{: SCISPACE

formerly Typeset

@ Open access « Journal Article « DOI:10.1016/0010-4485(94)00013-4
Geometric constraint solver — Source link [/

William J. Bouma, loannis Fudos, Christoph M. Hoffmann, Jiazhen Cai ...+1 more authors

Institutions: Purdue University, Courant Institute of Mathematical Sciences

Published on: 01 Jun 1995 - Computer-aided Design (Elsevier)

Topics: Solver and Constraint satisfaction problem

Related papers:

« Algebraic solution for geometry from dimensional constraints

« A graph-constructive approach to solving systems of geometric constraints
« Variation of geometrics based on a geometric-reasoning method

» Correctness Proof of a Geometric Constraint Solver

« Modification of geometric models through variational geometry

Share thispaper: @ ¥ M &

View more about this paper here: hitps:/typeset.io/papers/geometric-constraint-solver-
1rperl7hbt


https://typeset.io/
https://www.doi.org/10.1016/0010-4485(94)00013-4
https://typeset.io/papers/geometric-constraint-solver-1rperl7hbt
https://typeset.io/authors/william-j-bouma-3u9gengtt5
https://typeset.io/authors/ioannis-fudos-3148ewe5li
https://typeset.io/authors/christoph-m-hoffmann-3jhzlxjt9n
https://typeset.io/authors/jiazhen-cai-4g6l7me0pg
https://typeset.io/institutions/purdue-university-2ddhwsmq
https://typeset.io/institutions/courant-institute-of-mathematical-sciences-2qhtzu4z
https://typeset.io/journals/computer-aided-design-2lae4v4x
https://typeset.io/topics/solver-3rpiu7zh
https://typeset.io/topics/constraint-satisfaction-problem-1uvpc3x4
https://typeset.io/papers/algebraic-solution-for-geometry-from-dimensional-constraints-5038ddufcf
https://typeset.io/papers/a-graph-constructive-approach-to-solving-systems-of-4usf3s77vb
https://typeset.io/papers/variation-of-geometrics-based-on-a-geometric-reasoning-4kws5cs1j6
https://typeset.io/papers/correctness-proof-of-a-geometric-constraint-solver-wv0nvnmz35
https://typeset.io/papers/modification-of-geometric-models-through-variational-39kj16npkp
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/geometric-constraint-solver-1rperl7hbt
https://twitter.com/intent/tweet?text=Geometric%20constraint%20solver&url=https://typeset.io/papers/geometric-constraint-solver-1rperl7hbt
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/geometric-constraint-solver-1rperl7hbt
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/geometric-constraint-solver-1rperl7hbt
https://typeset.io/papers/geometric-constraint-solver-1rperl7hbt

Purdue University

Purdue e-Pubs

Department of Computer Science Technical
Reports

1993

A Geometric Constraint Solver

William Bouma
loannis Fudos

Christoph M. Hoffmann
Purdue University, cmh@cs.purdue.edu

Jiazhen Cai

Robert Paige

Report Number:
93-054

Department of Computer Science

Bouma, William; Fudos, loannis; Hoffmann, Christoph M.; Cai, Jiazhen; and Paige, Robert, "A Geometric
Constraint Solver" (1993). Department of Computer Science Technical Reports. Paper 1068.

https://docs.lib.purdue.edu/cstech/1068

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.

Please contact epubs@purdue.edu for additional information.


https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A GEOMETRIC CONSTRAINT SOLVER

William Bouma
Ioannnis Fudos
Christoph Hoffmann
Jinzhen Cai
Robert Paige

CSD-TR-93.054
August 1993




A Geometric Constraint Solver

William Bouma®  Ioannis Fudos!  Christoph Hoffmann*
Department of Computer Science, Purdue University
West Lafayette, IN 47907-1398

Jiazhen Cai®* Robert Paige!
Department of Computer Science, Courant Institute
251 Mercer Str., New York, NY 10012

Report CSD-T'H-83-054, August 19023

Abstract

We report on the development of a two-dimensional geometric con-
straint solver. The solver is a major component of a new generation of
CAD systems that we are developing based on a high-level geometry rep-
resentation. The solver uses a graph-reduction directed algebraic approach,
and achieves inleractive speed. We describe the architecture of the solver
and its basic capabilities. Then, we discuss in detail Lhow to extend the
scope of the solver, with special emphasis placed on the theoretical and
human factors involved in finding a solution — in an exponentially large
search space — so thal the solution is appropriate to the application and
the way of finding it is intuitive to an untrained user.

*Supported in part by ONR contract N00014-90-J-159¢, by NSF Grant CDA 92-23502, and
by NSF Grant LCD 88-03017,

'Supported by a David Ross fellowship.

!Supported in part by ONR contract ND0014-90-J-1890, by AFOSR grant 91-0308, and by
NSF grant MIP 93-00210.

$This report and others are available via anonymous 1tp to arthur.cs.purdue.edu, in direc-
tory pub/cmh and subsidiaries

caqe




1 Introduction

Solving a system of geometric constraints is a problem that has been consid-
ered by several communities, and using different approaches. For example, the
symbolic computation community has considered the general problem, in the
context of automatically deriving and proving theorems from analytic geometry,
and applying these techniques to vision problems [9, 14, 26, 27]. The geometric
modeling community has considered the problem for the purpose of developing
sketching systems in which a rough sketch, annotated with dimension and con-
straints, is instantiated to satisfy all constraints. This work will be reviewed in
the next section. The applications of this approach are in mechanical engineer-
ing, and, especially, in manufacturing,.

With this work, we have mainly manufacturing applications in mind. Our
purposes and goals are as follows:

1. We develop & constraint solver in which the information flow between the
user interface and the underlying solver has been formalized by a high-level
representation that is neither committed to the particular capabilities or
lechnical characteristics of the solver, nor is dependent on the interface.
such a representation becomes the hasis for archiving sketches in a neutral
format, with the ability to retrieve the archived sketch and edil it —
possibly in a different system wilh a different solver [24, 23]. Our solution
is also a building block for a larger project of developing a new generalion
of CAD systems based on a neutral, high-level geometry representation
that expresses design intent and preserves the ability to redesign.

2. We explore the utility of several different general-purpose and interoperal-
ing rapid prototyping languages and systems for developing specific tools
for experimenting conveniently with a variety of ideas and approaches to
constraint solving. Aside {rom well-known special purpose tools such as
LEX and Yacc [25], our constraint solver also makes use of the high level
language SCTL2 [45] to specify complex combinatorial algorithms and
the transformational system APTS [12] to perform syntactic analysis and
symbolic manipulation of geometrical constraint specifications.

3. We study 2 number of neglected aspects of constraint solving, in par-
ticular the process of redirecting the solver to a different solution of a
well-constrained sketch, and to devise generic techniques for extending
the capabilities of the solver while preserving interactive speed.

This paper reports substantial progress in all three problem dimensions, and
identifies a number of open issues thal remain.




2 Approaches to Geometric Constraint Solving

We consider only well-constrained, two-dimensional sketches formed [rom points,
lines, circles, segments and arcs. Constraints are explicit dimensions of distances
and angles, as well as constraints of parallelism, incidence, perpendicularity, tan-
gency, concenltricity, collinearily, and prescribed radii. We exclude relations on
dimension variables and inequality constraints. In particular, Lthe user specifies
a rough sketch and adds to it geometric and dimensional constraints thal are
normally not yet satisfied by the sketch. The sketch only has to be topologi-
cally correct. The constraint solver determines from the sketch the geometric
elements that are to be found, and processes the constraints to determine each
geometric element such that the constraints are satisfied.

Qur constraint solver is wariational. That is, the solver is not obliged to
process the constraints in a predetermined sequence, and the constraints speci-
fied by the user are not parametric in the sense that they must be determined
serially, each as an explicit function of the previous constraints. This is anal-
ogous lo writing the constraints in a declarative language, where the solution
is independent of the order in which the constrainls are written down. This
greatly increases the generality of the constraint solving problem, and demands
solvers that are based on advanced mathematical concepts.

While the users of geometric constraint solving systems think geometrically
and express themselves with visual gestures, the underlying constraint solvers
typically work with a different internal representation. Most users will be quite
unaware of the nature of the underlying representation, and of the internal
workings of the constraint solver. Coupled with the fact that a well-constrained
geometric constraint problem has, in general, exponentially many solutions,
only one of which satisfies the user’s intent, constraint solvers therefore have to
address two distinct tasks:

1. Determine whether the problem can be solved and if so, how.
2. Among the possible solutions, identify the one the user has intended.

Most of the literature assumes tacitly that the second task is easy to discharge.
In Section 5, we question this assumption and show why Task 2 is difficult for
applications.

