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Abstract. Shape-based registration is a process for estimating the transformation
between two shape representations of an object. It is used in many image-guided
surgical systems to establish a transformation between pre- and intra-operative
coordinate systems. This paper describes several tools which are useful for im-
proving the accuracy resulting from shape-based registration: constraint analysis,
constraint synthesis, and online accuracy estimation. Constraint analysis provides
a scalar measure of sensitivity which is well correlated with registration accuracy.
This measure can be used as a criterion function by constraint synthesis, an opti-
mization process which generates configurations of registration data which max-
imize expected accuracy. Online accuracy estimation uses a conventional root-
mean-squared error measure coupled with constraint analysis to estimate an up-
per bound on true registration error. This paper demonstrates that registration ac-
curacy can be significantly improved via application of these methods.

Keywords: geometric constraint analysis, geometric constraint synthesis, online
accuracy estimation, shaped-based registration, intra-operative registration.

1   Introduction

The registration process is a fundamental component of most image-guided surgical
systems. Registration estimates a spatial transformation between two coordinate sys-
tems: a pre-operative system used to construct plans or simulations based upon medical
data (e.g., CT, MRI, or X-ray images), and an intra-operative system in which the sur-
gical procedure is performed (e.g., relative to a robot, navigational guidance system,
etc.) Any image-guided surgical procedure which spatially relates pre-operative data to
intra-operative execution requires solution of the registration problem.

There are many approaches to registration for image-guided surgery and an excellent
review can be found in [5]. A class of registration methods referred to asshape-based
methods uses representations of object shape to estimate the required transformation.
Representations are constructed using data collected in the two coordinate systems (i.e.,
pre- and intra-operative). Registration estimates a transformation which aligns one
shape representation with the other in a manner which minimizes a measure of the dis-
tance between them.

Several factors affect shape-based registration accuracy, including: errors in the shape
representations due to sensor noise or shape reconstruction errors [11]; the quantity of
registration data; and the locations on the registration object from which the data are
collected [10]. This paper addresses the problem of improving shape-based registration
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accuracy via intelligent selection of registration data and online estimation of accuracy.
Intelligent data selection (IDS) is comprised ofgeometric constraint analysiswhich
provides a sensitivity measure shown to be well correlated with registration accuracy;
andgeometric constraint synthesis, an optimization process which generates data con-
figurations which maximize the sensitivity measure for a fixed quantity of data. IDS
uses the pre-operative shape representation to generate adata collection plan (DCP)
which can be used during surgery to guide the acquisition of registration data.Online
accuracy estimation provides an upper bound on true registration accuracy based upon
a conventional root-mean-squared error.

The proposed methods have been investigated in-vitro on cadaveric specimens and via
simulation studies and are currently being incorporated into a clinical image-guided or-
thopaedic surgical application [9]. The current paper describes the methods, reports en-
couraging results, and suggests approaches for incorporating the methods into clinically
viable registration systems.

2   Methods

This paper focuses on a special case of shape-based registration: surface-based registra-
tion with discrete point data. One shape representation (the “Model”) is a triangle mesh
surface model of the registration object constructed from CT images. The other repre-
sentation (the “Data”) is a set of discrete point data collected from the registration object
during surgery using a digitizing probe.

2.1   Constraint Analysis

Most approaches to shape-based registration attempt to minimize an error measure such
as the following least-squared measure:

(1)

where eachDi represents a point in the Data, eachMi represent a point in the Model,
andT is a 3-D transformation which minimizes the expression. Details of shape-based
registration methods can be found in [2][3][5], and descriptions of the methods used in
this work appear in [8]. Due to fundamental similarities among shape-based registration
solution methods, the techniques proposed in this paper are independent of the particu-
lar registration solution method used.

Solving the registration problem results in an estimate,Test, of the true (and usually un-
known) registration transformation,Ttrue. The error resulting from a single registration
trial can be expressed as:

(2)

whereTerr is a transformation which represents the difference between estimated and
true transformations. The goal of constraint analysis is to provide a scalar measure of
sensitivity which is a good predictor ofTerr for a given Model and Datawithout per-
forming registration, and without the need to knowTtrue.

