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Abstract

Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process
symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular
promise in molecular modeling applications, in which various molecular representations with different symme-
try properties and levels of abstraction exist. This review provides a structured and harmonized overview of
molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum
chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementar-
ity to well-established molecular descriptors. This review provides an overview of current challenges and
opportunities, and presents a forecast of the future of GDL for molecular sciences.

1 Introduction

Recent advances in deep learning, which is an instance
of artificial intelligence (AI) based on neural networks
[1, 2], have led to numerous applications in the molec-
ular sciences, e.g., in drug discovery [3, 4], quantum
chemistry [5], and structural biology [6, 7]. Two charac-
teristics of deep learning render it particularly promis-
ing when applied to molecules. First, deep learning
methods can cope with "unstructured" data represen-
tations, such as text sequences [8, 9], speech signals [10,
11], images [12–14], and graphs [15, 16]. This ability
is particularly useful for molecular systems, for which
chemists have developed many models (i.e., "molecu-
lar representations") that capture molecular properties
at varying levels of abstraction (Figure 1). The sec-
ond key characteristic is that deep learning can per-
form feature extraction (or feature learning) from the
input data, that is, produce data-driven features from
the input data without the need for manual interven-
tion. These two characteristics are promising for deep
learning as a complement to “classical” machine learning
applications (e.g., Quantitative Structure-Activity Re-
lationship [QSAR]), in which molecular features (i.e.,
"molecular descriptors" [17]) are encoded a priori with
rule-based algorithms. The capability to learn from un-
structured data and obtain data-driven molecular fea-
tures has led to unprecedented applications of AI in the
molecular sciences.

One of the most promising advances in deep learn-
ing is geometric deep learning (GDL). Geometric deep
learning is an umbrella term encompassing emerging
techniques which generalize neural networks to Eu-
clidean and non-Euclidean domains, such as graphs,
manifolds, meshes, or string representations [15]. In
general, GDL encompasses approaches that incorpo-
rate a geometric prior, i.e., information on the structure
space and symmetry properties of the input variables.
Such a geometric prior is leveraged to improve the qual-
ity of the information captured by the model. Although
GDL has been increasingly applied to molecular mod-
eling [5, 18, 19], its full potential in the field is still
untapped.
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Figure 1: Exemplary molecular representations for a
selected molecule (i.e., the penam substructure of peni-
cillin)
a. Two-dimensional (2D) depiction (Kekulé structure).
b. Molecular graph (2D), composed of vertices (atoms)
and edges (bonds).
c. SMILES string [20], in which atom type, bond type
and connectivity are specified by alphanumerical char-
acters.
d. Three-dimensional (3D) graph, composed of vertices
(atoms), their position (x, y, z coordinates) in 3D space,
and edges (bonds).
e. Molecular surface represented as a mesh colored ac-
cording to the respective atom types.

The aim of this review is to (i) provide a structured
and harmonized overview of the applications of GDL
on molecular systems, (ii) delineate the main research
directions in the field, and (iii) provide a forecast of
the future impact of GDL. Three fields of application
are highlighted, namely drug discovery, quantum chem-
istry, and computer-aided synthesis planning (CASP),
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with particular attention to the data-driven molecular
features learned by GDL methods. A glossary of se-
lected terms can be found in Box 1.

2 Principles of geometric deep learning

The term geometric deep learning was coined in 2017
[15]. Although GDL was originally used for methods
applied to non-Euclidean data [15], it now extends to
all deep learning methods that incorporate geometric
priors [21], that is, information about the structure and
symmetry of the system of interest. Symmetry is a cru-
cial concept in GDL, as it encompasses the properties of
the system with respect to manipulations (transforma-
tions), such as translation, reflection, rotation, scaling,
or permutation (Box 2).

Symmetry is often recast in terms of invariance and
equivariance to express the behavior of any mathemati-
cal function with respect to a transformation T (e.g. ro-
tation, translation, reflection or permutation) of an act-
ing symmetry group [22]. Here, the mathematical func-
tion is a neural network F applied to a given molecular
input X . F(X ) can therein transform equivariantly,
invariantly or neither with respect to T , as described
below:

• Equivariance. A neural network F applied to
an input X is equivariant to a transformation T
if the transformation of the input X commutes
with the transformation of F(X ), via a trans-
formation T ′ of the same symmetry group, such
that: F(T (X )) = T ′F(X ). Neural networks are
therefore equivariant to the actions of a symmetry
group on their inputs if and only if each layer of
the network “equivalently" transforms under any
transformation of that group.