Before describing our approach to Task 1, it is useful Lo characterize other
approaches in the literature.

2.1 Numerical Constraint Solvers

In general numerical constraint solvers, the constraints are translated into a
system of algebraic equations and are solved using an iterative method. When




based on Newton iteration, such solvers require good initial values, which implies
that the initial sketch must almost satisfy all constraints already. The solvers
are quite general, and are capable of dealing with overconstrained, consistent
constraint problems. Many constraint solvers switch Lo iterative methods in
situations where the given configuration is not solvable by the native method.

Nonlinear systems have an exponential number of solutions, but Newton
iteration will find only one. Numecrical solvers based on Newton iteration are
therefore inappropriate when the initial sketch is only topologically correct, or
when the solver locks into a solution that is unsuited to the application and has
no method with which to find more suitable alternatives.

Sketchpad [51] was the first system Lo use the method of numerical relax-
ation. Relaxation is slow but quite general. Many systems like ThingLab [3]
and Magritte [22] can do relaxation as an alternative Lo some other method. In
(2] a projection method is presented for finding a new solution that minimizes
the Euclidean distance between the old and the new solution.

Newton-Raphson iteration has been used in a number of systems, and is
faster than relaxation, but it may converge to the wrong solution. Unfortu-
nately, when this happens, the user has no recourse to instrucl the solver to
find alternatives. Juno [37] uses the original sketch as initial state. The CPSM
system of Solano and Brunet [47] also uses a numerical solver that first deals with
sequential constrainls and then solves circularly interdependent constraints.

A modification of Newton-Raphson was developed in [35], where an improved
way for finding the inverse Jacobi matrix is presented. Furthermore, the paper
proposes dividing the constraint matrix into submatrices, with the potential of
providing the user with information about the constraint structure of the sketch.
Although this information is usually quantitative and not very specific, it may
help the user make modifications if the solver fails. A method that represents
constraints by an energy function and then searches for a local minimum using
the energy gradient is presented in [56].

2.2 Constructive Constraint Solvers

This class of constraint solvers is based on the fact that most configurations
in an engineering drawing are solvable by ruler, compass and protractor, or
using another, less classical repertoire of construction steps. In these methods,
the constraints are satisfied constructively, by placing geometric elements in
some order. This is more natural for the user and makes the approach suitable
for interactively debugging a sketch that cannot be solved or has been solved
unsatisfactorily, from an application point of view.




2.2.1 Rule-Constructive Solvers

One version of the constructive approach uses rewrile rules to discover and
execute the construction steps. We call this approach rule-constructive solving.
Although a Logic Programming style of programming is a good approach for
prototyping and experimentation, the extensive computations searching and
matching rewrite rules constitute a liability.

Bruderlin and Sohrt [, 46) solve constraints in this way and incorporate
the Knuth-Bendix critical-pairs algorithin [29]. They show that their method
is correct and solves all problems that can be constructed using ruler and com-
pass. The method can also be proved to confirm geometric theorems that are
provable in their system of axioms. Bruderlin and Sohrt have implemented an
experiimental constraint solving system in Prolog. They do not address how to
devise tules for determining automatically which of the possible solutions is the
one the user intended.

Aldefeld [1] uses a forward chaining inference mechanism. He assumes that
lines are directed, and formulates additional rules that restrict the number of
possible solutions. A similar method is presented in [52], where handling of over-
constrained and underconstrained cases is given special consideration. Sunde in
[50] also uses a rule-constructive method but has different rules for represent-
ing directed distance and undirected distance, thus adding flexibility for dealing
with the root identification problem discussed in Section 5. In [58] the problem
of nonunique solutions is handled by imposing an order on triples of geometric
elements. A detailed description of a complete set of rules for 2D design can
be found in [55], where the scope of the rules is also characterized. Finally, a
technique called Meta-level Inference is introduced in [10]. The paper claims
that this technique, combined with multiple sets of rules and Lleir selective a)-
plication, reduces the search space. The method has heen applied in PRESS
[10], a program for algebraic manipulation.

2.2.2 Graph-Constructive Solvers

Another version of the constructive approach has two phases. During the firsl
phase, the graph of constraints is analyzed and a sequence of construction steps
is derived. During the second phase, the construction steps are carried out to
derive the solution. We call this approach graph-constructive solving. It is fast,
more methodical than the rule-constructive approach, and is proved to be sound.
However, as the repertoire of possible constraints increases, the graph-analysis
algorithm has to be modified.

Fitzgerald [20] follows the approach of dimensioned trees by Requicha [43).
Only horizontal and vertical distances are allowed in this method and so the
applicability of the method is limited. Todd in [53) generalized the dimension

o




trees of Requicha. Owen in [38] presents an extension of this principle to include
circularly dimensioned sketches, and DCM [19] is a commercial constraint solver
using this method.

Since our basic algorithm is based on many of the ideas of {38), we describe
Owen’s solvers in more detail. The constraint solver described in [38] is a graph-
constructive solver in which the constraint graph is analyzed for triconnected
components. Bach triconnected component is reduced to a number of elements
that interact with other components, and a determination is made how the var-
ious geometric elements whose nodes are in each graph component fit together.
Thereafter, each component can be separately determined. This procedure is
recursive in that once components have been reduced, they in turn can become
members of triconnected components in the reduced graph. A key aspect of the
solver is that only constraint configurations are considered that can be solved
using ruler-and-compass construction steps. Algebraically, this is equivalent to
solving only quadratic equations, so that the specific coordinate computations
do not require sophisticated mathematical computations. In [38] a proof is given
that the solver is complele for ruler-and-compass constructible point configura-
tions with prescribed distances that are algebraically independent.

DCM [19] shares with the algorithm of [38] the characteristic that it begins
by determining the interaction of geometric element groupings before filling in
the individual elements in each group. In addition, we infer that the commercial
version has a significant number of additional rules and transformations that
can be applied to the constraint graph in order to extend the scope of the basic
algorithm. In many cases, the graph reduction requires lincar time only.

Kramer [32] uses a similar approach. However, instead of determining the
equations of the geometric elements at each construction step, Kramer deter-
mines coordinate transformations that successively place points and associated
coordinate {rames relative to each other subject to conslraints. Kramer’s con-
straint solver is for 3D and deals with constraints that arise in kinematics and
characterize basic joint types. Thus, a revolute constraint matches the points
and aligns a pair of coordinate axes, allowing a single degree of [reedom, a rota-
tion about the aligned axes. Complex geometric elements are placed implicitly
by choosing a suitable number of points on them whose coordinate frames are
relatively fixed, and then placing each point.

2.3 Propagation Methods

Constraint propagation was a popular approach in early constraint solving sys-
tems. The constraints are first translated into a system ol equations involving
variables and constants, and an undirected graph is created whose nodes are
the equations, variables and constants, and whose edges represent whether a
variable or constant occurs in an equation. The method then attempts to direct

*** Changes

*¥* Changes




the graph edges so that every equation can be solved in turn, initially only from
the constants. To succeed, various propagation techniques have been tried, but
none of them is guaranteed to derive a solution when one exists. For a review
see [33, 46].

Sketchpad [51) uses propagation of degrees of freedom and propagation of
known values. Pro/ENGINEER. [5, 40] uses propagation of known values. Prop-
agation of known values is the inverse process of the propagation of degrees of
freedom. Propagation of degrees of freedom is a more abstract method that
essentially does a graph reduction. In the propagation of known values, we can
account for special values and therefore make the method slightly more pow-
erful than pure propagation of degrees of freedom. Both methods are global,
unstable, and do not work for cyclically dimensioned sketches.

CONSTRAINTS [48] uses retraction, which is a localized version of propa-
galion of known values that stores information about each variable’s interdepen-
dencies. A similar technique is used in [34]: First, known values are propagated
locally. Then, the remaining simultaneous constraints are solved if they form
a linear system of equations. In general, retraction is faster hut less powerful
than propagation of known values.

Graph transformation is sometimes used in conjunction with some prop-
agation method. In pure graph transformation, some subgraphs of the con-
straint graph are identified and are replaced by simpler subgraphs. Bertrand,
described in [33], is a general-purpose comstraint specification language, and
is implemented using a propagation method in conjunction with an inference
mechanism. Leler calls this technique augmented term rewriting. In essence,
augmented term rewriting is a graph transformation mechanism using term
rewriting rules. Additionally, assignments are supported, as is variable typing,
and these additions make augmented term rewriting more expressive than the
term rewriting mechanism of pure PROLOG.