Derivation of the Method

The point-to-surface distance in (1) is defined as the length of the shortest line joining
a point and a surface. In general, there is no closed form analytical expression for this
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distance given an arbitrary surface; however, the following local approximation has
been proposed [12]:

(3)

where  is a point which may or may not lie on the surface,  is the implicit
equation of the surface,  is the magnitude of the gradient ofF atx, and
is the approximate distance. It can be shown that  is a first order approximation
of the true point-to-surface distance, and is exact when the surface is a plane.

Given a point  which lies on the surface, a small transformation,Ts, will perturb this
point from its resting position. Ts can be represented by a homogeneous transformation
which is a function of the 6 parameter vector,

(4)

in which are rotations about theX, Y, and Z axes respectively, and
 are translations along the newly rotatedX, Y,andZ axes. The gradient ofD

with respect to  is a 6-vector,

(5)

where  is the unit normal to the surface at the point  [8]. This result can be extended
to consider the effect of perturbing acollection of points with respect to the surface:

(6)

The scalar quantity  is a first order approximation of the least-squared error
of (1). It measures the error which would result by perturbing a set of discrete points,P,
initially assumed to be on the surface, by the small transformationTs. The matrix
is a symmetric, positive semi-definite 6x6 scatter matrix which contains information
about the distribution of the original  vectors over the points in the setP. Per-
forming principal component analysis [4],  is transformed into an expression which
is more easily interpreted:

(7)

where  is a diagonal 6x6 matrix of the eigenvalues of  in which
;  is a 6x6 matrix whose columns are the eigenvectors of

; and each  is an eigenvector corresponding to the eigenvalue  which represents
a differential transformation 6-vector. This result is similar to one presented in the con-
text of industrial inspection [6].

From (7) it can be seen that the eigenvector  corresponding to the largest eigenvalue,
represents thedirection of maximum constraint. Perturbing the points in the setP in the
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direction of  will result in the largest possible change in  from among all possible
directions of perturbation. Similarly, the differential transformation represented by the
eigenvector  corresponds to thedirection of maximum freedom. Perturbing the points
in this direction will result in the smallest possible change in  from among all pos-
sible directions of perturbation. In general, an eigenvalue  is proportional to the rate
of change of  induced by a differential transformation in the direction .

A special situation occurs when some of the  are close to or equal to zero. For each
such eigenvalue, a singularity exists such that perturbing the points in the direction of
the corresponding eigenvector will result in no change in . Such singularities are un-
desirable in registration since it is impossible to localize the object in the direction(s) of
the singularity(s). As demonstrated below, sets of discrete points,P, which have well-
conditioned scatter matrices, , are preferable to sets which have ill-conditioned scat-
ter matrices for achieving accurate registration. In this work, the noise amplification in-
dex (NAI) [7] is used as a measure of matrix conditioning and is defined as

(8)

This quantity is the product of the inverse condition number and the square root of the
minimum eigenvalue, and provides an upper bound on the amplification of residual er-
rors (e.g., discrete point Data measurement noise, and errors in the Model) to the esti-
mated parameters (e.g., registration transformation parameters) [7].

Scale and Coordinate System Dependences

In constraint analysis, there is an implicit weighting factor related to object size which
determines the relative importance of rotational versus translational errors. Due to the

 term on the right hand side of (5), if constraint analysis is applied to two objects
which differ only in size, the resulting NAI values will differ. The larger object will
weight rotational components more heavily since the corresponding  terms will be
larger. A solution to this problem is to pre-normalize the Model so that the average ra-
dius as measured about the origin is unity. This has the effect of weighting rotational
and translational components equally, on average. A complete discussion of the scale
dependence problem can be found in [8].

Constraint analysis has a dependence upon the location of the origin of the Model co-
ordinate system arising from the  term on the right hand side of (5). For a given Mod-
el, it can be shown that maximal sensitivity of constraint analysis is achieved when the
constraint analysis coordinate system origin is located at the centroid of the Model [8].

