
Geometric Continuity, Shape Parameters, 
and Geometric Constructions 
for Catmull-Rom Splines 

TONY D. DEROSE 

University of Washington 

and 

BRIAN A. BARSKY 

University of California 

Catmull-Rom splines have local control, can be either approximating or interpolating, and are 

efficiently computable. Experience with Beta-splines has shown that it is useful to endow a spline 

with shape parameters, used to modify the shape of the curve or surface independently of the defining 

control vertices. Thus it is desirable to construct a subclass of the Catmull-Rom splines that has 

shape parameters. 

We present such a class, some members of which are interpolating and others approximating. As 

was done for the Beta-spline, shape parameters are introduced by requiring geometric rather than 

parametric continuity. Splines in this class are defined by a set of control vertices and a set of shape 

parameter values. The shape parameters may be applied globally, affecting the entire curve, or they 

may be modified locally, affecting only a portion of the curve near the corresponding joint. We show 
that this class results from combining geometrically continuous (Beta-spline) blending functions with 

a new set of geometrically continuous interpolating functions related to the classical Lagrange curves. 
We demonstrate the practicality of several members of the class by developing efficient computa- 

tional algorithms. These algorithms are based on geometric constructions that take as input a control 

polygon and a set of shape parameter values and produce as output a sequence of Bizier control 

polygons that exactly describes the original curve. A specific example of shape design using a low- 

degree member of the class is given. 

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computational Geometry and 

Object Modeling-curve, surface, solid, and object representations; J.6 [Computer Applications]: 

Computer-Aided Engineering, Computer-Aided Design 

General Terms: Algorithms, Design 

Additional Key Words and Phrases: Approximation, Beta-splines, Bezier curves, Catmull-Rom 
splines, computer-aided geometric design, curves and surfaces, geometric continuity, interpolation, 

shape parameters 

This work was supported in part by the Defense Advanced Research Projects Agency under contracts 

N00039-82-C-235 and N00039-84-C-0089, the National Science Foundation under grants ECS- 
8204381, CCR-8451997, and DMC-8602141, Control Data Corporation, and AT&T Bell Laboratories. 

Authors’ addresses: T. D. DeRose, Department of Computer Science, FR-35, University of Washing- 

ton, Seattle, WA 98195; B. A. Barsky, Berkeley Computer Graphics Laboratory, Computer Science 
Division, Department of Electrical Engineering and Computer Sciences, University of California, 

Berkeley, CA 94720. 

Permission to copy without fee all or part of this material is granted provided that the copies are not 

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association 

for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific 
permission. 

0 1988 ACM 0730-0301/88/0100-0001$01.50 

ACM Transactions on Graphics, Vol. 7, No. 1, January 1988, Pages 1-41. 



2 l T. D. DeRose and B. A. Barsky 

1. INTRODUCTION 

Many applications of computer-aided geometric design require the description of 
objects using mathematical functions called splines. A spline curve is a piecewise 
univariate function that satisfies a set of continuity constraints where the curve 
segments meet. A popular type of spline is the parametric spline, typically defined 
by a set of vector-valued control vertices and a set of polynomial blending functions 
used to weight the vertices [7]. 

A spline can be categoried as being interpolating, meaning that it is required 

to pass through its control vertices, or approximating, meaning that it is only 
required to pass “near” its control vertices. A spline can be further classified 
as being either a global or a local representation. In a global representation, 
the movement of a control vertex causes the entire spline to change. In a 
local representation it is possible to localize the change resulting from the per- 
turbation of a control vertex, a property known as local control. The recent 
development of the Beta-spline [l, 3, 4, 6, 91 has shown that it is possible to 
extend the curve formulation by introducing shape parameters, which can be used 

to modify the shape of the curve independently of the control vertices. Experience 
has shown that shape parameters can provide a designer with intuitive control 
of shape. 

From the standpoint of computer-aided geometric design, it is desirable to 
construct local splines with shape parameters. Since the choice of interpolation 
versus approximation is application dependent, both should be possible. The 
objective of this work is to develop a class of splines possessing local control that 
are either interpolating or approximating and have locally variable shape param- 
eters. Catmull and Rom [ll] introduced a class of local splines that could be 
made to either interpolate or approximate a set of control vertices.l To construct 
a class of splines with the enumerated properties, we need only to introduce 
shape parameters into the Catmull-Rom splines. As with Beta-splines, this is 
done by replacing parametric continuity with the less restrictive measure of 
geometric continuity [3-5, 13, 141. 

We show how the relaxation to geometric continuity can yield a class of 
Catmull-Rom splines, either interpolating or approximating, whose shape can 
be modified via shape parameters. The interpolating splines that we present are 
particularly interesting owing to their shape parameters-they are local, poly- 
nomial, interpolating splines with locally variable shape parameters. Conse- 
quently, local modification of a shape parameter affects only a portion of the 
curve near the corresponding joint (a point where two curve segments abut). 

The two interpolating members of lowest degree are studied further by devel- 
oping efficient evaluation algorithms and by empirically investigating the behav- 
ior of the curves when shape parameters are varied. The evaluation algorithm is 
based on the construction of equivalent Bezier control polygons, one for each 
segment of the Catmull-Rom curve. Once the Bezier control polygons have been 
constructed, each segment can be evaluated using standard algorithms for Bezier 
curves, such as recursive subdivision [21, 221 or de Casteljau’s algorithm [lo]. 

‘Unfortunately, the title of their paper did not reflect the fact that both approximating and 
interpolating splines are members of the class. 
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The presentation proceeds as follows: The class of Catmull-Rom splines is 
briefly reviewed in Section 2. In Section 3, the notion of geometric continuity is 
presented, and in Section 3.1 it is applied to the problem of constructing smooth 
piecewise Bezier curves. In Section 4, the G1 and G2 Beta-splines are derived 
using the results of Section 3.1. In Section 5, the class of geometrically continuous 
Catmull-Rom splines is introduced and properties of members of the class are 
identified. In Section 6, a practical general algorithm for the evaluation and 
rendering of geometrically continuous Catmull-Rom splines is developed. Finally, 
in Section 7, two of the interpolating members of low degree are studied and 
their evaluation algorithms are presented. 

Of particular interest is the quintic interpolating spline discussed in Sec- 
tion 7.2. We believe that this spline may find application in problem domains 
where second-order smooth interpolation is required, so, to aid the implementor, 
we have included a detailed pseudocoded version of the evaluation algorithm. 

1 .l Notation 

Scalar quantities are written in italics as in n and Y(u), and vectors and vector- 
valued functions are denoted by boldface type as in V and Q(u). Since it is 
necessary to distinguish between a piecewise function and the segments that 
compose it, we adhere to the convention that a piecewise function is denoted by 
an uppercase character, as in H,(u), while its segments are indexed and written 
in the corresponding lowercase, as in hq,j(U). Finally, the pth derivative of a 
function W(u) from the left is written as I@“(u-), while thepth derivative from 
the right is written as l@‘)(u+); when no confusion can result, we simply write 
w’qu). 

2. THE CLASS OF CATMULL-ROM SPLINES 

Splines used in computer-aided geometric design are typically defined by a set of 
control vertices Vo, . . . , V, and a set of blending functions WO(u), . . . , W,(u); 
that is, 

Q(U) = ifo Kiwi- (2.1) 

Catmull and Rom extended this form by replacing the vertices Vi with vector- 
valued interpolating functions P,(u). Each Pi(u) is constructed to interpolate the 
K + 1 vertices Vi, Vi+l, . . . , Vi+ky for some nonnegative integer k. Intuitively, k 
sets the width of the interpolating window of the function Pi(u). Thus a Catmull- 
Rom spline takes the form 

F(U) = 2 Pi(U)Wi(U). (2.2) 

Since each of the interpolating functions Pi(u) itself defines a curve, eq. (2.2) 
states that a Catmull-Rom spline F(u) is created by blending together curves 
rather than control vertices. For instance, if k = 1, the interpolating function 
Pi(u) is required to pass through the vertices Vi and Vi+l. The simplest such 
function is a parameterized line connecting Vi and Vi+,: 

Pi(U) = (1 - U)Vi + UVi+l. (2.3) 
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Fig. 1. Indexing of the piecewise function F(u). Note that the joints 

correspond to integral values of the domain parameter. 

By blending these lines together with a set of blending functions Wi(u), we 
obtain a Catmull-Rom spline with lz = 1. An even simpler situation occurs when 
k = 0 since the function Pi(u) is only required to interpolate the single vertex 
Vi. It is therefore sufficient for Pi(u) to be a constant function independent of 

U; that is, Pi(u) = Vi. In this case, eq. (2.2) is identical in form to eq. (2.1), 
showing that the Catmull-Rom splines generalize standard approximating tech- 
niques such as Bezier curves [7, 8, lo], B-splines [7, lo], and Beta-splines [ 1, 3, 
71. More generally, Catmull and Rom show that if the blending functions are 

nonzero over D parametric intervals, then a spline of the form given in eq. (2.2) 
will be approximating if k < D - 2, and interpolating otherwise (this result 
follows directly from eqs. (2.4H2.6)). 

Throughout the remainder of our discussion, we make the following assump- 
tions: 

-The qth segment of F(u), denoted f,(u), is traced out when u is on the half- 
open interval [q, q + 1) (see Figure 1); thus F(u) has uniformly spaced 
parametric breakpoints. 

-The blending functions have local support; that is, they are nonzero only over 
D parametric intervals. The ith such function Wi(u) is nonzero only over the 
open interval (i - 1, i - 1 + D). 

-The blending functions form a partition of unity; that is, they satisfy 

; Wi(U) = 1 for all u E [0, m). 
i=O 

(2.4 

This property is necessary if the blending functions are to describe a curve 
whose shape is independent of the coordinate system in which the control 
vertices are represented (cf. Bartels et al. [7]). 