• Invariance. Invariance is a special case of equiv-
ariance, where F(X ) is invariant to T if T ′ is the
trivial group action (i.e., identity): F(T (X )) =
T ′F(X ) = F(X ).

• F(X ) is neither equivariant nor invariant to T
when the transformation of the input X does
not commute with the transformation of F(X ):
F(T (X )) 6= T ′F(X ).

The symmetry properties of a neural network archi-
tecture vary depending on the network type and the
symmetry group of interest and are individually dis-
cussed in the following sections. Readers can find an
in-depth treatment of equivariance and group equivari-
ant layers in neural networks elsewhere [23–26].

The concept of equivariance and invariance can also
be used in reference to the molecular features obtained
from a given molecular representation (X ), depending
on their behaviour when a transformation is applied to

X . For instance, many molecular descriptors are invari-
ant to the rotation and translation of the molecular rep-
resentation by design [17], e.g., the Moriguchi octanol-
water partitioning coefficient [27], which relies only on
the occurrence of specific molecular substructures for
calculation. The symmetry properties of molecular fea-
tures extracted by a neural network depend on both the
symmetry properties of the input molecular representa-
tion and of the utilized neural network.

Many relevant molecular properties (e.g., equilib-
rium energies, atomic charges, or physicochemical prop-
erties such as permeability, lipophilicity or solubility)
are invariant to certain symmetry operations (Box 2).
In many tasks in chemistry, it is thus desirable to de-
sign neural networks that transform equivariantly under
the actions of pre-defined symmetry groups. Exceptions
occur if the targeted property changes upon a symme-
try transformation of the molecules (e.g., chiral prop-
erties which change under inversion of the molecule, or
vector properties which change under rotation of the
molecule). In such cases, the inductive bias (learning
bias) of equivariant neural networks would not allow for
the differentiation of symmetry-transformed molecules.

While neural networks can be considered as uni-
versal function approximators [28], incorporating prior
knowledge such as reasonable geometric information
(geometric priors) has evolved as a core design principle
of neural network modeling [21]. By incorporating geo-
metric priors, GDL allows to increase the quality of the
model and bypasses several bottlenecks related to the
need to force the data into Euclidean geometries (e.g.,
by feature engineering). Moreover, GDL provides novel
modeling opportunities, such as data augmentation in
low data regimes [29, 30].

3 Molecular GDL

The application of GDL to molecular systems is chal-
lenging, in part because there are multiple valid ways of
representing the same molecular entity. Molecular rep-
resentations1 can be categorized based on their different
levels of abstraction and the physicochemical and geo-
metrical aspects they capture. Importantly, all of these
representations are models of the same reality and are
thus "suitable for some purposes, not for others" [60].
GDL provides the opportunity to experiment with dif-
ferent representations of the same molecule and lever-
ages their intrinsic geometrical features to increase the
quality of the model. Moreover, GDL has repeatedly
proven useful in providing insights into relevant molecu-
lar properties for the task at hand, thanks to its feature
extraction (feature learning) capabilities. In the follow-
ing sections, we delineate the most prevalent molecular
GDL approaches and their applications in chemistry,
grouped according to the respective molecular represen-
tations used for deep learning: molecular graphs, grids,
strings, and surfaces.

1Note that in this review the term "representation" is used solely to denote human-made models of molecules (e.g., molecular
graphs, 3D conformers, SMILES strings). To avoid confusion with other usages of the word "representation" in deep learning, we
will use the term "feature" whenever referring to any numerical description of molecules, obtained either with rule-based algorithms
(molecular descriptors) or learned (extracted) by neural networks.
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Box 1: Glossary of selected terms

