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ABSTRACT: An appealing approach to formulate constitutive models for charac
teriling distributed damage due to microcracks and voids is continuum damage 
mechanics with the concepts of effective stress and strain equivalence. [n that 
approach. in which damage is imagined to characterize the reduction of the net 
stress-transmitting cross-section area of the material. the constitutive model is sep
arated into two independent parts. one for damage and the other for elastic and 
inelastic behavior (rheology) other than damage. which. if combined appropriately. 
give the overall constitutive bchavior. However. the existing multidimensional for
mulations for damage arc quite complex, and practical implementations capable 
of fitting experimental data are hard to obtain. The microplane models, by contrast, 
provide conceptual simplicity and close fits of multi axial test data for concrete. 
soils. etc., although, as formulated in the past. various kinds of physical phenomena 
were mixed in the definition of the microplane stress-strain curves. [n this work 
the microplane theory is reformulated in a manner that separates damage from 
rheology and makes the formulation fit the basic framework of continuum damage 
mechanics. Aside from a kinematic constraint between macrostrains and micro
strains. the model satisfies a static constraint such that the effective microstresses 
are the resolved components of the effectiveness macrostresses. 

INTRODUCTION 

Inelastic phenomena are of two kinds: (1) Those that reduce material 
stiffness and cause strain-softening; and (2) those that do not. The former 
represent damage caused by nucleation, growth, and coalescence of micro
cracks and voids, and the latter consist of plastic slip, friction, creep. etc. 
Modeling each of these phenomena is difficult enough, but the complexity 
becomes formidable when both kinds of phenomena are combined, which 
occurs in many materials. In this paper we seek to separate these two 
phenomena to achieve simplification and clarity. We assume the microcracks 
and voids to remain homogeneously distributed so that the material can be 
microscopically treated as a continuum. 

The real stress and strain fields at the microlevel are highly scattered and 
nonsmooth. Therefore, the continuum strains and stresses must be taken 
as the "average" values of these fields over a certain representative volume. 
However, applicability of damage in terms of such stresses and strains must 
be restricted to situations in which no localization phenomena take place, 
i.e., no macrocracking or shear-banding occurs. If the damage and strains 
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can localize, unrealistic results can be obtained with this approach unless 
additional techniques such as crack band model. nonlocal models, or lo
calization analysis are implemented in the context of the "smeared" ap
proach to damage (Bazant and Cedolin 1979; Crisficld 1982; Pijaudier-Cabot 
and Bazant 1987; de Borst 1987; Ortiz 1987; Ortiz and Quigley 1989; Carol 
and Prat 1990). Alternatively, formulations can also be obtained by "dis
crete" crack models based on fracture mechanics with softening cohesive 
(crack-bridging) zone (Hillerborg et al. 1976; Hillerborg 1984). 

The classical approach to distributed damage is the continuum damage 
mechanics. As originated by Kachanov (1958) for one-dimensional prob
lems, the basic concept of continuum damage mechanics looks simple: a 
reduction of the net stress-carrying cross-section area fraction caused by the 
growth of microcracks and voids in the material microstructure. This is a 
purely geometric characteristic, reflecting the fact that the "effective" (or 
"true ") stresses in the undamaged part of the cross section are higher than 
the stresses in the macroscopic continuum (the apparent stresses). A law 
can be postulated to predict the decrements of the current cross-sectional 
area in terms of stress, strain, and damage, and simple hut useful results 
can be ohtained for complex phenomena such as creep rupture of metals 
(Kachanov 1958; Rabotnov 1969a,b; Leckie 1978; Lemaitre 1(84) and, more 
recently, the delayed failure of concrete under sustained uniaxial compres
sion (Carol 198\). 

The multiaxial generalization of continuum damage mechanics, however, 
poses a formidahle challenge that. to a large extent remains unsolved. The 
net stress-carrying area fractions for the different directions in space cannot 
be easily integrated to give a vectorial or tensorial damage measure that 
would define the "effective" or "true" stress tensor from the macroscopic 
stress tensor and the apparent or reduced macroscopic stiffness tensor. A 
review of the existing multiaxial generalizations presented in the section 
headed "Existing Models for Distributed Damage" shows a number of 
possibilities. some of them rather complicated and not always very satis
factory in terms of data-fitting capabilities, especially when the classical 
macroscopic tensorial approach is pursued. This is the case when the con
stitutive model is formulated phenomenologically without recourse to any 
geometric concepts related to microstructure and the inelastic phenomena 
are formulated as functions of stress and strain invariants. Nevertheless, as 
will be shown in the section headed "Effective Stress and Damage Tensor 
Uncoupled from Rheology" some basic general structure for continuum 
damage models based on the concepts of true, or effective. stress and macro
micro strain compatihility can also be established in three dimensions. This 
basic structure provides a suitable framework for separating the constitutive 
model in two parts, one for damage and the other for rheology, each of 
which can be formulated independently and then combined. This provides 
a convenient flexibility for combining damage with various complex types 
of inelastic material behavior. 