ThingLab uses the Blue and Delta Blue algorithms described in [3, 21), that
are based on a local propagation of degrees of freedom within the constraint
graph. Magritte [22] employs propagation to transform the undirected con-
straint graph, and then uses breadth-first search to derive all solutions.

2.4 Symbolic Constraint Solvers

The constraints are transformed into a system of algebraic equations. The
system is solved with symbolic algebraic methods, such as Grébner’s bases, e.g.,
[9], or the Wu-Ritt method [57, 14]. Both methods can solve general nonlinear
systems of algebraic equations. The methods have also been used in mechanical
geometry theorem proving [16, 17, 15, 26].

In [30, 31], Kondo considers the addition and delelion of constraints by
using the Buchberger’s Algorithm [7, 8] to derive a polynomial that gives the




Graphical o

User Interface < Constraint Solver

Erep

Figure 1: Architecture of the Constraint Solver

relationship between the deleted and added constraints.

2.5 Hybrid Solvers

Often, constraint solving systems usec a combination of the above methods. Qne
method is attempted, and if it does not succecd, another one is tried. The
main difficulty is that some of the methods may require exponential time before
giving a negative response.

3 The Constraint Solving System

3.1 Information Flow and Rationale

The overall architecture of the constraint solver is as shown in Figure 1. The
user draws a sketch and annotates it with geometric constraints. The allowed
consiraints include relations such as tangency, perpendicularitly, etc, and explicil
dimensioning of angles and distances. Excluded for now are relations hetween
dimension variables. Additional capabilities include interacting with the solver
to identify a different, valid solution. The geometric elements available at this
time are segments, points, and circular arcs. Auxiliary lines, points and circles
may also be defined.

The user interface translates the specification into a textual language that
is a faithful record of the problem. Although the user could edit this textual
problem specification, this is unnecessary, because the specification is edited
and updated automatically {from the visual gestures by the user interface. The
language has been designed to achieve the objectives of [24] — a neutral problem
specification that makes no assumptions about the architecture of the underlying
constraint solving algorithm. Thus, it is quite easy to federate Owen’s solver [38],
or any other constraint solver capable of handling the geometric configurations
we consider.

The textual problem specification is handed to the constraint solver engine
which translates the constraints into a grapl, and, as described later, solves
them by graph reductions that govern the workings of an algebraic, variational




constraint solver. The solver capabilities are the consequence of specilic con-
struction steps that have been implemented. If a particular constraint problem
can be solved using the known construction steps, then our solver will find a so-
lution. Where the construction steps involve ruler-and-compass constructions,
only quadratic equations need to be solved. But some construction steps are
permitted that are not ruler-and-compass, and in those situations the roots of
a univariate polynomial are found numerically. In those situations, the polyno-
mial has been precomputed except for the coefficients which are functions of the
specific constraint values. The solver archilecture is optimized for speed subject
to the strict requirement that the information flow between user interface and
solver does not depend on the internals of either component.

In the worst case, a well-constrained geometric problem has exponentially
many solutions in the number of constraints. This is because the solutions
correspond Lo the algebraic set of a zero-dimensional ideal whose generating
polynomials are nonlinear. Qur solver can determine all possible solutions. But
doing so every time would waste time and overwhelm the user. So, certain
heuristics, described later, narrow down the solulions to a final configuration
that corresponds to the intended solution with high probability. It would be
nice if methods could be devised that identify the solution the user intended
every time. But even in very simple situations, additional information that
would help doing so would lead to provably intractable problems. This would
be incompatible with our goal of interactive speed. Instead, we have developed
a paradigm for finding the right solution by using the solver interactively when
its automatic heuristics are insuflicient.

Our system will be a component of a constraint-driven varialional CAD sys-
tem based on a high-level, declarative, editable geometry representation {(Erep)
as discussed in [24, 23]. Such an overall archileclure poses several challenges.
One of them is efficient variational constraint solving, and we address this prob-
lem here. Another, key challenge is to formulate the language in a neutral way,
committing it neither to the particulars of the user interface nor of the solver al-
gorithms. This is a more subtle challenge because the way in which dimensions
are displayed in the sketch has to nake some assumptions about the capabilities
of the user interface. Likewise, interacting with the solver to find alternative
solutions requires conceptualizing the solution process in a way that makes no
assumplions about how they are found. Here, we assume only that the solver
is capable of undoing the last placement operation, and can look for a differ-
ent placement of a geometric element. The textual protocol for communicating
these matters is encapsulated.

—_———




3.2 System Implementation

The two-dimensional geometrical design system has two main components, a
graphical interface and a constraint solver engine. The graphical interface is a
C++ program [49] that interacts with X Windows in order to allow the user
to sketch a drawing using labeled points, lines, circles, etc. The user is also
expected to supply initial constraints between these geometric elements. This
initial design is turned into an Erep specification and is passed as Lext to the
constraint solver.

The solver is wrillen using two novel software tocls — the APTS transfor-
mational programming system [12] and the high-level language SETL2 [45] —
each having special features that the solver exploits. The front-end Lo the con-
straint solver engine is an APTS program that reads the Erep program and type
checks it. For example, we check that only lines participate in angle constraints.
If there are no obvious type errors, the Erep program is transformed inlo an
equivalent Erep specification in a normal form in which only distance and angle
constraints are allowed. For example, incidence constraints are translated to
zero-distance constraints. The specification of the orientation of lines in angle
consirainls is also regularized. Relations representing a constraint graph are
then extracted from the Erep program and are exported via a foreign interface
to a SETL2 program that implements the main algorithmic part of the solver.

The SETL2 program implements a new and extensible algorithm descriled
later that analyzes the constraint graph to determine whether the Erep program
is well constrained. I it is, then a particular solution (i.e., a specific placement
of the geometries} is computed as a set of relations that are imported into the
APTS program. Finally, the APTS program incorporates the solution into the
Erep program, and passes it back as text to the graphical interface lor display.

The use of such novel systems as APTS and SETL2 is motivated by the
special needs of our project. A major component of our research involves the
discovery and implementation of complex nonnumerical algorithms. Our goal of
high performance based on a new algebraic approach to constraint solving entails
deep graph-theoretic analysis of implicit dependencies belween constraints, and
complex graph traversals based on such analysis. A wide variety of heuristics
seem available to us, but a proper evalualion requires extensive labor-intensive
computational experiments.

The ease with which complex combinatorial algorithms can be implemented
and modified in the SETL language [44] is well known. Snyder’s new SETL2
language [45] significantly improves SETL in regard to its convenience in algo-
rithm specification, its compile- and run-time reliability and performance, and
its portability. The SETL2 language allows the physical organization and even
the performance of data structures and algorithms to be modeled abstractly
using mathematical data types that are algebraically formed from conventional
data by constructors for tuples, sets, and maps. These dala types can be ma-

10

E




nipulated by a rich repertoire of set-theoretic dictions such as arbitrary choice,
nondeterministic search, set comprehension, and quantification. Using SETL2
has allowed us to implement our algorithms with surprising speed. In the fu-
ture we also hope to make use of a promising new technology, just now being
reported, for mechanically transforming prototype SETL2 programs into high
performance C code [13].

Another major part of our research develops a logical framework for spec-
ifying and solving 2-dimensional geometric constraints. The Erep language
provides a formal syntax and semantics essential to problem specificalion and
problem solving. We seek a rich language of geometries and constraints for con-
veniently describing two-dimensional drawings. The language should also sup-
port mathematical analysis and transformation by either manual or mechanical
means. Within the Erep language, we seek mathematical and syntactic char-
acterizalions of classes of specifications that are correct; i.e., free from surlace
errors, valid; i.e., malhematical well constrained, and practical; i.e., efficiently
solvable and able to express the concepts needed in applications.

The special syntactic, semantic, and transformational capabilities of APTS
[12] are well suited to a flexible, experimental development of a logical framework
with an evolving Erep language and corresponding solver. Like systems such
as Centaur [4] the Synthesizer Generator [42], and Refine [41], APTS has a
single uniform formalism for lexical analysis, syntactic analysis, and pretty-
printing. However, the semantic formalism in APTS has several advantages
over the more conventional attribute grammar approach [28] that is used in
the Synthesizer Generator. APTS uses a logic-based approach to semantics in
which semantic rules that define relations are written in a Datalog-like language
[54, 39] but with the full expressive power of Prolog [18]. These rules are wrillen
independently of the individual grammar productions and without reference to
the parse tree structure. They define relations over a rich assortment of primitive
and constructed domains, and have the brevity and convenience of unrestricted
circular attribute gramimars. We are not aware of any implementation that
allows a comparable unrestricted circularity.