-The interpolating functions Pi(U) are constructed so that points of interpola- 
tion correspond to integral values of the domain parameter: 

Pi(q) = v* for q = i, i + 1, . . . , i + k. (2.5) 

With the above assumptions, the qth segment of F(u) can be written as 

f,(U) = i Pq+i(u)wq+it”)7 u E [q, 4 + 1). 
i=2-D 

(2.6) 
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Fig. 2. Two curve segments q(u) and r(t) meeting 
at a joint J. 

3. GEOMETRIC CONTINUITY 

Since splines are defined as piecewise functions, care must be taken to smoothly 
“stitch” the segments together where they abut. 

The issue of exactly what is meant by “smooth” is a subtle one, ultimately 
leading to the distinction between parametric and geometric continuity. We 
present here an abbreviated development of geometric continuity; more complete 
treatments can be found in [5], [13], and [14]. 

Consider the situation shown in Figure 2 where two C” parameterizations 

q(u), u E W, 11, and r(t), t E P-4 11 ( a P arameterization is said to be C” if it is 
infinitely differentiable) meet at a common point J such that 

r(0) = q(1) = J. 

These parameterizations are said to meet with nth-order parametric continuity, 
denoted C”, if the first n parametric derivatives match at J, that is, if 

r(i)(O) = q(i)(l) , i=l 2 -**9 n. 

Unfortunately, parametric continuity does not capture our intuitive notion of 
smoothness, as demonstrated by the next example. 

Example 3.1. Consider the two parameterizations plotted in Figure 3: 

q(u) = ch u), u E P, 11, 
r(t) = (4t + 2, 2t + l), t E [O, 11. (3.1) 

These parameterizations meet with positional continuity at the joint J = (2, 1). 
Note, however, that their first derivative vectors do not match at the joint: 

q”‘(l) = (2 1) 
r”‘(O) = (4’ 2) , 

implying that q(l)(l) # r(l)(O). 

Thus these parameterizations do not meet with first-order parametric continuity, 
even though the plotted curve segments appear to meet very smoothly. q 

To understand how to avoid situations like the one in Example 3.1, it is 
necessary to introduce the concept of equivalent parameterizations. Let q(u), 

u E [a, b], and G(G), Li E [ci, b], be two regular C” parameterizations (a 
parameterization is regular if its first derivative vector never vanishes). These 
parameterizations are said to be equivalent, that is, they describe the same 
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Y 

3 __ 

2 __ 

I 
1 2 3 4 5 6 

Fig. 3. Line segments meeting with G’ but not C’ continuity. 

oriented curve, if there exists a C” function f: [6, b”] H [a, b] such that 

(9 ti(fi) = q(fG)), 
(ii) f(a) = a, 

(iii) f(b) = b, 
(iv) f(l) > 0. 

Intuitively, q and q trace out the same set of points in the same order. We also 
say that q has been reparameterized to obtain q, and we call f an orientution- 
preserving change of variables (see Figure 4). 

Example 3.2. As a concrete example of equivalent parameterizations, let q be 
as in Figure 3, and let q be defined by 

fi(ii) = (45, 2ii), ii E [O, ;I. 

To show that q(u) = (2u, u) and q(6) = (4ii,25) are equivalent parameterizations, 
we observe that 

G(C) = q(2C) for all ii E [0, f]. 

Thus we have found a mapping f: [0, f] H [0, l] defined by f(C) = 26 that 
satisfies property (i) above. It is easily verified that f satisfies the other three 
properties as well. We therefore conclude that q and q describe the same oriented 
curve, which in this case is the oriented line segment from (0,O) to (2, 1). 0 

The key to geometric continuity is the following observation: Since repara- 
meterization does not affect the shape of the curve being described, we should be 
free to reparameterize before determining continuity between two parameteriza- 
tions such as q and r in Example 3.1. We are therefore led to the following 
definition. 

Definition 3.1. Let q and r be two C” parameterizations meeting at a point J. 
They meet with nth-order geometric continuity, denoted G”, if there exists a 
parameterization q equivalent to q such that q and r meet with C” continuity 
at J. 
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Fig. 4. q(u) is reparameterized by f to obtain Cj(Li). 

Let us apply this definition of geometric continuity to the parameterizations 
of Example 3.1. In particular, if we choose q to be the equivalent parameterization 
constructed in Example 3.2, then we see that 

ip”& = (4, 2), 
r"'(O) = (4 2) 

implying that q(l)(‘) = r”‘(0). 2 , 7 

Thus q and r meet with C1 continuity at J = (2, 1); hence q and r meet with G1 
continuity, 

The characterization of geometric continuity based on the existence of equiv- 
alent parameterizations is a useful theoretical tool, which is used in Section 5.1. 
However, there are other characterizations that are more appropriate for appli- 
cations. We now present one such characterization (for a more complete treat- 
ment see [5], [13], and [14]). 

Let q(u), u E [0, l] and r(t), t E [0, l] be two regular C” parameterizations 
meeting with G” continuity at q(1) = r(O), as shown in Figure 2. According to 
Definition 3.1, there must exist an orientation-preserving change of variables f: 
[6, l] H [0, l] such that 

r(‘)(O) = G(i)(l) i=l , ***, n, (3.2) 

where 

ii(ii) = s(fG)), ii E [ci, 11. 

For simplicity (and without loss of generality) we have chosen b” = 1. Using the 
chain rule from calculus, derivatives of q can be expanded in terms of derivatives 
of q and f. If the chain rule is applied i times, qci) can be expressed as a function, 
call it CRi, of the first i derivatives of q and the first i derivatives off: 

a(C) = CR(q(‘)(f(Li)) I , a*-, q”‘(f(Z2)) f”‘(ii) , , ***9 f(W)). (3.3) 

Evaluating this expression at ii = 1 and using the fact that f (1) = 1, we find that 

q”‘(1) = CRi(q”‘(l), . . . 9 qci’(l), f”‘(l), . . + 3 f”‘(1)) 
= CRi(q”‘(l), . . . , qci’(l), pl, . . . , pi), (3.4) 
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where the substitutions 

pj = f”‘(l), j= 1, . . . . i, 

have been made. The quantities /31, . . . , pi are real numbers, and since f”‘(l) > 

0 (property (iv) of an orientation-preserving change of variables), we can conclude 
that Bl > 0. Substituting eq. (3.4) into eq. (3.2) yields the so-called Beta- 
constraints: 

r”‘(0) = CRi(q”‘(l), . . . , qCi’(l), /31, . . . , pi), i= 1, . . . . n. (3.5) 

This argument shows that if q(u) and r(t) meet with G” continuity, then there 
exist real parameters /31, . . . , pn, with /31> 0, commonly called shape parameters, 
satisfying the Beta-constraints. More important for applications, the converse is 
also true. That is, 

THEOREM 3.1. q(u), u E [0, 11, and r(t), t E [0, 11, meet with G” continuity at 
r(0) = q(1) if and only if there exist real numbers @l, . . . , /In with /31 > 0 such 
that eqs. (3.5) are satisfied. 

PROOF. For a rigorous proof see [13]. Cl 

As an example of the form of the Beta-constraints, the constraints for G3 
continuity are 

r”‘(O) = /31 q”‘(l), 
rc2)(0) = p12qc2’(1) + p2q’Yl) 
rc3’(0) = p13qC3’(1) + 3Bl@2q’+l) + @3qYl), 

(3.6) 

where /I2 and /?3 are arbitrary, but 81 is constrained to be positive. 
For many practical applications only G2 continuity is required and is equivalent 

to the satisfaction of the first two equations of (3.6). A more geometric statement 
of G2 continuity is: q(u) and r(t) meet with G2 continuity if and only if they 
have common unit tangent and curvature vectors [l, 3,4, 131. 

3.1 Piecewise Bbzier Curves 

Jn preparation for later sections, and to gain a feeling for the use of the Beta- 
cw&a$$s, pre consider the problem of stitching Bezier curves together with G1 
and G2 cont$uity. ,$Ve first recall several important facts concerning Bezier 
curves [7, JO]. ’ 

A BCer curve q(u), u E ]O, -11, of degree d is defined by a control polygon 
v 09 * *:, Vd, also called a B&&r polygon,’ and takes the form 

/ I, 

q(u) = i V&b), u E P, 11, 
i=O 

where 

- U)d-i 

is the ith Bernstein polynomial of degree d. Describing the curve q(u) in Bezier 
form has many advantages, the foremost of which for our purposes is the 
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simplicity with which derivatives at u = 0 and u = 1 can be expressed. Specifically, 
we use the following properties. 

1. Position: q(u) interpolates V0 at u = 0, and Vd at u = 1: 

q(O) = vo, 

q(l) = Vd. 
(3.7) 

2. First Derivatives: The initial tangent vector is in the direction of the vector 
from V0 to VI, and the final tangent vector is in the direction of the 
vector from Vd-, to Vd. More precisely, the initial and final first derivative 
vectors are 

q”‘(0) = d(V1 - V,), 

q”‘(l) = d(V,.i - V&l) 
(3.8) 

. 

3. Second Derivatives: The initial second derivative vector depends only on Vo, 
VI, and VZ, and the final second derivative vector depends only on Vd+, Vdel, 
and Vd; specifically, 

q’2’(fl) = d(d - l)(V, - 2V, + V,), 

qt2’(1) = d(d - l)(Vd+ - 2Vd-1 + V,). 
(3.9) 

The specific problem we wish to address here is the following: 

Given: The shape parameters pl and @2, and the Bezier polygon Vo, . . . , Vd 
defining the parameterization 

q(U) = f: ViBf(U), u E [O, 11. 
i=O 

Find: Constraints on the Bezier polygon WO, . . . , Wd defining the parameter- 
ization 

r(t) = i WjBy(t), t E [O, 11. 
j=O 

Such that: q and r meet with G’ (or G2) continuity at q(1) with respect to Pl 
(and /32) (see Figure 5). 

