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Abstract 

The complex relationship between the shape and function of the human brain remains elusive despite extensive 

studies of cortical folding over many decades. The analysis of cortical gyrification presents an opportunity to 

advance our knowledge about this relationship, and better understand the etiology of a variety of pathologies 

involving diverse degrees of cortical folding abnormalities. Surface-based approaches have been shown to be 

particularly efficient in their ability to accurately describe the folded sheet topology of the cortical ribbon. 

However, the utility of these approaches has been blunted by their reliance on manually defined features in order 

to capture all relevant geometric properties of cortical folding. In this paper, we propose a deep-learning based 

method to analyze cortical folding patterns in a data-driven way that alleviates this reliance on manual feature 

definition. This method builds on the emerging field of geometric deep-learning and uses convolutional neural 

network architecture adapted to the surface representation of the cortical ribbon. MRI data from 6,410 healthy 

subjects obtained from 11 publicly available data repositories were used to predict age and sex via brain shape 

analysis. Ages ranged from 6-89 years. Both inner and outer cortical surfaces were extracted using Freesurfer and 

then registered into MNI space. Two gCNNs were trained, the first of which to predict subject’s self-identified 

sex, the second of which to predict subject’s age. Class Activation Maps (CAM) and Regression Activation Maps 

(RAM) were constructed to map the topographic distribution of the most influential brain regions involved in the 

decision process for each gCNN. Using this approach, the gCNN was able to predict a subject’s sex with an 

average accuracy of 87.99% and achieved a Person’s coefficient of correlation of 0.93 with an average absolute 

error 4.58 years when predicting a subject’s age.   

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.29.177543doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.177543
http://creativecommons.org/licenses/by/4.0/


1.1 Introduction 

The complex relationship between the shape and function of the human brain remains elusive despite extensive 

studies of cortical folding over many decades. Although the exact mechanisms involved in the brain’s gyrification 

process are not completely understood, cortical folding is believed to be related to both the cytoarchitecture of the 

cortex as well as the tension gradient along developing axons. Gyrification begins at gestational week 16 when 

the fetal brain is experiencing rapid growth. It has been postulated that competing forces including rapid 

expansion of the cortical mantle, differential laminar growth within the cortical ribbon and tensions along rapidly 

elongating axons connecting remote brain areas play pivotal roles in this process (Caviness 1975, Rakic 1988, 

Van Essen 1997, Hilgetag and Barbas 2005, Kroenke and Bayly 2018). Given these contributing forces, 

gyrification is most certainly related to brain function although to what degree is undetermined (Fischl, Rajendran 

et al. 2008, Zilles and Amunts 2010). Beyond the obvious gyrification anomalies observed in developmental 

abnormalities including lissencephaly and polymicrogyria often associated with compromised neurologic 

function, far more subtle cortical folding variations have also been observed in epilepsy, autism, schizophrenia,  

bipolar disorder and major depressive disorder (Nordahl, Dierker et al. 2007, Besson, Andermann et al. 2008, 

Cachia, Paillère-Martinot et al. 2008, Penttilä, Paillère-Martinot et al. 2009, Schmitgen, Depping et al. 2019). It 

has been shown that cortical folding patterns in the early stages of embryologic gyrification are a predictor of later 

neurobehavioral functioning (Dubois, Benders et al. 2008). The relationship between cortical folding and brain 

function persists in the healthy adult and can be associated with temperament traits and reading abilities (Whittle, 

Allen et al. 2009, Cachia, Roell et al. 2018). Therefore, the analysis of cortical gyrification offers an opportunity 

to further investigate the dynamic relationship between brain structure and function over the life-span and to 

better understand the etiology of developmental and age-related pathologies. 

Surface-based approaches have been shown to be particularly efficient in their ability to accurately 

describe the folded sheet topology of the cortical ribbon. Despite this, designing a method to extract all relevant 

geometric properties of cortical folding remains challenging. Previous methods have included local gyrification 
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index (Schaer, Cuadra et al. 2008), cortical complexity (Thompson, Lee et al. 2005, Toro, Perron et al. 2008), 

fractal dimension (Im, Lee et al. 2006) and sulcus morphology (Kochunov, Mangin et al. 2005). Each provides 

quantitative measures of cortical folding, however, they are all constrained by manual design and suffer from an 

inability to model distant, potentially non-linear co-variations of cortical folding patterns. Spectral analysis of the 

cortical and sub-cortical surfaces overcomes some of these limitations but is limited by its inability to map 

findings in an anatomically informative way (Wachinger, Golland et al. 2015).  