2.2   Constraint Synthesis

The goal of constraint synthesis is to automatically generate Data sets which maximize
the NAI for a given Model and a fixed number of points. The resultingdata collection
plan (DCP) can then be used to guide the acquisition of Data during the intra-operative
Data collection process. More formally, the constraint synthesis problem is to:

Select M discrete points from a set,V, and place them into the set,P, of (6) such
that the NAI is maximized.

In this paper, the setV is composed of all vertices of a given triangle mesh Model. In
general, any sufficiently dense sampling of a surface can be used forV. If there are re-
gions of the Model in which Data cannot be collected (e.g., because of limited access
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during surgery), points in these regions can be excluded fromV. The number of points,
M, in P is fixed for a given trial of constraint synthesis. Finding Data configurations of
minimum size which satisfy registration accuracy requirements is discussed below.

Constraint synthesis is a combinatorial search problem, and for all but artificially small
problems the solution space is too large to search exhaustively. A search algorithm for
solving constraint synthesis which combines hillclimbing and a non-deterministic opti-
mization method is described below. A complete description of constraint synthesis so-
lution methods can be found in [8].

Hybrid PBIL / Hillclimbing Search Algorithm

In next ascent hillclimbing (NAH), M vertices are chosen from the set of possible ver-
tices,V, and placed into the “selected” setP. Let NAI(P) represent the value of the NAI
computed from (5) - (8) using the points inP. Randomly select a vertex,vp, fromP,and
a vertex,vv, fromV. Substitutevp with vv in P, and compute the new value of NAI(P).
If this substitution results in an improvement in the NAI, then implement the substitu-
tion and iterate the process. If the substitution does not improve the NAI, then recom-
pute NAI(P) with new randomly selected verticesvp andvv. Continue iterating until
there are no additional substitutions which improve the NAI. The maximum number of
NAI evaluations per iteration is N(M-1) where N and M are the number of vertices in
the setsV andP respectively, although such a large number of evaluations is rarely
reached in practice. For an average size problem (e.g., ), NAH usu-
ally converges within 1000 iterations. The number of NAI evaluations is typically small
during initial iterations, and increases during the later iterations when there are fewer
possible substitutions which increase NAI(P).

In high-dimensionality optimization problems, hillclimbing methods such as NAH are
susceptible to local minima in the search space. Genetic algorithms (GAs) are biologi-
cally motivated adaptive systems based upon principles of natural selection and genetic
recombination which attempt to avoid local minima. A simplified model of the GA
called Population-Based Incremental Learning (PBIL) was recently introduced [1]. For
the purposes of this paper, PBIL can be thought of as a black-box with the following
inputs: the set of allowable vertices,V; the number of points in the configuration set,P;
a function which computes NAI(P) based upon the surface Model; and a stopping cri-
terion. The output of PBIL is the particular configuration which maximizes the NAI
among all configurations evaluated by PBIL within a given trial.

While PBIL is good at avoiding local minima in the constraint synthesis search space,
the resulting solutions may not be locally optimal. Likewise, hillclimbing methods are
good at ensuring local optimality, but usually don’t converge to globally optimal con-
figurations. By combining these two approaches, it is possible to take advantage of the
strengths of each. In the hybrid search algorithm, PBIL is run, followed by a run of
NAH initialized at the configuration found by PBIL.

Data Configuration Stability

Data collection plans (DCPs) generated by constraint synthesis can be used to guide ac-
quisition of registration data. Since the precise object location is unknown before reg-
istration, it is impossible to acquire the exact points specified by constraint synthesis.
Due to this uncertainty and to noise in the sensing process, theeffective NAI value (i.e.,
computed from the collected Data) may be smaller than theideal NAI (i.e., computed
from the DCP). Certain Data configurations are more stable than others (i.e., there is
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less NAI variation as the points inP are perturbed about the DCP positions). Attempts
to incorporate stability criteria into the constraint synthesis process have resulted in ex-
ponential complexity [8]. Nevertheless, improved stability can be achieved via two
methods: navigational guidance during Data collection and high curvature filtering.