CoMFA and CoMSIA. Comparative Molecular Field Analysis (CoMFA) [31] and Comparative Molecu-
lar Similarity Indices Analysis (CoMSIA) [32] are popular 3D QSAR methods developed in the 1980s and
1990s, in which three-dimensional grids are used to capture the distributions of molecular features (e.g.,
steric, hydrophobic, and electrostatic properties). The obtained molecular descriptors serve as inputs to
a regression model for quantitative bioactivity prediction.
Convolution. Operation within a neural network that transforms a feature space into a new feature
space and thereby captures the local information found in the data. Convolutions were first introduced
for pixels in images [33, 34] but the term "convolution" is now used for neural network architectures
covering a variety of data structures such as graphs, point clouds, spheres, grids, or manifolds.
Density Functional Theory (DFT). A quantum mechanical modeling approach used to investigate
the electronic structure of molecules.
Data augmentation. Artificial increase of the data volume available for model training, often achieved
by leveraging symmetrical properties of the input data which are not captured by the model (e.g., rotation
or permutation).
Feature. An individually measurable or computationally obtainable characteristic of a given sample
(e.g., molecule), in the form of a scalar. In this review, the term refers to a numeric value characterizing
a molecule. Such molecular features can be computed with rule-based algorithms ("molecular descrip-
tors") or generated automatically by deep learning from a molecular representation ("hidden" or "learned"
features).
Geometric prior. An inductive bias incorporating information on the symmetric nature of the system
of interest into the neural network architecture. Also known as symmetry prior.
Inductive bias. Set of assumptions that a learning algorithm (e.g., a neural network) uses to learn the
target function and to make predictions on previously unseen data points.
One-hot encoding. Method for representing categorical variables as numerical arrays by obtaining a
binary variable (0, 1) for each category. It is often used to convert sequences (e.g., SMILES strings) into
numerical matrices, suitable as inputs and/or outputs of deep learning models (e.g., chemical language
models).
Quantitative Structure-Activity Relationship (QSAR). Machine learning techniques aimed at find-
ing an empirical relationship between the molecular structure (usually encoded as molecular descriptors)
and experimentally determined molecular properties, such as pharmacological activity or toxicity.
Reinforcement learning. A technique used to steer the output of a machine learning algorithm toward
user-defined regions of optimality via a predefined reward function [35].
Transfer learning. Transfer of knowledge from an existing deep learning model to a related task for
which fewer training samples are available [36].
Unstructured data. Data that are not arranged as vectors of (typically handcrafted) features. Examples
of unstructured data include graphs, images, and meshes. Molecular representations are typically unstruc-
tured, whereas numerical molecular descriptors (e.g., molecular properties, molecular "fingerprints") are
examples of structured data.
Voxel. Element of a regularly spaced, 3D grid (equivalent to a pixel in 2D space).

3.1 Learning on molecular graphs

3.1.1 Molecular graphs

Graphs are among the most intuitive ways to represent
molecular structures [62]. Any molecule can be thought
of as a mathematical graph G = (V, E), whose vertices
(vi ∈ V) represent atoms, and whose edges (ei,j ∈ E)
constitute their connection (Figure 3.1). In many deep
learning applications, molecular graphs can be further
characterized by a set of vertex and edge features.

3.1.2 Graph neural networks

Deep learning methods devoted to handling graphs as
input are commonly referred to as graph neural net-
works (GNNs). When applied to molecules, GNNs al-
low for feature extraction by progressively aggregating
information from atoms and their molecular environ-

ments (Figure 2a, [63, 64]). Different architectures of
GNNs have been introduced [65], the most popular of
which fall under the umbrella term of message passing
neural networks [5, 66, 67]. Such networks iteratively
update the vertex features of the l -th network layer
(vl

i → vl+1
i ) via graph convolutional operations, em-

ploying at least two learnable functions ψ and φ, and a
local permutation-invariant aggregation operator (e.g.,

sum): vl+1
i = φ

(

vl
i,
⊕

j∈N (i) ψ
(

vl
i,v

l
j

)

)

.
Since their introduction as a means to predict quan-

tum chemical properties of small molecules at the den-
sity functional theory (DFT) level [5], GNNs have found
many applications in quantum chemistry [68–72], drug
discovery [37, 73, 74], CASP [75], and molecular prop-
erty prediction [76, 77]. When applied to quantum
chemistry tasks, GNNs often use E(3)-invariant 3D in-
formation by including radial and angular information
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Table 1: Summary of selected geometric deep learning (GDL) approaches for molecular modeling. For each ap-
proach, the utilized molecular representation(s) and selected applications are reported. 1D, one-dimensional; 2D,
two-dimensional; 3D, three-dimensional.
GDL approach Molecular representation(s) Applications

Graph neural networks
(GNNs)

2D and 3D molecular graph, and
3D point cloud.

Molecular property prediction in drug dis-
covery [37, 38] and in quantum chemistry
for energies [39–41], forces [41–43] and wave-
functions [44], CASP [45, 46], and generative
molecular design [47, 48].