Compared to multi axial continuum damage model theories, much closer 
fits of test data for concrete and considerable theoretical simplification (al
beit at the expense of computer time requirements) is achieved by the 
microplane models. In general terms, already suggested for plasticity in a 
famous classical paper by G. I. Taylor (1938), this approach characterizes 
the material properties independently on planes of various orientation. which 
were initially called the slip planes (Batdorf and Budiansky 1949) but re
named microplanes when the concept was extended to materials incapable 
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of plastic slip (Bazant 1984). The basic material behavior is defined on the 
microplanes as a set of relations hetween the stresses and strains acting on 
that plane. These relations include all the rheologic phenomena involved 
in material behavior (elasticity, damage, plasticity) at the same time, in an 
inseparable manner. The microplane behavior is constrained to the mac
roscopic continuum behavior by a suitable macro-micro constraint having 
the form of a variational equation based for example on the principle of 
virtual work. In some studies (Bazant 1984; Bazant and Oh 1983. 1985: 
Bazant and Gambarova 1984; Bazant and Prat 1988; Carol et al. 1(90) the 
microplane concept, originally developed for metal plasticity, was extended 
to materials exhibiting damage with strain softening. The resulting model, 
briefly described in the section headed "Kinematically Constrained Micro
plane Model," was shown to be capable of a very good description of the 
existing test data on tensile strain-softening of concrete due to microcracking 
as well as the nonlinear triaxial behavior of concrete. including strain-soft
ening in compression and shear under different confining lateral stresses. 

This paper [which was briefly summarized in a conference paper by Bazant 
and Carol (1990) I reconciles both types of constitutive models (continuum 
damage and microplane), and presents a new interpretation of the micro
plane formulation as a continuum damage model. This leads to the for
mulation of a fourth-order nonsymmetric geometric damage tensor. The 
term "geometric" reflects the fact that this tensor is independent of any 
particular rheologic model. and depends only on the reduction of the net 
stress-carrying area fraction in various directions in the material, which are 
geometric characteristics (the term "geometric," of course. does not imply 
that all the geometric characteristics, such as spatial crack and void config
uration and statistical distributions. are taken into account). The proposed 
geometric damage tensor achieves a three-dimensional generalization of 
Kachanov's (1958) one-dimensional net stress-carrying area fraction. It is 
computed by integrating the geometric damage at each particular microplane 
over all the spatial directions. As a continuum damage model, it gives the 
relationship between the macroscopic and effective stress tensors and be
tween the initial and current stiffness matrices, and can be combined with 
any rheologic model (elasticity, plasticity, viscoelasticity). As a microplane 
formulation, it also has the additional advantage of an a priori knowledge 
that very good data fitting can be obtained in practical applications. The 
derivation of the new damage tensor is presented in two different ways: In 
the section headed "Derivation of Geometric Damage Tensor from Con
crete Model" it is derived from a version of the microplane model with 
particular microplane laws used previously for concrete (Carol et al. 1(90), 
and in the section headed "Rheology-Independent Derivation of Geometric 
Damage Tensor" it is derived without recourse to any particular stress-strain 
laws. 

EXISTING MODELS FOR D,STR,BUTED DAMAGE 

Consider first the example of a simple one-dimensional continuum dam
age formulation. In this case damage such as microcracks or voids may be 
regarded as geometric, representing a reduction in some ratio a of the net 
stress-carrying area in the microstructure of the material [Fig. l(a)]. For 
uniaxial stress (macrostress) (J', we may thus write 

(J' = aT .................................................... (l) 
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(a) (b) 

FIG. 1. Effective Stress and Damage in One Dimension: (a) Interpretation of T and 
0: (b) Stress-strain Diagram 

in which T is called the effective (or true) stress; and ex varies from 1 to () 
when damage increases (alternatively, damage can also be represented by 
w = 1 - ex varying from 0 to I); T represents the average stress in the 
stress-carrying portion of the cross-sectional area in the microstructure. 
Assuming a linear clastic relation, i.e., T = fYE, where Eo is the elastic 
modulus of the undamaged material and f the strain, one has 

a = exEor .................................................. (2) 

This equation may also be written as 

a = peer ................................................. (3a) 

pee = exEO ................................................ (3b) 

where Esec = secant modulus [Fig. l(b)]. Now, a damage evolution law can 
be assumed for ex. If it is defined in terms of E and introduced in (2) or (3), 
an explicit one-dimensional stress-strain relation for damage ensues. As seen 
in this simple example, the fo~mulation of a continuum damage model 
includes three steps. 

1. Characterization of damage by means of a variable (a or w) or set of 
variables. 

2. Dependence of the effective stress or secant modulus on the damage var
iable (T = a/a or £,ce = lyEO) 

3. Evolution laws for the damage variable; e.g. (X = F«T, f, a ... (F = 

function or functional). 

In triaxial generalization, some early models included damage-related 
concepts (e.g. stiffness degradation) that did not explicitly introduce a dam
age variable as such, but instead derived the evolution laws from a "frac
turing surface" with attributes similar to the classical yield surface in plas
ticity, defining this surface in terms of stress and strain invariants with 
hardening-softening rules, internal variables, etc. (Dougill 1976; Bazant and 
Kim 1979). That was a phenomenologic approach to thc problem whose 
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most sophisticated forms became impractical because of the high complexity 
and the presence of too many parameters and empirical functions, giving 
little insight into the physical processes actually occurring at the micros
tructural level. 

