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Geometric Control of Particle Manipulation in a Two-Dimensional Fluid

Yizhar Or, Joris Vankerschaver, Scott D. Kelly, Richard M. Murray and Jerrold E. Marsden

Abstract— Manipulation of particles suspended in fluids is
crucial for many applications, such as precision machining,
chemical processes, bio-engineering, and self-feeding of mi-
croorganisms. In this paper, we study the problem of particle
manipulation by cyclic fluid boundary excitations from a
geometric-control viewpoint. We focus on the simplified prob-
lem of manipulating a single particle by generating controlled
cyclic motion of a circular rigid body in a two-dimensional
perfect fluid. We show that the drift in the particle location
after one cyclic motion of the body can be interpreted as
the geometric phase of a connection induced by the system’s
hydrodynamics. We then formulate the problem as a control
system, and derive a geometric criterion for its nonlinear
controllability. Moreover, by exploiting the geometric structure
of the system, we explicitly construct a feedback-based gait
that results in attraction of the particle towards the rigid body.
We argue that our gait is robust and model-independent, and
demonstrate it in both perfect fluid and Stokes fluid.

I. INTRODUCTION

A variety of practical tasks — ranging from the sorting and

filtering of airborne contaminants for public safety [14] to

the mechanical testing of macromolecules like DNA [29] to

the assisted fertilization of human ova with immotile sperm

[10] to the stirring of chemical processes [1] — involve

the manipulation of particles suspended in fluids. Depending

on the application, direct mechanical manipulation of the

particles in question can be impractical because of their

number (as with environmental pollutants) or their delicacy

(as with living cells). Current alternatives addressing one or

the other of these issues have problems of their own: laser-

based systems like optical tweezers [4], for instance, are

relatively gentle but require translucent media (and closed-

loop control) for practical implementation.

Examples of particle manipulation through periodic fluid

boundary excitation are present throughout the natural world,

suggesting a class of simply realized engineered systems

with diverse applications. The ingestion of nutrients by many

aquatic organisms hinges, for instance, on the entrainment

of these nutrients in flow structures maintained by vibrating

appendages. Among the simplest such structures is the
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toroidal feeding vortex of the ciliated protozoan Vorticella

[30], depicted in the video at [26]. Compare this video to

that at [31], which shows the toroidal vortex surrounding a

vibrating carbon-fiber probe penetrating a droplet of water

in which a large number of forty-micron polymer beads

are suspended [32]. The sustained excitation of abrasive

particles in this manner has proven an effective strategy for

the precision machining of brittle surfaces [24]. In a different

implementation, a microfluidic device has been developed for

manipulating cells by controlling external electric fields and

using vision-based feedback control [3]

The mixing properties of the ciliary motion described

above have recently been studied experimentally [23], and

efforts to develop artificial cilia are ongoing in the MEMS

community [12], but a consistent framework has not been

established for studying the dynamics and control of such

systems — let alone the broader class of systems in which

cyclic boundary motions of arbitrary geometry are invoked to

manipulate particles suspended in fluids on arbitrary physical

scales. We initiate the development of such a framework in

the present paper.

We focus the present discussion on a planar system

resembling the oscillating probe from [31] in cross section,

as shown in Fig. 1. In modeling the coupling between the

actuated motion of the shaded cylinder and the motion of

the surrounding fluid, we assume the fluid to be inviscid.

This assumption represents a natural first step toward more

complicated flow models, but does not necessarily restrict

the relevance of our results to the context of conservative

systems, and we demonstrate the effectiveness of a control

strategy derived with the help of this model in the opposite

extreme of Stokes flow. Indeed, prior work by the authors in

the context of locomotion — conceptually, the mirror image

of fluid transport through boundary motion — has explored

both the formal parallelism between ideal flow and Stokes

flow [16] and the correlation between optimally propulsive

boundary motions in ideal flows and in flows dominated by

dynamic vortex shedding [17].

Contributions: The aims and achievements of this paper

are twofold. First and foremost, we investigate the problem of

a particle moving in the fluid field generated by an actuated

rigid body from a control-theoretic point of view. We show

that the system is nonlinearly controllable and design a gait

for the rigid body that succeeds in attracting the particle.

Despite the low dimensionality of the problem, this is by

no means an easy task: naive gaits move the particle on a

circle but do not manage to bring it closer. By exploiting

the geometric structure of the control system, we design
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Fig. 1. The cylinder-particle system

a feedback-based gait that succeeds in doing so. Our gait

has the added advantage of being model-independent in the

sense that, while the main body of the text is concerned with

rigid bodies in ideal, inviscid flows, the same strategy also

works for other types of control systems possessing similar

geometric structure, as demonstrated for the case of two rigid

bodies moving in Stokes flow.

