Geometric data structures for computer
graphics: an overview

Mark H. Overmars

RUU-CS-87-5
February 1987

Rijksuniversiteit_ Utrecht

SJWre "
';%:é%;ﬁ Vakgroep informatica
NS Budapestiaan 6 3584 GD {mrect

Corr. adres: Postbus $0.012 3508 TA Litrecht

Telefoon 030-53
The Netheriands 1434

8 .

axis-parallel rectangles (an important step when working with bounding boxes).
Another application solves the windowing problem in a set of line segments.

Many geometric data structures are static, i.e., they do not allow for efficient
insertions and deletions of objects, or the update algorithms are very complicated.
In Section 5 some general methods are presented for turning static data struc-
tures into dynamic structures that do allow for insertions and/or deletions. These
general methods work for whole classes of data structures and problems.

Finally, in Section 6 we give some concluding remarks and directions for further
reading and research.

2 Quad-trees.

Quad-trees were introduced by Finkel and Bentley[12] in 1974 although they were
in fact already known much longer in computer graphics. For example, Warnock’s
hidden surface removal algorithm ([29,30], see also e.g. [23] for a description) is
based on quad-trees but he did not name them this way. Moreover there was some
difference. In computer graphics quad-trees are normally used as space dividing
data structures, i.e., they work in image space. On the other hand, quad-trees as
introduced in [12] split the set of objects and work in object space. Many results
on and using quad-trees have been obtained. See Samet[25] for a bibliography of
over 250 papers on quad-trees and related hierarchical data structures.

In subsection 2.1 we will describe both image space and object space quad-trees
and study some basic algorithms that use them. In subsection 2.2 we study some
modifications as introduced by Overmars and van Leeuwen(21]. In subsection 2.3,
we describe some related results on e.g. k-d trees.

2.1 Simple quad-trees.

Let V be a set of points in the plane and let the points have integer coordinates
between 0 and U — 1. Let us assume that U = 2 for somei. An image space quad-
tree T is a 4-ary tree that is defined as follows: When V is empty, T is an empty
leaf. When V contains one point 7' is a leaf containing this one point. Otherwise,
T consists of a root w that has four sons w1, Wy, w3 and w, that each correspond
to one quadrant of the U * U grid (see figure 1). Each son wj is a quad-tree of

the points in V' lying in the particular quadrant. See figure 2 for an example of a
quad-tree.

Theorem 2.1 Animage space quad-tree of n points on a UsU grid needs 6(nlog U)
storage.

Proof. The depth of the quad-tree is clearly bounded by [logU]. Consider

each internal node together with its empty sons (if any). Each such node is on at
least one search path to a leaf containing a point in the set. For each point there

3

NW

SW

SE

NE

Figure 1: The four quadrants.

Figure 2: An image space quad-tree.

log nyp

'OQU' e & &
log n

My - -k
Figure 3: A bad example.

are O(log U) nodes on the search path. Hence, the amount of storage is bounded
by O(nlogU).

Unfortunately, this is also a lowerbound. We can easily construct a quad-tree
that looks as follows: The top of the quad-tree consists of a complete 4-ary tree
with n/2 sons. Each leaf corresponds to an area that contains exactly 2 points,
and these points will only be separated on the lowest level of the quad-tree. See
figure 3 for the situation we get. It is easy to see that the tree uses storage
(n + (log U — log n)n) and when U is large compared to n this is Qnlogl). O

On the other hand, when U is of the same order as n (or smaller than n) the
quad-tree only uses O(n) storage.

Quad-trees can be used for many searching problems. As an example let us
consider the simple exact match query that asks whether a given point p is in the
quad-tree. The searching algorithm works as follows: Let w be the current node
in the tree we look at (in the beginning the root). If w is an empty leaf, p is not
present. If w is a non-empty leaf containing p we found p. If it does not contain

p then p is not present. If w is not a leaf, determine the quadrant p lies in and
continue the search in the appropriate son.

Theorem 2.2 Ezact match queries on an image space quad-tree can be performed
in time O(logU).

Proof. Follows from the above discussion and the fact that the depth of an
image space quad-tree is O(logU). O

Also, for example, range queries, that ask for all points that lie in a given
axis-parallel rectangle R (e.g. a window), can be performed on quad-trees. To

this end we again search down the tree but continue the search at all sons of an
internal node where there might possibly be answers. Let w be the current node
we visit (in the beginning the root). If w is an empty leaf we don’t do anything.
If it is a leaf that contains a point p we report p if it lies in R. If w is an internal
node we look at the way R intersects the four quadrants at w. For each quadrant
there are three possibilities: (i) R completely covers the quadrant. In this case we
report all points in the quadrant (i.e., in the corresponding subtree).(ii) R does not
intersect the quadrant. In this case we do nothing in the quadrant. (iii) R partially
intersects the quadrant. In this case we continue the search in the corresponding
son of w. As R might partially intersect all quadrants we sometimes continue the
search at all four sons. On the other hand, especially when R is small, we often
have to search in only one son.