Most of the existing theories dealing with three-dimensional stiffness deg
radation incorporate some kind of damage variable in their definition and 
can be satisfactorily described in terms of the foregoing three-step scheme. 
The simplest possible characterization of three-dimensional damage is a 
scalar variable, which can be thought of as the damage caused by a field of 
spherical microvoids with the same stress-carrying area reduction in all spa
tial directions (Leckie 1978; Lemaitre and Chaboche 1978; Mazars 1985; 
Resende 1987; Frantziskonis and Desai 1987). To capture the anisotropic 
nature of damage caused by microcracks with predominant orientation, 
damage tensors of various orders have been proposed: vectors (Davidson 
and Stevens 1973; Krajcinovic and Fonseka 1981; Suaris and Shah 1984; 
Costin 1985; Costin and Stone 1987); second-order tensors (Vakulenko and 
Kachanov 1971; Dragon and Mr6z 1979; Kachanov 1980; Murakami and 
Ohno 1980; Betten 1983; Oda 1983; Murakami 1987; Suaris 1987); fourth
order tensors (Chaboche 1979, 1981; Ortiz 1985; Sim6 et a!. 1987; Yazdani 
and Schreyer 1988), or even eighth-order tensors (Chaboche 1978). 

The influence of the damage variable on the secant stiffness or effective 
stresses, along with the definition of the laws for damage evolution (steps 
2 and 3), depend much on what kind of damage variable is adopted. Using 
a scalar damage variable, these assumptions can be made analogous to the 
one-dimensional case, but then no induced anisotropy can be accounted 
for. Some authors use the secant stiffncss itself (or a related quantity such 
as the increment of compliance over the initial or elastic one) as a fourth
order damage tensor (Ortiz 1985; Simo et a!. 1987; Yazdani and Schreyer 
1988). With this approach, the dependence in step 2 is defined implicitly, 
but the stiffness tensor does not have a direct physical mcaning as a damage 
variable, and the corresponding evolution laws (step 3) have to be estab
lished again, mainly on a phenomenologic basis. 

In a certain sense the intermediate option of a second-order tensor as a 
damage variable seems appealing in the face of other possibilities. Consider 
for instance the "fabric tensor" proposed by Oda (1983) for the analysis of 
cracked rock masses, which was an improvement over other previous similar 
proposals. This tensor is defined as an integral over all the possible crack 
orientations and sizes of an expression including the crack density function. 
It is a symmetric dimensionless tensor, and some of its invariants can be 
interpreted in terms of the overall geometric effect caused by the field of 
microcracks. The concept of a second-order damage tensor also seems to 
be supported by theoretical considerations relative to frame invariance (Leckie 
and Onat 1980), as well as by experimental microstructural measurements 
of the corresponding "damage ellipsoid" in quite different materials (e.g. 
measurements of cancellous bone structure and granular soil fabric; Cowin 
1985). Unfortunately, the attractive concept of a second-order fabric tensor 
contrasts with the absence of equally clear and direct relations for the deg
radation of the macroscopic secant stiffness tensor and for the effective 
stresses in the cracked medium. Cowin (1985) deduces the most general 
dependence of the secant stiffness on the second-order fabric tensor per
mitted by the condition of frame invariance, which turns out to be a complex 
polynomial expression, with the somewhat disappointing peculiarity that at 
least a quadratic (and likely even higher) dependence on the first invariant 
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of the fabric tensor must be involved in the relation if orthotropic symmetry 
is to be preserved in the cracked material. Some other authors, on the other 
hand, handle the problem of reduction of the net stress-carrying area due 
to microcracks through simulation of a finite deformation field with the 
equivalent effects of area reduction in various directions in space, or through 
certain geometric and tensorial considerations. However, either they do not 
use a second-order tensor as a damage variable [Krajcinovic and Fonseka 
(1981), who used a vectorJ, or they get an awkward nonsymmetric effective 
stress tensor, which mLlst further be symmetrized in some arbitrary way in 
order to ontain a practical formulation (Murakami and Ohno 1980; Betten 
1983). 

A different approach is suggested ny studies of a homogeneous medium 
containing periodic arrays of inclusions or penny-shaped cracks. In such 
studies, the overall elastic modulus is obtained by calculating the approxi
mate stress fields in the solid, by the so-called self-consistent method or 
other related techniques (Budiansky and O'Connell 1976; Nemat-Nasser et 
al. 1982; Horii and Nemat-Nasser 1983; Attiogne and Darwin 1986; Ka
chanov 1987; Aboudi 1987). This approach can be useful when the overall 
modulus of a continuum (e.g. rock, a composite material) containing an a 
priori known field of cracks or inclusions needs to be computed. However, 
in most of those theories the field of microcracks and the configuration of 
inclusions must ne known in some detail; in constitutive modeling a damage 
variable characterizes these effects in a smeared way. Also, the relationships 
obtained for step 2 are usually very complicated (and sometimes they even 
do not have an explicit form but are a set of nonlinear equations to be 
solved numerically for each practical case); they should be explicitly tract
able expressions to be introduced as one component of the constitutive 
model. As a result [although some authors did use this approach to derive 
or support the choice of relations included in step 2; (Chaboche 1979; ada 
1983)J, this approach in general seems to be only of limited usefulness for 
the development of complete macroscopic constitutive relationships. 

EFFECTIVE STRESS AND DAMAGE TENSOR UNCOUPLED FROM 

RHEOLOGY 

To define the effective stress in three dimensions the following tensorial 
expression similar to (1) for one dimension has been introduced (Rabotnov 
1969a,b; Chaboche 1979; Lemaitre and Chaboche 1985; Sima et al. 1987): 

(Tij = Uijkn1 T k,n ............................................... (4) 

where the repetition of lower-case indices implies summation over I, 2, 3; 
crij and Tkm = Cartesian components of the macroscopic and effective (or 
true) stress tensors cr and T: and ailkm = components of a fourth-order 
dimensionless tensor a characterizing damage (which can also be expressed 
as a = I - w, where I = fourth-order identity tensor; and w = alternative 
damage tensor). 