Secondly, we argue that this example fits into a broader

class of control systems, whose characteristic property is that

their configuration space has the structure of a fiber bundle.

Using some elementary tools from differential geometry

and nonlinear control theory, we show that the particle

manipulation problem can be understood in terms of a

connection on the fiber bundle, so that the drift in the

particle location after one cyclic change in the position of

the rigid body can be described by the geometric phase (or

holonomy) of this connection. While geometric phases have

been used in control theory to great effect before (see [22],

[8], [27], [18], [15]), this approach has traditionally been

confined to the case of locomotion systems, that enjoy some

additional symmetry properties due to the fact that the output

variables are group-valued. The class of control systems that

we consider here is distinct from that, but the geometric

structure still allows for significant simplifications: we prove

a new controllability criterion which is equivalent to the

classical Chow theorem, but uses objects on the space of

output variables only, leading to a significant reduction in

dimensionality.

II. PROBLEM DESCRIPTION

Consider a rigid, circular body of radius rc moving in

an inviscid, incompressible two-dimensional fluid which is

at rest at infinity. Physically, this ideal model corresponds

to the case of flow with large Reynolds number, where

the hydrodynamics is governed primarily by inertial effects,

whereas the effect of viscous drag is negligible [20]. As in

Fig. 1, we denote the position of the center of the body by

xc. Our aim is to design bounded, cyclic gaits for the motion

of the rigid body that bring a distinguished particle, whose

location is denoted by xp, closer to the body.

A. Potential Flow

Consider an inviscid, incompressible fluid with Eulerian

velocity field v(x, t). When the curl ∇ × v vanishes, the

fluid is said to be irrotational. For two-dimensional flows,

this implies that the Euler equations describing v are reduced

to solving a Laplace equation, as we recall below. For more

information about irrotational fluid dynamics, see [20].

In the case of an irrotational fluid, the velocity field can

be written as a gradient of a potential function v = ∇φ,

where φ is the solution of Laplace’s equation ∇2φ = 0
with Neumann boundary conditions given by the fact that the

normal velocity of the fluid should be equal to the normal

velocity of the points on the boundary of the body:

n · ∇φ = (ω × (x− xc) + ẋc) · n on ∂B,

together with the fact that φ goes to zero sufficiently fast

as ||x|| → ∞. Here ω and ẋc are the angular and linear

velocity of the rigid body, and n is the unit normal to the

boundary of the body.

Because of the linear dependence of φ on ω = ωez and

ẋc = ẋcex + ẏcey , φ can be expressed as φ = φωω +
φxẋc + φy ẏc, where φω , φx and φy are the elementary

velocity potentials. For a circular rigid body of radius rc,

these potentials are given by φω = 0 and

φx(x) = −r2c
x− xc

‖x− xc‖
2 , φy(x) = −r2c

y − yc

‖x− xc‖
2 , (1)

where x = (x, y) and xc is the location of the center of

the cylinder. For future reference, we also introduce the

associated elementary stream functions ψx and ψy as the

harmonic conjugates of φx and φy:

∂φx
∂x

=
∂ψx

∂y
and

∂φx
∂y

= −
∂ψx

∂x
, (2)

and similarly for ψy .

B. Velocity of Fluid Particles

We now consider the motion of a single massless particle

xp(t) in the irrotational flow field of a moving rigid body

with center of mass xc(t). As the particle is advected by the

fluid flow (i.e. it does not influence the fluid, but is simply

swept along), its velocity is equal to the fluid velocity at

that point: ẋp = v(xp(t), t). The time-dependence of the

fluid velocity field is due to the motion of the rigid body.

The equations of motion for the particle can be made

more explicit by using the expressions in (1) for the velocity

potentials:

ẋp = A(xp,xc) · ẋc. (3)

Here, the matrix A(xp,xc) is given by

A(xp,xc) =
r2c

(X2 + Y 2)2

(

−X2 + Y 2 2XY
2XY X2 − Y 2

)

(4)

where (X,Y ) denote the components of the relative position

vector xp−xc. Note that the matrix A depends on the relative

position xp − xc only.
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Fig. 2. Particle motion under a square loop motion of the cylinder: (a)
Particle trajectory under a single cycle. (b) Particle trajectory (dashed line)
under 400 square loops cycles of the cylinder (solid curve).