It can easily be shown that the search time is always bounded by O(k + 29)
where d is the depth of the quad-tree and k the number of reported answers. (This
follows from the fact that case (iii) only occurs when the quadrant is intersected
by one of the boundaries of R and any horizontal or vertical line intersects at
most O(2?) quadrants in the tree.) Unfortunately, when the quad-tree is not well
balanced, d might be logU and in that case the query time is Q(k + U).

Image space quad-trees are dynamic. Insertions and deletions of points can
easily be performed in time O(log U). Details are left to the reader.

Image space quad-trees can also be used for storing geometric objects other
than points, like e.g. lines, polygons, etc. See e.g. Samet, Shaffer and Webber [26]
for examples of quad-trees storing line segments.

Object space quad-trees where defined by Finkel and Bentley[12]. Let V be
a set of n points in some arbitrary real two-dimensional space. A quad-tree is
constructed as follow: Let p = (p;,p;) be some point in the set. We store p in
the root of the quad-tree. This splits the space in four quadrants of points with
zZpla.ndyzpz,a:Zplandy<p2,:c<p1andy<p2,and:c<p1 and y > p,.
These four quadrants become the sons of p and, if not empty, are structured as

quad-trees of the points in them. See figure 4 for an example of an objects space
quad-tree.

Theorem 2.3 For each set of n points an object space quad-tree of depth logn],
using O(n) storage, can be constructed in time O(nlogn).

Proof. As each node contains a point of the set, each quad-tree uses O(n)
storage. To obtain a quad-tree of depth [logn] we choose as splitting point p
the median according to the z-coordinate. When more points have the same z-
coordinate as the median, we can always choose one of them that splits the set
such that each quadrant contains at most half of the points. The median can
be found in time O(n). Repeating this method for each quadrant constructs the

6

Ps3
Py, ks Ps
[]
P1g P2
) L
Pe
[]
P4
P
L]
P
. Pa
Py ¢
o
Pn !
[]
Figure 4: An object space quad-tree.
7
o
7
4
,
I
/.
/
/.
/
/.
/'
7
/d
d
»

Figure 5: A bad object space quad-tree.
required tree in O(nlogn) time. O

As a quad-tree is a 4-ary tree you might hope to be able to reduce the depth to
[logsn]. Unfortunately, this is impossible. When, for example, all points lie on a
diagonal line, for each splitting point at least two of the quadrants will be empty.
Hence, one of the quadrants contains at least n/2 points which leads to a depth
of at least [logn] (see figure 5).

Object space quad-trees can be used to solve similar problems as image space
quad-trees. The time bounds are no longer depending on U but on n only. See
e.g. Bentley and Stanat[7] for some time analysis of queries on object space quad
trees.

One of the disadvantages of object space quad-trees is that it is hard to perform
insertions and deletions and keep the tree balanced when doing so. Especially

7

hg Py
b P3
P2 o * h
° h2
h p92 ha hs
P P F:l' J “\ // \\
8 5 A s \
B . . hs P3 P2 PAP4P7 P¢ PsPsPi0 Py Py P2
L] hL
Ps
. P -
L]
P1o
*

Figure 6: A pseudo quad-tree.

deletions cause problems. For example, when we delete the point p stored at the
root, a new root has to be found and this new root splits the set in different subsets
as the old root did. Hence, it might require rebuilding large parts of the tree. (See

e.g. Kersten and van Emde Boas[13] and Samet[24] for some partial solutions to
this problem.)

2.2 Pseudo quad-trees.

Overmars and van Leeuwen(21] introduced a so-called psexdo quad-tree, also called
a leaf search quad-tree, to improve the depth and the update time. A pseudo quad-
tree has exactly the same form as a normal quad-tree, except that points from the
set are stored at the leaves only and internal nodes store arbitrary points (not in
the set) as splitting points. See figure 6 for an example of a pseudo quad-tree.

The depth of pseudo quad-trees can be bounded by [logsn], assuming that

no two points have the same z- or y-coordinate. This is based on the following
lemma:

Lemma 2.4 Let V be a set of n points. There ezists a point h (not in V) such
that each quadrant induced by h contains at most [n/3] points of V.

Proof. Choose an z-coordinate h; such that [n/3] of the points in V have
z-coordinate < h; and the other |2n/3| points have z-coordinate > h;. (This
is possible because of the assumption made.) Let V' be the set of points with
z-coordinate > h;. Choose h; such that half of the points in V' has y-coordinate
< hz and the other half has y-coordinate > h;. Now h = (hy, hy) has the required
property (see figure 7). O

*
° * O e
] e o0 L4 qd°® . °
®* . o oo ° o o L4
o o o hy o ® h=(hy.hy) L
73n® °® o * L2730 /3 n
¢ o * « ° ®* %% * o
° L R J [} [] . ° . [] ° °
®
b * * ® . ° . e 1/3n
hy M
(a) (b)

Figure 7: The spliting point.

Continueing choosing splitting points in the above way results in a tree of depth
[logzn]. Again, choosing all points on a diagonal line, this bound can be proven
to be optimal.

To handle the case in which more points have the same z- or y-coordinate effi-
ciently, in [21] so-called extended pseudo quad-trees are define. We won’t describe
them here.