Since a Bezier curve interpolates its first and last control vertices, we can 
guarantee Co (and Go) continuity by setting W. = Vd, as shown in Figure 5. To 
achieve G’ continuity for a given pl > 0, we can find WI by recalling the first 
equation of (3.6), 

r”‘(0) = plq”‘(l) , Pl > 0, 

and using eq. (3.8) to yield 

d(W1 - Wo) = dPl(V, - Vd-I), p1 > 0. 

Simplification and rearrangement yield 

WI = WO + pl(vd - vd-I), Pl > 0, 

ACM Transactions on Graphics, Vol. 7, No. 1, January 1988. 
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V d-2 

Fig. 5. The situation for stitching BBzier curves together. 

and since WO = Vd, 

Wl = vd + pl(vd - Vd-11, p1 > 0. (3.10) 

Geometrically, eq. (3.10) states that WI must lie on the half-infinite line starting 
at Vd (= W,), extending in the direction of the vector from VdAI to Vd. The 
length of the segment WOW1 relative to the length of VdelVd is given by the 
parameter pl. Given Vddl, Vd, and /31 > 0, then the control vertices WO and WI 
can be determined geometrically, as shown in Figure 6, or algorithmically using 
the following construction: 

Construction 1: Joining Bdzier curves with G1 continuity. 

1. wo t v,, 

2. w, + w, + fil(V, - V&l). 

Once WO and WI have been constrained subject to G1 continuity, the control 
vertex Wz can be constrained to guarantee G2 continuity for a given ,B2 by 
recalling the second equation of (3.6), 

rc2’(0) = pl’q@)(l) + @2q”‘(l), 

and using eqs. (3.8) and (3.9): 

d(d - 1wo - 2w, + W,) 
= ,L312d(d - l)(V&:! - 2V+1 + V,) + p2 d(Vd - V&-l). 

Simplification and rearrangement yield 

wz = 2w1 - wo + pl’(V,-, - 2V&1 + V,) + 
/32(vd - Vd-1) 

d 1 

= p1w&2 - 
( 

2/312 + 2p1 + -& V&-l 

p2 -+ 1 
d-l 

Vd. 
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vd-l 

Fig. 6. Geometric interpretation of Construction 1. 

w2 

Fig. 7. The Farin-Boehm construction. 

Rather than the algebraic approach given above for the determination of WZ, 
Farin [ 16]-with a later improvement by Boehm [9]-developed a more geometric 
approach. For our purposes it is most convenient to think of the approach 
of Farin and Boehm as a convenient factorization of eq. (3.11), each term of 
which has a well-defined geometric interpretation. The Farin-Boehm construc- 
tion takes as input the control polygon V,,, . . . , Vd and the shape parameters 
@l > 0 and p2, and then produces as output the control vertices W,,, WI, and WZ 
such that the curves meet with G2 continuity with respect to Pl and /32. The 
construction may be stated as: 

Construction 2: The Farin-Boehm construction. 

1. ,yt 
(d - 110 + Pl) 

p2 + /3l(d - l)(l + pl) ’ 
2. wo t Vd, 

3. Wl t wo + Pl(V, - V&l), 

4. T t Vd--l + /312y(V+l - Vd+), 

5. Wz t W, + I (W, - T). 
Y 

The geometric interpretation of this construction is shown in Figure 7. 
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4. BETA-SPLINES 

Given a control polygon Vo, . . . , 
jTi = (@lo, . ..) 

V, and a set of shape parameter values 
@Ll), the ith segment qi(u) of a G1 quadratic Beta-spline 

takes the form 

qit”) = jiI Vi+jbi+j.j(l; U), u E [0, 11, i = 1, . . . , m - 1, (4.1) 

where the functions bi+j,j(J?; u), called the G1 Beta-spline blending functions, 
are quadratic polynomials constructed so that 

%+1(O) = qi(l), ’ 

q!” (0) = /!?l.q!“(l) (4.2) 
r+l II . 

The Beta-spline blending functions can be determined by solving symbolically a 
system of linear equations, as was done by the authors in [14]. A more elegant 

method, due to Farin [16] and Boehm [9], proceeds by describing each segment 
q(u) in Bezier form. In their approach the ith segment is written as 

e(u) = i Wi,jBT(u), 
j=O 

(4.3) 

where the Bbzier polygon W+, Wi,l, Wi,z is constructed from the control vertices 
Vi-l, Vi, Vi+l, and the shape parameters @li-1 and @lip as shown in Con- 
struction 3. Before presenting the construction, it may be helpful to note that if 
a point C divides a line segment AB into relative distances a: b (see Figure 8), 
then C can be expressed as the affine combination 

c _ bA + aB 

a+b ’ 
(4.4) 

Construction 3: The B&ier vertices for G’ Beta-splines. 

1. The interior Bezier vertex Wi,l is defined simply by 

W&l + Vi* (4.5) 

2. The junction vertex WC0 divides the line segment VielVi into relative distances 
1: ,8L1, and the junction vertex Wi,2 is set equal to Wi+l,o. Algorithmically, 

wi,O + 
pli-1Vi-1 + Vi 

1 + /3li-1 ’ (4.6) 

Wi,2 + Wi+l,O = 
Plivi + Vi+1 

1 + /3li * 

Comparison of Figures 9 and 6 shows that the segments thus constructed do 
indeed satisfy eqs. (4.2). 
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Fig. 8. C divides the line segment AI3 into relative 

distances a : b. 

= w3.1 

Fig. 9. Construction of the Bikzier polygons for a G’ Beta-spline. 

Once the Bkzier polygons have been constructed, each segment can be drawn 
using Bhzier curve algorithms [7, 10, 21, 221. 

Explicit expressions for the G1 Beta-spline blending functions bi+j,j(@; u) can 
be found by substituting eqs. (4.5) and (4.6) into eq. (4.3): 

Q(U) = i Wi,jBj2(u) 
j=O 

Pli-lvi-1 + vi = 

[ 1 + pIti- I 
B:(U) + ViBf(U) + [pl;v;+p~‘]~B(U) 

+ 
B:(u) 

1 + /31&1 

+ Bqtu) + PLBi(u) 
1 + pli]vi + [s]Vi+l* 
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i-1 i i+l i+2 

Fig. 10. The blending function 9Yz(~; u). 

Comparison with eq. (4.1) shows that the G1 Beta-spline blending functions can 
be written as 

bi-I,-l($i; U) = 
Bli-J%(u) 

1 + /3li-1 ’ 

km; u) = 
B;(u) 

+ B?(u) + 
PliBiZ(U) 

1 + @li-1 1 + p1i ’ 

B;(U) 
h+l,l(pl; U) = - 

1 + /?li’ 

(4.7) 

The strictly polynomial functions bi,-l(B; u), bi,o(@; u), and bi,l(B; U) can be 
strung together as shown in Figure 10 to form a piecewise blending function 

ai(@l; ii), supported on (i - 1, i + 2), that satisfies the first-order Beta-constraints 

S<Sr; Q+) = aiCE; q-1, 
&@‘)(pi. q+) = p1 ~P’(j?i* q-) 

q=i- 1, i, i + 1, i + 2. (4.8) 
I 9 Qr ) 7 

The previous constructions and definitions for G1 Beta-splines can be extended 
to define G2 Beta-splines. A G2 Beta-spline is defined by a control polygon 

V,, and a set of shape parameter values E = (&, . . . , /%,J and 
g= i&, . . . , /32m).2 The ith segment of the curve, i = 1, . . . , m - 2, is given 

by 

-- 
Q(u) = j=jl Vi+jh+j,j(D1, Da; u)9 IQ E [O, 11, 

-- 
where the functions bi+j,j(pl, p2; U) are cubic polynomial functions constructed 

so that 

qi+l(O) = 4i(l), 

qi’:i (0) = PliS!“(l), 

qjTl(O) = pl’qj2’(1) + /32iqj”(l)* 

(4.9) 

Rather than construct the basis functions directly, we follow the approach of 
Farin and Boehm to construct the Bezier polygons of each of the segments. Let 

W&O9 * * * 9 Wi.3 denote the Bezier polygon of the ith segment, i = 1, . . . , m - 2. 
The first step of the construction proceeds by positioning, for each 

* Notice that the number of shape parameters is more than twice that for G’ Beta-splines. The reason 

for this difference is presented later in this section. 

ACM Transactions on Graphics, Vol. 7, No. 1, January 1988. 



Geometric Continuity for Catmull-Rom Splines l 15 

i = 0, . . . , m - 1, the two interior Bezier vertices Wi,l and Wi,z on the segment 
ViVi+l SO that the three segments ViWi,l, Wi,lWi,p, and Wi,gVi+l are of relative 
lengths yi: 1 :/Ylf+lyi+l (see Figure lla), where yi is defined as in Construction 2 
with d = 3: 

2(1 + Pli) 

yi = p2i + 2flli(l + 01;) * 

The second step of the construction positions the exterior Bezier vertex Wi-l,a 
(which is equal to Wi,o) to divide the segment Wi-,,zWi,l into relative distances 
1: pli, as shown in Figure llb. This construction guarantees that the Bezier 
vertices for adjacent segments are positioned as required by Figure 7. Hence 
adjacent segments meet with G2 (unit tangent and curvature vector) continuity. 
More specifically, adjacent segments are guaranteed to satisfy eqs. (4.9). 

This construction for G2 Beta-splines may be stated algorithmically as follows: 

Construction 4: The Farin-Boehm construction for G2 Beta-splines. 