The semantic formalism in APTS is also integrated with a conditional rewrit-
ing component that is lacking in both the Synthesizer Generalor [42] and Cen-
taur (4], and is more abstract and user/friendly than Refine [41]. Although only
a prototype implementation of APTS is currently available, the inference and
rewriting engines used to compute and maintain semantic relations involve the
use of such highly eflicient algorithms that the observed performance is reason-
able [11]. In contrast to Refine, implemented in Common Lisp, APTS is portable
to a wide variety of machines and operating systems and, in particular, to any
UNIX platiorm.

Il




4 Solver Algorithmics and Extensibility

I'irst, we discuss our basic method for solving geometric constraints. It is based
on Owen’s method, but differs in some details. While Owen’s solver is top-down,
determining first the interaction between clusters of geometric elements, ours
is bottom-up. We begin in the basic algorithm by placing geometric elements
until a cluster has been determined. The construction steps needed are described
later. Once a cluster cannot be extended, another cluster is constructed in the
same way. Several clusters sharing geometric elements are then coalesced based
on some simple rules also described, by a rigid motion of one with respect to the
other. Coalesced clusters are again treated as clusters, so the recursive nature
of Owen’s algorithm is also manifest in our approach. In the basic algorithm,
only quadratic equations are solved. Thus, the basic algorithm is restricted to
ruler-and-compass constructible configurations.

For the larger class of geometric elements consisting of points, lines and
circles, our basic algorithin and Qwen’s methods do not solve all ruler-and-
compass constructible configurations. For example, for Subcase 1 of Table 1
below, our basic solver must be extended. DCM can solve the configuration
sometimes, depending on the way the problem is posed. We suspect thal a
complete ruler-and-compass constructible solver for the larger class of geometric
elements requires graph rewriting rules that are equivalent to the Knuth-Bendix
algorithm [29].

We also discuss a general method for extending the solver to configurations
that cannot be done with the basic algorithm. Qur strategy places two clus-
ters related by three constraints. The extension goes heyond ruler-and-compass
constructions, and requires a root finder for univariate polynomials. Concep-
tually, the extension corresponds to adding new geometric construction steps.
The solver could be extended arbitrarily further, in an analogous manner, but
al some point the number of construction steps becomes too large, and selecting
which one to apply begins to interfere with the speed of the solver.

4.1 Solving with Graph Reduction

As sketched in [38], we first translate the constraint problem into a constraint
graph. Specific graph reduction steps are applied that correspond to geometric
construction steps with ruler and compass, and derive clusters of geometric
elements that are correctly placed with respect to each other. By a recursive
extension, each cluster is then considered as a virtual geomelric element, and
the solver places the clusters with respect to each other. The recurston can go
to arbitrary depth.

12

+** Changes

*** Clhanges

% Changes




Figure 2: Example Configuration and Corresponding Constraint Graph. Unla-
beled edges represent incidence.

4.1.1 Cluster Formation

The user sketch, annotated with constraints, is translated into a graph whose
vertices correspond Lo geometric elements — points, lines and circles — and
whose edges are constraints between them. In particular, a segment is translated
into a line and two points, and an arc into a circle, two arc end points, and the
center of the circle. For example, the sketch of Figure 2 (left) is translated into
the graph of Figure 2 (right). In the graph, d represents a distance constraint,
an angle constraint, and p perpendicularity. Tangency has been expressed by a
distance constraint hetween the center of the circle and the line tangent to the
circle. All other graph edges represent incidence. Circles of fixed radius can he
determined by placing the center, so there is no vertex corresponding to atc ¢ in
the constraint graph. The basic idea of the solver algorithm is now as follows:

1. Pick two geometric elements {graph vertices) that are related by a con-
straint (connected by an edge) and place them with respect to each other.
The two elements are now known, and all other geometries are unknown.

2. Repeat the following: If there is an unknown geometric element with two
constraints relating to known geometric elements, then place the unknown
element with respect to the known ones by a construction step. The
geonlelric element so placed is now also known.

For example, in the graph of Figure 2, we may begin with elements a and B,
effectively drawing a line a and placing on it the point B anywhere. We can
now place in sequence b, C, and X. At this point, no additional elements can he
placed and the cluster is complete, as shown in Figure 3. Note that we neither
know where A is situated, nor how far the arc ¢ extends. Starting again, two
other clusters are determined. One cousists of X, D, d, E, and e. The other

13




Figure 3: Cluster U of Figure 2

cluster consists of a, A, and e. Note that the same geometric element may occur
in more than one cluster. Both cluslers are shown side-by-side in Figure 4.

4.1.2 Recursion

Two clusters with two geometric elements in common can, in general, be placed
with respect to each other simply by identifying Lhe shared elements.

Three clusters, each sharing a geometric element with one of the others, can
also be placed with respect to each other. Figure 5 shows both cases. Exceptions
to these two rules concern specific degeneracies. For example, if cluster U and
V have two lines in common, then they can be placed with respect to each
other. However, if the two shared lines are parallel, then the position of the two
clusters cannot be completely determined.

In the example of Figure 2, there are three clusters sharing the elements a,
e, and X. To place them, we compule the distance of X from a in cluster U, and
the distance of X from e in cluster V. The angle between a and e in cluster W is
already known. These three shared elements can now be placed, thereby fixing
the relative position and orientation of the three clusters.

A e

Figure 4: Clusters V and W of Figure 2

14

i
I
i
I
I
i
i




O
C N

Figure 5: Recursive Cluster Placement

The two cluster placement rules conceptually build alarger cluster from two
or three smaller ones. Additional clusters sharing two elements with this new
“super cluster” can be added in the same way, thereby growing larger clusters
[rom smaller ones. Recursively, super clusters can be placed with respect to
each other in the same way.

4.1.3 Construction Siteps

The reduction steps correspond to standardized geometric construction steps,
and also to solving standardized, small systems of algebraic cquations. The
construction steps include the following:

Basis Steps:  The basis steps place two geometric elements related by a
graph edge. They include placing a point on a line, placing two lines at a given
angle, placing two points at a given distance, and so on. Note that in general
there are several ways to place the geometric element.

Point Placements: These rules place a point using two constraints. They
include placing a point at prescribed distance from two given points, or at
prescribed distances from given lines, and so ou. See also Figure 6.

Line Placements: These rules place a line with respect to two given geo-
metric elements. They include placing a line tangent to a circle through a given
point, at given distance from two points, etc.

Circle Placement: These rules place a circle of fixed or variable radius.
Fixed-radius circles require only two constraints and determining them can be
reduced to placing the center point. Variable-radius circles require Lhree con-
straints and reduce in many cases to the Apollonius problem — finding a circle
that is tangent to three given ones.

Cluster Placement: Clusters are placed by placing shared geometries. If
necessary, the relationship between the shared geometric elements is computed
within each cluster, whereupon the two or three shared elements can he placed




Figure 6: Point Placement Rules: Left, by Distance from Two Points; Right,
by Distance from Two Lines.

with respect to each other.

Algebraic Formulation: Geometric elements are represented as follows: Points
are represented by Cartesian coordinates. A line is determined from its implicit
equation in which the coeflicients have heen normalized:

a:mzt+uy+p=0 i+ m?=1

It is well-known that in this formulalion p is the distance of the origin [rom the
line. Because of the normalization, lines are determined only by two numerical
quantities, the (signed) distance p of the origin from the line, and the direction
angle cos &« = n. Therefore, lwo constraints determine a line. Lines are oriented
by choosing (—n,m) as the direction of the line. Circles are represented by the
Cartesian coordinates of the center and the radius, an unsigned number.

In many cases it is quite obvious how Lo determine the coordinates of Lhe
next geomelric element from the constraints relating it to known geometric
elements. By restricting to simple construction steps, the bastc algorithm solves
at most quadratic equations. In some cases, up to three simultancous quadratic
equations must be solved. Ior example, given three circles of fixed radius,
finding a circle tangent to all three requires solving the following system,

(z—21)+ (y— ) (r £r)?
(z =2+ (y—w) = (r£m)
R e O

where the choice of the sign on the right-hand sides determines which of up to
eight possible solutions is determined. Here, (zy, y:) is the center of circle k&, and
i is its radius. Such constructions are done by precomputing a normal form of
the system from which to the unknowns are easier to find. Preprocessing can
be done using Grobner hases; e.g., [8].

16




O

a a—————FC

Figure 7: Indidence of A with a and C with ¢ and Resulting Constraint Graph.

4.1.4 Graph Transformations

The scope of the basic solver can be extended by certain grapl transformations.
For example, when two angle constraints « and /3 are given belween three lines,
then a third angle constraint can be added requiring an angle of 180° — a — 3.
Similar transformation rules can be introduced for simple geometric relation-
ships.