C. Formulation as a Control Problem

The problem we study in this paper is controlling the

motion of the cylinder xc in a way that induces a desired

motion of the particle xp. More precisely, we wish to move

the cylinder in arbitrarily small bounded closed loops, and

generate attraction of the particle towards it. The input of

the system is the velocity of the cylinder,

ẋc = u, (5)

and the output is the position of the particle xp. Equations (3)

and (5) describe the problem as a driftless nonlinear control

system [6], [28]. In order to check the local controllability

of the system, one can apply the classical Lie-algebraic test

originally developed by Chow [7]. Direct application of this

test for our system shows that it is nonlinearly controllable

as long as X2 + Y 2 6= r2c , which is satisfied whenever the

particle is not strictly in contact with the cylinder’s boundary.

We will return to this in section VI, where we exploit the

geometric structure of the system to develop an alternative

controllability criterion.

Simulation Example. Consider the case of a cylinder with

radius rc = 1 whose initial center position is xc = (0, 0),
and a particle which is initially located at xp = (3, 0). Fig.

2(a) shows the motion of the particle as a result of the motion

of the cylinder on an anti-clockwise square loop with sides

of length 1. The initial point is marked by ’×’, while the end

point is marked by ’◦’. Next, we simulate the motion of the

particle under repetition of the square loop of the cylinder’s

motion for 400 times; see Fig. 2(b). The result is that the

particle traces out a circle centered on the origin, without

getting any closer to the cylinder. Our particular goal, to

attract the particle towards the cylinder, can therefore not be

achieved by naively applying simple loops for the cylinder’s

motion. In the sequel, we analyze the underlying geometric

structure of our control system, and present an algorithm for

generating a feedback-based gait of periodic motion of the

cylinder that will result in a slow drift of the particle towards

it.

III. CONNECTION-THEORETIC DESCRIPTION

In this section, we make a first step towards constructing

gaits, by interpreting the matrix A(q) in (3) as a connection

in a fiber bundle, and showing how the drift in the particle

location due to a cyclic change in the location of the rigid

body can be viewed as the geometric phase (or holonomy)

of this connection. This is distinct from the usual appearance

of connections and geometric phases for locomotion systems,

which are mechanical control systems defined on a principal

fiber bundle [6], [18]. These systems are (locally) of the form

g−1ġ = A(s)ṡ, where the variables g take values in a Lie

group and the matrix A(s) depends on the input parameters

s only. In contrast, the connection matrix A(xp,xc) in this

paper does not have these group-theoretical properties and

depends both on the input and the output variables, preclud-

ing a standard geometrical approach to motion planning as

in [22], [27].

A. Fiber Bundles and Connections

We now describe how the particle manipulation system (3)

and (5) fits into a broader class of control systems. We denote

the space of input variables for this class of systems by B
and the space of output variables by F . To emphasize the

link with the particle manipulation problem, we will denote

points in B and F by xc and xp, respectively. However,

we emphasize that this setup is applicable to more general

problems as well.

The spaces B and F naturally fit together into a

differential-geometric structure known as a fiber bundle. For

our purposes, it will suffice to define a (trivial) fiber bundle

to be a triple (B×F,B, π1), where B and F are manifolds

and π1 : B × F → B is the projection onto the first factor.

The manifold B is called the base space of the bundle and

encodes the internal, controlled variables, while B × F is

referred to as the total space, where the fiber F encodes the

output variables.

In order to specify the relation between the control pa-

rameters and the output variables, we need the concept of

a connection. While there are many equivalent ways of

defining connections in this context, we use the concept of

a horizontal lift [6].

Definition 1: A horizontal lift is a family of linear maps

A(xp,xc) : Txc
B → Txc

B × Txp
F, (6)

for all (xc,xp) ∈ B × F , such that Tπ1 ◦A(xp,xc) = id,

i.e. A(xp,xc) is the identity on the first factor.

When evaluated on a vector ẋc, the horizontal lift map

A(xp,xc) · ẋc determines the influence on xp of an infinites-

imal change in xc, given by ẋc. In order to describe cyclic

changes in the control variables, we recall the concept of

geometric phase of a connection. Let γ : t 7→ xc(t) be a

closed loop in B with xc(0) = xc(1) = xc, and choose a

point xp ∈ F . We can then find a unique curve t 7→ xp(t)
in F such that

(ẋc(t), ẋp(t)) = A(xp,xc) · ẋc(t),

satisfying the initial condition xp(0) = xp. The pair

(xc(t),xp(t)) is called the horizontal lift of γ, based

at(xc,xp) ∈ B × F . Fig. 3 illustrates the geometric phase

map associated to a given loop in the base space.