1. For i = 0, . . . , m, compute yi from pli and p2i: 

2(1 + Pli) 

yi + /32i + 2/3li(l + pli) ’ 

2. For i = 0, . . . , m - 1, compute the interior Bezier vertices: 

Wi,l + 
(1 + PlF+lyi+l)Vi + yiVi+l 

1 + Yi + PlF+,Yi+l ’ 

Wi,2 + 

Plf+l~i+lVi + (1 + yi)Vi+I 

1 + Yi + Plf+,Yi+l * 

3. For i = 1, . . . , m - 2, compute the exterior (junction) Bezier vertices: 

wi,O * 

Pliwi-I,2 + Wi,l 

1 + pli ’ 

Wi,3 + Wi+l,O = 
Pli+lWi,Z + Wi+l,l 

’ 1 + Pli+l 

To determine the number of shape parameters necessary to define a G2 Beta- 
spline, we refer to Construction 4. It shows that the ith segment depends on the 
shape parameters @li-1, pli, @li+l, pli+z and /32i-1, @2i, pZi+l, p2i+2. The totality 
of segments, numbered 1 through m - 2, therefore depend on shape parameters 

indexed from 0 to m, implying that the number of shape parameters is twice the 
number of control vertices. 

As pointed out by Fournier and Barsky [18] and Boehm [9], when designing 
with Beta-splines, it is often more convenient for the designer to specify the 
interior Bezier points directly than have the system compute the shape parame- 
ters and place the junction points. In particular, the method of Farin and Boehm 
proceeds by having the designer specify a control polygon, Vo, . . . , V,, and a 
pair of points, Wi,l and Wi,2, on each leg of the polygon. From this input, the 
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“i vi 1 
a1&l Yi+* 

P 
c-au- 

=‘I, 

Wil 
wiJ. 

. . wi.l.Z 

4 

. . wi-l,l 

“i+l 

“i+Z 

.a* 

“i+3 

(a) 

“i 

“i+l 

(b) 

Fig. 11. The Farin-Boehm construction for G2 Beta-splines. (a) The 

construction for the interior BBzier vertices. (b) The construction of 
the junction vertices. 

shape parameters are uniquely determined (as long as Wi.1 # Wi,z) and can be 
computed automatically by the system. The shape parameters are then used to 
compute the junction points, thereby completing the determination of each 

segment in Bezier form. The curve can then be drawn using standard techniques 
for Bezier curves [7, 10, 21, 221. 
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As was done for the G’ Beta-spline, the G* Beta-spline basis functions -- 
bi+j,j(pl, p2; U) can be determined from the construction of the Bezier polygons 
(Construction 4). The basis functions thus determined can be strung together in 
a manner analogous to Figure 10 to define piecewise cubic blending functions -- 
Bi(pl, p2; ri) that satisfy 

-- -- 
gi(81, P2; Q+) = SW, 82; Q-19 

-- 

L@“(pl, p2; q+) = &9$‘(~, p2; q-), 

9j”‘(ji, p2; q+) = /3l$L@‘(~, pz; q-) 
q = i - 1, . . . , i + 3. (4.10) 

+ p2,L&+“(ji, p2; q-), 

Although we have demonstrated the construction of G’ and G* Beta-splines, 
we have not established that Beta-splines of all orders exist. It is, in fact, possible 
to construct G” Beta-splines for arbitrary n > 1, as recently shown by Goodman 
[20] and Dyn and Micchelli [15]. Thus, given a set of shape parameter values 
pi, . . . . F, it is possible to find piecewise polynomial blending functions 
SBi(E, ***p F; 6) that satisfy the nth-order Beta-constraints with respect to 
the given shape parameters. Goodman and Dyn and Micchelli also show 
that these functions have local support and that their segments have degree 
n + 1. However, an algorithm for geometrically constructing the Bezier 
polygons of a G” Beta-spline for arbitrary n and for arbitrary shape parameters 
is currently unknown. 

5. GEOMETRICALLY CONTINUOUS CATMULL-ROM SPLINES 

We now apply the notion of geometric continuity to the class of Catmull-Rom 
splines. The resulting class can conveniently be described by Table I. The rows 
of Table I correspond to k, the width of the interpolating window used in the 
construction of the function Pi(U) in eq. (2.6), and the columns correspond to n, 
the order of geometric continuity. The splines in the first column possess one 
shape parameter per joint, the splines in the second column possess two shape 
parameters per joint, and so on. 

In Section 5.1 we show that the problem of constructing geometrically contin- 
uous Catmull-Rom splines can be decoupled into two simpler problems: 

(1) constructing geometrically continuous blending functions, and 
(2) constructing geometrically continuous interpolating functions. 

For G’ and G* continuity, the blending functions are known-they are the 
Beta-spline blending functions of Section 4. In Section 5.2.2 we demonstrate the 
construction of G1 and G* geometrically continuous interpolating functions so as 
to complete the development of G’ and G* Catmull-Rom splines. 

In Section 5.3 we shall derive a form for the G” Catmull-Rom blending 
functions, primarily to point out several properties of splines in the class. In 
practice, however, we do not recommend drawing these curves by explicitly 
computing the blending functions. More efficient evaluation algorithms are 
developed in Section 6. To aid the practitioner, pseudocode versions of these 
algorithms for the (Gl, k = 1) and the (G’, k = 2) Catmull-Rom splines of 
Table I are also provided. 
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Table I 

k G’ G= . . . 

0 Approximating Approximating ’ . . 

1 Interpolating” Approximating + . . 

2 Interpolating Interpolating” 

’ Constructed in Section 6. 

5.1 Decoupling 

When we say that the piecewise parameterization F(u) is G”, we mean that 
successive segments of F(u) meet with G” continuity. More precisely, for each q, 
there must exist a change of variables Us: [q - 1, q] H [C, 61 such that 

f’“(q) = f”1 (b”) Q q1 9 j = 1, . . . , n, (5.1) 

where 

fq-l(ii) = f,-l(U,(ii)). 

We are free to choose b” (by applying an appropriate linear shift of the parameter 
line), and for our purposes the particular value of ii is irrelevant. By choosing 

b” = q, the condition from eq. (5.1) can be stated in terms of F(u) as 

F(j)(q+) = #(j)(q-) , j = 1, . . . , n, 6.2) 

where 

#(ii) = F(u,(ti)) 

= C Pi(“q(i;))wi(uq(ii)) 

By rewriting eq. (5.2) as 

5 

‘[ 

C Pi(q+)wi(q+) = & C Pi(q-)@i(q-) t 

i 1 .[ i I 

we see that it is sufficient to require that 

1. p!j)tq+) = p!j)(q-) , 
2 j,j,&(,+) = j$,&)(q-) j = 1,. . . , n, q = i, i + 1,. . . , i + D - 2. (5.3) 

* L ‘ 

Let us focus for the moment on the first set of conditions in eq. (5.3). Expanding 
the right side using the chain rule, we find that 

pW(q+) = CR.(P(L’(q-) I *-, Pi”(q-), Q(q), . . . , l&q)) 

= cR;(Pjl’(q-): : . . , Pi”(q-), Pl,, . . . , Pj,). 
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A similar set of conditions hold for the blending functions Wi(u): 

Wj”(q’) = CRj(Wf”(q-), . . . 7 Wi”(q-), u:‘(q), . . . 9 U:‘(q)) 

= CRj( W!“(q-), . . . 9 Wj”(q-), plq, . . . 3 @jq). (5.5) 

Note that the shape parameters that enter in eqs. (5.4) and (5.5) are the same. 
Thus, to construct a G” Catmull-Rom spline F(u), it is sufficient to use inter- 
polating functions Pi(u) and blending functions Wi(U) that separately satisfy 
the nth-order Beta-constraints with respect to the same set of shape parameters. 

5.2 Geometrically Continuous Interpolating Functions 

Before embarking on the derivation of the geometrically continuous interpolating 
functions Pi(u), we examine the functions originally used by Catmull and Rom 
to show that the functions they chose do not satisfy the Beta-constraints for 
arbitrary shape parameters (eqs. (5.4)) and hence cannot be used to construct a 
geometrically continuous Catmull-Rom spline. However, a generalization of the 
functions used by Catmull and Rom can be used. 

5.2.1 Lagrange Interpolation. Recall that the function Pi(U) must be con- 
structed to interpolate the vertices Vi, Vi+19 . . . , Vi+k, for some nonnegative 
integer k. Catmull and Rom chose functions of the form 

Pi(U) = i Vi+jLj(k; U - i), (5.6) 
j=O 

where the Lj(k; U) are the classical Lagrange polynomials, defined by 

Lj(k;U)= fi u-p . 
( ) p=~ j-p 

P#j 

(5.7) 

It is easy to show that the Lagrange polynomials satisfy the Kronecker delta 
relation 

if j = r, 
otherwise, 

r = 0, . . . , k. 

In fact, any set of functions satisfying eq. (5.8) can be used to construct an 
interpolating function of the form given in (5.6). 

We now examine the continuity of Pi(U). A function Pi(U) as in eq. (5.6) is 
a single polynomial of degree k and as such is everywhere C” continuous. 
It is impossible for such a function to have the derivative discontinuities re- 
quired by the Beta-constraints (eqs. (5.4)). Intuitively, the Lagrange poly- 
nomials are too smooth to be geometrically continuous with respect to arbitrary 
shape parameters. 

5.2.2 G” Lagrange Interpolation. Since a single polynomial is everywhere C”, 
we must resort to a piecewise polynomial representation to obtain interpolating 
functions that satisfy the Beta-constraints of eq. (5.4). We choose functions of 
the same form as eq. (5.6), but we replace the Lagrange polynomials with a 
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- 
set of piecewise polynomial functions Ai,j(k; E, . . . , ,f3n; u) to get 

Pi(U) = i Vi+jA,j(k; @, . . -3 6; U). 
j=O 

6.9) 

The properties of Ai,j(k; @, . . . , 
- 
/3n; u) naturally determine the behavior of 

Pi(u). For Pi(u) to interpolate Vi, Vi+l, . . . , Vi+k, the functions hi,j(k; E, . . . , 
&; u) must satisfy the Kronecker delta relation 

A,(k; 3, e em 2 F; r) = aj,r-i, r=i,i+l,..., i+k. (5.10) 

Moreover, since the continuity of Ai,j(k; @, . . . , &; U) is inherited by Pi(u), the 
functions Ai,j(k; @, . . . , s; u) must be constructed to satisfy the Beta- 

constraints at the parametric values u = is + 1, .=, i + D - 2. Note that the 
number of polynomial segments of Ai,j(k; fil, . . . , /3n; u) is related to the width 
of the blending functions that will be used to weight the interpolating functions 
Pi(U). In particular, Ai,j(k; E, . . . , z; u) requires D segments. 