Again a large number of queries, like e.g. range queries, can be performed
on pseudo quad-trees in essentially the same way as for ordinary quad-trees. As
the depth of pseudo quad-trees is normally smaller than for ordinary quad-trees
the efficiency of the algorithms is improved. For example, for range searching we
showed that the complexity is bounded by O(k + 29) where d is the depth of the
tree. For ordinary quad-trees this depth might be [logn] resulting in a query time
of O(k + n) in the worst case. For pseudo quad-trees we get a worst-case query
time of O(k + 298 ") =O(k + nl/1083),

Pseudo quad-trees are dynamic. Because all points are stored in the leaves, it is
easy to add or remove points. The only problem lies in keeping the tree balanced.
In [21] the following theorem is proven:

Theorem 2.5 For any ¢, 0 < € < 2, there exists an algorithm for inserting and
deleting points in a pseudo quad-tree in average time O(X log?n), such that the
depth of the tree remains bounded by log;_.n + O(1).

2.3 Related results.

Many structures related to quad-trees have been designed. See [25] for many
references to such papers. We will just shortly describe two of them here: multi-
dimensional quad-trees and k-d trees.

Quad-trees can easily be generalised to d-dimensional quad-trees for arbitrary
d. (For d = 3 such structures are often called oct-trees.) Again d-dimensional

9

quad-trees can be image space or object space. We will only describe the d-
dimensional variant of the pseudo quad-tree here.

Let V be a set of n points in a d-dimensional space. A d-dimensional pseudo
quad tree is defined as follows: It is a tree in which each node has 29 sons. Points
in V are stored in the leaves. Each internal node stores some arbitrary point
(not in V). This point splits the d-dimensional space in 29 regions by drawing
hyper-planes parallel to the coordinate-planes through the point. These 2¢ regions
correspond to the sons of the node.

In [21] some results on d-dimensional quad-trees have been proven. We recall
the most important ones.

Lemma 2.6 Let V be a set of n points in d-dimensional space. There ezists a
point h (not in V) such that each hyper-quadrant induced by h contains at most
[n/(d +1)] points of V.

Using this lemma we can construct d-dimensional pseudo quad-trees of depth
at most [log,,, n]. This result is optimal in the worst case.

Theorem 2.7 For any ¢, 0 < € < d, there ezists an algorithm for inserting and
deleting points in a d-dimensional pseudo quad-tree in average time o(-lc-log" n),
such that the depth of the tree remains bounded by logg,1_.n+O(1).

d-dimensional quad-trees can be used for solving many d-dimensional problems
like e.g. d-dimensional range searching., Unfortunately, the query times tend to
become worse when the dimension grows.

Bentley(1] (see also [2]) introduced so-called k-d trees as an alternative for ob-
ject space quad trees. A 2-dimensional k-d tree is a binary tree that is constructed
as follows: Let V be a set of points in the plane. Choosea pointpe V. p = (p1,p2)
will be stored in the root of the tree. Now split the set V in two subsets V; of
points with z-coordinate < p, and V, of points with z-coordinate > p;. V; will
be stored in the left subtree of p and V; in the right subtree. Now in each subset
again take a point. This will become the root of the subtree. Again split the set in
two halves but this time with respect to the y-coordinate. On the next level of the
tree we again split with respect to z-coordinate, etc. See figure 8 for an example
of a k-d tree.

The main advantage of k-d trees over quad-trees is that we always can split
the set in an optimal way. This means that we can always construct k-d trees of
depth [logn].

Queries can be performed on k-d trees in a similar way as in quad-trees. Details
are left to the reader (or consult e.g. [1,2,16,28]). As we can construct optimal
k-d trees the query time is normally better than in quad-trees.

10

Ps

P

P3 P2

P Ps Pg P7

Ps Py Pw PnPiz P3 Py, Pss

Figure 8: A k-d tree.

To make k-d trees dynamic, in [21] pseudo k-d trees were introduced. They
are k-d trees in which the points of V are stored in the leaves only. Internal nodes
store arbitrary points. They show the following result:

Theorem 2.8 For any ¢, 0 < € < 1, there ezists an algorithm for inserting and
deleting points in a pseudo k-d tree in average time O(i— log? n), such that the depth
of the tree remains bounded by log,_.n + O(1).

Also d-dimensional k-d trees and pseudo k-d trees can be constructed.

3 Range trees.

In this section we study the range tree, a structure designed recently independently
by a number of researchers (see e.g. [3,14,31,33]) for solving the range searching
problem in two- and higher dimensional space.

Let us first consider the one-dimensional problem. So we are given a set of keys
and we want to store them such that for a given range [4; : B;] we can efficiently
determine the points lying in between A; and B,. To this end we store the keys
in the leaves of a balanced binary search tree, in sorted order. Moreover we link
the leaves in this order in a double linked list. The structure clearly uses O(n)
storage. We call this structure a one-dimensional range tree.