In this paper, we introduce a data-driven framework to extract the relevant geometric properties of 

cortical folding in order to determine the relationship between cortical folding and demographic features including 

age and sex. This method is an adaptation of the work of Defferrard et al. (Defferrard, Bresson et al. 2016), who 

provided an efficient implementation of convolution neural networks (CNNs) for graphs which has served as the 

foundation for the emerging field of geometric deep learning (Bronstein MM 2017). CNNs are a deep-learning 

network architecture which has been widely and successfully used in image, video and speech processing. One of 

the main strengths of CNNs is their ability to learn representations of the data with multiple levels of abstraction 

(LeCun, Bengio et al. 2015). However, traditional CNNs implicitly assume data is organized as a regular grid and 

therefore cannot be adapted when data lie on irregular or non-Euclidean domains such as when relationships 

between data points are represented by means of a graph. Graph convolutional neural networks (gCNNs) were 

introduced to overcome this limitation (Defferrard, Bresson et al. 2016), offering all of the same advantages of 

CNNs to non-Euclidean domains, therefore making gCNNs an ideal choice for surface-based analysis. In 

addition, gCNNs benefit from the rich selection of tools designed for traditional CNN applications including the 

identification and mapping of the nodes of the graph most involved in the decision process (Zhou, Khosla et al. 

2016). 

In this paper, we adapt gCNNs to brain MRI including data from several large cohorts of healthy subjects, 

acquired across multiple centers using different image acquisition parameters. The purposes of this study were to 

1) examine the predictive power of gCNNs to predict age and sex using only cortical morphology from this large 
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and diverse dataset and 2) to identify the most discriminative cortical regions involved in the network’s decision 

making. 

 

2.1 Materials and methods 

2.1.1 Subjects 

MRI data were obtained from 11 publicly available data repositories and downloaded between November and 

December 2017. These datasets were selected based on the following criteria: 1) exclusive inclusion of healthy 

subjects, 2) availability of T1-weighted data for all subjects, 3) availability of basic demographic information 

including age (even if approximate) and sex for all subjects, 4) availability of data covering a large age range of 

subjects, and finally, 5) diversify of acquisition protocols including  image quality and scanner manufacturers. 

Using these criteria to select publicly available data repositories, we identified the following datasets for 

inclusion: Autism Brain Imaging Data Exchange II (ABIDE II), Age-ility, Cambridge Centre for Ageing 

Neuroscience (CamCan), Consortium for Reliability and Reproducibility (CoRR), Dallas Lifespan Brain Study 

(DLBS), Brain Genomics Superstruct Project (GSP), Human Connectome Project (HCP), Information eXtraction 

from Images (IXI), MPI-Leipzig Mind Brain Body (MPI-LMBB), Enhanced Nathan Kline Institute – Rockland 

Sample (NKI-RS), and Southwest University Adult Lifespan Dataset (SALD). In order to avoid including 

duplicate data from a single subject only the baseline scans were selected from datasets that repeated imaging 

sessions (i.e., longitudinal or test-retest studies). Similarly, when datasets included data from multiple overlapping 

centers (ABIDE II and CoRR) care was taken to ensure no subjects were duplicated based on subject ID, imaging 

protocols, and descriptions provided on corresponding websites. Diversity of the acquisition parameters was 

intentionally sought as an important criterion in order to obtain a more broadly generalizable network. The goal of 

this work was to develop a tool that would be amenable to large-scale deployment and utilization, therefore, we 

actively sought heterogeneity within our data so as to not limit the resulting tool’s utilization to specific 
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acquisition parameters (such as image resolution, noise or the type of acquisition) or to a specific scanner 

manufacturer or institution. 

  Data were aggregated, including T1-weighted image data as well as age and sex for each subject. 

Subject’s precise age was provided for most subjects however the GSP dataset (1570 subjects included) provided 

age data in 2-year bins and the MPI-LMBB dataset (318 subjects included) provided age data in 5-year bins. For 

these two datasets, subject’s age was set to the center of corresponding bins. Sources and descriptions for all 

datasets are provided in the supplemental material. 

 After data processing and quality assessment (see Data preparation), a total of 6410 subjects were 

included in the study and used for further analysis. The distribution of included subjects across different cohorts, 

as well as the distribution of age and sex are shown in Figure 1. The mean age was (mean ± SD) 33.32 ± 17.53 

years and ranged from 6.7 to 89.1 years. Age distribution disproportionally included subjects between 18 – 35 

years due to inclusion of the HCP and GSP cohorts. There were 3517 (54.9%) females and 2893 (45.1%) males in 

the final dataset.  
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Figure 1. Composition of the final cohort included in the study according to the provenance of the dataset (N = 

6410). The acronym of the dataset is indicated along with the number of included subjects from each dataset in 

parenthesis. Details about the datasets and MR images acquisition protocols are provided in supplemental data 1. 

In total, 3517 (58.9%) subjects were female. Histogram demonstrates age distribution of included subjects. 

 

2.1.2 Data preparation 

The overall data preparation process is illustrated in Figure 2. This included the following processing and quality 

assessment steps. 
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Figure 2. Flowchart of data preparation. After cortical surfaces are extracted using Freesurfer, they are affinely 

registered to the MNI space and rigidly registered with the surface template to ensure vertex-wise correspondence. 

Quality assessment ensures that the quality of surface extraction and registration is satisfactory. 

