
f > trace(f), (24)

denote the s-th coefficient of the characteristic polynomial. We may consider cpy; =
Idpasy € A*VQASV* C §5(VRV™). Recall that cpy = det.

Proposition 11.1 The degree vp polynomial on VQV* given by f + (det)?(f)
divides the degree ((VZI) + p)k polynomial f — cp(v;1)+p(f/\k).
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In other words, for a v x v matrix A with indeterminate entries, the degree vp
polynomial det(A)? divides the trace of the [(Vzl) + pl-th companion matrix of the
k-th companion matrix of A.

The Sylvester-Franke theorem is the special case p = (Z:i)

Proof Assume f has v distinct eigenvalues. The eigenvalues of [ f¥]* are sums of
terms of the form oy, - -- oy, where o, = Aj,, -+ 4j, andthe &; ..., A; . are
distinct eigenvalues of f. Once every A appears in a monomial to a power p, det?
divides the monomial. The result now follows for linear maps with distinct eigenval-
ues by the pigeonhole principle. Since the subset of linear maps with distinct eigen-
values forms a Zariski opens subset of V®V*, the equality of polynomials holds
everywhere. O

11.3 A variant of Proposition 11.1 for the Hessian

Say g : A%2V* — A2V*is a linear map such that there exists a basis vy, ..., vy of V
with dual basis &', ..., " such that

g = Zkijai /\aj®vl- Avj,
i<j

so A;j are the eigenvalues of g. We will be concerned with the case g = f V=)
where f : V — V is a linear map with distinct eigenvalues A1, ..., Ay, V1, ..., Uy i
an eigenbasis of V with dual basis a!, ..., a", 50 f = Aja'®@v; + - - + Aya' Quy.
Then Ajj = Ay~ Aj—1dig1--Aj_1djpr - Ay.

Consider the inclusion in : AZV*®A2V C S2(VQV*). On decomposable ele-
ments it is given by

dABRVAW R (eQV)R(BRW) — (¢QW)R(BRV)
—(BRV)R(a®w) + (BRW)R(x®v)

The space V®V™* is self-dual as a GL(V)-module, with the natural quadratic form
Q(a®v) = a(v), so we may identify 52(V®V*). as a subspace of End(V®V™*) via
the linear map Q° : V*®V — V®V* given by a'®@uj > vi®al.

Say we have a map g as above. Consider g” := Q° o in(g) : VQV* — V®V*,
then

g = Zkij[(viébai)@(aj@vj) — (1;®e)B (! @) — (v;®a B (e ®V;)

i<j

+(v;®a!)® (e ®vi)],
S0,

S wieal) = —ijv;Qa’ i # j,

g (v®a') = Z)»ijvj@)aj.
J#L
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Thus g” may be thought of as a sum of two linear maps, one preserving the subspace
D = (v1®a!, ..., vY®a") and another preserving the subspace D¢ := (v;Q@a/ |
L7 J)

The 2(;) eigenvalues of gb | pe are A;;. Write v for the coefficients of the charac-
teristic polynomial of g”| pe. Since the eigenvalues come paired with their negatives,
Yy = 0 when s is odd.

With respect to the given basis, the matrix for g°|p is a symmetric matrix with
zeros on the diagonal, whose off diagonal entries are the A;;. Write the coefficients
of the characteristic polynomial of g°|p as ¢i, ..., ¢y, and note that £} = 0,7, =
i My 63 =220 g Mijhikh e

Now let g = f* (=2 as above and we compare the determinant of f with the
coefficients of the characteristic polynomial of the Hessian H (det(f)). (Invariantly,
det(f) = f™ and H : S"(VRV*) — SZ(VV*®S"2(VRV*) is the (2, n)-
polarization, so H (det(f)) = in(f *)Qin(f""~2).)

Observe that det( £)26+1=Y) divides v, and det(f)¥ divides {x4o. Also note that
Ly =2Qdety 2, ¢y = (v — 1)(dety)"2, and Y2y = (—1)@) (dety) DO,

Recall cpj (A1 + A2) = > _cpa(A1)epj—a(A). Thus

cpa(H(det (f)) = Gk + Lok—2¥2 + Sok—aWa + - - - + 2¥ok—2 + Yok,
cpa+1(H(det (f)) = kg1 + Sok—1V2 + Sok—3¥a + - - + G332k —2.