Symmetry is assumed for the macroscopic stresses cr as well as for the 
effective stress tensor T. Thus, the components aijkm must preserve the 
interchangeability of index i with j and k and m, and can be grouped into 
a 6 x 6 matrix in the context of the six-component vectorial representation 
of symmetric stress tensors. However, no interchangeability of indices i, j 
with k, m is assumed, which means that no symmetry is required for the 
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6 x 6 matrix. This nonsymmetry is needed so as not to exclude the possibility 
of representing phenomena such as internal friction. 

To establish more precisely the meaning and nature of the damage tensor 
a and effective stresses T, the hypothesis of strain equivalence is also assumed 
(Chaboche 1979; Lemaitre and Chaboche 1985; Sima et al. 1987). According 
to this hypothesis, the effective stresses T are defined as the stresses that 
would exist in the undamaged material subjected to the same strains f as 
those that produce the macroscopic stress cr in the damaged material. With 
this definition the components of the 6 x 6 damage tensor a can be geo
metrically interpreted as a net (effective) stress-carrying area fraction in 
every coordinate direction, with each stress component considered to act 
independently on a plane of that direction. 

In the relationship between T and f, any rheologic model can be used; 
e.g., using linear elasticity (Tkm = D%~np'ifpq) as the rheologic model, one 
immediately obtains the expression for the secant or reduced elastic stiffness 

crij = D~~~£pq ............................................... (5a) 

DiX", = aijrsD~:pq ............................................ (5b) 

These equations are the three-dimensional counterpart of (3). 
In general, a nonlinear rheologic model may be used instead of linear 

elasticity to compute the effective stresses T from prescribed strain f (which 
can in general be done according to a step-by-step algorithm). Because the 
value of a can be computed independently according to the damage laws, 
the macroscopic stress cr can then be obtained using (4). Thus, the overall 
constitutive model can be decomposed in two independent parts, one for 
damage and another for rheology. Different models can be used for each 
part and then combined. Establishing the laws for the evolution of a, one 
can get an entire new class of models from the combination of the a evolution 
law with any rheologic model for T. This opens new interesting possibilities 
and presents the challenge of developing a satisfactory law for the evolution 
of the damage tensor a, probably the weakest point at present and the main 
goal of this paper. 

It should be pointed out that the idea of combining damage and rheology 
is not new, of course. For example Leckie (1978) and Lemaitre and Cha
boche (1978) combined viscoplasticity and damage, and Bazant and Chern 
(1985) combined concrete creep with damage due to smeared cracking. The 
new idea is to combine damage and rheology by means of the microplane 
model, which has the benefit of yielding the form of the damage tensor. 

KINEMATICALLY CONSTRAINED MICRO PLANE MODEL 

As already mentioned, the new damage tensor proposed here was derived 
by reformulating the latest version of the microplane model for concrete in 
an explicit form (Carol et al. 1990). Therefore, only the basic hypotheses 
and main features need to be given here. 

The model is based on the concept of a microplane. A microplane is an 
arbitrary plane on which the constitutive properties are defined. Instead of 
definin& them by. means of a relation b~tween tensors cr ij and fiJ' these 
propertIes are defmed by means of a relatIOn between the stress and strain 
components on a microplane, which is conceptually much simpler because 
there are fewer stress and strain components and the problems of tensorial 
invariance do not arise on the microplane level. The macroscopic stress-
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strain relationship is then obtained by integrating under some suitable micro
macro constraint over the microplanes of all spatial orientations II. This 
integration guarantees the condition of tensorial invariance to be satisfied 
automatically. There are two simple alternatives for the macro-micro con
straint relating the behavior of all the microplanes to the macroscopic be
havior: the static and kinematic constraints, both suggested by Taylor (1938). 
In the static constraint, the microplane stresses represent the projections of 
the macroscopic stress tensor on the plane considered; the kinematic con
straint does the same for strains. Note that both types of constraints cannot 
apply at the same time if general stress-strain laws are considered at the 
microplane level. 

Although the static constraint was used exclusively in the works dealing 
with metal plasticity (Batdorf and Budiansky 1949; Lin 19(8), the kinematic 
constraint was recognized to be necessary to ensure that the microplane 
system be stable in strain-softening behavior (Bazant 1984; Bazant and Oh 
1983, 1985). If the kinematic constraint is assumed, the normal and shear 
strains EN and E7; on the microplane with unit normal 11, [Figs. 2(a and b)] 
can be obtained as projections of the strain tensor E,,. Previous studies 
(Bazant and Prat 1988) revealed that in order to obtain any desired Poisson 
ratio v( - 1 :S v :S 0.5) as well as capture the effect of the hydrostatic pressure 
on the incremental stiffness, the normal microplane strain EN needs to be 
further split into its volumetric and deviatoric components E I, and E/). This 
split, however, has no direct physical meaning; rather, the physical meaning 
is that the microplane stress depends not only on EN but also on the lateral 
normal stress EL along the directions lying within the microplane (the mean 
value of EL can be easily expressed in terms of Ev and Eo). The resulting 
expressions for the microplane strains are 

......................................... (6a) 

Ekm ..................................... (6b) 

CT, 

an 

(b) 

FIG. 2. Stress and Strain Components on Mlcroplane 
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where Ojl = Kronecker delta; and flj = direction cosines of the unit vector 
II normal to the microplane. Note that En and E r , can also be obtained as 
the normal and shear components of the projection of the deviatoric strain 
tensor ejj = E'I -- E\.o'j on the microplane, but that the deviatoric part of 
the strain projection, which is E7; = E",II - ENn j , differs from (6). Eq. (6) 
for E7; is obtained as the symmetric part of this tensor (the asymmetric part 
has no effect on stresses). 