During the data acquisition process, it is possible to use the current registration trans-
formation estimate to provide navigational guidance to the human Data collector. Guid-
ance is provided by displaying a 3-D graphical rendering of the registration object and
overlaying icons representing the locations of the desired point and the sensor tip. The
sensor location icon is dynamically updated in real-time based upon measurements, and
is derived from the registration transformation estimate. The goal of the Data collector
is to align the two icons. Each time additional Data is collected, uncertainty in the col-
lection process is reduced by refining the registration transformation estimate.

The primary cause of Data configuration instability is disparity between the surface nor-
mals of desired and collected Data points. Constraint synthesis may select a given Data
point because its surface normal strongly contributes to constraint in a given direction
(see (5)). However, if the Data point actually collected has a significantly different sur-
face normal, the resulting NAI value may be reduced. This effect can be reduced by ini-
tially focussing data collection in regions of low curvature so that surface normals of
the collected points are more likely to be similar to those of the desired points. After
low curvature points are collected and collection uncertainty is reduced, points in higher
curvature regions can be collected. To implement this, several DCPs are synthesized,
some with points in regions of low curvature and others in regions of higher
curvature [8]. The resulting DCPs can then be used to guide the collection process.

3   Results

This section demonstrates significant improvement in registration accuracy due to the
proposed methods. Three Models are used in the reported experiments: a cube with
edge length of 100 mm, a human cadaveric femur, and a human cadaveric pelvis. Mod-
els of the femur and pelvis with superimposed Data collection plans are shown in Fig. 1.

The registration error measure used to report results in this section is the maximum cor-
respondence error (MCE) [8][11]. The MCE is computed by transforming all vertices
in a Model byTerr of (2), computing distances between each transformed vertex and its
un-transformed correspondence, and selecting the largest distance. The MCE specifies
the largest single point displacement within a registration object resulting fromTerr.

Fig. 1.Surface Models of the femur and pelvis with overlaid DCPs.



3.1   Constraint Analysis Experiments

Registration trials were conducted using simulated Data to demonstrate the relation be-
tween registration error and NAI. Data points were generated by applying known ran-
dom transformations to nominal Data configurations and adding zero-mean Gaussian
noise. Since the true transformations,Ttrue, are known, the error transformations,Terr,
can be computed. Fig. 2 shows a plot of MCE vs. NAI for the three nominal cube con-
figurations shown on the right of the figure. Configuration C1 contains 24 points per
face, while C2 and C3 contain 4 points per face each. For each configuration, the mean,
standard deviation, minimum and maximum MCE over 500 registration trials are plot-
ted. The parameters for generating noise and random transformations are shown in the
plot. The trend from the plot is clear: configurations with larger values of NAI result in
smaller registration error. In particular, note that configuration C2 has smaller values of
MCE (and a larger NAI) than C3, despite having the same number of points.

Fig. 3 demonstrates differences in noise sensitivity as a function of NAI for the cube
configurations. The graphs show how MCE varies as a function of expected noise mag-
nitude. For each datum, 500 registration trials were performed and the mean values for
these trials are plotted. In the absence of noise, all three configurations perform equally
well. As noise increases, configurations with smaller values of NAI are clearly more
sensitive. This illustrates that the utility of intelligent data selection is dependent upon
the magnitude of sensor noise (among other factors).

3.2   Constraint Synthesis Experiments

Table 1 demonstrates the efficacy of the constraint synthesis search algorithms for the
pelvis. Data configurations were synthesized using 4 configuration sizes and 4 methods
of generation. Five configurations were generated for each size-method combination,
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except for the random method for which 1000 configurations were generated. The max-
imum and minimum NAI values over the generated configurations are shown. For each
configuration size, the hybrid PBIL/NAH method produced the best results.

Fig. 4 compares 5 random and 5 synthesized configurations of size 25 for the pelvis in
a plot of MCE versus NAI. For each configuration, a set of registration trials was per-
formed using the indicated parameters. In this graph, the 5th and 95th percentiles of
MCE are plotted instead of the minimum and maximum values. When generating the
simulated registration Data, a second noise component was added which models the un-
certainty associated with Data collection. This noise perturbs a point from its nominal
location by a uniform random distancealong the surface. For this experiment, the radi-
us of uncertainty was 5.0 mm. From the graph, it is clear that the synthesized configu-
rations are superior to the randomly generated ones in terms of both NAI and MCE.