To perform a query with range [A; : B;] we search with A, in the tree to locate
the smallest key > A;. Let this key be K. If K does not exist or K > B, we are
done. Otherwise, we report K and look at the right neighbor of K in the tree and
repeat the test here. It is clear that such a query takes time O(logn) to search
with A, plus the number of answers found.

11

Figure 9: Associated trees.

Theorem 3.1 Given a set of n keys, the one-dimensional range searching problem

can be solved in a query time of O(k + logn) using O(n) storage, where k is the
number of answers found.

In the next subsection we will use the one-dimensional range tree to obtain a
two-dimensional range tree. In subsection 3.2 we generalise this result to multi-

dimensional space. Finally in subsection 3.3 we consider some other structures for
range searching.

3.1 Two-dimensional range trees.

Let V be a set of points in the plane. A two-dimensional range tree of V has
the following form. We sort all point with respect to their z-coordinate and store
them in the leaves of a balanced binary search tree in this order. To each internal
node é we associate a one-dimensional range tree Ts of the points in the subtree
rooted at §, on their y-coordinate (see figure 9). Hence, in the main tree points are
sorted with respect to their z-coordinate and in the associated structures point
are sorted with respect to their y-coordinate.

To perform a query with range ([A; : By),[A4; : B;]) we search with both 4,
and B, in the main tree. For some time A4; and B; will follow the same search
path but at some internal node § A; will go to the left son and B; will go to the
right son. Let ;... S; be the nodes that are rightson of a node on the search path
of A; below § and do not lie on the search path themselves. Silmilar, let v ...;
be the nodes that are leftson of a node on the search path of B; below é that do
not lie on the search path themselves. See figure 10 for the situation. All points
with z-coordinate between A; and B, lie in exactly one of the subtrees rooted at
the B and v nodes. Of these points we have to find the ones whose y-coordinate

12

Figure 10: The 8 and + nodes.

lies between A; and B,. For this we use the structures Ts,...Tp; and T, ... T,,.
All points in the z-range are stored in exactly one such structure and all points
in these structures lie in the z-range. On each of these T-structures we perform a
one-dimensional range query with range [A, : B,].

Theorem 3.2 Given a set of n points in the plane, the two-dimensional range
searching problem can be solved in a query time of O(k + log®n) using O(nlogn)
storage, where k 1s the number of answers found.

Proof. Let us first consider the amount of storage required. The main tree
uses only O(n) storage. On each level of the main tree each point in V' occurs
exacly once in an associated structures. As an associated structure of n’ points
uses storage O(n'), the associated structures on one level together use O(n) storage.
As the tree has O(logn) level the storage bound follows.

To perform a query we first seach in the main tree with A; and B, which takes
time O(logn). In this way we locate O(log n) Tp and T, structures that each have
a query time of at most O(logn) plus the number of answers found. Hence, the

total query time is bounded by O(log? n) plus the total number of answers found.
O

The two-dimensional range tree can be made dynamic but the update algo-
rithms are quite complicated (see e.g [31,33]). See also Section 5.

3.2 Multi-dimensional range trees.

The two-dimensional range tree can easily be generalised to a d-dimensional range
tree for any constant d > 2. Let V be a set of points in d-dimensional space. We

13

again construct a balanced binary search tree that stores all points from V in its
leaves, ordered with respect to their first coordinate. With each internal node §
we now store a d — 1-dimensional range tree T of all point in the subtree rooted
at 6, restricted to their last d — 1 coordinates.

To perform a query with a range ([4; : By],[4z : Ba),..., [A4 : Bg]) we search
with both A, and B, in the main tree, locating nodes ;... 8; and v, ... ~; in the
same way as in the two-dimensional case. For each of the structures Ty, ... Ty
and T, ...T,, we perform a d — 1-dimensional range query with range ([A; :
Bz, ...,[Aa: By]). It is easy to see that this yields the right answers.

Theorem 3.3 Given a set of n points in d-dimensional space, the d-dimensional
range searching problem can be solved in a query time of O(k + log®n) using
O(nlog®'n) storage, where k is the number of answers found.

Proof. Let M(d,n) denote the amount of memory required for a d-dimensional
range tree of n points. The T-structures associated to the nodes on one level of
the main tree together require at most M (d — 1,n) storage. Hence, we know

M(d,n) <lognM(d —1,n)
M(2,n) = O(nlogn).

This results in M(d,n) = O(nlog?'n).
The bound on the query time can be proven in exactly the same way. O

Again d-dimensional range trees can be made dynamic but the update algo-
rithms are very complicated.

3.3 Related results.

Many other results have been obtained for range searching. See for example
[4,5,27,32]. We will shortly describe an interesting approach by Edelsbrunner[9]
based on the so-called priority search tree by McCreight[15].

A priority search tree is a structure for solving half-infinite range queries in
2-dimensional space, i.e., queries of the form ([A1 : B1],[A2 : 0]). Let V be a
set of n points in the plane. For convenience, we assume that no two points have
an equal value for some coordinate. We store the points, ordered with respect to
their first coordinate in a balanced binary search tree T. With each internal node
we associate a point of the set in the following way: With the root we associate
the point in T with largest y-coordinate. With each internal node § we store the
point in T (the subtree rooted at 6) with largest y-coordinate that has not been

stored higher up in the tree. See figure 11 for an example of a priority search tree.
It is clear that this structure uses O(n) storage.