 

2.1.2.1 Image processing 

T1 images were processed with Freesurfer (v6.0, https://surfer.nmr.mgh.harvard.edu) using Northwestern 

University’s High Performance Computing Cluster (QUEST, https://www.it.northwestern.edu/research/user-

services/quest/) and the CBRAIN platform (Sherif, Rioux et al. 2014). Preprocessing steps included bias field 

correction, intensity normalization, spatial normalization, skull stripping and tissue segmentation  (Dale, Fischl et 
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al. 1999). The inner cortical surface, matching the white matter / grey matter junction, and the outer cortical 

surface, matching the grey matter / cerebro-spinal fluid interface, were then extracted. The surfaces were 

corrected for possible topological defects, inflated and parameterized (Fischl, Sereno et al. 1999, Fischl, Sereno et 

al. 1999). 

2.1.2.2 Quality assessment 

 Subjects were excluded from analysis if Freesurfer could not complete surface extraction on the first 

attempt. No attempt was made to reprocess subjects whose Freesurfer process failed before completion. For 

completed Freesurfer data, generated outputs were visually inspected to ensure that the cortical surfaces contained 

no obvious large errors. Subjects were excluded if at least one large error, significant enough to globally modify 

the sulcal pattern was identified. For example, subjects were discarded if one or both temporal poles were not 

entirely extracted, widespread inclusion of dura or if the surface was particularly noisy. Localized errors such as 

the inclusion of dura at the crown of a gyrus or local roughness were not disqualifying. 

 Finally, affine registrations to MNI space were inspected for all subjects. This was done by visually 

reviewing the cortical surfaces aligned with the MNI space. Incorrect registrations were manually corrected. 

2.1.2.3 Registration of the cortical surfaces to the MNI space 

The four extracted cortical surfaces (left and right hemispheres, inner and outer cortical surfaces) were 

normalized by registering them to the MNI space (MNI305 template). This was done by applying the affine 

registration to the surface vertices coordinates to spatially normalize the cortical surfaces and normalize brain 

volumes. 

2.1.2.4 Surface registration 

The purpose of surface registration is to establish a vertex-wise correspondence across individuals. By 

default, Freesurfer performs a non-rigid surface registration to improve cortical folding alignment (as determined 

by the curvature of the surfaces) between a subject and the surface template (Fischl, Sereno et al. 1999), which 

can result in distortion of the sulcal pattern. To preserve the initial sulcal folding pattern, surfaces were rigidly 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.29.177543doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.177543
http://creativecommons.org/licenses/by/4.0/


registered to the surface template (Freesurfer’s fsaverage). In a trade-off between precision of cortical alignment 

across subjects and preservation of individual subjects’ cortical folding pattern, this maneuver prioritized 

preservation of subjects’ folding pattern. 

2.1.2.5 Resampling surface coordinates to the common surface 

 Cartesian coordinates of the vertices (namely X, Y and Z coordinates of the inner and outer cortical 

surfaces) in individual’s native space were registered to the MNI space by applying the affine transformation, then 

they were registered to the common surface space using the rigid surface transformation. Finally, vertices 

coordinates were resampled to the freesurfer’s fsaverage5 template to decrease the number of vertices in the 

common surface space to 10,242 vertices per hemisphere. This massive reduction in number of vertices was 

beneficial to train networks much faster while maintaining anatomic precision. Additionally, registration to the 

surface template permits mapping the cortical areas relevant in the decision process across subjects.  

2.1.3 Training the Graph Convolutional Neural Network 

 Graph convolutional neural networks are a transposition of CNNs to any graph 𝐺𝐺. Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸,𝑊𝑊) a 

connected graph where 𝑉𝑉 is a set of 𝑛𝑛 vertices, 𝐸𝐸 a set of edges and 𝑊𝑊 an ℝ𝑛𝑛×𝑛𝑛 adjacency matrix such as 𝑊𝑊𝑖𝑖,𝑗𝑗 >
0 if there is an edge between the nodes 𝑖𝑖 and 𝑗𝑗, and 𝑊𝑊𝑖𝑖,𝑗𝑗 = 0 otherwise. Let 𝐹𝐹 ∈ ℝ𝑛𝑛×𝑚𝑚 be an input signal to the 

graph, so that as the 𝑖𝑖-th row of 𝐹𝐹 is an 𝑚𝑚-dimensional vector assigned to the 𝑖𝑖-th node of 𝐺𝐺. The purpose of 

gCNNs is to process an input signal 𝐹𝐹 mapped on a graph 𝐺𝐺. 