Although the Lagrange polynomials have a concise definition (eq. (5.7)), we do 
not know of a closed form for the functions A,j(k; fi, . . . , 6; U) for arbitrary 
order of continuity (n), width of the interpolating window (k), and the support 
of the blending functions (D); currently, they must be constructed on a case- 
by-case basis for a given n, k, and D. However, in all the cases we consider, 
D = n + 2, SO the functions Ai,j(k; @, . . . , pn; u) are determined by the two 

integers n and k. 
We demonstrate their construction by the following two examples, the results 

of which are used in Section 6 to construct the (Gl, k = 1) and (G’, k = 2) splines 
of Table I. Rather than derive the A’s directly, we take an approach similar to 
the one used in Section 3.1. Indeed, as the algorithms of Section 6 show, the 
functions Aii are not (explicitly) needed to compute G” Catmull-Rom splines. 

Example 5.1. The interpolating functions Pi(u) for k = 1 and n = 1; that is, 
G’ continuity with D = 3 must satisfy the four conditions: 

Pi(i) = Vi, 

Pi(i + 1) = Vi+l, 

Pi”(i+) = pliPil’(i-), 
(5.11) 

Pl”(i + l+) = /3li+lPY(i + l-). 

If it were not for the fact that P;(u) must possess derivative discontinuities as 

prescribed by the last two constraints of eq. (5.11), we could define Pi(U) by a 
single linear polynomial as was done in eq. (2.3). To introduce the appropriate 
discontinuities, we break Pi(u) into three linear segments pi,o, p;,l, and pi,2 such 
that 

I 

Pi,O(U - (i - l)), u < i, 

Pi(U) = Pi,* (U - i), isu<i+l, 

Pi,Z(U - (i + 111, i+l%u. 

Given this form, conditions (5.11) are easily satisfied by expressing the segments 
of Pi(U) in Bezier form, as demonstrated by the next construction. 
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Fig. 12. Geometric interpretation of Construction 5. 

Construction 5: The B&ier vertices for G1 Lagrange curves. Given control 
vertices Vi, and Vi+, , shape parameters /3li, and /3li+l, construct 

1. A + Vi+1 + IBli+l (Vi+1 - Vi), 
1 

2. B + Vi + z (Vi - Vi+, 1, 

as shown in Figure 12. Satisfaction of eqs. (5.11) is then guaranteed by setting 
the Bezier polygon for pi,0 to (B, Vi), setting the Bezier polygon for pi.1 to 
(Vi, Vi+l), and setting the Bezier polygon for pi,2 to (Vi+l, A). 

The functions Ai,j(k; fi, . . . , 
- 
pn; U) of eq. (5.9) can be determined from 

Construction 5 in much the same way that the functions gi(E U) followed 
from Construction 3. El 

Example 5.2. The interpolating functions Pi(U) for G2 continuity and k = 2 
must satisfy 

Pi(q) = Vq, 
PI”(q+) = &PI”(Q-), q = i, i + 1, i + 2. (5.12) 

P12’(q+) = pl;P:2’(q-) + p2,pl”(q-), 

Once again, we construct the Bezier polygons for the (II = 4) quadratic segments 
of Pi(u), denoted by pi,09 . . . , pi,31 as shown in Figure 13. 

The interpolation conditions, that is, the first set of conditions in eq. (5.12) 
trivially determine the last Bezier vertex of pi,09 the first and last Bezier vertices 

of pi,1 and pi,22 and the first Bezier vertex of pi,39 leaving only the six unknown 
vertices labeled A through F in Figure 13. 

Let us concentrate for the moment on the joint between pi,1 and pi,2. The 
interior Bezier vertices A and B must be positioned so that pi,1 and pi,2 meet 
with curvature continuity at Vi+1 with respect to the shape parameters @li+l and 
,B2i+l. The key to the solution of this problem is the Farin-Boehm construction 
(see Figure 7). We must construct A and B so that Figure 14 holds; stated more 
precisely, A and B must simultaneously satisfy the two equations 

B = Vi+1 + PJ-i+l (Vi+1 - A), 

T = A + pl~+lyi+l(A - Vi) = B + Yi+l(B - Vi+2), 
(5.13) 
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Pi,0 

'h 

D 

Fig. 13. The arrangement of the segments of Pi(u) for 

k = 2 and D = 4. 

“i 

Fig. 14. The Farin-Boehm construction with interior points 

A and B. 

where yi+l is computed from pli+l and /32i+l as in the Farin-Boehm construction 
(Construction 2) with d = 2. Using a symbolic algebra system [17], the solution 
of this pair of equations for A was found to be 

A = PIF+lYi+lvi + (1 + Yi+*)(l + PL+l)Vi+I - Yi+lVi+Z 

(1 + Pli+l)(l + Pli+lyj+l) 

The Bezier vertex B can then be constructed using the first equation of (5.13). 
The four remaining unknown Bezier vertices C, D, E, and F can also be found 
using the Farin-Boehm construction, as shown in Figure 15. The complete 
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Yi 1 : Pli+, : : Pli+, : 
TZ TZ 

A “i+l B “i+l B 

Fig. 15. Fig. 15. The complete The complete construction for a G2 Lagrange curve. ! construction for a G2 Lagrange curve. 

construction of the Bkzier polygons for the segments of a G2 Lagrange curve 
through the vertices Vi, Vi+,, and Vi+2 can be stated as: 

Construction 6: The B&ier vertices for a G2 Lagrange curve interpolating Vi, 

Vi+l, Vi+Z. 

1 + /3li 

IL* YitP2i + ,bli(l + pli) ’ 

2. Yi+l+ 
1 + Pli+l 

@2i+l + @li+l(l + @li+l) ’ 

3. Yi+2+ 
1 + PIi+2 

@2i+2 + Pli+2 (1 + Pli+Z) ’ 

4 At plf+l~i+lVi + (1 + Yi+l)(l + Pli+l)Vi+l - Yi+lVi+Z 

(1 + Pli+l)(l + Pli+lYi+l) 
7 

5. B + Vi+1 + pli+l(Vi+1 - A), 

1 
6. C+Vi+E(Vi-A)’ 

7. T1 t A + r;(A - Vi+l), 

Es* D + c + plfri +C-W, 

9. E + Vi+2 + Pli+2(Vi+2 - B), 

10. ‘I’2 + B + BlF+2ri+2(B - Vi+l), 

11. FtE+&(E-Tz). 

The Bkzier polygons for pi,o(u), . . . , pi,3(u) are then assigned as shown in 
Table II. 

ACM Transactions on Graphics, Vol. 7, No. 1, January 1988. 



24 l T. D. DeRose and B. A. Barsky 

Table II 

Segment BBzier polygon 

PdU) (D, C, Vi) 

Pi.lb) (Vi, A, Vi+,) 

Pz,zb) (Vi+1 , B, V,+, ) 

Pi,3(U) (Vi+*, E, F) 

-- 
The piecewise functions hi,j(2; @l, p2; u) can be determined from Construc- -- 

tion 6 in much the same way the piecewise functions ai(/31, p2; u) followed from 
Construction 4. Cl 

Although we have no proof,xe believe that it is always possible to find piecewise 
polynomial functions Ai,j(k; /31, . . . , p; u) of degree max(n, k), subject to the 
&h-order Beta-constraints and the Kronecker delta relation of eq. (5.10). 

5.3 The General Form 

In this section we merge a set of geometrically continuous blending functions 
Wi(u) with a set of geometrically continuous interpolating functions Pi(u) to 
produce a geometrically continuous Catmull-Rom spline. Using the decoupling 
result of Section 5.1, this is done by using G” Beta-splines for the blending 
functions and G” Lagrange curves for the interpolating functions. A convenient 
form for the segments of F(u) can be obtained by starting with eq. (2.6) for the 
qth segment f,(u): 

fq(U) = i Pq+i(U)wq+i(U), u E [q, q + 1). 
i=Z--D 

By substituting the form for P,+i(u) from eq. (5.9) and using the relation 
D = n + 2 for Beta-splines, we obtain 

f,(U) = i 
1 

i Vq+i+jAq+i,j(k; pl, * * * 7 F; U) 
1 

sq+i(pl, * * a 9 pn; uh 
i=-n j=O 

u E LA Q + 1). 

Changing summation indices yields 

k+l 

f,(U) = C V,+, 
1 i+j=l 

C Aq+i,j(k; p, -. .9 6; U)gq+i(p’1, 

- 
'*'t Bn; u, 9 

1=--n 1 

where the inner summation is to be taken over all i = -n, . . . , + 1 and 
j=O,..., k such that i + j = 1. Finally, by setting 

we obtain 

k+l 

f,(u) = 2 V,+&,dk; i% . . . , i% u), 

1=-n 
u E [q, 4 + 1). (5.15) 
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Equations (5.14) and (5.15) together define the class of geometrically contin- 
uous Catmull-Rom splines. A particular member of the class is determined by n, 
the order of geometric continuityLand k, the width of the interpolating window. 
The functions @,Jtz; @, . . . , /3n; u) are called the geometrically continuous 
Catmull-Rom blending functions. Several important properties of the class can 
now be identified: 

(1) Every member of the class has local control. From eq. (5.15), f,(u) depends 
only on the It + n + 2 vertices V4-,,, Vq--n+l, . . . , Vp+k+l. Modification of 
vertices outside this range has no effect on the segment. Thus, perturbation 
of a given vertex will only affect k + n + 2 segments near it. 