To perform a query with range ([A; : By],[A4; : co]) we search with both A; and
B, in the tree. For each node on the search path we check whether the associated

14

oP

wl

NG

Figure 11: A priority search tree.

point lies in the range and, if so, report it. All other answers must lie in between
the two search paths. Let § be a node that lies in between the two search paths,
whose father lies on the search path. We will show how to report all answers in
Ts. All points in T have first coordinate in the range. Hence, we only have to test
whether the second coordinate is larger than A,. § contains the point in T; with
largest y-coordinate. Hence, if this point does not lie in the range, no point in T}
does and we are done. If the point does lie in the range we report it and continue
looking at the two sons of §. It is easily shown that the amount of work for finding
all the answers in T} is bounded by O(1) plus the number of answers found. Hence,
the total query time is O(logn) for searching with A, and B,, another O(logn)
because we have to spend O(1) time in O(log n) subtrees plus the total number of
answers. For details see [15).

Theorem 3.4 Given a set of n points in the plane, they can be stored, using O(n)
storage, such that half-infinite range queries can be answered in time O(k +logn)
where k is the number of reported answers.

Edelsbrunner[9] uses this structure to solve general 2-dimensional range queries
in the following way. We construct a balanced binary search tree T in which we
store all points, sorted by y-coordinate, in the leaves. With an internal node § that
is left son of its father we store a priority search tree Ps of all points in Tj. If § is
right son of its father we store an inverse priority search tree, i.e., a priority search
tree for ranges that extend downwards to infinity. The structure takes O(nlogn)
storage.

Now assume we want to perform a query with range ([A1 : By],[A; : Bg]). We
search with both A, and B, in T. For some time both search paths will be the
same but at some internal node § A, will lie in the left subtree and B, will lie

15

in the right subtree. Let § be the left son of § and §, the right son. Clearly all
answers lie in T}, or T5,. All points in T}, have second coordinate < B;. Hence, we
can as well perform a query on them with range ([4; : B;),[A; : o]). For this we
can use the structure Pj,. Similar, for the answers in T, we can as well perform a
half-infinite range query with ([A; : By],[A4; : —oc]) on Ps,. Hence, the total query
time is bounded by O(k + log n).

Theorem 3.5 Given a set of n points in the plane, they can be stored, using
O(nlogn) storage, such that range queries can be answered in time O(k +logn)
where k i3 the number of reported answers.

4 Segment trees.

Range trees are only capable of storing points. In many applications, especially
in computer graphics, objects are not points but, for example, rectangles, line
segments, etc. In this section we will treat a second data structure, the segment
tree, that can, in combination with e.g. range trees, be used for storing other
geometric objects. We will first describe the segment tree. Next we will show how
it can be used to store rectangles and line segments and we solve some searching

problems using it. Finally, we shortly describe some related results like e.g. the
interval tree.

4.1 The data structure.

The segment tree was introduced by Bentley and Wood[8] to solve some rectangle
problems. Although used for soving many two-dimensional problems, the segment
tree is a one-dimensional data structure.

Let V = {[a; : bi],[a; : 3),...,[an : b,]} be a set of n intervals (segments)
on the real line. (Intervals are allowed to intersect, overlap, etc.) All left and
right endpoints of the intervals we sort. Let the sorted list be 21,%2,...,Tn.
These endpoints split the real line in a number of so-called elementary intervals
(=00 : z1),[21: 23),[72 : 23),...,[22n : 00). These elementary intervals we store in
the leaves of a balanced binary search tree. With each internal node § we associate
the interval I; that is the union of the intervals associated to the sons of §. (In
other words, I; in the interval spanned by the subtree rooted at §.) With each
node § we store a structure T} containing all intervals in V' that contain I; but
do not contain Itather(s)- The form of T; depends on the problem we want to solve
using the segment tree. See figure 12 for an example of a segment tree. With each
node é the intervals stored in T are indicated.

The segment tree is mostly used for so-called stabbing queries. Let p be a point
on the line, we want to report all intervals that contain p- To solve this problem
we structure T as a simple list of the intervals. To find all intervals containing p,
we search with p in the tree, starting at the root. Assume we are at some node §.

16

Sg———

Figure 12: A segment tree.

We report all intervals stored in Ts. Next we look at the two sons 6y and &, of 6.
When p lies in I;, we continue the search in 61. Otherwise we continue the search
in 52.

The correctness of the algorithm can be seen as follows. Clearly all intervals
reported contain p, because for each node § visited, p lies in I5 and the reported
intervals contain I5. No interval is reported more than once, because on each path
from the root to a leaf an interval can occur at most once. Finally, if interval ¢
contains p it clearly contains the elementary interval stored in the leaf p ends in
during the search. As i does not contain I o0t there must be some node § on the
search path towards this leaf such that ; contains Is but not Ifather(s). ¢ will, hence,
be reported when the search passes this node. (In fact, this is not completely
correct. When p is the right endpoint of i, i will not be found. This case can
easily be solved by either treating endpoints in a special way, or by adding some
extra information in the segment tree.)