3D convolutional
neural networks (3D
CNNs)

3D grid. Structure-based drug design and property pre-
diction [49, 50].

Mesh convolutional
neural networks
(geodesic CNNs or 3D
GNNs)

Surface (mesh) encoded as a 2D
grid or 3D graph.

Protein-protein interaction prediction and
ligand-pocket fingerprinting [18].

Recurrent neural net-
works (RNNs)

String notation (1D grid). Generative molecular design [19, 51], synthe-
sis planning [52], protein structure prediction
[53] and prediction of properties in drug dis-
covery [54, 55].

Transformers String notation encoded as a
graph.

Synthesis planning [56], prediction of reaction
yields [57], generative molecular design [58],
prediction of properties in drug discovery [59],
and protein structure prediction [6, 7].

into the edge features of the graph [43, 68, 69, 72, 78],
thereby improving the prediction accuracy of quantum
chemical forces and energies for equilibrium and non-
equilibrium molecular conformations, as in the case of
SchNet [79, 80] and PaiNN [43]. SchNet-like architec-
tures were used to predict quantum mechanical wave-
functions in the form of Hartree-Fock and DFT density
matrices [81], and differences in quantum properties ob-
tained by DFT and coupled cluster level-of-theory cal-
culations [82].

GNNs for molecular property prediction have been
shown to outperform human-engineered molecular de-
scriptors for several biologically relevant properties
[83]. Although including 3D information into molec-
ular graphs generally improved the prediction of drug-
relevant properties, no marked difference was observed
between using a single or multiple molecular conform-
ers for network training [84]. Because of their natural
connection with molecular representations, GNNs seem
particularly suitable in the context of explainable AI
(XAI) [85], where they have been used to interpret mod-
els predicting molecular properties of preclinical rele-
vance [38] and quantum chemical properties [86].

GNNs have been used for de novo molecule genera-
tion [47, 87–89], for example by performing vertex and
edge addition from an initial vertex [87] (Figure 2b).
GNNs have also been combined with variational au-
toencoders [48, 88–90] and reinforcement learning [47,
91, 92]. Finally, GNNs have been applied to CASP [45,
75, 93]; however, the current approaches are limited to
reactions in which one bond is removed between the
products and the reactants.

3.1.3 Equivariant message passing

A recent area of development of graph-based meth-
ods are SE(3)- and E(3)-equivariant GNNs (equivariant
message passing networks) which deal with the absolute
coordinate systems of 3D graphs [94, 95] (Figure 2b).
Thus, these networks may be particularly well-suited to
be applied to 3D molecular representations. Such net-
works exploit Euclidean symmetries of the system (Box
2).

3D molecular graphs G3D = (V, E ,R), in addition to
their vertex and edge features (vi ∈ V and eij ∈ E , re-
spectively), also encode information on the vertex posi-
tion in a 3D coordinate system (ri ∈ R). By employing
E(3)- [41] and SE(3)-equivariant [94] convolutions, such
networks have shown high accuracy for predicting sev-
eral quantum chemical properties such as energies [39,
40, 42, 43, 96–98], interatomic potentials for molecular
dynamics simulations [41, 42, 99], and wave-functions
[44]. SE(3) equivariant neural networks do not com-
mute with reflections of the input (i.e. non-equivariant
to reflections), and thereby enable SE(3) equivariant
models to distinguish between stereoisomers of chiral
molecules including enantiomers [94]. E(3) equivariant
neural networks on the other side transform equivari-
antly with refelctions, which allows E(3) equivariant
models only to distinguish between diastereomers and
not eneantiomers. SE(3) neural networks are compu-
tationally expensive due to their use of spherical har-
monics [100] and Wigner D-functions [101] to com-
pute learnable weight kernels. E(3)-equivariant neu-
ral networks are computationally more efficient and
have shown to perform equal to, or better than, SE(3)-
equivariant networks, e.g., for the modeling of quantum
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Box 2: Euclidean symmetries in molecular systems

Molecular systems (and three-dimensional representations thereof) can be considered as objects in Eu-
clidean space. In such a space, one can apply several symmetry operations (transformations) that are (i)
performed with respect to three symmetry elements (i.e., line, plane, point), and (ii) rigid, that is, they
preserve the Euclidean distance between all pairs of atoms (i.e., isometry). The Euclidean transformations
are as follows:

• Rotation. Movement of an object with respect to the radial orientation to a given point.