 The normalized graph Laplacian of 𝐺𝐺 is defined as 𝐿𝐿 = 𝐼𝐼𝑛𝑛 − 𝐷𝐷−1 2⁄ 𝑊𝑊𝐷𝐷−1 2⁄  where 𝐼𝐼𝑛𝑛 is the identity 

matrix of size 𝑛𝑛 × 𝑛𝑛 and 𝐷𝐷 the diagonal degree matrix such as 𝐷𝐷𝑖𝑖,𝑖𝑖 = ∑ 𝑊𝑊𝑖𝑖,𝑗𝑗𝑗𝑗 . The graph Laplacian is a real and 

symmetric matrix, therefore has a complete set of orthonormal eigenvectors 𝒖𝒖𝑙𝑙, associated with eigenvalues 𝜆𝜆𝑙𝑙, 
such as 𝐿𝐿𝒖𝒖𝑙𝑙 = 𝜆𝜆𝑙𝑙𝒖𝒖𝑙𝑙. The eigenvectors are known to be the graph Fourier modes and the eigenvalues the frequency 

spectrum (Hammond, Vandergheynst et al. 2011, Shuman, Narang et al. 2013). This enables the formulation of 

the Fourier transform 𝒙𝒙� of a vector 𝒙𝒙 mapped on the graph G as 𝒙𝒙� = 𝑈𝑈𝑇𝑇𝒙𝒙, and its inverse 𝒙𝒙 = 𝑈𝑈𝒙𝒙�, where 𝑈𝑈 =

[𝒖𝒖0, … ,𝒖𝒖𝑛𝑛−1]. The convolution operator ∗ can therefore be defined in the Fourier domain for two vectors 𝒙𝒙 and 𝒚𝒚 
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mapped on 𝐺𝐺 such as 𝒙𝒙 ∗ 𝒚𝒚 = 𝑈𝑈(𝒙𝒙� ⋅ 𝒚𝒚�), where ⋅ is the element-wise Hadamard product. As in Euclidean spaces, a 

filter can be expressed in the Fourier domain by a function 𝑔𝑔 modulating the frequency spectrum to define 𝒚𝒚, the 

vector obtained by filtering 𝒙𝒙 with 𝑔𝑔, by: 𝒚𝒚 = 𝑈𝑈𝑔𝑔(Λ)𝑈𝑈𝑇𝑇𝒙𝒙 with Λ = diag([𝜆𝜆0, … , 𝜆𝜆𝑛𝑛−1]). An efficient 

implementation of spectral filters 𝑔𝑔 was proposed in (Hammond, Vandergheynst et al. 2011) which are computed 

recursively from the Laplacian and avoids its costly eigen decomposition. In addition, these filters are 𝐾𝐾-order 

polynomial parametrization, therefore requiring 𝐾𝐾 parameters to define, and localized with support size 𝐾𝐾.  

2.1.3.1 Definition of the graph and input features 

 The graph provides the underlying structure of the data, in particular the relationships between its nodes, 

which is common to all subjects by construction. The cortical surfaces are triangulated meshes composed of 

10,242 vertices per hemisphere connected to form triangles (see Figure 3). The nodes of the graph 𝐺𝐺 were defined 

as the vertices of the cortical surfaces and the edges were the links of the triangles, weighted as a function of the 

length of the link such as  𝑊𝑊𝑖𝑖,𝑗𝑗 = 𝑒𝑒−Δ𝑖𝑖,𝑗𝑗22√2𝜋𝜋 , where Δ𝑖𝑖,𝑗𝑗 is the Euclidean distance between vertices 𝑖𝑖 and 𝑗𝑗. The 

function 𝐹𝐹, defined at the nodes of 𝐺𝐺 and constituting the input of the gCNN, were the vertices coordinates 

register to the MNI space, registered and resampled to the common surface space. Therefore, each vertex had 6 

features if both the inner and outer cortical surfaces were used (X, Y and Z coordinates of both white and pial 

surfaces), or 3 features if only the inner cortical surfaces were used (X, Y, Z coordinates of the white surface only). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.06.29.177543doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.177543
http://creativecommons.org/licenses/by/4.0/


 

Figure 3. View of the left hemisphere surface template (freesurfer’s fsaverage5) and close up on a small part of 

the surface. Spatial relationships between each surface vertex are modeled via a graph. Nodes of the graph are 

surface vertices (red dots) and edges of the graph are the links between the vertices (blue lines). Edges are 

weighted as a function of their length. Node features, used as input of the gCNN, are each node’s Cartesian 

coordinates in MNI space, resampled to the common surface space. Therefore, the dimension of input features is 

either 6 when both the inner and outer cortical surfaces are used, or 3 when only the inner cortical surfaces are 

used. 

2.1.3.2 Graph pooling 

 The pooling operation intends to downsample a graph and summarize information within a neighborhood, 

therefore providing a multi-scale description of the data. This step was done as defined in (Defferrard, Bresson et 

al. 2016). In brief, setting the initial graph 𝐺𝐺 and corresponding Laplacian matrix 𝐿𝐿 to the level 0, multi-level 

graphs were obtained by a successive node clustering, so that a coarse graph was obtained by grouping pairs of 

nodes of its parent graph. After 𝐵𝐵 successive clustering, this results in a set of graphs 𝐺𝐺0,𝐺𝐺1, … ,𝐺𝐺𝐵𝐵 with 

associated Laplacian matrices 𝐿𝐿0, 𝐿𝐿1, … , 𝐿𝐿𝑁𝑁 such as 𝑛𝑛𝑘𝑘 = 2𝑛𝑛𝑘𝑘−1 where 𝑛𝑛𝑘𝑘 is the number of nodes of 𝐺𝐺𝑘𝑘. The 
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efficiency of the pooling operation is further increased by ordering the nodes so that node 𝑝𝑝𝑖𝑖 at level 𝑘𝑘 + 1 has the 

two parent nodes 𝑝𝑝2𝑖𝑖 and 𝑝𝑝2𝑖𝑖+1 at level 𝑘𝑘. 