Theorem 4.1 Given a set of n intervals, they can be stored in a segment tree,
using O(nlogn) storage, such that stabbing queries can be answered in time O(k+
logn) where k is the number of reported answers.

Proof. The query time follows immediately from the above discussion. It re-
mains to prove the bound on storage required. On each level of the segment tree,
each interval can be stored at at most 2 nodes. (This follows from the definition.)
Hence, at each level the T-structures together use at most O(n) storage. The
bound follows. O

In some applications we are only interested in the number of intervals that
contain p. This problem is often called a stabbing counting query. In this case the

17

structure can be made much simpler. As T we just store the number of intervals
rather than the intervals themselves. This reduces the storage to O(n). When

searching with p we simply add up the numbers stored on the search path. This
lead to:

Theorem 4.2 Given a set of n intervals, they can be stored in a segment tree,
using O(n) storage, such that stabbing counting queries can be answered in time

O(logn).

In the next two subsections we will give some more examples of choices for T;
to solve different types of searching problems using segment trees.

Segment trees are (depending on the choice of T5) dynamic. See e.g. [8] for
details.

4.2 Rectangle problems.

In the same way as in range trees, we can construct two- and multi-dimensional
segment trees. Let V be a set n of axis-parallel rectangles in the plane. (For
example, bounding boxes of a set of graphical objects.) To store them, we project
all rectangles on the z-axis. In this way we obtain a set of intervals. These intervals
we store in a segment tree. For each node § we have a number of intervals that have
to be stored in Tj. These intervals correspond to rectangles. These corresponding
rectangles we project on the y-axis and we make T} into a segment tree that stores
these y-intervals. In T; we store at each internal node a list of rectangles to which
the y-intervals, that should be stored there, belong. It is easy to see that the
structure obtained requires O(nlog? n) storage.

A two-dimensional stabbing query asks for all rectangles that contain a given
point p. In graphics, this is for example important when picking an object. To
perform a stabbing query we use the two-dimensional segment tree. Let p =
(p1,p2). We search with p, in the main segment tree. The nodes on the search
path together contain all rectangles that contain p; in the z-projection. Among
them we have to find those whose y-projection contains p2. To this end we use
the T-structures. For each node § on the search path of p; we search with p, in
T5, reporting all rectangles stored at nodes on the search path of p,. As we have

to query O(logn) T-structures, each requiring time O(logn) plus the number of
answers found, we obtain the following result:

Theorem 4.3 Given a set of n azis-parallel rectangles, they can be stored in a
two-dimensional segment tree, using O(nlog?n) storage, such that stabbing queries
can be answered in time O(k +log® n) where k is the number of answers found.

The result can easily be generalised to d-dimensional space, resulting in a

structure that uses O(nlog? n) storage that solves d-dimensional stabbing queries
in time O(k + log?n).

18

Figure 13: Intersections between rectangles.

As a second example we consider the azis-parallel line segment intersection
problem: Let V be a set of n vertical line segments and let s be a horizontal line
segment, report all line segments in V' that are intersected by s.

All line segments in V we project on the y-axis. Of the intervals obtained we
construct a segment tree. At each internal node é we store in T the line segments,
ordered by z-coordinate, in a one-dimensional range tree. The structure uses
O(nlogn) storage.

Let s = (21,y)(22,y). We search with y in the segment tree. For each node
6 on the search path we perform a one-dimensional range query with [z; : 23] on
the z-coordinates of the line segments in Tj. It is easy to see that in this way the
correct line segments will be reported.

Theorem 4.4 Let V be a set of n vertical line segments in the plane. We can
store V in a segment tree, using O(nlogn) storage, such that those k line segments
intersecting a given horizontal line segment can be found in time O(k +log?n).

Finally, let us consider the rectangle intersection problem: Let V be a set of n
axis-parallel rectangles and R another axis-parallel rectangle, report all rectangles
in V that intersect R. The problem is important in graphics applications that
work with bounding boxes (for example in windowing).

Let R, and R; be two axis-parallel rectangles. If R, and R, intersect each
other one of the following three cases occur: (i) R, is completely contained in R,.
(ii) R is completely contained in R;. (iii) R, intersects R; in the boundary. (See
figure 13 for the cases.)

Now assume R, is in the set V and R; is the query rectangle. Case (i) can be
solved by constructing a two-dimensional range tree containing for each rectangle
in V its left bottom point and performing a range query with R;. Case (ii) can
be solved by constructing a two-dimensional segment tree of V and performing
a stabbing query with the left bottom point of R;. Finally, case (iii) can be

19

solved by two instances of the axis-parallel line segment intersection problem.
One instance stores all vertical boundaries of the rectangles in V and performs
a query with the two horizontal boundaries of R;. The other instance stores all
horizontal boundaries of V and performs a query with the vertical bondaries of
R;. (Rectangles might be reported more than once in this way. By checking before
reporting this can be avoided without increasing the runtime.)