Fig. 5 shows similar results for the femur Model using 5 random and 5 synthesized con-
figurations of size 10. The figure demonstrates the effect of high curvature filtering; no
filtering results in unstable Data configurations and larger errors.

3.3   In-vitro Cadaver Experiments

We performed registration trials using Data collected from a cadaveric femur. For these
experiments, estimation ofTtrue is a challenging engineering problem which our group
has solved using a highly accurate fiducial-based registration method [11]. Using a fil-
tered version of the femur Model, DCPs of 6 and 50 points were synthesized, each a
total of 5 times. The corresponding Data points were collected on the actual femur using
a digitizing probe. Each synthesized configuration was independently collected 5 times.
In addition, 50 manually-selected Data sets were collected for each configuration size.
To guide the collection process, the navigational guidance mechanism described above

Table 1: Pelvis synthesis results - NAI values (max / min).

Method
Configuration Size - M

10 25 50 75

Random 0.41 / 0.00 1.18 / 0.08 1.52 / 0.33 1.68 / 0.53

NAH 1.42 / 1.28 2.62 / 2.43 3.97 / 3.76 4.90 / 4.79

PBIL 1.41 / 1.35 2.70 / 2.58 3.88 / 3.81 4.84 / 4.76

PBIL + NAH 1.52 / 1.36 2.75 / 2.65 4.02 / 3.92 4.94 / 4.90
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was used. Initial values ofTest were computed using manually selected anatomical
landmarks and point-to-point registration [2].

Experimental results are shown in Fig. 6. Each graph plots the MCE value resulting
from registration versus theeffective NAI value computed after registration using the
closest Model points(Mi of (1)) to solve forn andxs of (5). From the graphs it is clear
that the synthesized point configurations are superior to the manually selected ones for
both configuration sizes. Six points is the theoretical minimum number required to
solve the shape-based registration problem without correspondence. As seen, selecting
6 well-conditioned Data points is a difficult task for humans. Note that some synthe-
sized configurations for the 6-point results have small NAI values and large MCE val-
ues due to data collection uncertainty. However, using the online accuracy evaluation
method described below, such configurations can easily be identified and additional
Data can be collected to improve the result.

To be useful, an online accuracy estimate must relate a quantity which can be measured
during the registration process, to a second quantity which has physical meaning to the
task for which registration is being performed. Fig. 7 shows a plot of MCE versus RMS
error (definition in the figure). It is shown in [8] that the slope of the line which relates
worst case MCE to RMS error is independent of sensor noise, the number of Data
points, and Data collection uncertainty, assuming that the effective NAI value is slightly
greater than zero. Furthermore, it is shown that the slope of this line can be determined
from simulated registration experiments such as those of Section 3.2. Therefore, during
the registration process, online measurement of RMS error can be used to estimate an
upper bound on MCE. This estimate can then be used to determine if accuracy require-
ments are satisfied, and additional Data collection can be requested if not.

Fig. 5.Femur: MCE vs. NAI - random and synthesized points.
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By coupling online accuracy estimation with intelligent data selection, it is possible to
collectminimally-sized Data sets which satisfy accuracy requirements. This is done by
pre-synthesizing multiple NAI-optimal configurations of increasing size, each of which
is a superset of the previous. During the collection process, a Data set is collected and
registered, and accuracy is estimated. This process is continued until accuracy require-
ments are satisfied, or until all of the synthesized sets have been collected.

4   Conclusions

The methods described in this paper show promise as tools for analyzing and maximiz-
ing accuracy in shape-based registration. Intelligent data selection is likely to be most
useful when data collection is expensive and sensor noise is high. Online accuracy es-
timation is likely to be useful with and without intelligent data selection. Work is cur-
rently in progress to evaluate the practicality of these methods in clinical situations.
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