In view of the kinematic constraint imposed, the microplane stresses in 
general do not and cannot represent the resolved components of the (mac
roscopic) stress tensor. Equilibrium must nevertheless be imposed in an 
approximate overall sense. For this purpose, application of the principle of 
virtual work was proposed by Bazant (1984). This principle yields the fol
lowing condition of static equivalence of the stress (macrostress) tensor a

jj 

with the normal (aN = a v + an) and shear stresses (aD, on the micro
planes: 

~7T a'jOE jj = 2 L (aNoEN + a7J.,E,Jf(n) dn ....................... (7) 

The left-hand side represents the virtual work of the macrostresses in an 
elementary unit sphere; and the right-hand side represents the virtual work 
of the microplane stresses on the microplane strains on all the elementary 
facets on this sphere, representing the microplanes. The integration needs 
to be carried out only over the area of a unit hemisphere, n, because the 
stresses and strains at its diametrically opposite points are equal. Function 
f(ll) may be used to introduce initial material anisotropy. For isotropic 
materials,f(n) = 1. 

Substituting microplane strain variations according to (I) and (2), and 
setting aN = a v + (Tn, where aN' a v , and Un are the normal, volumetric, 
and deviatoric stress components on the microplanes, we obtain 

{L[(a v + a/)njnj + a;'(l1 jO'j + nAj - 2n jn
l
r/,)]f(n)dn 

- 2; a jj } OE jj = 0 ........................................... (8) 

This is a variational equation that must be true for any variation OE,I' This 
occurs if and only if the expression within braces, { }, vanishes. Noting also 
that fnll/II dn = 27TO jl , one obtains the expression 

a jj = avOjj + 1 aVn,l1j dn + 1 a2T, (njo'j + nAj - 2n jlljn,) dn ..... (9) 
II II 

Notice that, in fact, not all the components of OE jj in (8) can have independent 
variations, since E is a symmetric tensor. In principle, this would complicate 
somewhat the elimination of this term from both sides of the equation (Carol 
et al. 1990). However, thanks to the symmetry (between i and j) in the 
expressions used [(6)], the resulting expression between brackets, [ ], in (8) 
is also symmetric with respect to the interchange of indices i and j, which 
makes this simplification possible (the same remark also applies to other 
similar simplifications of tensorial variables from other expressions with 
similar structure later in the paper). 

The formulation needs to be supplemented by particular microplane stress
strain laws for a v, an, and aT, as functions of Ev, E[), and E r,. As shown by 

2437 



Bazant and Prat (1988), these can be assumed to be algehraic explicit re
lations (rather than differential equations) separate for each component, 
i.e. (for loading) 

a v = F v( E v) .............................................. (lOa) 

aD F/)(E[) . ............................................. (lOb) 

uT, (We) 

where 'Y = VET,E T, (the response, however, is in general path~depen?ent 
because various combinations of loading and unloading on vanous mlcro
planes arise, even for macroscopically monot~mic loading). A further si~
plifying hypothesis, that the shear stress a 7; IS parallel to t1?e ~hear str~lIn 

E]" is also made. In that case it suffices to specIfy the constItutive relation 
for the magnitude a r = Va T/TT, rather than all the components a,;. In 
previous works (Bazant and Prat 1988; Carol et al. 1990) the simplified 
relations in (10) did not prevent achieving good fits of a wide range of test 
data for concrete. 

The computation of a prescribed-strain macroscopic load step can he 
performed explicitly: the microplane strain increments are computed from 
the macroscopic strain increment using (6). Then the new microplane stresses 
are obtained using the microplane laws, (10) (for each microplane one must 
know whether unloading started and, if so, which unloading path it is fol
lowing). And, finally, the microplane stresses are integrated according to 
(9) to obtain the new macroscopic stresses. 

DERIVATION OF GEOMETRIC DAMAGE TENSOR FROM CONCRETE MODEL 

The microplane constitutive laws from (10) can be rewritten in the form 
of elastic-damage laws with secant moduli E'(jc, E}3C

, and E'p 

a v = E';JcEv ............................................... (JIll) 

aD = E'DcE{) .............................................. (lib) 

(lie) 

where E'lJc = fv(Ev), etc. (fv = function). Introducing (II) and the expres
sions of microplane strains from (6) in the right-hand side of (9), replac
ing the macroscopic stress in the left term by its elastic-damage expression 
with secant stiffness tensor from (5) for ail' and eliminating E'i from both 
sides of the resulting equation one obtains the macroscopic secant stiffness 
tensor expressed as an integral of the secant stiffness at microplane level 
over the unit hemisphere 

Dsec - E'lJ
c

" " + 2 {Esec ( - °3Pq
) dO 

kml'q - 3 UkmUl'q 27T In () nkn", npnq 

3 i P,cc + - - (nknpOmq + nknqomp + 11",l1pOkq 
27T n 4 

+ nmnqokp - 4I1knmn"l1q) dH ................................. (12) 