Combining the results for range trees, two-dimensional segment trees and the
line segment intersection problem we obtain:

Theorem 4.5 Let V be a set of n azis-parallel rectangles in the plane. They can
be stored using O(nlog?n) storage, such that those k rectangles intersecting a given
azis-parallel query rectangle can be reported in time O(k + log®n).

For more results on rectangle intersection problems see Edelsbrunner[10].

4.3 Windowing in a set of line segments.

As another example of the use of the segment tree we will describe a solution to the
so-called windowing problem: given a large picture, built out of non-intersecting
line segments, compute that part of the picture visible in an axis-parallel rectangle.
We will show how to store the picture in a two-dimensional data structure based
on the segment tree such that for each given window we can efficiently determine
what part of the picture is visible in the window. This is particular useful when
the picture is large (compared to the size of the window) and does not change
often. For example, a large map stored in a database. The results in this section
are based on work by Overmars[18] (see also [19]).

To solve the windowing problem, we split it in two parts. The first part asks
for all line segments that lie completely in the window. The second part asks for
all line segments that intersect the boundary of the window.

To solve the first problem we can use the solution for range searching described
in the previous section. When a line segment s lies completely in the window surely
its left endpoint lies in the window. So we can store all left endpoints in a range
tree and perform a range query with the window. This will take time O(log?n).
The structure uses O(nlogn) storage. Clearly, in this way, we also report some
line segments that only partially lie in the window. But we have to find them
anyway.

So we only have to consider the second subproblem: find those line segments
that intersect the boundary of the window. We will only look at the top boundary.
The other boundaries follow in a similar way.

First we project all line segments on a vertical line. In this way each line
segment becomes an interval. Of these intervals we construct a segment tree. All
intervals stored at some internal node § completely cover the interval I associated
to 8. I corresponds to a horizontal slab in the plane. All the line segment stored

20

\ \/ \

Figure 14: Line segments stored at 4.

at é intersect the slab completely and, because they do not intersect each other,
appear ordered in the slab. See figure 14. We store them in this order in the
internal nodes of a balanced binary search tree Ts. It is easy to see that the
structure requires O(n logn) storage.

To perform a query with the top boundary (z1,y)(z2,y) we search with y in
the segment tree. Clearly, line segments intersecting the top boundary must be
stored at one of the nodes on the search path. For each such node § we search with
z1 and z; in T, locating all the segments in between. It is easy to see that this
can be done in time O(logn) plus the number of answers found. As we have to
query O(log n) structures Ts the total query time is bounded by O(log? n) plus the
total number of answers. For details see [17]. It is also shown there that insertions
and deletion can be performed in time O(log?n). Combining this with the result
for range queries we obtain:

Theorem 4.6 Given a set of n non-intersecting line segments in the plane, we
can store them using O(nlogn) storage such that those k segments visible in a

given window can be determined in O(k + log?n) time. The structure is dynamic
and can be updated in O(log?® n) time.

Using this method, some of the line segments might be reported more than
once. This can easily be avoided by checking whether segments have already been
reported before. This can be done in O(1) time per reported segment.

4.4 Related results.

Many other results have been obtained using segment trees and related structures.
In this subsection we will shortly discuss a variation of segment trees, called interval
trees, develloped by Edelsbrunner[10].

An interval tree again stores a number of intervals on a real line. It consists
of a binary tree with the left and right endpoints of the intervals, in sorted order,

21

—_—
5

f iy — —

s
—
53

Syp—

Figure 15: An interval tree.

stored in the leaves. In internal nodes we store splitting values inbetween the
endpoints to guide the search, like in a normal search tree. Each interval we store
at the highest internal node & such that the splitting value of § is contained in
the interval. It is obvious that each interval is stored at exactly one internal node.
For each internal node § we store the intervals sorted by left and sorted by right
endpoint. See figure 15 for an example of an interval tree.

To perform a stabbing query with a point p we search with p in the interval
tree. Each interval containing p must be stored at some node 6 on the search path.
For each node § we proceed in the following way: Let s be the splitting value at 4.
Assume p < 3. Then all intervals stored at § have their right endpoint to the right
of p. Hence, we have to report those that have their left endpoint to the left of p.
Because we have the intervals sorted by left endpoint, we can Jjust walk along this
sorted list, reporting all intervals, until we find an interval with left endpoint to
the right of p. This takes time O(1) plus the number of answers found. Similar,

when p > s we walk along the list sorted by right endpoint. This leads to the
following result:

Theorem 4.7 Given o set of n intervals, they can be stored in an interval tree,

using O(n) storage, such that stabbing queries can be answered in time O(k+logn)
where k is the number of reported answers.

Hence, we reduced the amount of storage from O(nlogn) to O(n). Unfortu-
nately, the interval tree cannot be used for some other searching problems. For
example, it cannot solve the stabbing counting problem efficiently. But we can
use it as the Ty structures in the two-dimensional segment tree. This leads to the
following improved versions of theorems 4.3 and 4.5:

22

Theorem 4.8 Let V be a set of n azis-parallel rectangles in the plane. They can
be stored using O(nlogn) storage, such that stabbing queries can be answered in
time O(k +log? n) where k is the number of reported answers.