Fig. 3. Illustration of the geometric phase associated to a loop in the base
space.

Definition 2: Let γ : t 7→ xc(t) be a closed loop in B.

For xp ∈ F , consider the horizontal lift (xp(t),xc(t)) of that

loop, based at (xp,xc). The geometric phase associated to

the loop γ is the map Φ : F → F associating to each xp the

end point xp(1) of the curve xp(t).

Note that the geometric phase map depends only on the

geometric shape of the loop γ, and not on the choice of

a time-parametrization of the motion of xc(t) along γ.

B. Application to Particle Manipulation

For the particle manipulation problem, the base space B
is the configuration space of the rigid body: B = R

2, while

the fiber F = R
2 is the particle’s configuration space.1 The

matrix A in (4) defines a connection in this bundle. We now

describe some properties of this connection.

a) Geometric Phase: For this connection, the lifted

curve (xc(t),xp(t)) associated to a closed loop xc(t) in the

body space has the following interpretation: xp(t) describes

the trajectory of the particle, relative to the body, as the body

traces out the curve xc(t).

b) Volume-preservation: Since the fluid is taken to be

incompressible, the geometric phase map Φ : R2 → R
2 is

volume-preserving, regardless of the trajectory in the base

space. This can also be checked directly by noting that the

divergence of the right-hand side of (3) vanishes.

IV. GEOMETRIC STRUCTURE OF THE CONTROL SYSTEM

We now study the geometric structure and symmetries of

the control system (3) and (5), by making the following three

observations. The first observation is that the connection

A(xp,xc) in (4) depends only on the relative position q,

defined as q = xp −xc. The control system can then be

reformulated in terms of q as

{

q̇ = B(q)u

ẋc = u,
(7)

where B(q)=A(q)−I, and I is the 2×2 identity matrix. The

second observation, which exploits the circular symmetry of

the cylinder, is that equation (7) is invariant under simul-

taneous rotation of q,q̇ and u, as follows. Let R ∈ SO(2)

1More precisely, one needs to restrict F to the region exterior to the rigid
body, but this caveat does not affect our treatment.

be a rotation matrix in the plane. Then q̇ = B(q)u implies

Rq̇ = B(Rq)Ru. Therefore, B(q) satisfies

B(q) = RB(RTq)RT . (8)

The third observation is that the control system (7) is

invariant under reflection with respect to the particle-cylinder

line, whose direction is q, so that

B(q) = P(q)B(q)P(q), (9)

where P = I − 2e⊥(q)e⊥(q)T is the reflection operator

about the direction of q. Here we have introduced

e⊥(q) = Je(q), e =
q

||q||
, and J =

(

0 −1
1 0

)

.

We now define a rotating reference frame F
′

which is

aligned with the direction of q (see Fig. 1). Let R(θ)
be the rotation matrix from the frame F

′
to the world-

fixed frame F, where θ = tan−1(Y/X) and (X,Y ) are

the components of q expressed in the frame F. Define

q′ = R(θ)Tq, q̇′ = R(θ)T q̇, and u′ = R(θ)Tu, which

are the vectors q, q̇ and u expressed in the frame F
′
.

By construction, we have that q′ = (0 r)T , where r =
||q||. Defining B′(r) = B(q′), for given q, B(q) can

be obtained from B′(r) according to (8). Note that B′(r)
depends only on the distance r between the cylinder and

the particle. Moreover, augmenting this observation with the

relation (9), we conclude that B′(r) is diagonal. Note that

our geometric interpretation is general, and applies to any

system of the form (7) describing the interaction between

two planar bodies with circular symmetries. Nevertheless, in

our specific example given in (3) and (4), direct calculation

gives B′(r) = diag{B′
11(r), B

′
22(r)}, where

B′
11(r) =

r2c
r2

− 1 and B′
22(r) = −

r2c
r2

− 1. (10)

The radial and tangential motions. We now characterize

two principal motions for this system, namely, radial and

tangential motions, implied by the diagonality of B′(r).
These two principal motions play a key role in the algorithm

we present for gait generation. Radial motion is a motion

in which the input velocity u = ẋc is directed along q. In

this case, the motion of xc and xp is one-dimensional, and

depends only on the separation distance r. Taking u = e(q),
r satisfies the differential equation

ṙ(t) = B′
11(r(t)). (11)

This equation is separable, and for our specific case given

in (10), the solution r(t) with initial condition r(0) = r0 is

obtained from the implicit equation

rc
2

(

log
r + rc
r − rc

− log
r0 + rc
r0 − rc

)

+ r0 − r = t. (12)

For large distances r ≫ rc, the solution has a constant

slope of −1, indicating that the cylinder is moving while the

particle stands still. For small initial distance r0, the solution

r(t) approaches rc asymptotically. Therefore, catching the

particle by directly “chasing” it is possible, but requires large



motions, whereas here we focus on manipulating the motion

of xp by generating bounded motions of xc.