Graph transformations are a simple and effective technique to extend the
scope of the solver. However, one should avoid transformations that restrict
the generality of the solution. For example, consider the configuration shown in
Figure 7 in which the point A is constrained to be on line a, and point C on line c.
The situation implies that either lines a and ¢ are incident, or that poinls A and
C areincident. As discussed further below, the two possibilities lead to different
solutions. If we were to apply a transformation to the constraint graph that
added one of the incidences as new graph edge, then we would have excluded
the other possibility, and with it some solutions. If we added hoth incidence
edges, then we would have introduced the unwarranted assumption that both
the points and the lines coincide. In each case we can exhibit examples in which
a solvable constraint problem lecomes unsolvable.

4.2 Solver Extensions

The basic algorithm {for solving constraints given before can be extended to han-
dle more complex geometric situations. The strategy discussed here generalizes
the placement of two clusters with respect to each other, when tliree constraints
between them are given.

4.2.1 Placing Two Clusters

Consider the extension necessary to handle the situation shown in Figure 8.
A cluster U and a cluster V have been solved separately, and three distinct
elements have been identified in each that are constrained such that the two
clusters can be placed with respect to each other. Since six distinct elements
are involved, the basic algorithm cannot solve this problem.

17

*¥** Changes




Figure 8: Case (p,p,!) = (I,1,p)

If we examine every possible configuration of two clusters so related by three
constraints and add graph reductions that place such clusters with respect to
each other, then the solver has heen extended to a much larger class of con-
straint problems. We analyze one constraint configuration. In this particular
configuration, as well as in 2 number of other cases, the solver’s competence is
extended beyond ruler-and-compass constructible configurations.

Assume that in cluster U the three elements are the points A and B and
the line ¢, and in cluster V the elements are two lines a and b and a point
C. The constraint possibilities are 4 for distance, ¢ for incidence, a for angle,
and p for parallel. Depending on the combination of these comstraint types, a
construction sequence can be determined that fixes one cluster with respect to
the other.

In the configuration considered, it is advantageous to fix cluster V and move
cluster U relative to it such that all constraints are satisfied. Conceptually, we
solve the cases in one of two ways:

(A) For some combinations, a sequence of ordinary construction steps places
the second cluster, possibly with the introduction of auxiliary construction
points, lines and/or circles.

(B) For some combinations, we consider two of the three constraints and pre-
compute the locus of the geometric element whose constraint has been
ignored for the moment. If this element is a point, Lthe locus is an implicit
algebraic curve whose coefficients are expressions in the given constraints.
Then, the precomputed locus is intersected with a construction line or
circle and the intersections identify those positions for the third geometric
element for which all constraints are satisfied.

Note that the second method is not necessarily equivalent to a ruler-and-compass
construction.

[8




Subcase | Properties | Properties | Constraints | Method of
Number of U of V Combination | Solution
Aic Cia Aia
L. Bdjic Cdfib Bd/ib (A)
AdB aal/pb ciC
Aic Cda Aia
2. Bdfic Cdb Bdfib (B)
AdB aafpb ctC
Adc Cia Aia
3. Bdc Cdb Bd/ib (B)
AdB ae/phb c:C

Table 1: Essential Combinations of {(p, p,!) = (I,1,p). Constraint symbols are
¢ = incidenl, d = nonzero distance, p = parallel, @ = nonzero angle.

Table 1 summarizes the essential combinations and identifies which approach
is to be used. The other combinations can be mapped to those of the table by
replacing some of the lines in U and V with suitably positioned parallel lines.

Consider Subcase 1, assuming that B is not incident to ¢, and that B should
be at distance e from b. The two clusters are shown in Figure 9, with 7 the
distance of A from B and ¢ the distarce of B from ¢. Two [amilies of solutions
exist: Either the lines a and c coincide, possibly in opposile orientation, or
the points A and C coincide. In the first situation, the locus of B is a pair of
lines parallel to c, at distance . Four intersections with lines parallel to b at
distance e are four possible locations for B, and each of them determines the
relative position of U with respect to V. In the second situation, the locus of B
is a circle around A, and the up to four intersections with lines parallel to b at
distance e are the possible locations for B.

Now consider Subcase 2 in Table 1. We determine the curve that is the locus
of B, assuming that B has coordinates (z,y). By a coordinate transformation,

I'igure 9: Subcase | Configuration

19




Figure 10: Subcase 1, First Solution

TFigure 11: Subcase |, Second Solution




/ A=(a0) a

Figure 12: Case B dc, Aic

moreover, we can assume that C has coordinates (0, 1) and that A, constrained
to be on a, has coordinates (,8). In the simplest case, A and B are both on ¢,
distance d, apart. In Figure 12 this corresponds to ds = 0.

The cotangent of the angle # hetween lines ¢ and a is Lthen —a, so Lhal we
can express sin # = 1/u and cos@ = —a/u, where u = /1 + . The locus of B
can therefore be described by three equations:

zu—au+dja =
yu—d

ut—a® = 1

Eliminating e with a Grébner basis computation establishes that the locus of B
is the degree 4 curve

v =20+ + (1 - d) +2diy - di =

If d; # 0; i.e., if B does not lie on C, then the equations describing the locus of
B are only slightly more complicated, and are

st—aut+datds = 0
yu—d, +dsa = (0

s a
uw—a =

Again, B lies on a degree 4 curve whose coefficients are polynomial in d, and d»
of degree 4.

The most general situation occurs when A is not on c, as shown in Figure 13.
Other cases can be reduced to this situation by replacing the lines with parallel
lines at a suitable distance. Referring to Figure 13, the equations describing the

21




Figure 13: Case B d¢, A d ¢

locus of B are

zu—au+dia’ +dog—ds = 0
yu—dy +doa’ —da’ = 0

0

}

a—a +dyu =

w?—a® =
By a Grobner basis computation one determines that the locus of B is also a
curve of degree 4. The coefficients are polynomials in the ;. of degree up to 4.

Many other combinations of three constraints between two clusters must he
considered when so extending the solver. In each case, we conceptually satisly
two constraints and examine the locus of the geometric item whaose constraint we
ignored under the remaining degree of freedom. Thus, it suffices to examine pairs
of constraints between two clusters and derive, for each arising case, the locus
of the element in question. Since we have the choice of which two constraints
to satisly, the number of different cases can be reduced significantly.

If the element whose locus we determine is not a poinl, then we need equa-
tions for the determining quantities. In the case of lines, those are the coefficients
of the line equation, or, equivalently, the direction angle and the distance from
the origin. For example, consider the case (p,{,{) = ({,p,{). Here we may want
to approach the situation as we did in the case (p,{,!) = ({,p,p), and precom-
pute how the line equation varies with the remaining mobility when satisfying
the first two constraints. In the subcase 3, the most general situation, we have
to determine the distance of the moving line fromn the origin and the components
of the normal vector after norming it to length 1; see also Figure 14. Let o be
the fixed angle between the lines b and c, # the angle determining a particular
position of the moving configuration. Let y be the direction angle of a line d with
which b is Lo form an angle 4. Then we must solve o + & = v+ §, accounting for
the different positions of the moving configuration in which the constraints can
be satisfied. Once & is known, the resulting configuration is easily computed. In
more complicated situations, a system of equations is formulated as for the point

22




d C=(0,1)

A=(a,0] 0 B
A'=(a’,0) D a

Figure 14: Configuration [or Satis{ying Line Constraints

locus, expressing line distance from the origin and direction angle as function
of the parameters and an additional quantity, such as & or the coordinates of a
moving point, and a nonlinear equation is solved that is precomputed from the
system using Grobner bases.

Ultimately, many of the cases and subcases we have to consider reduce to
a few generic situations that are characterized by the selection of which two
of the three constraints govern the relative motion between the two clusters.
Particularly in the case of point loci, classical curves are obtained that are
described in the literature; see, e.g., [36], or the literature on plane kinematics.
The curve of subcase 2 above, with d» = 0, is a conchoid of a line. In Figure
[5 a segment end is constrained to a circle and the segment incident Lo a [ixed
perimeter point C. This case is solved by the lmacon of Pascal, a conchoid of
the circle.

A

Figure 15: Locus of Segment Through a Fixed Perimeter Point is the Limacon
of Pascal

23




Figure 16: Several Structurally Distinct Solutions of the Same Constraint Prob-
lem

5 User Interaction

In general, a well-constrained geometric constraint problem has an exponential
number of solutions. For example, consider drawing = points, along with 2n — 3
distance constraints between them, and assume that the distance constraints are
such that we can place the points serially, each time determining the next point
by two distances from two known points. In general, each new point can be
placed in two different locations: Let py and p; be known points from which the
new point g is to be put at distance dy and 4, respectively. Draw two circles, one
about py with radius ds, the other about p,, with radius d,. The intersection
of the two circles are the possible locations of ¢. For n points, therefore, we
could have up to 2"~? solutions. Which of these solutions is the intended one
would depend on the application that created the constrainl problem in the
first place. We discuss how one might select the “right” solution. We call
this the root identification problem, because on a technical level it corresponds
to selecting one among a number of different roots of a system of nonlinear
algebraic equations.