Theorem 4.9 Let V be o set of n azis-parallel rectangles in the plane. They can
be stored using O(nlogn) storage, such that those k rectangles intersecting a given
azis-parallel query rectangle can be reported in time O(k + log’n).

5 Dynamisation.

We will end this paper with a discussion on some general methods for turning
static data structures that do not allow for efficient insertions and deletions into
structures that do allow for updates. Because many data structures for geometric
problems tend to be static (or the update algorithms are very complicated) such
general methods might be very useful. We will only outline some main ideas. For
a detailed study of dynamisation methods, the reader is referred to Overmars[17].

5.1 Decomposable searching problems.

The most important dynamisation methods are based on some property of the
problem for which the data structure is used. Bentley[3] defined the class of so-
called decomposable searching problems. He observed that one does not need to
keep all objects of a set in one massive data structure as long as it is possible to
obtain the answer to a query over the total set out of the answers to the same

query over some partition of the set. Let PR(z,V) denote the answer to a query
problem PR with query object = over a set V.

Definition 5.1 A searching problem PR is called decomposable if and only if for
any partition AU B of the set V and any query object z,

PR(z,V) = O(PR(=,A), PR(z,B))
for some constant time computable operator 0.

For example, when we know whether # € A and whether z € B we can compute
in O(1) time whether z € V using V (or). Hence, the membership problem is
decomposable. Another example is the nearest neighbor problem that asks for the
point in a planar point set that is nearest to a given query point z. When p is
nearest to z in A and p’ is nearest to z in B than either p or p’ is nearest in V.
This can of course be determined in O(1) time. Also the range searching problem
is decomposable using O = U. (Note that, as A and B are disjoint, the answer
sets over A and B are disjoint and, hence, can be merged in constant time.) Not
all searching problems are decomposable. For example, the convex hull problem

23

that asks whether a query point x lies inside the convex hull of a set of points is
not decomposable.

For decomposable searching problems one need not store all ob jects in one large
(static) data structure. Instead, the set can be maintained as a “dynamic system”
of disjoint subsets. Each subset is stored in a (static) data structure, called a
block. Queries are performed by querying the blocks separately and combining the
answers using the operation 0. The time required for combining the answers is
bounded by the number of blocks and is clearly overshadowed by the time required
for querying the blocks. Hence, we can neglect it.

Insertions are in general performed by rebuilding some small blocks with the
new object included. A deletion is performed by rebuilding the block the object
belongs to. Observe that (i) maintaining a large number of small blocks will lead
to low update times and high query times, while (i) maintaining a small number
of large blocks will lead to high update times and low query times.

Numerous methods have been proposed to decompose the set into blocks and to
maintain the partition when objects are inserted or deleted, to obtain an optimal
balance between query time and update time (see [17] for an overview of the
methods). There are two main different approaches. The equal block method splits
the set in about equal sized blocks. The logarithmic method splits the set in blocks
of exponentially increasing sizes. We will only describe the logarithmic method
here.

We split the set V in disjoint subsets Vj, V4, Vi, ..., such that for each ¢
[Vil = 2 or V; is empty. For example, when |V| = 26, V4, V3 and V, are filled. For
each non-empty V; we build a data structure S; containing the 2* objects.

To insert an object p, we act the following way:

1. Locate the smallest ¢ with V; empty.
2. Discard Sy...S5;_,.

3. Build S; out of p and the objects from Sy. .. S;_;.

Note that the new S; will contain exactly 2¢ objects. See figure 16 for an
example of how data structures are constructed and discarded.

Sometimes an insertion will take a lot of time (when i is big we have to rebuild
a large structure) but, as after such an insertion all preceeding S-structures are
empty again, the average insertion time will remain low.

Let the structure S havea query time of Q(n), a construction time of B(n) and

let it use M(n) storage. The complexity of the new data structure is expressed by
the following theorem:

Theorem 5.1 Given a (static) data structure S for a decomposable searching
problem, the logarithmic method yield a new data structure with a query time
of OQlogn)Q(n), an average insertion time of O(logn)B(n)/n, using O(M(n))
storage.

24

A A\ .

52 A
— P
Figure 16: The logarithmic method.
Proof.

When the size of the set is n, the biggest i for which S; is filled is { — |logn].
Hence, to answer a query we have to perform the query on O(log n) S-structures.
The query time bound follows.

The amount of storage required is clearly bounded by

llogn]

}_‘3 M(2%)

which is bounded by O(M(n)).

To estimate the average insertion time, notice that when we build a block S j
all its objects come from lower indexed blocks. Hence, each object in the set has
to be built at most once into each block B; with 0 < j < |logn|. Dividing the
costs for building a block S; over the objects it is built from makes for B(27)/27
per object. Hence, the total amount of time charged to an insertion is bounded
by

Llogn] o
S B(2)/2

=0

which is bounded by O(log n)B(n)/n. O

The average bounds can be turned into worst-case bounds. It is also possible
to perform deletions in some general way. See [17] for details.

25