The tangential motion is generated by applying input

velocity u = e⊥(q), which is constantly perpendicular to

q. Under this motion, the distance ||xp − xc|| remains fixed

at r = r0. Moreover, it can be shown that under this input,

xc and xp are moving along two concentric circular arcs,

where the radius of the circular arc formed by the motion of

xc is R = r0
|B′

22
(r0)|

.

V. THE FEEDBACK-BASED GAIT

We now present a novel algorithm for generating a gait

for this system, which results in a decrease of the distance

between xc and xp. The gait makes use of the two principal

motions described above in a way that generates a closed

loop. We prove that the gait results in attraction of the particle

xp to the body xc, and demonstrate the resulting motion via

numerical simulations. Though the gait requires feedback,

it does not depend on details of the specific model of the

system, hence it is robust.

A. The TRTR gait procedure

The TRTR gait consists of four steps, alternating between

tangential and radial motions. The input velocity u = ẋc in

each step is described as follows.

A. Apply input u = e⊥(q) for a time t1.

B. Apply input u = e(q) for a time t2.

C. Apply input u = −e⊥(q), until reaching a time

at which the initial position xc(0) and the current

positions xc and xp all lie on a common line.

D. Apply input u = −e(q) until xc reaches its initial

position xc(0).

The TRTR gait is explained as follows. In step A, xc and xp

are moving along two concentric arcs about a centerpoint O1,

while the distance between them is kept fixed at r = r0. In

step B, xc and xp are moving along the line connecting them,

and the distance between them is decreased to r2. Then in

step C, xc and xp are again moving along concentric circular

arcs with direction reversed from step A. A key fact is that

the center point of these arcs O3 is now shifted from O1 by

a distance ∆o, and the arcs’ radii for xc(t), denoted R1 and

R3, are unequal. When step C comes to an end, the points xp,

xc and xc(0) are lying along a common line. In step D, xc

moves along this line for a time t4, until it reaches its original

position xc(0). The distance r is increasing in this step. Once

this gait is completed, xc returns to its starting point, whereas

xp does not. This results in a shift of both the distance r and

the angle θ, which is precisely the geometric phase associated

with the gait. The geometric phase depends on the times t1
and t2, which are design parameters of the gait, but has no

explicit expression, as it involves the implicit solution of Eq.

(11) describing the radial motion. Denoting by Φ(r0, t) the

solution of (11) at time t under initial condition r(0) = r0,

the following lemma gives the implicit expression for rend,

which is the final distance r under the TRTR gait. The proof

of this lemma, as well as the expression for the shift in θ,

are not given here due to space constraints.

Lemma 1: Consider a control system of the form (7), that

satisfies the invariance properties (8) and (9). For given

initial distance r(0) = r0, the final distance rend under the

TRTR gait with times t1 and t2 is given by

rend = Φ(r0, t2 − t4), where

t4 =

√

(∆o +R1 cos θ1)
2
+ (R1 sin θ1)

2
−R3

∆o = t2 +R3 −R1, θ1 = t1
R1

R1 = r0
|B′

22
(r0)|

, R3 = r2
|B′

22
(r2)|

, r2 = Φ(r0, t2).

(13)

Using the expression for rend in (13), we now prove that

the TRTR gait results in a decrease of the distance r, i.e.

rend < r0. The proof holds not only for our specific problem,

but assumes a general control system of the form (7) that

satisfies the invariance properties (8) and (9). Under these

relations, the system is defined solely by the functions B′
11(r)

and B′
22(r). The proof uses the following assumptions on the

system:

A1. −1 < B′
11(r) < 0 for all r > rc.

A2. |B′
22(r) + 1| decreases monotonously with r.

A3. B′
22(r) < −1 for all r > rc.

The first two assumptions are fairly general and physically

reasonable, as they require that the interactions between the

motions of xp and xc are monotonously decaying with the

distance r, and that the magnitude of ẋp is always less than

that of ẋc. The third assumption, which is given here for

simplicity, is not essential and can be relaxed. It is easy to

verify that the three assumptions hold in our example, where

the data of the model is given in (10). The following theorem

uses the assumptions to prove that r is decreasing under the

TRTR gait.