(2) Every member has shape parameters. The G1 splines have one shape param- 
eter per joint, the G2 splines have two shape parameters per joint, and in 
general the G” splines have n shape parameters per joint. Owing to the local 
control property (l), modification of a particular shape parameter affects at 
most It + n + 2 segments of the curve. 

(3) Members of this class can be either interpolating or approximating. Since 
this class is a proper subclass of the Catmull-Rom splines, if k < n, the spline 
will approximate the vertices; otherwise, it will interpolate the vertices. 

(4) In general, the (G”, k) spline is (we believe) of polynomial degree 

(n + 1) . max(n, 12). 

This follows from eq. (5.14), the fact that a G” Beta-spline blending function 

gq+i(F, - - - , F; u) is of degree n +A, and the belief that a G” interpolating 
blending function Aq+i,j(k; @, . . . , @n; u) is of degree max(n, k). 

If a G’ Catmull-Rom spline is desired (a member of the first column of 
Table I), the functions Z8i(B; u) are the G’ Beta-spline blending functions 
from eq. (4.8), and the functions hi,j(l; @; U) follow from Construction 5. To 
define a G2 Catmull-Rom spline (a member of the second column of Table I), -- 
the 9i((pl, /?2; u) are the G2 Beta-spline blending functions from eq. (4.10), and -- 
the functions hi,j(2; @l, p2; u) follow from Construction 6. 

6. EVALUATION AND RENDERING OF CATMULL-ROM SPLINES 

Owing to the algebraic complexity of each of the terms in eq. (5.14), we do not 
recommend computing or rendering a G” Catmull-Rom spline by repeated 
evaluation of eqs. (5.14) and (5.15). A better approach, which we now develop, is 
to compute the Bezier polygon for each segment of the G” Catmull-Rom curve. 
Once the Bezier polygons have been constructed, the segments can be displayed 
using Bezier curve algorithms, such as recursive subdivision [7, 21, 221 or 
de Casteljau’s algorithm [lo]. Explicit examples of this approach are given for 
the (Gl, k = 1) and (G2, k = 2) splines of Table I. 

The development of the general algorithm for arbitrary n and k begins by 
writing the qth segment of F(u) as in eq. (2.6), where the interpolating functions 
Pi(u) are the G” Lagrange curves of Section 5.2.2, and the blending functions 
W;(u) are the G” Beta-spline blending functions of Section 4. Let K denote the 
degree of the segments of Pi(u), and let Ri+,,o, . . . , Ri+n,K denote the Bezier 
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polygon for the segment of Pq+i(U) corresponding to the interval u E [q, 4 + 1);3 
that is, let Ri+,,o, . . . , Ri+n,K be such that 

Pq+i(u) = $ Ri+n,;Br(u - q), l.4 E [4, Q + 1). (6.1) 
j=O 

Constructions 5 and 6 demonstrate that it is often easy to determine these Bezier 
polygons. Substituting eq. (6.1) and the relation D = n + 2 for Beta-splines into 
eq. (2.6) allows f,(u) to be written as 

The term in braces can be thought of as a Beta-spline curve with control polygon 
Ri,,j, i’ = 0, . . . , n + 1, which for G” continuity will be of degree n + 1. Denote 
the Bezier polygon for this curve by Si’,j, i’ = 0, . . . , n + 1, the computation of 
which is quite simple for G’ and G2 continuity, as was shown in Section 4. With 
this notation, 

f,(U) = i 
j=O { 

li: Si’,jBF+l(U - Q) 
I- 

Bf(L! - q), u E [Q, 4 + 11. 

Dropping the prime on i and rewriting f4 more conveniently as a [0, l] parame- 
terization yield 

fq(U) = i 
{ 

nc Si,jB~“(U) B:(U), 
j=O I 

u E [O, 11. (6.2) 
i=O 

The right side of eq. (6.2) is a polynomial of degree K + n + 1, so it must be 
possible to find a Bezier polygon bo, . . . , bK+n+l such that 

K+n+l 

f&u) = 1 b&+“+‘(u), u E [O, 11. 
l=O 

This Bezier polygon is remarkably easy to compute from the Bezier polygons Si,j. 
The essential fact is contained in the following lemma. 

LEMMA 6.1 

Bn+l (up;(u) = n + 1, K 
( ) i, j 

g+y+yu), 

where 

3 Strictly speaking, this Bizier polygon should be ornamented with a superscript q; we have chosen 

to omit the superscript to simplify the notation. We have also chosen the first subscript on the R's 
to be i + n (rather than simply i) to simplify the indexing in the remainder of the derivation. 
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PROOF 

B;“(u)B+) = u’(1 
.K 

- uP+l- 
0 i 

uJ(l - U)K-i 

= (” f l)($ui+j(l _ U)K+n+l-i-i 

=(nyl)~)~ui+j(l-u)K+n+l-“+j~ 

(“X”) = 2 Bp+l(u) <Jeg?y 

= &y+‘(u), 

Using Lemma 6.1, eq. (6.2) can be written as 

K+n+l 

= z. b#+n+1b), 

where we have made the identification 

bl= c 
i+j=l 

I3 

(6.3) 

The summation in eq. (6.3) is taken over all values of i = 0, . . . , n + 1 and 
j=O,... ,Ksuchthati+j=l. 

Given an algorithm for constructing the Bezier polygons of the interpolating 
functions and an algorithm for constructing the Bezier polygons of a G” Beta- 
spline, the steps leading from eq. (2.6) to eq. (6.3) define an algorithm for 
constructing the Bezier polygons of a G” Catmull-Rom spline. The structure of 
this algorithm for arbitrary n and k can be explained schematically by arranging 
the points Ri,j of eq. (6.1), and the points Si,j of eq. (6.2), in arrays using standard 
row-major ordering, as shown in Figure 16: 

(1) The rows of the “R-array” correspond to the Bezier polygons of the inter- 
polating functions Pi(U), and are computed from the Catmull-Rom polygon 

vo, -.*, V,. Constructions 5 and 6 demonstrate the computation of the 
R-array for G1 and G2 continuity. 

(2) The columns of the “S-array” are computed from the columns of the R-array 
using Beta-spline constructions similar to Constructions 3 and 4. More 
precisely, as indicated by Figure 16, the ith column of the S-array is the 
Bezier polygon of the Beta-spline curve whose control polygon is the ith 
column of the R-array. 
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Ro,o Ro,l 
Rl,o &,I . 

. . %+I,o %+I,I . 

I I so.0 so.1 .. 

&SK 
RI,K 

%+l,K 

I 

- B&&r polygon for P,-, 
- BBzier polygon for Ppen+l 

- BBzier polygon for P,+l 

- Beta-spline construction using columus 

SO,K 

Sl,K Sl,O SlJ ” 

.. 

s,+1,0 Sn+l,1 ” %+l,K 

Fig. 16. Schematic representation of the BBzier polygon construction algorithm. 

Fig. 17. Summation over skew diagonals. 

(3) Finally, the Bezier polygon bo, . . . , bK+n+l for the Catmull-Rom segment is 

obtained from the S-array by weighting Si,j by the scalar coefficient (“:,$“), 
then summing over the skew diagonals of the weighted S-array, as shown in 
Figure 17. Specifically, bl is obtained by summing over the lth skew diagonal 
(see Figure 17). 

In the next section we demonstrate this general algorithm for n = 1 and 
k = 1, and for n = 2 and k = 2, that is, for the (Gl, k = 1) and (G2, k = 2) splines 
of Table I. 

7. EXAMPLES 

To demonstrate the diversity of splines contained in the class of geometrically 
continuous Catmull-Rom curves we refer again to Table I. The splines in the 
first row (the k = 0 row) are the Beta-spline curves. Also of practical interest are 
the splines along the k = n subdiagonal in that they are the lowest degree 
interpolating members of the class. Of these, the (G’, k = 1) and (G2, k = 2) 
splines are likely to be the most practical; they are of polynomial degree 3 and 5, 
respectively. In this section we study these splines more thoroughly by refining 
the Bezier polygon algorithm of Section 6 and by empirically investigating the 
effect of varying shape parameters. 
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Fig. 18. Movement of a control vertex 

in a (G’, k = 1) spline. 

Fig. 19. Modification of a shape parameter in a (G’, 

k = 1) spline. 

7.1 The (G’, k = 1) Spline 

The (G’, k = 1) spline of Table I is a cubic interpolating spline possessing one 
shape parameter per interior control vertex. That is, a (G’, Fz = 1) spline with a 
control polygon VO, . . . , V, will have m - 1 shape parameters labeled /311, . . . , 
@lmel. This spline has local control with respect to both vertex movement and 
shape parameter modification. However, the region of the curve that is affected 
differs depending on what kind of change is made. In particular, perturbation 
of a control vertex V, affects four segments of the curve, f,+, f,-i, f,, f,+l 
(see Figure 18), whereas perturbation of a shape parameter /31, affects only 
two segments, fqml and f4 (see Figure 19). 

It should be mentioned that the (G’, k = 1) spline is an alternate representation 
of an earlier spline in CAGD. It is, in a sense that will be elaborated on 
momentarily, equivalent to the standard C1 cubic Catmull-Rom spline with 
nonuniformly spaced parametric breakpoints. That is, a Cl cubic Catmull-Rom 
spline with nonuniformly spaced parametric breakpoints can be viewed as a G1 
cubic Catmull-Rom spline with uniformly spaced parametric breakpoints. If one 
were to draw a Cl cubic Catmull-Rom spline using the breakpoints ~0, . . . , u,, 
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the same curve could be reproduced by appropriately choosing the shape param- 
eters pli. In particular, it can be verified by direct calculation that the necessary 
choice for each @li is 

B1i=~~Ui~~9 i=l , . . . . m- 1. 