Now the following substitutions may be introduced: (I) The secant stiffness 
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at macroscopic level is replaced hy the product of the initial clastic stiffness 
and the damage tensor [(5) for D~~,~J (2) similar replacements are made 
for the microplane secant moduli: 

E,ec 
v o.vP~ · ............................................. (1311) 

EScc 
~1J o.nE~) · ............................................. (13b) 

E;f7 c a TP]. · ........................................... " (Dc) 

where av, an, and 0.[ = microplane damage variables reflecting the net 
stress-carrying area fraction at microplane level; and E~, E~, and E~ = 

initial clastic moduli; (3) the initial moduli E~)" E;~, and E~ arc replaced 
by their expressions in terms of the macroscopic elastic parameters E and 
v and the additional parameter Tj" (Bazant and Prat 1988) 

E" E 
- v = '1'"=2v ............................................. (14a) 

E}) = Tj()l~, ............................................... (14h) 

P' - l [5(1 - 2v) - ] _"\) 
~7 - 3 2Tj" Ev .............................. (l4e) _ 1 + v 

and (4) the elastic stiffness matrix is replaced by its expression: 

IY' = vI: E 
k"'P'1 (I + v)(1 _ 2v) Okn.!)!''1 + (I + v) Okl'0"''1 ............... (15) 

Once all these expressions are introduced into (12) and simplified, an 
expression for o.i/kl is obtained in terms of 0.\"0.[,, and 0.[. Now an interesting 
idea comes to mllld: parameters I:, v, and Tj(l can vanish from the expression 
for o.iik", when the following assumption is made: 

I - 2v 
Tjo = Th ............................................... (16) 

As we will see later, this hypothesis appears to be acceptable for practical 
purposes, and one gets 

0.1'" 3 J (_ 01''1) dr! 
o.'il''1 = -3 OilUpq + - o.nn,tI, 111'11'1 ' 

- 27T l! 3 

+ n/lqoil' - 4fl ifl,npn,J dH .................................... (17) 

The fact that this tensor is purely geometric. i.e .. does not involve E and 
v, is the main contribution of this paper. We thus gain a new form of the 
microplane model in which the basic material behavior is not defined as a 
set of laws for microplane stresses [( I 0) 1 but as a set of laws for the evolution 
of the microplane damage variah1es 0.,. an. and a,. Then. the macroscopic 
damage tensor o."km is ohtained by integration of the microplane damage 
variables over the hemisphere using (17). 
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RHEOLOGy-INDEPENDENT DERIVATION OF GEOMETRIC DAMAGE TENSOR 

The foregoing derivation of the damage tensor star.ted from a particular 
version of the microplane model. At least, the followlllg assumptions were 
implicitly present in the derivation: (I) The microplane laws ~re of t~e for~l 
(T = aPE [(11) and (13»); (2) the macroscoP.ic. st~es~-stral~ :~lattOnshlp 
is of the same type [(5)], involving linear elasticity III Its defl.llltion [(15»); 
(3) the initiall110duli at microplane level arc related to th~ clastic p,~rameters 
E, v, [by (14) and (16»); and (4) the shear stresses and strallls o~ a ~Icropl~ne 
are parallel [( 10)]. No references to these hYP?the.ses re.malll 111 the ~I~al 
expression in (17), which depends on geometnc dimensionless quantities 
only. Thus, from a practical point of view it is obvio~s that (I~) can be used 
as a damage model in combination with any rh~ologlc model III the general 
context described in the section headed "Effective Stress and Damage Ten
sor Uncoupled from Rheology." However, from .a theoretical viewpoi~t ~he 
question remains whether the damage .tensor ?enved under t~ese restnct.lve 
assumptions could also hav~ b~en ~enved uS1l1g any .alternatlve compalllon 
rheologic model or the denvatlon IS exclUSive for this case. . 

Let us start a rheology-free derivation of a"km .from the assume~ baSIC 
micro-macro kinematic and equilibrium relations 111 (6) and (9), wh.lch are 
both rheology independent. On the microplane level we may deftne the 

effective (true) stresses, Tv, To, and T I, such that 

................................................ (ISa) 

............................................... (ISb) 

aT, = ar'TJ, ............................................... (ISe) 

This may be also regarded as a rheology-free definition of damage at mi-

croplane level, alternative to (13). . ' 
Having assumed the kinematic micro-macro constralllt and Illtroduced 

general microplane stress-strain laws, the microplane stresses cannot (except 
by chance) represent the resolved compo.nents of any stress (macrostress) 
tensor. The microplane effective stresses III general need not represent the 
resolved components of any effective stress tensor, i.e., no such te~sor needs 
to exist. However, for a certain special form of the dama~e ratio t~nso~, 
this could occur. Such a property would bring about conSiderable simpli
fication. To explore it let us introduce the hypothesis that the microplane 
effective stress components are in fact such resolved components of ~n 
effective stress tensor at the macroscopic leveL T'I" This means that, III 

analogy to (6) for strains, we can write 

........................................ ( 19a) 

TO (l1kl1m - o~,,) Tkm .................................... (19b) 

(1ge) 

Let us now substitute (1S) and (19) into the right-hand side of (9), and (4) 
into the left-hand side. After some rearrangements we can factor out Tpq 
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11;l1qOJP + 11/1/),'1 -+- 11/1,,0,,> - 411,11,1/1'11'1) dn - 0.'11'" }TI''I = () ...... (20) 