Theorem 1: Consider a control system of the form (7),

which possesses the invariance relations (8) and (9), and

satisfies assumptions A1, A2 and A3. Then under initial

distance r(0) = r0 > rc, the TRTR gait results in a final

distance rend that satisfies rend < r0.

Proof: First, we show that ∆o, defined in (13), is

positive. Under assumptions A2 and A3, one obtains

∆o = t2 +R3 −R1 = t2 +
r2

|B′

22
(r2)|

− r0
|B′

22
(r0)|

> t2 +
r2−r0

|B′

22
(r2)|

> t2 + r2 − r0.

Assumption A1 implies that under the differential equation

(11), one has t > r0 − Φ(r0, t). Hence, we conclude that

t2 + r2 − r0 > 0, which implies ∆o > 0.

Next, we prove that t4 < t2. Using the fact that ∆o > 0,

we have

(∆o +R1 cos θ1)
2
+ (R1 sin θ1)

2

= (t2 +R3 +R1(cos θ1 − 1))
2
+ (R1 sin θ1)

2

= (t2 +R3)
2 + 2R1(cos θ1 − 1)(t2 +R3 −R1)

= (t2 +R3)
2 + 2R1(cos θ1 − 1)∆o < (t2 +R3)

2.

Substituting into the expression for t4 in (13) yields t4 < t2.

Finally, assumption A1 implies that Φ(r0, t) is

monotonously decreasing with t. Therefore, using the
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Fig. 4. (a) Trajectories of xc and xp under a single gait. (b) Motion of
particle xp under iterative applications of gait. (c) The series rk of the
distance r after each cycle. (d) Motion of xp under iterative applications
of the gait with alternating θ-shift.

expression for rend in (13) and the fact that t4 < t2 proves

that rend < r0.

Example: We now show a simulation example in order

to demonstrate the particle motion induced by the TRTR
gait. Fig. 4(a) shows the trajectories of xc and xp for

rc = 1, under the TRTR gait with t1 = t2 = 1. The

initial positions, which are marked by ’×’, are xc(0) =
(0, 0) and xp(0) = (2, 0). One can clearly see that while

xc travels along a closed loop, xp has a nonzero shift of

∆xp=(−0.0045,−0.0290), or equivalently, ∆r=−0.0043
and ∆θ = −0.55◦. When applying the gait repeatedly, the

distance r after each cycle is slowly decreasing, and the angle

θ is changing monotonously, resulting in a spiral motion

of the particle until it eventually reaches the boundary of

the cylinder. Fig. 4(b) shows the position of xp after each

cycle under iterative application of the TRTR gait, starting

from xc(0) = (0, 0) and xp(0) = (3, 0). Fig. 4(c) plots

the discrete series rk of distances after each iteration. It

can be seen that after k = 115 iterations, the particle is

trapped at the cylinder’s boundary r = rc = 1. In order to

eliminate the monotonous change of θ which results in spiral

motion, we now modify the sequence of gaits by reversing

the direction of the tangential motions along arcs in steps

A and C alternately between consecutive gaits. This results

in oscillations of θk around zero, as shown in Fig 4(d). The

evolution of the distances rk remains the same as in Fig 4(c).

Remarks: First, note the stopping condition in step C

of the algorithm, which assures that the trajectory forms

a closed loop. Second, a key fact is that the TRTR gait

requires feedback, since it is based on moving xc in the

directions e(q) or e⊥(q), which depend on the positions

of xp and xc. However, the feedback does not necessarily

require inertial sensors that measure absolute positions, and

can be implemented under two much simpler requirements,

as follows. The first requirement is the ability to mark the

starting point xc(0) with some fixed landmark. The second

requirement is that the moving cylinder is equipped with

a compass-like device which is capable of measuring the

bearing angle of the line connecting xc to the particle xp,

and of the line connecting it to the the landmark of xc(0).
Finally, it is important to note that the TRTR gait does

not require knowledge of the exact details of the model.

Therefore, the gait is robust with respect to inaccuracies

in the model. Moreover, the gait can be implemented in

any system describing the interaction between two circular

bodies, as long as their dynamics induces a connection of

the form (7) with the invariance properties (8) and (9).