That is, pli measures the relative lengths of the parametric intervals [uiel, Ui] 

and [ui, ui+l]. 
The converse is also true: given a G’ cubic Catmull-Rom spline with some 

assignment of the /31’s, it is possible to find parametric breakpoints such that 
the G’ curve is reproduced by a C’ cubic Catmull-Rom spline. 

Even in light of this equivalence, the (G’, K = 1) spline is of interest for several 
reasons. First, from a user’s standpoint, the use of shape parameters is frequently 
more natural than the specification of breakpoints. Second, the (G’, k = 1) spline 
provides a good starting point for the study of the (G2, k = 2) spline, which is 
presented in Section 7.2. It is important to note that, unlike the (G’, k = 1) 
spline, the (G2, k = 2) spline is not equivalent to the corresponding C2 Catmull- 
Rom spline curve with nonuniformly spaced parametric breakpoints. 

The construction of the Bezier polygons for the (G’, k = 1) spline takes as 
input the vertices V,, . . . , V, and the shape parameters @ = (pll, . . . , /31mT1) 
and produces as output the Bezier polygons for the segments fi(u), i = 
1 -*, m - 2. The Bezier polygon for the qth segment f,(u) is constructed 
ai follows: 

Construction 7: The Bbier vertices for the qth segment of a (G’, k = 1) 
spline. 

1. Construct the Bezier polygons (Ro,o, Ro,l) for P,-I(U), (Rl,o, R1,1) for P,(u), 
and (Rz,o, Rz,l) for Pqcl(u) (the only interpolating functions that contribute 
to f,(u)) using Construction 5 (see Figure 20a): 

a. RO,O + %,o = V,, 

b. ROJ + V, + PlqO’, - Vq-11, 

c. %,I + R2,1 = Vq+l, 

d. R,, * Vq+, + 

2. Construct the first column of the S-array by blending the first column of the 

R-array (Ro,o, &,o, R2,0) as a G1 Beta-spline control polygon with shape 
parameters pl, and plq+l as in Construction 3 (see Figure 20b): 

a. So,0 +-- 
Pl,Ro,o + RI,, = v 1 + Pl, -= 

1 + Pl, q 1 + p1, 

v 

q’ 

b. SI,O + RLO = Vq, 

c. 52,o + 
Pl,+,Rl,o + R2,o 

1 + Plq+1 * 

ACM Transactions on Graphics, Vol. 7, No. 1, January 1988. 



Geometric Continuity for Catmull-Rom Splines 9 31 

(a) (b) 

(4 

Fig. 20. The (G’, k = 1) construction. 

(4 

3. Construct the second column of the S-array using (Ro,l, R1,l, R2,1) and 
&, &+1 in Construction 3 (see Figure 20~): 

a. Sovl + 
&RO,I + %,I 

1 f 81, ’ 

b. &,I + RI,1 = V,+,, 

C. 52.1 + 
ISlq+Jb + &,I = v 1 + P&+1 = v 

1 + Plq+l q+l 1 + /a,+1 
q+l. 
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4. Construct bo, . . . , b3 from the S-array by summing over skew diagonals (see 
Figure 20d): 

a. botSo,o=Vq, 

b. bl + %h,o + &I, 

c. bz + %,o + &,I, 
d. bs t t&,1 = V,+l. 

By eliminating unnecessary computations this construction can be compressed 
into the following pseudocode: 

procedure ComputeGlklBbier(VO, . . . , V,, 5, q) 
{Return the Bbier polygon for the qth segment) 
{of a (Gl, k = 1) Catmull-Rom spline) 

ROJ + V, + BLAV, - V,-11 

R 2.0 + v,+, + g- (VCI+1 - Vq+,) 
q+1 

S 
v*+, + Bl,Ro,l 

0.1 + 
1 + 81, 

S 
Ln,,lV, + K.0 

2.0 + 
1 + /91,+1 

bo+-V, 

bl+ 
2v, + so.1 

3 

ba + 
s2.0 + 2vq+1 

3 

bs * V,+, 

return (bo, h, b2, bd 
end ComputeGl kl Bbier 

A (G’, k = 1) spline curve can be drawn by first computing the Bezier polygon 
for each segment q using the routine ComputeGlklBQzier, then using standard 
techniques to draw the segments in Bezier form (cf. [lo, 21, 221). All (G’, k = 1) 
figures in this section have been computed using ComputeGlklBtSer, together 
with de Casteljau’s algorithm [lo] for computing points on a Bezier curve. 
Figure 21 has all shape parameters set to unity and is therefore equiva- 
lent to a cubic Catmull-R.om spline defined by uniformly spaced parametric 
breakpoints. 

To demonstrate that the curve as a whole depends on shape parameters indexed 
from 1 to m - 1 (and not, e.g., from 0 to m - 1 as for G’ Beta-splines), we can 
appeal to Figure 20a-d. These figures show that the 9th segment of the Catmull- 
Ram curve depend only on the shape parameters 81, and j31,+1. The entire curve, 
consisting of segments 1 through m - 2, therefore depends on the shape param- 

eters indexed from 1 through m - 1. 
Figures 18 and 19 demonstrate the property of local control with respect to 

control vertex movement and shape parameter modification, respectively. The 
curves of Figure 18 differ only in the position of the indicated vertex; the curves 
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of Figure 19 differ only in the value of the shape parameter at the indicated 
vertex. Notice that four segments are affected by control vertex movement, 
whereas only two segments are affected by shape parameter modification. 

Some of the irregularities in the curve of Figure 21 can be reduced by 
appropriately choosing the shape parameters. We currently have no rigorous 
analytic results to which we can appeal to provide automatic shape parameter 
settings for arbitrary control polygons. We do, however, have some heuristic rules 
based on empirical experience that we hope will lead to more analytic tools. Since 
@l measures the relative length of adjacent parametric intervals, we experimented 
with setting j31i on the basis of the relative lengths of adjacent segments of the 
control polygon. In particular, we tried 

Bli = II vivi+l II 

II Vi-lvi II ’ 
(7.1) 

Compared with the curve corresponding to all /31’s being set to unity, the curve 
produced by eq. (7.1) tended to overshoot what one might call the most desirable 
curve (see Figure 22). We therefore modified the heuristic to compute a shape 
parameter halfway between unity and the value produced by eq. (7.1). The 
improved heuristic is therefore 

1 

‘li = 5 ( 

II ViVi+l II 
’ + 11 Vi+lVi+p 11 * 1 

(7.2) 

The effect of this heuristic on the curve of Figure 21 is shown in Figure 23. 

7.2 The (G’, k = 2) Spline 

The (G*, k = 2) spline of Table I is a quintic (degree 5) interpolating spline 
possessing two shape parameters per interior control vertex. Thus, given a 
(G*, k = 2) spline with control polygon V,, . . . , V,, there are 2(m - 1) shape 
parameters; the justification for this number of shape parameters is presented 
later in this section. As with the (G’, k = 1) spline, the (G*, k = 2) spline possesses 
local control with respect to control vertex change and shape parameter modifi- 
cation. More specifically, perturbation of a control vertex V, affects six segments 
of the curve fg+ fgb2, fpml, f,, f,,, (see Figure 24), whereas modification of a 
shape parameter 81, or 82, affects only four segments of the curve fgm2, fq-*, f,, 
f,,, (see Figure 25). 

The construction of the Bezier polygons for the (G*, k = 2) spline takes as 
input the vertices V,,, . . . , 
and82=(/321,.. 

V, and the shape parameters @= (/311, . . . , Blmml) 
. , /32m-1). The following Bezier polygon algorithm follows from 

Constructions 4 and 6 in much the same way that the routine ComputeGl kl Bkzier 
followed from Constructions 3 and 5. 

One subtlety arises in the construction of the Bezier polygons for the (G*, 
k = 2) spline. This did not appear for the (G’, k = 1) spline in the previous 
section since the subtlety is introduced in the handling of 82. It was shown 
in Section 5.1 that the interpolating functions Pi(U) and the blending func- 
tions Wi(u) must satisfy the Beta-constraints with respect to the same shape 
parameters. That is, if Pi(u) satisfies the Beta-constraints for some choice 
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Fig. 21. A (G’, k = 1) spline with /31; set 

uniformly to unity. 

Fig. 23. Shape parameters set using the 

heuristic of eq. (7.2). 

Fig. 22. Shape parameters set using 

heuristic of eq. (7.1). 

the 

of 81, . . . , /3n, at a joint, then Wi(u) must satisfy the Beta-constraints for the 
same choice of /3’s at that joint. 

In the G2 constructions, that is, Constructions 4 and 6, it is y, not /32, that 
enters directly into the computation of the Bezier polygons. Notice that the 
quantity y as defined in Construction 2 depends not only on /31 and p2, but also 
on the degree d of the equivalent Bezier curve. Since the degree of the 
G2 interpolating functions from Construction 6 differs from the degree of 
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Fig. 24. Movement of a vertex in a (G’, k = 2) spline. 

Fig. 25. Modification of a shape parameter in a (C’, k = 2) 

spline. 

the G2 Beta-splines, two different y’s are needed: one for d = 2 and one for 
d = 3. In the algorithm to follow, the variables ~2~ and y3i represent the ith y 
for d = 2 and d = 3, respectively. 