This equation should hold for any tensor Tr",. This is possible if and only if 
the expression within braces, { }, vanishes. From this conditiol1 we ohtain 
the expression for 0.'11'" already given in (17). Furthermore, if (19) were 
violated, it would not be possible to factor out T" in (20), and (17) would 
not result. Therefore, the static constraint in (19) 'is not only sufficient but 
also necessary to achieve uncoupling of damage from rheology, the latter 
being defined by the dependence of Tv, T '" and T f, on the microplane strains. 
It must be emphasized that this second derivation was not made with re
course to any particular rheologic model. hut only 011 thc basis of geometric, 
kinematic, and equilibrium considerations. This demonstrates from a the
oretical viewpoint the general validity of the proposed geometric damage 
tensor. 

Note also that the model represented by the new damage tensor l (17) 1 
coupled with a particular rheologic model is equivalent to a microplane 
formulation in which there is not onlv a kinematic constraint for strains but 
also a static constraint for a certain kind of stresses, namely, the effective 
stresses. This is a more appealing formulation than that in which there is 
only a kinematic constraint. The kinematic constraint is reminiscent of par
allel coupling of clements in a rheologic model; the static constraint is 
reminiscent of series coupling. From the modeling of composite materials 
it is known that the parallel coupling models give the stiffest possible re
sponse; whereas the series coupling models give the softest possible response 
(an example for clastic composites arc the Voigt and Reuss bounds). The 
real behavior can usually be best described by some combination of both 
types of coupling. It thus appears satisfactory that the foregoing formulation 
combines both kinematic and static constraints. 

NUMERICAL IMPLEMENTATION AND DEMONSTRATION FOR CONCRETE 

Previous studies (Bazant and Prat IlJSR; Carol et aI. 1990) showed that a 
good and remarkably broad description of the existing test data on the 
constitutive properties of concrete, encompassing multidirectional tcnsile 
~;train-softening due to cracking as well as nonlinear triaxial response in the 
hardening and strain-softening ranges, could be achieved by the microplane 
model. I n those studies all the micromechanics phenomena involved in the 
microplane laws for (Tv, tT", and rTf were mixed. By contrast, in the new 
model a clear separation has been established between damage effects, 
represented through the new damage tensor, and rheology, represented by 
a companion model that can be simple since it does not represent damage 
(or strain-softening). In this new scheme a separation of tasks can be es
tablished between both parts of the modeL each characterizing different 
aspects of the material behavior observed in tests. 

In the first stage of development presented here, attention is focused on 
the new microplane damage tensor, and the companion rheologic model is 
ch?s~n as the simp.lest possible, i.e. linear elasticity. Choosing a more so
phisticated rheologlc model. e.g., elastoplasic, would no doubt broaden the 
possibilities of representing complex material behavior. 
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The evolution laws for microplane damage variables were established on 
the basis of the laws used for a v , (To, and aT by Carol et al. (1990); they 
were of the form aCE) = U(E)£oE. Eliminating from these expressions the 
factor £"1', we obtain the equation U = exp[ - (!'Iay], which gives for u a 
smooth variation from 1 to 0 when the strain increases monotonically; see 
Fig. 3 for the effect of different values of p. 

Fig. 4 depicts the general laws for uv, Un, and UT' In the case of uv, as 
seen in this figure, the basic behavior just described is used only for tension 
(positive Ev), with parameters a l and PI and state parameter E'V

in
, which 

depends on the history. No damage is assumed to occur in hydrostatic 
compression, where we always have Uv = 1. This is because the volumetric 
behavior observed in compression tests shows no stress peak and exhibits 
unloading-reloading branches with almost the initial slope [see Bazant and 
Prat (1988)], which seems to be modeled by the companion rheologic model 
of plasticity type better than by the damage tensor itself. If unloading
reloading occurs in tension, the curve given by (2) acts as an envelope, and 
the maximum strain reached so far is the state parameter depending on 
history. A jump is assumed for Uv if Ev becomes positive after some damage 
occurred in tension or vice versa. This kind of jump (and the same kind of 
jump occuring for un) can represent in some way the effect of a strain
controlled microcrack opening and closing at microplane level. 

In the case of U[), two independent sets of material parameters and state 
parameters depending on history are used for tension and compression: aI' 

PI (both the same as used for uv), E?3 in for tension; and a2, 1'2' E73
ax 

for 
compression. A jump can also occur for Uo when crossing from tensile to 
compressive parts of the diagram. Finally, a" 1'" and -yonax are used for the 
tangential (shear) law, which only shows the positive side since -y is the 
magnitude of the tangential (shear) strain vector. In contrast to Bazant and 
Prat (1988) and Carol et al. (1990), no dependence of the tangential behavior 
on any volumetric variable is assumed. This is an aspect of behavior directly 
caused by internal friction rather than by damage itself, and therefore might 
be better handled by the companion rheologic model. 