Implementation of the gait in Stokes flow: In order

to demonstrate the fact that the TRTR gait is model-

independent, we now show how it can be implemented for a

simple example in viscous fluid which is governed by Stokes’

equation. Stokes equation describes the hydrodynamics of

particles on a small scale, where the Reynolds number is

very small, indicating that viscous effects are dominating

and inertial effects are negligible [13], [25]. We consider the

case of two spheres of equal radius, where the motion of one

sphere is controlled while the other sphere moves passively

with the fluid. The goal is again to move the controlled

sphere in small loops that induce attraction of the passive

sphere to the controlled sphere. Note that the motion of rigid

bodies in Stokes flow is quasistatic, i.e. the net forces acting

on each rigid body are zero at all times. Another fundamental

principle is the existence of a linear relation between the

rigid-body velocities and the forces exerted by the fluid on

the rigid bodies. For two rigid bodies, this linear relation is

formulated as
(

f1
f2

)

=

(

R11 R12

R21 R22

)(

ẋ1

ẋ2

)

, (14)

where f i is the force acting on the ith body, ẋi is its velocity,

and the big matrix with blocks Rij in (14) is called the

resistance matrix [13]. Consider a given motion of one body

u = ẋ1, imposed by applying an external force on it. The

resulting motion of the passive body ẋ2 can be obtained by

using the relation (14) along with the quasistatic assumption

f2 = 0, and is thus given by ẋ2 = −R−1
22 R21ẋ1. This

relation is again in the form of a driftless nonlinear control

system (7) induced by a connection of the form (6). When the

two rigid bodies are spheres, the control system also satisfies

the two invariance properties given in (8) and (9), hence we

can apply the TRTR gait in a similar fashion. For simplicity,

in our simulation we use the far-field approximation of the

resistance matrix, which was developed in [9]. We simulated

the motion of two spheres of radius 1, where the sphere

x1 is controlled and the sphere x2 moves passively. Fig.

5(a) shows trajectories of x1(t) and x2(t) under a single

TRTR gait with t1 = t2 = 1, where the initial positions

are x1(0) = (0, 0) and x2(0) = (4, 0). The resulting shift

in the position of x2 is ∆r = −0.0054 and ∆θ = −0.96◦.

One noticeable difference from the cylinder-particle motion

in perfect fluid is that the arcs of x1 and x2 in steps A

and C are in-phase, whereas they were anti-phase in the

perfect fluid case of Fig. 4(a). (This is caused by the fact
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Fig. 5. The motion of two spheres in Stokes flow: (a) Trajectories of x1

and x2 under a single gait. (b) The series rk of the distance r after each
cycle.

that here we have B′
22(r) > −1, while in the perfect fluid

case we had B′
22(r) < −1, see Eq. (10)). When applying the

gait repeatedly, the discrete series of distances rk decreases

monotonously as shown in Fig. 5(b), and reaches contact

r=2 after approximately 240 iterations.

Notice the difference in the nature of convergence in the

two examples. In the inviscid case, the distance rk converges

to zero only asymptotically, and physical contact r = 1 is

never attained. In the second example of Stokes flow, the

model predicts convergence to contact (r = 2) in finite

time. This unphysical result is an artifact, caused by the

fact that we have used a far-field approximation of the

resistance matrix. This approximation is not valid when the

gap between the particles is small, where a more refined

model accounting for lubrication effects [19] is needed.

An additional fundamental difference between the cases of

Stokes flow and potential flow is the fact that in Stokes

flow, the no-slip condition on the boundary of the spheres

implies that pure rotation of the controlled sphere also leads

to motion of the passive sphere, and thus it can serve as an

additional input for the control system, which may enhance

the manipulation capabilities.

VI. CONTROLLABILITY ON SYMPLECTIC FIBER

BUNDLES

In this last section, we return to the connection-theoretic

treatment of section III. We show that the particle manipu-

lation connection is an example of a symplectic connection,

and we establish a controllability test for systems governed

by a symplectic connection, which yields the same results

as the classical Lie-algebraic test in the Chow theorem

[28] but is significantly simpler: whereas the Chow criterion

deals with vector fields on the space B × F , our criterion

deals with objects on the fiber F only. For the particle

manipulation, dimB × F = 4 while dimF = 2, which

entails a reduction by half. Our result is analogous to that of

[18], who developed a criterion called strong controllability

for connections on a principal fiber bundle.

The treatment below will make use of differential forms

(see [6]). We denote the exterior derivative of a form ω by

dω, and the contraction of a vector field X with a form ω by

iXω. Recall that a two-form ω is symplectic when it is closed

and non-degenerate, i.e. dω = 0, and iXω = 0 implies that

X = 0. A fiber bundle B×F is said to be symplectic when

F is equipped with a symplectic form ωF ; see [11].

Definition 3: A connection A is symplectic if, for each

loop in the base space, the associated geometric phase

mapping Φ preserves the symplectic structure ωF on F , i.e.

Φ∗ωF = ωF .