• Translation. Movement of every point of an object by the same distance in a given direction.

• Reflection. Mapping of an object to itself through a point (inversion), a line or a plane (mirroring).
All three transformations and their arbitrary finite combinations are included in the Euclidean group
[E(3)]. The special Euclidean group [SE(3)] comprises only translations and rotations.
Molecules are always symmetric in the SE(3) group, i.e., their intrinsic properties (e.g., biological and
physicochemical properties, and equilibrium energy) are invariant to coordinate rotation and translation,
and combinations thereof. Several molecules are chiral, that is, some of their (chiral) properties depend on
the absolute configuration of their stereogenic centers, and are thus non-invariant to molecule reflection.
Chirality plays a key role in chemical biology; relevant examples of chiral molecules are DNA, and several
drugs whose enantiomers exhibit markedly different pharmacological and toxicological properties [61].

original

rotation translation

reflection (mirroring)reflection (inversion)

chemical properties and dynamic systems [41]. Equiv-
ariant message passing networks have been applied to
predict the quantum mechanical wave-function of nu-
clei and electron-based representations in an end-to-
end fashion [102–104]. However, such networks are cur-
rently limited to small molecular systems because of the
large size of the learned matrices, which scale quadrat-
ically with the number of electrons in the system.

3.2 Learning on grids

Grids capture the properties of a system at regularly
spaced intervals. Based on the number of dimensions in-
cluded in the system, grids can be 1D (e.g., sequences),
2D (e.g., RGB images), 3D (e.g., cubic lattices), or
higher-dimensional. Grids are defined by a Euclidean
geometry and can be considered as a graph with a spe-

cial adjacency, where (i) the vertices have a fixed or-
dering that is defined by the spatial dimensions of the
grid, and (ii) each vertex has an identical number of ad-
jacent edges and is therefore indistinguishable from all
other vertices structure-wise [21]. These two properties
render local convolutions applied to a grid inherently
permutation invariant, and provide a strong geometric
prior for translation invariance (e.g. by weight sharing
in convolutions). These grid properties have critically
determined the success of convolutional neural networks
(CNNs), e.g., in computer vision [33, 34], natural lan-
guage processing [9, 105], and speech recognition [10,
11].
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Atomic property

Bond property

message passing

a

b Molecular property

Atomic property

equivariant message passing

Feature labeling Feature updates Aggregation

Figure 2: Deep learning on molecular graphs.
a. Message passing graph neural networks applied to two-dimensional (2D) molecular graphs: 2D molecular
graph G = (V, E) with its labeled vertex (atom) features (vi ∈ R

dv ), and edge (bond) features (eij ∈ R
de).

Vertex features are updated by iterative message passing for a defined number of time steps T across each pair
of vertices vi and vj , connected via an edge ej,i. After the last message passing convolution, the final vertex vt

i

can be (i) mapped to a bond (yij) or atom (yi) property, or (ii) aggregated to form molecular features (that can
be mapped to a molecular property y).
b. E(3)-equivariant message passing graph neural networks applied to three-dimensional (3D) molecular graphs:
3D graphs G3 = (V, E ,R) that are labeled with atom features (vi ∈ R

dv ), their absolute coordinates in 3D
space (ri ∈ R

3) and their edge features (eij ∈ R
de). Iterative spherical convolutions are used to obtain data-

driven atomic features (vt
i), which can be mapped to atomic properties or aggregated, and mapped to molecular

properties (yi and y, respectively).

3.2.1 Molecular grids

Molecules can be represented as grids in different ways.
2D grids (e.g., molecular structure drawings) are gener-
ally more useful for visualization rather than prediction,
with few exceptions [106]. Analogous with some popu-
lar pre-deep learning approaches, for example Compar-
ative molecular field analysis (CoMFA) [31], and com-
parative molecular similarity indices analysis (CoM-
SIA) [32], 3D grids are often used to capture the spa-
tial distribution of the properties within one (or more)
molecular conformer. Such representations are then
used as inputs to the 3D CNNs. 3D CNNs are char-
acterized by a greater resource efficiency than equiv-
ariant GNNs, which until now have mainly been ap-
plied to molecules with fewer than approximately 1000
atoms. Thus, 3D CNNs have often been the method of
choice when the protein structure has to be considered,
e.g., for protein-ligand binding affinity prediction [49,
50, 107–109], or active site recognition [110].