Although some solutions of a well constrained problem are merely symmelric
arrangements of the same shape, others may differ structurally a great deal.
Figure 16 shows several possibilities to illustrate the possible range. But an
application will usually require one specific solution. To identify the intended
solution is not always a trivial undertaking. Moreover, the wide range of possible
solutions has severe consequences on the problem of communicating a generic
design based on well-constrained sketches. Since a sketch with a constraint
schema would not necessarily identify which solution is the intended one, more
needs to be communicated.

In this section, we consider three approaches: selectively moving geomet-
ric elements, adding more constraints to narrow down the number of possible
solutions, and, finally, a dialogue with the constraint solver that identifies inter-
actively the intended solution. These are approaches that have to contend with
some difficult technical problems. We also consider the possibility of structuring

24




the constraint problem hierarchically. Doing so would increase knowledge of the
design intent, and would diminish some of the more obvious technical problems.

5.1 Moving Selected Geometric Elements

Al constraint solvers known to us adopt a set of rules by wlich Lo select the
solution Lhat is ultimately presented to the user. Whether stated explicitly, as
we will later, or incorporated implicitly into the code of the solver, these rules
ultimately infer which solution would be meant by observing topological and for
coordinate relationships of the initial sketch with which the user specified the
constraint problemn. When the solution is presented graplhically to the user, it
seems natural that the user, again graphically, select certain geometric elements
of the final sketch that are considered misplaced. The user could then show
the solver where the selected element(s) should be placed in relation to other
elentents by moving them with the mouse.

This very simple idea ultimately may be effective, but there are a number
of conceptual difficulties that need to be overcome. For example, picking a
geometric element is ambiguous. Because of the recursive nature of the solver,
plcking could refer to the individual element, or to the cluster or super cluslers
of which it became part. More importantly, the required restructuring nught
entail more complex operations than merely moving a single group of geometric
elements. Furthermore, since the length of segments and arcs often implicitly
depends on the final placement, it is not clear whether Lhe user can reasonably
be expected Lo understand the effect of moving geometries.

In DCM [19, 38], a movc instruction relocates a geometric element. There-
upon, the solution can be recomputed, and other elements can be moved. it
appears that the solver uses the new position coordinates when applying the
normal placement heuristics selecting a solution. We found the move instruc-
tion difficult. Some of the time, the effect was as intended, bul many times it
was unexpected. However, with more research, a useful paradigm for identifying
intended solutions of geometric constraint problems may well emerge.

5.2 Adding More Constraints

Consider once more the problem of placing » points with prescribed distances.
We could narrow down which solution is meant in one of two ways: We may add
domain knowledge from the application, or we may give additional geometric
constraints that actually overconstrain the problem. Unfortunately, both ideas
result in NP-complete problems.

Tor instance, assume that the set of points is the set of verlices of a polygonal
cross section. In that case, application-specific information might require that

25




Figure 17: Two Solutions for Three Parallel Lines

the resulting cross section is a simiple polygon; that is, it should form a polygon
that is not self-intersecting. This may be communicated by giving, in addition,
a cyclical ordering of the points; i.e., the sequence of vertices of the cross saction.
This very simple additional requirement makes the problem NP-complete:

Theorem {Capoyleas)

Given n points in the plane that are well-constrained by 2n — 3
point-to-point distances, and a cyclical ordering specilying how to
connect the points to obtain a polygon. Then identifying a solution
for which the resulting polygon is simple, i.e., is not self-intersecting,
is NP-complete.

Consequently, there is little hope for adding domain-specific knowledge about
the application with the expectation of obtaining an efficient constraint solver
that finds the intended solution in all cases.

Instead of adding application-specific rules, for instance to derive simple
polygons, we could add more geometric constraints. For example, consider
specifying three parallel lines along with distances between two pairs of them.
As shown in Figure 17, there are two distinct solulions of this well-constrained
problem. By adding a required distance between the third pair of paraliel lines
we can eliminate one or the other case, and make the solution unique.

Overconstrained geometric problems have heen carefully avoided by the field
hecause the sel of constraints might be contradictory. However, blue prints
are usually overdimensioned, although not for reasons of eliminating unwanted
solutions, but for limiting errors through redundancy. Again, it is unfortunate
that even for the simple case of placing parallel lines the overconstrained problem
is NP-complete.

Since adding constraints even in such simple situations results in NP-complete
problems, it seems to us that the attractive idea of adding more constraints to
narrow the range of possible solutions will not work very well in practice. It is
plausible that a heuristic approach succeeds in solving this problem in a range
of cases thal are of practical interest, but always with the possibility thal for
specific instances the solver would bog down. Again, further research is needed
to better understand the potentialities of the approach.

26




5.3 Dialogue with the Solver

The considerations above seem to suggest that no automalic approach to root
identification will succeed in delivering an efficient constraint solver that gets the
intended solution every time. Consequently, we feel thal a promising alternative
is to devise a few simple heuristics that succeed in many cases and are easy to
understand. Beyond that, we rely on interaction with the user in those cases in
which the heuristics fail to deliver an acceptable solution. Note that placement
rules are used very widely, but are rarely discussed.

5.3.1 Placement Heuristics

All solvers known lo us derive from the initial geometric sketch information
that is used to select a specific solution. This is reasonable, since one can
expect that a sketch is at least topologically accurate, so that observing on
which side of an oriented line a specific point lies in the sketch is often reliably
indicating where it should be in the final solution. Mowever, when generic
designs are archived and and later edited, one should no longer expect such
simple correspondences between the sketch and the ultimate solution, because
as dimension values change, so may the side of a line on which a point is situated.

In our system, we use very few but highly effective rules. We keep the number
of tules to a tunimum because we do not believe that root identification has a
salisfactory and completely automated solution. Where Lhe rules [ail, we rely
on user interaction to amend them as the situation might require. Note that our
rules are fully supported by the Erep approach in that the different situations
can be characterized and recorded faithfully.

Three Points: Consider placing three points, p;, pa and pa, relative to each
other. The points have been drawn in the initial sketch in some position, and
therefore have an order that is determined as follows. Determine where p, lies
with respect Lo the line (p,, p;) oriented from p, to p». If py is on the line, then
determine whether it lies between p;, and ps, preceding p, or following p,. The
solver will preserve this orientation if possible.

Two Lines and One Poinl: When placing a point relative to two lines, one
of four possible locations is selected based on the quadrant of Lhe oriented lines
in which the poinl lies in the original sketch. Note that the line orientation
permits an unambiguous specification of the angle between the lines.

One Line and Two Points: The line is oriented, and the points, p, and
p2, are kept on the same side(s) of the line as they were in the original sketcli.
Furthermore, we preserve the orientation of the vector 77, - with respect to the
line orientation by preserving the sign of the inner product with the line tangent
vector,

Tangent Are: An arc tangent to two line segments will be centered such that

27




Figure 18: The Two Types of Tangency between an Arc and a Segment

the arc subtended preserves the type of tangency. The two types ol tangency
are illustrated in Figure 18. Moreover, the center will be placed such that the
smaller of the two arcs possible is chosen, ties broken by placing the center on
the same side of the two segments as in the input sketch. As specific degeneracy
heuristics, an arc of length 0° is suppressed.

All rules except the tangency rule are mutually exclusive. They are therefore
applicable withoul interference. The tangency rule could contradict the other
rules, because dimensioned arcs and circles are determined by placing Lhe center.
In such cases, the tangency rule takes precedence. In our experiments with these
rules, we found that most situations are solved as the user would expect. The
rules arc easy to implement, and are easy to understand for the user.

5.3.2 Selecting Alternative Solutions

A useful paradigm for user-solver interaction has to be intuitive and must ac-
count for the fact that most application users will not (and should not) be inti-
malely knowledgeable about the technical workings of the solver. So, we need
a simple but effective communication paradigm by which the user can interact
with the solver and direct it to a different solution, or even browse through a
subset of solutions in case the one that was found is not “right.”

Conceptually, all possible solutions of a constraint problem can be arranged
in a tree whose leaves are the different solutions, and whose internal nodes
correspond lo stages in the placement of elements or clusters. The different
branches from a particular node are the different choices lor placing the element
or cluster. The tree has depth proportional to the number of elemonts and
clusters. Browsing through all possible solutions would be exponential in the
nuinber of elements and would be inappropriate, but stepping {rom one solution
to another one is proportional to the tree depth only.