For the particle manipulation problem, the symplectic

form on F is the area form dxp ∧ dyp. The connection

is symplectic because the fluid is incompressible and hence

area-preserving.

Recall that a vector on the trivial bundle B×F is vertical

if it is of the form (0, ẋp), where ẋp ∈ TF , while vectors

of the form (ẋc,A(xp,xc)ẋc) with ẋc ∈ TB, are said to be

horizontal.

Definition 4: A two-form ω is compatible with a sym-

plectic connection if ω(u, v) = 0 for all horizontal vectors

u and vertical vectors v, and if ω(v, w) = ωF (v, w) for all

vertical v, w, where ωF is the symplectic form on F .

For example, in our problem of particle manipulation, the

compatible two-form is given by ω = dψx ∧ dxc + dψy ∧
dyc + dxp ∧ dyp, where ψx, ψy are the elementary stream

functions (2).

Using the compatible two-form ω, we define then the

following vector spaces of exact one-forms on F :

v1 = {diXh iY hω : X,Y ∈ X(B)} ⊂ T ∗F

vk = {diZhαk−1 : Z ∈ X(B), αk−1 ∈ vk−1} ⊂ T ∗F,

where k = 2, 3, . . . Here, X(B) denotes the space of vector

fields on B and Xh is the horizontal lift of a vector field X
on B, given by Xh(xc,xp) = (X(xc),A(xp,xc) ·X(xc)).
Our controllability result is then as follows.

Theorem 2: Let (xc,xp) be an element of B × F . If the

sum of vector spaces

v1(xc,xp) + v2(xc,xp) + · · ·

coincides with the entire cotangent space T ∗
xp
F , then the

system is controllable at (xc,xp).

For the particle manipulation problem, we have that v1 is

spanned by dH1 while v2 is spanned by dH2,1 and dH2,2,

where

H1 =
r4c

(X2 + Y 2)2
, H2,1 =

4r4cX(X2 + Y 2 − r2c )

(X2 + Y 2)4
,

and H2,2 =
4r4cY (X2 + Y 2 − r2c )

(X2 + Y 2)4
.

We recall that rc is the radius of the cylinder. It is easy

to check that the span of dH1, dH2,1 and dH2,2 is R
2,

except for the points where X2 + Y 2 = r2c , corresponding

to the boundary of the cylinder. The lack of controllability

here reflects the fact that fluid particles on the boundary only

move along the boundary and cannot leave it.

Remarks. We defer the proof of the controllability charac-

terization to a future paper. The proof relies on the realization

that the functions H1, H2,1, etc. are in fact Hamiltonian

functions for the iterated Lie brackets that appear in the Chow

theorem on controllability. Last, we emphasize that the con-

nection A for the particle-manipulation problem also enjoys

a number of symmetries, which were exploited in the design

of gaits. This makes A into a Hannay-Berry connection [21],

a type of group-invariant symplectic connection that was



previously used in the description of averaged equations and

Foucault’s pendulum.

VII. CONCLUSION

In this paper, we have studied the motion of a particle in an

inviscid, irrotational fluid flow under the influence of a mov-

ing rigid body. We have designed a feedback-based gait that

results in attraction of the particle, and demonstrated that the

gait is model-independent by implementing it for a similar

problem in Stokes flow. Moreover, we have shown that this

particle drift can be interpreted as the geometric phase of a

connection, and by using these geometric structures, we have

proposed an alternative controllability criterion with reduced

dimensionality.

We now briefly sketch some possible directions for future

generalization of the results. We comment first on the exten-

sion to the case of three-dimensional fluids. Several remarks

are in order here. Firstly, the 3D case is already treated in our

example of two spheres in Stokes flow, where a 3D approach

is necessary in order to avoid the Stokes paradox (see [13]).

We expect that the other examples can easily be extended

to the case of spatial fluids too. Mathematically speaking,

3D fluid flows preserve the standard contact structure on

R
3. As a result, particle manipulation in three dimensions

is described by a contact connection, an object whose

properties will be described in future work.

Secondly, we plan to investigate optimal gaits that ex-

tremize a cost function, such as net motion or overall energy

expenditure, under a gait of bounded size. A challenging

open problem would be to relate such an optimal gait to a

geodesic curve under a suitable metric (see [2], [5]). A third

possibility is to consider rigid bodies with non-circular sym-

metries, such as ellipses, or even fully deformable bodies.

Each of these extensions brings in new ways of actuating the

fluid. Finally, an long-term goal is to extend these results to

the manipulation of many particles in a fluid with a minimal

set of control inputs. The geometric description of these

extended problems will be the subject of future work.
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