The model was implemented in a computer code in the manner described 
by Carol et al. (1990), with 28 spatial orientations of microplanes (Bazant 
and Oh 1985) for which history is recorded and damage evaluated. The 

a G 

FIG. 3. Basic Exponential Curve for Damage Evolution 
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(a) 

l/e 

(b) 

(c) 

FIG. 4. Mlcroplane Damage Laws: (a) Volumetric Damage a v ; (b) Normal Devia

torlc Damage aD; (C) Tangential (shear) Damage aT 

s~resses are coml?uted explicitly from specified strain increments of finite 
Size, and subroutll1es co-opted from a "single-point" or "full-finite clement 
(FE)" computer program are also used. In fact, no major differences with 
regard to the previous version of mi~roplane mo~el exist from this viewpont 
~xcept that tl~e laws are established 111 terms of mlcroplane damage variables 
lI1ste.ad of ml~r?plane stresses and that, after the damage tensor has been 
obtall1ed, additIOnal steps are nee~ed to obtain the new values of Tij and to 
evaluate the ~orrespo.ndll1g tensorIal product in (4) that gives the new a i!. 

There are SIX materIal parameters of the model for the microplane damage 
tensor: aI' PI' a2, 1'2' a" and 1',. However, the values PI = 0.5; 1'2 = 1.5; 
and 11,= 1.5 can. be assigned fbI' m(isCof practical cases, thus reducing the 
number of materIal par~meters to be determined from test results to only 
t~ree .. The. number of hlstory-depengent state variables for 28 microplane 
dIrectIOns I~ 85 (one for the volumetnc curve, same for all microplanes; two 
for the devlatonc curve;. and one for the shear curve on each microplane). 
F~rthermore, the '!1ate.na~ parameter~ of the rheologic model (£ and v in 
thiS case) and pOSSibly ItS lI1ternal vanables (none in this case) may also be 
counted. 
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As an example, a uniaxial test reported by van Mier in 1984, in which 
both longitudinal stress and transverse strains were measured, is reproduced 
with the model. The parameters used to fit these data are: E = 2,406 MPa; 
v = 0.18; a

1 
= 0.0004; a2 = 0.006; and a, = (1.0018. The remaining 

parameters have their general values already given. The results are repre
sented in Fig. 5 by solid lines. The dots are the experimental data and the 
dashed lines are the results obtained with the previous version of microplane 
model for the same example. It can be observed that both curves are very 
similar in each diagram, which should not be surprising since both models 
are almost equivalent in this example, in which no volumetric dependence 
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was assumed for (J r in the computations with the previolls microplane model 
(Carol et al. 1990). The only difference arises from the parameter TI(" which 
existed in the old model but now has disappeared from the formulation. In 
the section headed "Derivation of Geometric Damagc Tcnsor from Con
crete Model" it was shown that the full equivalence between both models 
occurs for Tin = (I - 2v)/( I + 11) in the old model. For v = 0.18 this means 
about Tin = 0.54; the value taken in the previous computations for this 
example was 0.85. Due to that difference, the models are not completely 
eqUIvalent, and the parameters aI' a2 , and a, cannot havc the same values. 
It is clearly shown in the example, however, that the restriction over the 
value of Tlo does not prevcnt the model from yielding a very good fit of 
experimental data. This is not surprising, since Bazant and Prat (1988) found 
the effect of Tin in the closeness of fit to be minor and that the optimized 
Tlo-values were mostly quite close to those from (16). Finally we must em
phasize that Fig. 5 does not represent an experimental verification of the 
present model. Rather, this verification rests on the fact that: (I) The Pre
dictions of the present and previous models are quite close; while (2) the 
experimental verification of the previous model was extensive. 

CONCLUSIONS AND BROADER IMPLICATIONS 

For the general microplane model characterized by a kinematic micro
macro constraint it is possible to formulate a fourth-order damage tensor 
in a form that is uncoupled from the rheologic constitutive properties of the 
material. In this formulation the damage is solely of geometric origin. being 
due to the reductions of the net stress-carrying cross-sectional area fractions 
for various orientations in the microstructure. The damage tensor charac
terizes the values of these area fractions for all spatial directions, and permits 
them to have any values. The damage tensor formulated in this manner fits 
well the framework of continuum damage mechanics. 

Despite the assumed kinematic constraint between macrostrains and mi
crostrains, it is possible to satisfy at the same time and additional static 
constraint such that the effective microstresses on the microplanes are the 
resolved components of the effective macrostresses. 

The fact that the constitutive model is composed of two independent parts 
(one for damage, another for rheology) allows better insight, facilitates the 
fitting of test data, and increases versatility. 

A recent microplane model for tensile and compressive strain softening 
and general nonlinear triaxial behavior of concrete, which has been amply 
verified by test data. can be easily adapted to the geometric damage form 
without any appreciable detriment to the closeness of test data fits. 

The possibility of uncoupling geometric damage from constitutive (rheo
logic) properties is attractive for development of more general constitutive 
models combining damage with creep and rate effects. with complex un
loading and reloading paths. and with cyclic loading. It might be possible 
to model such behavior adequately using some existing plastic. viscoelastic, 
viscoplastic, or nonlinear cyclic material model without damage, and then 
incorporating into it the geometric damage tensor deduced here (17) J. By 
separating damage, the constitutive (rheologic) model, which relates here 
the effective (microscopic. true) stress tensor (instead of the macroscopic 
stress tensor) to the strain tensor. can probably be much simpler than it 
would have to be if the damage were mixed with nondamage constitutive 
properties. By virtue of the geometric damage concept constitutive modeling 
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can he restricted to the material between the microcracks and voids in the 
microstructure, leaving the overall effect of the growth of the microcracks 
and voids as the only behavior to be described by the geometric damage 

tensor. 
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