We have added to our solver an incremental mode in which the user can
browse through the construction tree and be visually informed which elements
have been placed at a particular moment. With a button, the user steps forward
or backwards in the construction sequence, thus traversing the tree path back-
wards, towards the root, or forward, towards a leaf. Al each level, the geowmetric
element(s) placed at that point are highlighted, and a panel displays the nuber
of possible positions. The user can then select which one of the possible choices

28




should be used.

For example, consider the constraint example of Figure 2. The role of Lthe arc
is clearly to round the corner that would be formed otherwise by the adjacent
segments. When drawn as indicated in the figure, and with angle values larger
than 45°, the solver finds the leftmost solution in Figure 16. However, when
the angles are changed subsequently to 30°, the solver heuristics will select the
solution shown in Figure 19, because the center of the arc remains on the same
side of the adjacont segments. The user now relocates the cenler by changing

Figure 19: Default Sclution After Changing Angles

the placement of Arj, with respect to Sg; and Sgo. By pressing the level
buttons, Lhe user returns to level 7. Here, Arjp and Sg; are highlighted. The
user now changes the solution by pressing the soln. buttons. This changes the
arc center with respect to Sg; only. Continuing with the level buttons, on level
4 Arp and Sgg are highlighted. Again, a different solution is selected on that
level, changing the arc with respect to .Sg,. Now the solver will construct the
solution shown in Figure 20. We have found this simple interaction technique
highly useful in exploring alternative solutions, and most users become elfective
in directing the solution process in a very short time.

In the Erep specifications of the interaction process, the solver is instructed
serially to perform a back-up or to seek the next way to place an element or a
cluster. This convention excludes solvers that find a solution by a numerical,
iterative computation which places all geometric elements atl once, unless the jt-

29




& ¥ ] @S B e

File Yieu {ixds

P2

O Dictanco
& imlc

© Paduz
& Tarenil
On

£ Alion
[+ 2303

& Parallel

v e & Perperdicular

& Concentric

Tope,

N e o R |

Figure 20: Interactively Changing Solutions: Elements highlighted are placed
with respect to each other at this level in the solution tree.

30




720 ]

I'igure 21: A Constraint Problem

eration is hased on homotopy continuation techniques that can find all solutions
of a nonlinear system of equations nnmerically.

Note that different solvers may cluster geometric elements differently and
place the elements and clusters in a different sequence. Therefore, the same
interaction sequence with the solver would have different effects with diflerent
solving algorithms. This cannot be avoided: To arrange the tree of solutions in
canonical order, we either prescribe a canonical sequence a-priori in which the
geometric elements have to be computed, or else we compute a canonical hasis
for the ideal generated by the constraint equations that describe the geometric
problem, and then enumerate the associated variety in a canonical way; e.g., [8].
In the first case, we would prescribe the solver algorithm to belong Lo a certain
family. In the second case, the ideal basis computation is equivalent to solving
the constraint problem and thus constitutes committing to a canonical solver.¥
Both ways compromise devising a ncutral format of archiving. Consequently,
we can neutrally archive a constraint problem (solved or unsolved), but not the
manner in which to solve or seek an alternative solution. This is an intrinsic
problem when solving geometric constraints.

5.4 Design Paradigm Approach

Consider solving the constraint problem of Figure 21. The role of the arc is
clearly to round ihe adjacent segments, and thus it is most likely that the
solution shown in IFigure 22 on the left is the one Lhe user ineant rather than the
one on the right, when changing the angles to 30°. The solver would be unaware
of the intended meaning of the arc, and thus needs a technical heuristic, such
as the tangen!l arc rule, to avoid the solution on the right. It would be much
simpler if the user would sketch in such a way that the design intent of the arc
is evident.

VBecause such a canonical solver would be completely general, il could notl be very fast in
many situations, since the efliciency of constraint solvers rests on resiricting the generality of
the solver.

31




72.0 1

30,0 30,0~
|

200 20.0

750 72.0

30.0 30.0

Figure 22: Two Solutions of the Constraint Problem of Figure 21 after Changing
Angles

The difficulty for the geometric constraint solver is that sketches are usually
flat; i.e., the geometric elements are not grouped into “features.” It would be
better to make sketches hierarchically: First, a basic dimension-driven sketch
would be given. Then, subsequent steps, also dimension-driven, would modify
the basic sketch and add complexity. In our example, the basic sketch could
be a quadrilateral. There would be one subsequent modification adding a two-
dimensional round with a required radius. This is analogous to feature-based
design as implemented in current CAD systems.

The hierarchical approach to sketching has other important benefits. Since
the sketch is structured, later modifications can be driven [rom constraints used
in earlier steps, so that simple functional dependencies and relations between
dimension variables of previously defined sketch features can be defined and
implemented with trivial extensions of our basic constrainl solver.

6 Summary and Future Work

Research on constraint solving should develop natural paradigms for narrowing
down the number of possible solutions of a well-constrained geometric problem
and devising solver interaction paradigms that allow tlie user to correct solutions
that were not intended. With increasing penetration of constraint-based design
interfaces, this problem is becoming increasingly more pressing,.

Which solution is the interded one is also an issue when considering design
archival in a neutral format. So far, neutral archiving formats have been re-
stricted to detailed design without a formal record of design intent, constraint
schema, editing handles, and so on. Where editable design has been archived,
it has been done in a proprietary format native to the particular CAD system,
and is typically a record of the internal data structures of the CAD system. In
[24] we have presented alternatives. Current trends in data exchange standards
indicate a growing interest in archiving constraint-hased designs in which this

32




additional information has been formalized without commitiment to a particular
CAD system.

In constraint-hased, feature-based design, it is common to have available a
variational constraint solver for 2D constraint problems, but not for 3D geo-
metric constraints. This is particularly apparent in ihe persistent id problem
discussed in [23}. A well-conceived 3D constraint solver conceivably can avoid
these problems and assist in devising graphical techniques for generic design.

In manufacturing applications one is interested in functional relationships
between dimension variables, because such relationships can express design in-
tent very flexibly. Some parametric relationships can be implemented easily by
structuring the sketcher as advocated in Section 5.4. Morcover, simple func-
tional relationships are the content of certain geometry theorems, such as the
theorems of proportionality, and many other classical resulls. Such theoremns
can be added to the constraint solver in 2 manner analogous to the extensions
we have discussed before. But in general, functional relationships between di-
mension variables necessitate additional mathematical techniques. (Geometric
theorem proving has developed many general techniques that are applicable,
but suitable restrictions are still needed to achieve higher solver speeds.

Geometric coverage refers to the range of shapes the constraint solver un-
derstands. In this work, we have restricted the geometric coverage to points.
lines and circles. Conic sections would be easy to add, as would e splines such
as Bézier curves, when translating the constraints to equivalent ones on control
points. There is a rich repertoire of literature in CAGD that provides convenient
tools for doing so. Yet it is far from clear whether control point manipulations
are a universal tool for expressing constraints that the user finds natural, and
we miss studies that analyze how to design with splines {from an application’s
point of view,

Even with the resticted geometric coverage discussed here, some theoretical
problems remain open. Although no precise analysis has been made, neither
Owen’s nor our constraint solving algorithm seems to run in worst case time
linear in the number of graph edges. We conjecture that hoth algorithms run in
quadratic thme due to repeated traversals over regions of the graph. It would be
worthwhile to analyze the worst case running times of these algorithms precisely,
and study how to improve it. It is also worthwhile to consider how to minimize
the arithmetic operations involved in the construction steps, and to analyze
construction sequences [or numerical stability.

Acknowledgement

We had several insight{ul discussions with John Owen from D-Cubed, Léd.

33




References

[1] B. Aldefeld. Variation of geometries based on a geometric-reasoning
method. Computer Aided Design, 20(3):117-126, April 1988.

[2] L. A. Barford. A Graphical, Language-Based Editor for Gieneric Solid Mod-
els Represented by Constrainis. PhD thesis, Dept of Computer Science,
Cornell University, March 1987. TR 87-813.

[3] A. H. Borning. The programming language aspects of ThingLab, a con-
siraint oriented simulation laboratory. ACM TOPLAS, 3(4):353-387, 1981.

[4] P. Borras, D. Clement, T. Despeyroux, J. Incerpi, G. Kaln, B. Lang, and
V. Pascual. Centaur: the system. Technical Report Rapports de Recherche
777, INRIA, 1987.