We conclude:

Theorem 11.2 Let Q € S2(VQV*) be the canonical contraction, so SZ(VRV*) C
End(V®V™). Write CP(H (dety)) = D> cpy2_ j v/ for the characteristic polynomial.
Then

cpo =1
cp1 =0
cp3 = dety Rav—¢
cps = dety Ray—10

cpo = det%(s—""'l) R2(V2—2s—v) k>v
CPRAk+1 = det%(s_v)—i_l RZ(V272371) k>v
cpyr_y = 2(dety)' VD710

Cpy2 = (_1)("42-1)(‘, _ 1)(detv)v(v—2)

where Ry is a polynomial of degree k. Moreover dety does not divide the even cp;s for
s <2v+ L.

Remark 11.3 The equality cp,> = (—l)(vgl)(v — 1)(dety)"™~? is due to B. Segre.
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Exercise 11.4 Prove the analog of the B. Segre equality for the discriminant A €
S*(S3C?) (the equation of the dual variety of v3(PHY). Namely, if one takes A =
27x7x3 + 4x1x3 + 4x3x4 — x3x5 — 18x1x2x3x4, then det(H (A)) = 3888A2.

Problem 11.5 Find all the components of Duals 4,1, show GL4 - A is an irreducible
component of Dualy 4,1, and find defining equations for that component.

11.4 A cousin of Det,

In GCT one is interested in orbit closures GL(W) - [P] C S¢W where P € S9W.
One cannot make sense of the coefficients of the characteristic polynomial of H(P) €
S2W®S?=2W without choosing an isomorphism Q : W — W*.

If P = det, and we choose bases to express elements of W as n x n matrices,
then taking Q(A) = trace(AA”) will give the desired identification to enable us to
potentially use the equations implied by Theorem 11.2. (Note that taking Q’(A) =
trace(A?) will not.) However these are equations for O (W, Q) - det,, rather than Det,,.

The proof of Theorem 11.2 used the fact that a Zariski open subset of the space of
matrices is diagonalizable under the action of GL(V') by conjugation. We no longer
have this action, but instead, writing W = EQ®F, we have the intersection of the
stabilizers of det,, and Q, i.e., O(W, Q) N [(SL(E) x SL(F))/un X Zs].

Proposition 11.6 The connected component of the identity of O(W, Q) N [SL(E) x
SL(F) xZy)is SO(E) x SO(F).

Proof The inclusion SO(E) x SO(F) € O(W, Q) N[SL(E) x SL(F) x Z] is
clear. To see the other inclusion, note that over R, SO (n, R) x SO (n, R) is a maximal
compact subgroup of SL(n, R) x SL(n, R). The equations for the Lie algebra of the
stabilizer are linear, and the rank of a linear system of equations is the same over R or
C, so the result holds over C. O

Proposition 11.7 The SO(E) x SO(F) orbit of the diagonal matrices contains a
Zariski open subset of EQF.

Proof We show the kernel of the differential of the map SO(E) x SO(F) x D —
EQF at (Idg, 1dF, ) is zero, where § is a sufficiently general diagonal matrix. The
differentialis (X, Y, 8") = 8’ +X8+8Y, where §’ is diagonal. The matrix X§+3Y has
zeros on the diagonal and its (i, j)-th entry is X ’j 8j +8;Y;. Write out the 2(5) rpatrix
in the §; for the 2(})) unknowns X, Y resulting from the equations X ; 8j +8&Y/ =0.
Its determinant is IT; - (Sl.z — 8?), which is nonzero as long as the 5? are distinct. 0O

We apply Theorem 11.2 to obtain:

Theorem 11.8 Ler P € O(W, Q) -[det,], then P divides trace(H(P)") e
SI=2DW for each odd j > 1 up to j = 2n + 1. In particular we obtain modules of
equations of degrees (j — 1)(d — 1) for O(W, Q) - [det,,] for j in this range.
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11.5 Relation to GCT?

Since dimO (W, Q) is roughly half that of G L (W), and it contains a copy of GL 2
T
e.g.,ifw=2nisevenand Q = x'y! + ... 4+ x"y", then

I(é AOI) | A e GLn] CcC oW, Q),

one might hope to use the variety O (W, Q) - [det,] as a substitute for Det, in the
GCT program, since we have many equations for it, and these equations do not vanish
identically on cones.