2.1.3.3 Architecture of the network 

 The design of our network architecture is shown in Figure 4. This novel gCNN architecture is inspired 

from the popular ResNet architecture which explicitly refers to the input to make the overall network easier to 

optimize (He, Zhang et al. 2016). This architecture A first batch normalization – graph convolution sequence 

extends the dimension of the input to the number of filters 𝐹𝐹𝐶𝐶. Then a series of 𝐵𝐵 blocks are applied, each of them 

reducing the number of nodes with a pooling operation. This is followed by a batch normalization, graph 

convolution with 𝐹𝐹𝐿𝐿 filters, and ReLU. Global average pooling (GAP) was used to summarize the 𝐹𝐹𝐿𝐿 feature maps 

into an 𝐹𝐹𝐿𝐿-length vector, linearly combined with the final fully connected (FC) layer. The architecture of the 

blocks is illustrated in Figure 5. 

 

Figure 4. Architecture of the network. The input is of size 𝑛𝑛0 × 𝐹𝐹𝑖𝑖, where 𝑛𝑛0 is the number of nodes of the graph 

at level 0 and 𝐹𝐹𝑖𝑖 the number of input features (either 6 or 3). Input is batch normalized (BN) and filtered using the 

Laplacian at level 0 (𝐿𝐿0) and the graph convolution method (Conv). The purpose of the first convolution is to 

expend the number of features per node to 𝐹𝐹𝐶𝐶. Then, 𝐵𝐵 blocks are applied and for each block a pooling operation 

reduces the number of nodes such as 𝑛𝑛𝑘𝑘 = 𝑛𝑛𝑘𝑘−1 2⁄ . After the last block, a graph convolution is applied with 𝐹𝐹𝐿𝐿 

filters, followed by a rectified linear unit (ReLU) and a global average pooling (GAP) to obtain a feature vector of 

length 𝐹𝐹𝐿𝐿. A linear combination of the elements of the feature vector is done by the fully connected layer (FC) and 

generates the prediction 𝑃𝑃. 
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Figure 5. Architecture of a block. The input is added to the result of the first BN-Conv-ReLU operation. One 

more BN-Conv-ReLU sequence is followed by an average pooling, reducing the number of nodes to 𝑛𝑛𝑘𝑘+1. 

 

2.1.3.4 Mapping the most influential brain regions 

 The topographic distribution of the most influential brain regions involved in the decision process are 

mapped using the Class Activation Maps (CAM) and Regression Activation Maps (RAM) approaches (Zhou, 

Khosla et al. 2016, Wang and Yang 2017). These maps are computed by interpolating the 𝐹𝐹𝐿𝐿-length feature 

vectors obtained before GAP to the initial vector length 𝑛𝑛0 and creating a weighted sum of these vectors 

according to the weights of the FC layer. These maps qualitatively highlight the brain regions involved in the 

gCNN’s decision process. 

2.1.4 Experiments 

 To evaluate the ability of gCNNs to learn meaningful features using only surface meshes of the cortex, 

both a classification and regression task were conducted. In both we fed the gCNN with either all four cortical 

surfaces including the inner and outer cortical surfaces from the left and right cerebral hemispheres leading to 6 

input features per node, or only the inner cortical surfaces from each hemisphere which provide 3 features per 

node. Importantly, the use of the inner cortical surface only prevents the network from deriving any information, 

even indirectly, from the cortical thickness but instead forces the network to focus on morphologic descriptors of 
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the cortical folding alone. In the case both the inner and outer cortical surfaces were used, the network can still 

extract morphologic descriptors of cortical folding, and is also given the possibility to extract descriptors of the 

inner cortical surfaces relative to the outer cortical surface, such as cortical thickness. The decision to use both of 

these training approaches was to determine the unique predictive value of cortical folding alone compared to 

richer information which may permit the network to infer additional measures of cortical morphology including 

cortical thickness. 

2.1.4.1 Sex prediction 

 As a first experiment, the network was trained to classify sex. Training and validation were handled via a 𝑘𝑘-fold cross-validation approach with 𝑘𝑘 = 5, therefore the network was trained with 5128 instances and validated 

with 1282 independent instances. 

For this task, the loss function was cross-entropy, 𝐹𝐹𝐶𝐶 was set to 32 filters, the number of blocks 𝐵𝐵 set to 4 

and 𝐹𝐹𝐿𝐿 was set to 128. In addition, the polynomial order was set to 5 for all filters, the learning rate was set to 

0.001 with an exponential decay 0.95 every 400 iterations, filter weights were 𝐿𝐿2 regularized to 5 × 10-4, dropout 

0.5 was applied to the fully connected layer, the batch size was 64 and the optimization was performed with 

ADAM procedure (Kingma and Ba 2014). 