[5] D. H. Brown Associales. Conceptual Design: Tradeofls in Performance and
Flexibility. Notes on the design of Pro/ENGINEER, 1991.

[6] B. Bruderlin. Constructing Three-Dimensional Geometric Objects Defined
by Constraints. In Workshep on Interactive 8D Graphics, pages 111-129.
ACM, October 23-24 1986.

(7] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselcmente des
Restklassenringes nach einem nulldimensionalen Polynomideal. PhD the-
sis, University of Innsbruck, Austria, 1965.

[8] B. Buchberger. Grébner Bases: An Algorithmic Method in Polynomial
Ideal Theory. In N. K. Bose, editor, Multidimensional Systems Theory,
pages 184-232. D. Reidel Publishing Co., 1985.

[9] B. Buchberger, G. Collins, and B. Kutzler. Algebraic methods for geometric
reasoning. Annual Reviews in Computer Science, 3:85-120, 1988.

[10] A. Bundy and R. Welham. Using Meta-level Inference for Selective Appli-
cation of Multiple Rewrite Rule Sets in Algebraic Manipulation. Artificial
Intelligence, 16:189-212, 1981.

(11] J. Cai. A language for semantic analysis. Technical Report 635, New York
University, Dept. of Comp. Science, 1993.

[12] J. Cai, P. Facon, F. Henglein, R. Paige, and E. Schonberg. Type trans-
formation and data structure choice. In B. Moeller, cditor, Consiructing
Programs From Specifications, pages 126-124. North-Holland, 1991.

[13] J. Cai and R. Paige. Towards increased productivity of algorithm imple-
mentation. ACM SIGSOFT, to appear, 1993.

34




[14] C.-S. Chou. Mechanical Theorem Proving. D. Reidel Publishing, Dordrecht,
1987.

[15] C.-8. Chou. A Method for the Mechanical Derivation of Formulas in Ele-
mentary (veometry. Journal of Automated Reasoning, 3:291-299, 19587.

[16] C.-S. Chou. An Introduction to Wu’s Method for Mechanical Theorem
Proving in Geometry. Journal of Automated Reasoning, 4:237-267, 1988.

[17] C.-S. Chou and W. Schelter. Proving Geometry Theorems with Rewrite
Rules. Journal of Automaied Reasoning, 2:253-273, 1986.

[18] W. Clocksin and C. Mellish. Programming in Proleg. Springer Verlag, 1981.

[19] D-Cubed Ltd, 68 Castle Strect, Cambridge, CB3 0AJ, England. The Di-
mensionel Constraint Manager, May 1993. Version 2.5.

(20) W. Fitzgerald. Using Axial Dimensions to Determine the Proportions of
Line Drawings in Computer Graphics. Computer Aided Design, 13(6):377—
382, November 1981,

[21] B. Freeman-Benson, J. Maloney, and A. Borning. An Incremental Con-
straint Solver. CACM, 33(1):54-63, 1990.

[22] J. Gosling. Algebraic Constraints. Technical Report CMU-C5-83-132,
CMU, 1983.

[23] C. M. Hoffmann. On the semantics of generative geometry representations.
In {9th ASME Design Automation Coenfcrence, 1993.

[24] C. M. Hoffmann and R. Juan. Erep, a edilable, high-level representation
for geometric design and analysis. In P. Wilson, M. Wozny, and M. Pratt,
editors, Geometric and Product Modeling. North Holland, 1993.

[25] S. Johnson. Yacc - yet another compiler compiler. Technical Report Com-
puter Science Report 32, AT&T Bell Laboratories, Murray Hill, N.J., 1975,

[26] D. Kapur. A refutational approach to geometry theorem proving. In
D. Kapur and J. Mundy, editors, (feometric Reasoning, pages 61-93. M.L.T.
Press, 1989,

[27] D. Kapur and J. Mundy. Wu’s method and its applications to perspective
viewing. In D. Kapur and J. Mundy, editors, G'eometric Reasoning, pages
15-36. M.L.T. Press, 1988.

(28] D. Knuth. Semantics of context-free languages. Mathcmatical Systems
Theory, 2:127-145, 1968.

35




[29] D. Knuth and P. Bendix. Simple word problems in universal algebras. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263—
297. Pergammon Press, Oxford, 1970.

[30] K. Kondo. PIGMOD: parametric and interactive geometric modeller for
mechanical design. Computer Aided Design, 22(10):633-644, December
1990.

(31] K. Kondo. Algebraic methed for manipulation of dimensional relationships
in geometric models. Computcr Aided Design, 24(3):141-147, March 1992,

[32] G. Kramer. Solving Geometric Constraint Systems. MIT Press, 1992.

[33] W. Leler. Constraint Programming Languages: Thcir Specification and
(Yeneration. Addison Wesley, 1988.

[34] J. Li. Using algebraic constraints in interactive text and graphics editing,.
In D. A. Duce and P. Jancene, editors, Eurographics '88, pages 197-205.
Flsevier North-Holland, 1988.

{35] R. Light and D. Gessard. Modilication of geometric models through vari-
ational geometry. Compuler Aidcd Design, 14:209-214, July 1982.

[36] E. H. Lockwood. A Book of Curves. Cambridge University Press, 1961.

[37] G. Nelson. Juno, a costraint-based graphics system. In SIGGRAPH, pages
235-243, San Francisco, July 22-26 1985. ACM.

[38] J. Owen. Algebraic solution for geometry from dimensional constraints. In
ACM Symp. Found. of Solid Modeling, pages 397-407, Austin, Tex, 1991.

39] R. Paige. AptS external speciﬁca.l.ion manual. internal (IOCIIIIIE'.llt.atiOIl,
g

[40] Pro/ENGINEER. Modeling Users Guide: 2D Skelcher. Parametric Tech-
nologies. Release 8.0.

[41] Reasoning Systems. Refine User’s Guide, 1990. Version 3.0.

[42] T. Reps and T. Teitelbaum. The Synthsizer Generator. Springer Verlag,
1988.

[43] A. Requicha. Dimensionining and tolerancing. Technical report, Production
Automation Project, University of Rochester, May [977. PADL TM-19.

[44] J. Schwartz, R. Dewar, D. Dubinsky, and E. Schonberg. Programming with
Sets: An introduction to SETL. Springer Verlag, 1986.

36




[45] K. Snyder. The SETL2 programming language. Techuical report, New
York University, Computer Science, Courant Institute, 1990.

[46] W. Sohrt. Interaction with Constraints in three-dimensional Modeling.
Master’s thesis, Dept of Computer Science, The University of Utah, March
1991.

[47] L. Solano and P. Brunet. A system for constructive constraint-based model-
ing. In B. Falcidieno and T. Kunii, edilors, Modeling in Compulcr Graphies.
Springer Verlag, 1993.

[48] G. L. Steele and G. L. Sussman. CONSTRAINTS - A Language for Ex-
pressing Almost-Hierarchical Descriptions. Artificial Intelligence, pages 1-
39, January 1980,

[49] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Read-
ing, MA, 1991.

[50] G. Sunde. Specification of shape by dimensions and other geomelric con-
straints. In M. J. Wozny, H. W. McLaughlin, and J. L. Encarnacao, editors,
Geometric Modeling for CAD Applications, pages 199-213. North Holland,
IFIP, 1988.

[51] 1. Sutherland. Sketchpad, a man-machine graphical communijcation system.
In Proc. of the spring Joint Comp. Conference, pages 329-345. IFIPS, 1963.

[52] H. Suwzuki, H. Ando, and F. Kimura. Varialion of geometries based on a
geometric-reasoning method. Comput. & Graphies, 14(2):211-224, 1990.

[53] P. Todd. A k-tree generalization that characterizes consistency of dimen-
sioned engineering drawings. SIAM J. DISC. MATH., 2(2):255-261, 1989.

[54] J. Ullman. Principles of Database and Knowledge- Base Systems. Computer
Science Press, 1988.

[65] A. Verroust, F. Schonek, and D. Roller. Rule-oriented method for param-
eterized computer-aided design. Computer Aided Design, 24(3):531-540,
October 1992.

[56] A. Witkin, K. Fleischer, and A. Barr. Energy Constraints on Parameterized
models. Computer Graphics, 21:225-232, 1987.

[57] Wu Wen-Tsiin. Basic principles of mechanical theorem proving in geome-
tries. J. of Systems Sciences and Mathematical Scicnees, 4:207-235, 1986.

[58]) Y. Yamaguchi and F. Kimura. A constraint modeling syslem for variational
geometry. In M. J. Wozny, J. U. Turner, and K. Preiss, editors, (Geometric

37




Modeling for Product Engineering, pages 221-233. Elsevier North Holland,
1990.

38