Consider P € S"CM and ¢~ P e S"CM+! ¢ §"CN = §"W. Taking the naive
coordinate embedding such that Q restricted to C¥*+! is nondegenerate gives:

trace(Hy (€ P)"3)
= 3= trace(Hypy (P)™3) + 2™ 72 P trace(Hy (P)"?)
+> @P,PjPy — PEPj; — P2Py)]
i<j

where P, = 22 etc... When does ¢"~" P divide this expression? We need that P

ax;
divides trace(Hps (P)"3) and > -j2P;P;P;j— Pl.2 Pjj— sz P;;). But these conditions
are independent of n, N so there is no hope of getting this condition asymptotically.

However, taking a more complicated inclusion might erase this problem.
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12 Appendix: Complexity theory

In a letter to von Neumann (see [71, Appendix]) Godel tried to quantify what we
mean by “intuition”, or more precisely the apparent difference between intuition and
systematic problem solving. At the same time, researchers in the Soviet Union were
trying to determine if “brute force search” was avoidable in solving problems such
as the traveling salesman problem, where there seems to be no fast way to find a
solution, but a proposed solution can be easily checked. (If I say I have found a way to
visit twenty cities by traveling less than a thousand miles, you just need to look at my
plan and check the distances.) These discussions eventually gave rise to the complexity
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classes P, which models problems admitting a fast algorithm to produce a solution, and
NP which models problems admitting a fast algorithm to verify a proposed solution.

The “problems” relevant to us are sequences of polynomials or multi-linear maps
(i.e. tensors), and the goal is to find lower bounds on the complexity of evaluating
them, or otherwise to find efficient algorithms to do so. Geometry has so far been
more useful in determining lower bounds.

12.1 Arithmetic circuits and complexity classes

Recall the definitions regarding circuits from Definition 8.1.

Definition 12.1 A circuit C is weakly skew if for each multiplication gate v, receiving
the outputs of gates u, w, one of Cy, Cy, is disjoint from the rest of C. (Le., the only
output of, say C,, is the edge entering v.) A circuit is multiplicatively disjoint if, for
every multiplication gate v receiving the outputs of gates u, w, the subcircuits C, Cy,
do not intersect.

Formulas VP,

Weakly skew circuits VPys

Multiplicatively disjoint circuits VP

Circuits VP
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Definition 12.2 Let (f;,) be a sequence of polynomials. We say

e (fu) € VP, ifthere exists a sequence of formulas C,, of polynomial size calculating
I

e (fy) € VP, if there exists a sequence of weakly skew circuits C, of polynomial
size calculating f;,.

e (fy) € VP if there exists a sequence of multiplicatively disjoint circuits C,, of
polynomial size calculating f;,.

e (fu) € VP, if there exists a sequence of circuits C, of polynomial size calculating

-

These definitions agree with the standard ones, see [S0]. In particular, for the first
three, they require deg( f,;) to grow like a polynomial in n. The class VNP has a more
complicated definition: (f},) is defined to be in VNP if there exists a polynomial p
and a sequence (g,) € VP such that

L= D galx.e).

€e{0,1}P(xD

Valiant’s conjectures are:

Conjecture 12.3 (Valiant)[75] VP # VNP, that is, there does not exist a polynomial
size circuit computing the permanent.

Conjecture 12.4 (Valiant)[75] VP,,; # VNP, that is dc(perm,,) grows faster than
any polynomial.

12.2 Complete problems

The reason complexity theorists love the permanent so much is that it counts the number
of perfect matchings of a bipartite graph, a central counting problem in combinatorics.
It is complete for the class VNP. A sequence is complete for a class if it belongs to
the class and any other sequence in the class can be reduced to it at the price of a
polynomial increase in size.

The sequence of polynomials given by iterated matrix multiplication of 3 x 3 matri-
ces, IMM3 € S7(C") where IMMZ (X1, ..., X,) = trace(Xy - - - X,,) is complete
for VP,, see [4].

The complexity class VP, is not natural from the perspective of complexity theory.
It exists only because the sequence (det,) is VP,,;,-complete, however, there exists a
more natural (from the perspective of complexity theory) class, called VQP (see, e.g,
[10, §21.5]) for which it is also complete.
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