2.1.4.2 Age prediction 

 As a second task, the network was trained for age prediction using the same 𝑘𝑘-fold approach. The loss 

function was the mean squared error, 𝐹𝐹𝐶𝐶 was set to 32 filters, the number of blocks 𝐵𝐵 was 7, 𝐹𝐹𝐿𝐿 was 16 and the 

polynomial order was 4 for all filters. The initial learning rate was 0.001 with an exponential decay 0.98 every 

400 iterations, filter weights 𝐿𝐿2 regularization set to 1 × 10-5, dropout 0.5 was applied to the FC layer, the batch 

size was set to 64 and optimization was done with the ADAM method. 
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3.1 Results 

3.1.1 Sex prediction  

3.1.1.1 Accuracy 

 Figure 6 shows the results obtained for each 5 folds using either all four cortical surfaces (inner and outer 

cortical surfaces for both the right and left cerebral hemispheres) or the bilateral inner cortical surfaces only. 

Using all cortical surfaces, the gCNN was able to predict a subject’s sex (using a binary classification scheme) 

with an average accuracy of 87.99%. Using only the bilateral inner cortical surfaces, average accuracy decreased 

only minimally to 85.23%. Table 1 reports the accuracy for sex prediction per dataset. 

 

Figure 6. Results of the 𝑘𝑘-fold cross validation for sex classification, using either all cortical surfaces (inner and 

outer) or only the inner cortical surfaces. Bold lines indicate accuracy averages, which is 87.99% when all 

surfaces are used and 85.23% if only inner cortical surfaces are used. 
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3.1.1.2 Mapping discriminative brain regions 

 Figure 7 shows the CAMs averaged across correctly classified subjects for male and female. Overall, 

there was a modest amount of overlap between brain regions predicting binary sex classification when using the 

bilateral inner cortical surfaces compared to classification when using the bilateral inner and outer cortical 

surfaces.  

 

Figure 7. Average class activation maps (CAM) for correctly classified individuals using either only the inner 

cortical surfaces, or the inner and outer cortical surfaces. The color indicates cortical areas with either low or high 

involvement in the decision. 
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3.1.1.3 Female classification 

When using the bilateral inner cortical surfaces only (i.e., only using morphologic features of the brain’s 

sulcal/gyral folding pattern), the following brain regions were identified as predictive of female: left anterior 

cingulate cortex, left superior temporal gyrus, posterior left insula, right orbitofrontal cortex, entire right parietal 

cortex, right frontal operculum (including pars frontalis, pars triangularis and pars orbitalis) and the right insula. 

When using the bilateral inner and outer cortical surfaces (i.e., morphologic features of the sulcal/gyral 

folding pattern and information regarding cortical thickness), the following brain regions were identified as 

predictive of female: left middle and anterior cingulate cortex, left superior temporal gyrus, left frontal operculum 

(including pars frontalis, pars triangularis and pars orbitalis), left posterior insula, right orbitofrontal cortex, right 

frontal operculum pars frontalis, right mid cingulate cortex, entire right parietal cortex and the right posterior 

insula.  

3.1.1.4 Male classification 

When using the bilateral inner cortical surfaces only (i.e., only using morphologic features of the brain’s 

sulcal/gyral folding pattern), the following brain regions were identified as predictive of male: left medial 

paracentral lobule, left parahippocampal gyrus, left inferior frontal gyrus, left orbitofrontal cortex, left fusiform 

gyrus, left anterior insula, right medial paracentral lobule and the right medial temporal tip. 

When using the bilateral inner and outer cortical surfaces (i.e., morphologic features of the sulcal/gyral 

folding pattern and information regarding cortical thickness), the following brain regions were identified as 

predictive of male: left medial temporal tip, left medial temporo-occipital junction, left superior temporal gyrus, 

left orbitofrontal cortex, left anterior insula, right medial paracentral lobule, right superior temporal gyrus, right 

lateral temporo-occipital junction and the right posterior cingulate cortex.  
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3.1.2 Age prediction 

3.1.2.1 Accuracy 

 Age prediction results for all 5 folds are illustrated in Figure 8. Using only the inner bilateral cortical 

surfaces, Pearson’s coefficient of correlation between the actual and predicted ages was 0.92 and the average 

absolute error was 4.91 years. Using all four cortical surfaces (bilateral inner and outer cortical surfaces), Person’s 

coefficient of correlation was 0.93 and the average absolute error 4.58 years. It is important to note that a small 

number of outliers were discarded from regression analysis. Table 2 reports the mean absolute error obtained for 

each dataset. Specifically, three subjects (0.05%) were excluded from regression analysis using only the bilateral 

inner cortical surfaces and six subjects (0.1%) were excluded from regression analysis using the bilateral inner 

and outer cortical surfaces due to their age prediction being off by 50 or more years. When the MRI data for the 

outliers were individually examined, nothing particularly abnormal was identified regarding their brain structure 

overall or their registration to MNI space.   