One other preliminary comment is in order before presenting the (G*, k = 2) 
construction algorithm. On the basis of the assumption that the Bezier polygons 
for all segments are to be computed, the following algorithm eliminates some 
redundant computations by precomputing y2i, 73i, and the Bezier polygons for 
each of the interpolating functions Pi(U) using Construction 6. In the follow- 
ing pseudocode routine, the points Pbi,j,o, Pbij,lp and Pbi,i,z form the Bezier 
polygon for pi,i(u), that is, the jth segment of Pi(U) (see Figure 13). Note 
that some unnecessary work is done in that the segments P~,~, po,l, P~,~, P~,~, 

P~,~, p2,0 are computed but never needed, as are the segments pm-4,3, ~~-3.2, 
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Pm-3.3, Pm-2,1, Pm-2,2, &z-2,3. We have chosen to do this unnecessary calculation 

to simplify the pseudocode presentation of the algorithm. Removal of the un- 
necessary work is straightforward and should definitely be done in production 
implementations. 

-- 
procedure Precompute(VO, . . . , VnI, PL Pa 
(Precompute 72’s, 73’s and the B&ier polygons of each) 
(segment p;,j(u) of each interpolating function P;(u)) 

begin 

&+-LL~l 
P2o+P2,+0 
foricltom-ldo 

72, +- 
1 + Bli 

02; + ml + Pli) 

20 + Pli) 

y3i + p2i + 2pli(l + /3li) 
end 

foricotom-2do 

Pb.2 + Ph,l,o + Vi 
Pbi,,.s + Pbm + Vi+1 
Pbiw * Pbi,,,o + Vi+2 

Pb,w + 
LBli+lY%+lVc + (1 + +i+1)(1 + Pli+l)Vi+l - y2i+lVi+Z 

(1 + PL+1)(1 + PlL+,Y2i+l) 

Pbi,o,l + Vi + pli (Vi - Pbiu) 

T1 * Pbi,l,l + y&(Pbi,l,~ - Vi+,) 

end 
end Precompute 

The Bc5zier polygon of fq(u), q = 2, . . . , m - 3, can now be computed as follows: 
-- 

procedure ComputeG2k2B&ier(V0, . . . , V,, fil, p2, q) 

(Return the Bkzier polygon fi,r the qth segment of a (G2, k = 2) Catmull-Rom spline) 
(Construct the R-array from the precomputed Pb’s) 
forrcOto3do 

{Construct row r of the R-array ] 

Rr>o + Pbq+r--2.3~-r,o 

R,, - PI.+--2.c-r,l 

Rr,2 + Pb,+,-z,s-rz 

end 
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Table III 

* 37 

Segment Shape parameter dependence 

Pq--2Jb) B&-I, Pl,, /32,-l, mq 
Pq-I,&) 8L7, Pzl 
P4.1 b) D&+1, P2,+, 

Pq+dU) La+,, BL+2,8%+1, Px7+2 

(Construct the S-array using Construction 4) 
forccOto2do 

(construct column c of the S-arra.yj 

1 + y3,-1 + PlZY3, 

S IX + 
(1 + ,M:+~~~,+,IRI,, + r3,R~ 

1 + 73, + Pl:+lY3,+1 

S 2.e + 
@1;+,~$+,R1,= + (1 + r3,)R~c 

1 + 73, + P19+1Y3,+1 

T 2+ 
(I + /31;+2~3q+z)Rz.c + ~3,+1R3,c 

1 + y3,+1 + /31:+zr3,+z 

S 
O,e c &TI + Cc 

1 + Pl, 

S 
Pl,+,S,,c + Tz 

3.c + 
1 + ,&+I 

end 

(Compute the Bbier polygon from the S-array] 
bo + So,o 

bl+ 
3Sl.O + 2SO.l 

5 

b:! - 
3S2.0 + 6% + So.2 

10 

bs + 
SW + 6% + 3S1.2 

10 

bd + 
2&J + 382,2 

5 

bs +- S,, 
return&o, bl, bz, ba, b4, b5) 

end ComputeG2k2BCzier 

The only shape parameters that affect the curve are those indexed from 1 to 
m - 1. To see this, we examine further the construction algorithm for the Bezier 
polygons of the segments of the (G’, k = 2) spline. The qth segment depends on 

P~+,~(u), P~-~,z(u), p,,lbL and P~+-~,o (u). The dependence of each of these 
segments on the shape parameters is shown in Table III. These segments are 
blended together using Beta-spline blending that depends on the shape parame- 
ters &-l, . . . , &+9 and P2,+, . . . , /32,+,. Combining these dependencies shows 
that the qth segment depends on the shape parameters indexed from q - 1 to 

q + 2. The entire curve, consisting of segments 2 through m - 3, therefore 
depends on the shape parameters indexed from 1 through m - 1. 

ACM Transactions on Graphics, Vol. 7, No. 1, January 1988. 



38 l T. D. DeRose and B. A. Barsky 

Fig. 26. Control polygon for a rough 
football. 
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Control polygon and the cor- 

Fig. 28. The Bizier polygons for the 

curve of Figure 27. 

To demonstrate the flexibility of the (G’, lz = 2) spline, consider the design of 
the outline of an icon in a typography system. A rough outline of the icon (a 
football) is first specified by the designer, as shown in Figure 26. The system 
provides periodic boundary conditions and default shape parameter settings, in 
this case @li = 1 and ,f32i =: 0 for all i, then generates and renders the (G2, K = 2) 
spline segments defined by this input using the routines Precompute and 
ComputeG2k2B&ier. The resulting curve, together with its control polygon, is 
shown in Figure 27; for illustrative purposes the Bezier polygons are shown in 
Figure 28. 

Since the shape in Figure 27 is not quite symmetrical, the control vertex at the 
far right can be moved into a more appropriate position. The system then 
responds with the new curve, as shown in Figure 29. Notice that only the portion 
of the curve near the modified vertex is perturbed. To further refine the shape, 
the ends of the football should be made “more pointed.” This could be done by 
adding new vertices at the far left and far right; however, it is easier to change 
the value of /32. Figure 30 shows the curve of Figure 29 superimposed with the 
curve (shown dashed) generated when the value of p2 at the far right vertex is 
increased to 3. Notice that p2 behaves in a “tensionlike” manner, producing 
much the same effect as @2 in a G2 cubic Beta-spline. For this reason we again 
call @2 a tension parameter. Increasing the value of tension to 36 produces the 
heavily dotted curve shown in Figure 30. The design is completed by increasing 
the tension of the curve to 36 at the far left vertex, as shown in Figure 31. 

The sample design session also seems to suggest that p2 in a (G2, k = 2) spline 
behaves just as it would :for a G2 Beta-spline. Although this is partially true, 

ACM Transactions on Graphics, Vol. 7, No. 1, January 1988. 



Geometric Continuity for Catmull-Rom Splines 39 

Fig. 29. Movement of a control ver- 

tex. 

Fig. 30. Modification of @2 at the far right 

vertex. 

Fig. 31. The completed football. 

there is one difference that should be pointed out. In a G2 Beta-spline, if p2i is 
taken to the limiting value of infinity for all i, the curve is guaranteed to converge 
its control polygon. This is not true of a (G’, k = 2) spline. In the limit of infinite 
p2, the curve is guaranteed to converge, but not necessarily to the defining control 
polygon. We currently do not have a good explanation of this behavior. 

8. CONCLUSION 

We have introduced a subclass of the Catmull-Rom splines that possesses 
geometric, rather than parametric, continuity. The replacement of parametric 
continuity with the less restrictive geometric analog allows the introduction of 
shape parameters that can be used to modify the shape of the spline without 
moving the control vertices. For nth-order geometric continuity there are n shape 
parameters per joint, which can be varied independently to control the shape of 
the curve. In addition to shape parameters, members of the class have local 
control. Some of the splines in the class interpolate the control vertices, whereas 
others approximate them (see Table I). 

The class results from the combination of Beta-spline blending functions and 
a set of geometrically continuous functions related to the classical Lagrange 
curves, and is a proper generalization of the class of parametrically continuous 
Catmull-Rom splines. Moreover, the class includes the G’ and G2 Beta-splines, 
which are local, approximating, polynomial splines with shape parameters. 

The evaluation and rendering of geometrically continuous Catmull-Rom 
splines is made practical by general algorithms that construct the Bezier control 
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polygons for each of the ,segments of the spline. To further aid implementors of 
these techniques, the general algorithm has been further refined for the lowest 
degree interpolating members of the class, that is, the cubic (Gl, k = 1) spline 
and the quintic (G’, k = 2) spline. 

The sample design seAon in Section 7.2 brings to light the important prop- 
erties of the quintic (G2, 1: = 2) spline: interpolation of the control vertices, shape 
parameters, local control. with respect to vertex movement, local control with 
respect to shape parameter modification, G2 continuity, and relatively efficient 
computation. Previous interpolating splines either had shape parameters, but 
were global representations [2, 12,23-261, or were local with no shape parameters 
[ll]. Moreover, the shape parameter /32 exhibits tensionlike behavior and is 
locally variable. These properties render the (G2, k = 2) spline potentially useful 
for rapid free-form design. 

During the course of tb.is research a number of additional questions have been 
raised, some of which have been posed in previous sections. Here we summarize 
a more complete list of open questions: 

-Do G” Lagrange curves exist for all n? If so, what is their degree and do they 
have a simple closed form? 

-What is the degree of’ a geometrically continuous Catmull-Rom spline for 
arbitrary n and k? 

-What is the general construction algorithm for arbitrary n and k? 

-1s there a fast way to modify (instead of completely recomputing) the Bezier 
control vertices when a. control vertex or shape parameter is perturbed? 

-1s there a general explanation for the behavior exhibited in the limit of infinite 
shape parameters? 

-Do urn model descriptions [19] exist for geometrically continuous Catmull- 
Rom splines? We know that for (G1, k = 1) this question is answered in the 
affirmative. 

-Finally, can the techniques used in this work for curves be extended to tensor 
product surfaces and/or triangular patch surfaces? What is the behavior of 
such surfaces when shape parameters are changed? What is the nature of 
construction a1gorithm.s for determining the Bezier control meshes? 
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