 

Figure 8. Results of age prediction with all the cortical surfaces or only the inner cortical surfaces. When all 

cortical surfaces are used, the Pearson’s coefficient of correlation (𝑅𝑅) between the predicted and actual ages is 𝑅𝑅 = 

0.93. When only the inner cortical surfaces are used, 𝑅𝑅=0.92. 
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3.1.2.2 Mapping discriminative brain regions 

 When using both the bilateral inner cortical surfaces only (i.e., only using morphologic features of the 

brain’s sulcal/gyral folding pattern), or the bilateral inner and outer cortical surfaces (i.e., morphologic features of 

the sulcal/gyral folding pattern and information regarding cortical thickness), there is a general trend towards the 

temporal and parietal lobes in younger subjects with a progressive inclusion of the frontal lobes in older subjects. 

Supplemental video 1 shows the most influential brain regions for age prediction over Gaussian sliding window 

(standard deviation 4 years) from 10 to 90 years old. Figure 9 shows three snapshots of this video at ages 20, 40 

and 60 years old. 

 

Figure 9. Regression activations maps (RAM) at ages 20, 40 and 60 years using the inner cortical surfaces, or 

both the inner and outer cortical surfaces. The color indicates cortical areas with either low or high involvement in 

the decision. 
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3.1.2.3 Brain regions involved in correct prediction of youth (10-25 years) 

In addition to this overall trend, younger subjects tended to be predicted correctly based on brain 

morphology alone (bilateral inner cortical surfaces only) primarily at the following brain regions: left medial 

prefrontal cortex, left dorsolateral prefrontal cortex, left inferior parietal lobule, left superior and inferior temporal 

gyri, right inferior parietal lobule (strong) and right occipital pole. Using a combination of brain morphology 

information and cortical thickness (bilateral inner and outer cortical surfaces), the left dorsolateral prefrontal 

cortex, left inferior parietal lobule, right inferior parietal lobule (strong) and right middle frontal gyri tended to be 

the most accurately predictive of young age.  

3.1.2.4 Brain regions involved in the correct prediction of adulthood (30 – 60 years) 

 Adult subjects, tended to be predicted correctly based on brain morphology alone primarily at the 

following brain regions: left medial paracentral lobule, left dorsolateral prefrontal cortex (to a lesser degree than 

in youth), left orbitofrontal cortex and the left prefrontal cortex including superior, middle and inferior frontal 

gyri). Using a combination of brain morphology and cortical thickness, the left medial paracentral lobule, left 

inferior parietal lobule, right greater than left orbitofrontal cortex and entire right frontal, temporal and parietal 

corticies over the cerebral convexity were found to be the most accurately predictive of adult age.  

 

4.1 Discussion 

4.1.1 An efficient surface-based method for cortical shape analysis 

 This study introduces a novel deep learning approach for the  analysis of cortical morphology. It relies on 

cortical surface models, obtained from T1-weighted MR images, which are best suited to represent the folded 

sheet nature of the cortical ribbon (Dale, Fischl et al. 1999, Fischl, Sereno et al. 1999). This constitutes a 

significant departure from the classic volumetric analysis of brain imaging data (Bernal, Kushibar et al. 2019). 

Overall, the method uses graph convolutional neural networks to learn from data organized on non-Euclidean 
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support, as it is the case for surface models, and benefits of the same advantages as traditional CNNs. In 

particular, this alleviates the challenging need to design relevant cortical geometric features tailored to a specific 

application. Using a large set of 6410 healthy subjects, we showed that this approach successfully predicted 

subjects’ age and sex form cortical folding patterns in a data-driven way.  Importantly, our network performed 

well even using only the inner cortical surfaces, which models the grey/white interface therefore blinding the 

network to potential useful information such as cortical thickness. Using this approach, the accuracy of sex 

prediction was 85.23% and predicted age was in excellent agreement with the actual age with a Pearson’s 

coefficient of correlation (R) equal to 0.92. We also trained networks using both the inner and outer cortical 

surfaces, adding the possibility to the network to infer anatomic features of the inner surface relative to the outer 

surface, such as cortical thickness. In this situation, the performance accuracy was 87.99% for sex prediction and 

the correlation coefficient between predicted and actual ages was equal to 0.93, showing that adding the outer 

cortical surface only modestly increased the accuracy of the predictions and that cortical folding embeds a rich 

information.  

These results are consistent with previous T1-weighted MRI based studies, where sex prediction accuracy 

ranged between 0.78 and 0.89 (Wachinger, Golland et al. 2015, Nieuwenhuis, Schnack et al. 2017, Pinaya, 

Mechelli et al. 2018), and age prediction reached R = 0.90 – 0.96 (Franke, Ziegler et al. 2010, Wachinger, 

Golland et al. 2015, Valizadeh, Hänggi et al. 2016, Gutierrez Becker, Klein et al. 2018). Our results extend these 

previous findings and are therefore notable given the increased complexity and heterogeneity of our dataset 

including our inclusion of children and 1888 subjects for whom age was imprecisely provided with a 2- or 5-year 

age bin rather than exact subject age, both of which add additional challenges to network training and resulting 

accuracy.  In addition, we included data from 13 different cohorts of subjects from around the world using 

variable imaging systems and acquisition parameters. Therefore, the accuracy levels we report further emphasize 

the robustness and generalizability of this surface-based graph convolutional neural network approach. 

Another advantage of surface-based deep learning is the natural two-dimensional representation of the 

cortical sheet, which is not only better suited to describe cortical topology but also helps to massively reduce the 
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dimensionality of the data. In this study, the cortical ribbon was accurately modeled with 20,484 points, which 

represents fewer data points than a cubic grid of size 283 and almost a 400-fold dimensionality reduction 

compared to standard whole brain 3D image of size 2003. Dimensionality reduction is important in machine 

learning applications as it helps mitigate the “curse of dimension”, minimizes undesired statistical properties 

associated with high dimensional data (Jimenez and Landgrebe 1998) and can significantly decrease the 

computational burden during the learning process. 

4.1.2 Predictive mapping 

 The advantages of a CNN, and of a gCNN in particular, approach to brain imaging analysis includes its 

ability to produce topography distribution of brain areas the most involved classification and regression tasks. 

Despite deep learning’s many notable strengths, one of its most significant drawbacks has been the inability to 

interpret the methods used by the network to make an accurate prediction. gCNN analysis offers the ability to 

circumvent this to some degree in its ability to generate activation maps following correct prediction by the 

network. These maps can be generated at the subject or group level. When produced for a group, one can begin to 

understand the brain regions that were found to play a role in the correct prediction of the task at hand (in this 

case, correct prediction of age and sex), thus providing basic neuroscientific insights into the network’s decision 

making process. The characteristics themselves of the brain regions that contributed to successful prediction of 

age or sex remain unknown but one can begin to understand the distribution of brain regions involved in correct 

prediction. Said another way, these activation maps can provide information about which brain regions 

contributed to correct prediction but cannot provide information about what the features were in those locations 

that contributed to that correct prediction.  

Class activation maps (CAMs) produced for correct sex prediction further inform the current 

understanding of sexual oligomorphism in the human brain. The frontal and parietal lobes were found to contain 

features predictive of female sex whereas male sex was more predicted by features within the bilateral 

perirolandic and antero-medial temporal structures (Figure 7). These findings recapitulate the work of many other 

groups who have defined a variety of cortical features including cortical thickness, cortical complexity, cortical 
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gradient and fractal dimensionality, among others within these brain regions as variable across the human sexes 

(Zilles, Armstrong et al. 1988, Nopoulos, Flaum et al. 2000, Im, Lee et al. 2006, Luders, Thompson et al. 2006, 

Sowell, Peterson et al. 2007, Luders, Narr et al. 2008, Awate, Yushkevich et al. 2009, Salat, Lee et al. 2009, 

Awate, Yushkevich et al. 2010, Luders and Toga 2010, Lv, Li et al. 2010, Creze, Versheure et al. 2014). 

Regression activation maps (RAMs) produced for correct age prediction demonstrated similarly 

consistent findings with previous literature. Specifically, the occipital lobes, frontal poles and entorhinal cortices 

were found to be more strongly predictive of youth with an ever expanding involvement of the frontal and parietal 

lobes in the accurate prediction of advancing age (Figure 9). This predominant role of the frontal, fronto-basal and 

occipital cortices in youth has been described before (Gogtay, Giedd et al. 2004, Kochunov, Mangin et al. 2005, 

Lemaître, Crivello et al. 2005, Shaw, Greenstein et al. 2006, Sowell, Peterson et al. 2007, Toro, Perron et al. 2008, 

Salat, Lee et al. 2009, Liu, Wen et al. 2010, Westlye, Walhovd et al. 2010, McGinnis, Brickhouse et al. 2011, 

Lemaitre, Goldman et al. 2012, Madan and Kensinger 2016, Jockwitz, Caspers et al. 2017). Similarly, our 

findings of a posterior toward anterior gradient of cortical influence in the aging process has also previously been 

described (Salat, Lee et al. 2009, Westlye, Walhovd et al. 2010). Together, these findings support the notion that 

gCNN analysis is able to identify morphologic features using only brain surface data to accurately predict 

demographic characteristics.  

  

4.1.3 Conclusions 

 Here we demonstrate the accurate prediction of demographic features using a geometric deep learning 

approach on the brain’s shape. Beyond the currently predicted age and sex, the described method offers a wide 

range of potential applications including exploring the role of brain age in the aging process, understanding how 

brain age correlates with functional performance across the developmental spectrum, understanding sex-related 

brain features in the context of the gender identity spectrum as well as computer-aided detection of subtle brain 

pathologies that may escape visual identification, among others. The relevance of this report is not only in the 
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accuracy rates achieved which are roughly equivalent to other published methods but rather in the ability of a 

novel computational tool to extract meaningful characteristics from the brain’s sulcal/gyral morphology alone.  
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