3.3 Learning on molecular surfaces

Molecular surfaces can be defined by the surface en-
closing the 3D structure of a molecule at a certain
distance from each atom center. Each point on such
a continuous surface can be further characterized by
its chemical (e.g., hydrophobic, electrostatic) and ge-
ometric features (e.g., local shape, curvature). From
a geometrical perspective, molecular surfaces are con-
sidered as 3D meshes, i.e., a set of polygons (faces)
that describe how the mesh coordinates exist in the 3D
space [111]. Their vertices can be represented by a 2D
grid structure (where four vertices on the mesh define
a pixel) or by a 3D graph structure. The grid- and
graph-based structures of meshes enable applications
of 2D CNNs, geodesic CNNs and GNNs to learn on
mesh-based molecular surfaces. Recently, geodesic (2D)
CNNs have been applied to learn on mesh-based repre-
sentations of protein surfaces to predict protein-protein
interactions and recognize corresponding binding sites
[18]. This approach generated data-driven fingerprints
that are relevant for specific biomolecular interactions.
Approaches like 2D CNNs applied to meshes come with
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certain limitations, such as the need for rotational data
augmentation (due to their non-equivariance to rota-
tions) and for enforcing a homogeneous mesh resolution
(i.e., uniform spacing of all the points in the mesh).
Recently introduced GNNs for mesh-based representa-
tions have been shown to incorporate rotational equiv-
ariance into their network architecture and allow for
heterogeneous mesh resolution [112]. Such GNNs are
computationally efficient and have potential for mod-
eling macromolecular structures; however, they have
not yet found applications to molecular systems. Other
studies have used 3D voxel-based surface representa-
tions of (macro)molecules as inputs to 3D CNNs, e.g.,
for protein-ligand affinity [113] and protein binding-site
[114] prediction.

3.4 Learning on string representations

3.4.1 Molecular strings

Molecules can be represented as molecular strings, i.e.,
linear sequences of alphanumeric symbols. Molecu-
lar strings were originally developed as manual cipher-
ing tools to complement systematic chemical nomen-
clature [115, 116] and later became suitable for data
storage and retrieval. Some of the most popular string-
based representations are the Wiswesser Line Notation
[117], the Sybyl line notation [118], the International
Chemical Identifier (InChI) [119], Hierarchical Editing
Language for Macromolecules [120], and the Simplified
Molecular Input Line Entry System (SMILES) [20].

Each type of linear representation can be considered
as a "chemical language." In fact, such notations pos-
sess a defined syntax, i.e., not all possible combinations
of alphanumerical characters will lead to a “chemically
valid” molecule. Furthermore, these notations possess
semantic properties: depending on how the elements
of the string are combined, the corresponding molecule
will have different physicochemical and biological prop-
erties. These characteristics make it possible to extend
the deep learning methods developed for language and
sequence modeling to the analysis of molecular strings
for "chemical language modeling" [121, 122].

SMILES strings – in which letters are used to
represent atoms, and symbols and numbers are used
to encode bond types, connectivity, branching, and
stereochemistry (Figure 3a) – have become the most
frequently employed data representation method for
sequence-based deep learning [19, 52]. Whereas sev-
eral other string representations have been tested in
combination with deep learning, e.g., InChI [123],
DeepSMILES [124], and self-referencing embedded
strings (SELFIES) [125], SMILES remains the de facto
representation of choice for chemical language model-
ing [30]. The following text introduces the most promi-
nent chemical language modeling methods, along with
selected examples of their application to chemistry.

3.4.2 Chemical language models

Chemical language models are machine learning meth-
ods that can handle molecular sequences as inputs

and/or outputs. The most common algorithms for
chemical language modeling are Recurrent neural net-
works (RNNs) and Transformers:

• RNNs (Figure 3b) [126] are neural networks that
process sequence data as Euclidean structures,
usually via one-hot-encoding. RNNs model a dy-
namic system in which the hidden state (ht) of
the network at any t-th time point (i.e., at any t-
th position in the sequence) depends on both the
current observation (st) and the previous hidden
state (ht−1). RNNs can process sequence inputs
of arbitrary lengths and provide outputs of arbi-
trary lengths. RNNs are often used in an "auto-
regressive" fashion, i.e., to predict the probability
distribution over the next possible elements (to-
kens) at the time step t+1, given the current hid-
den state (ht) and the preceding portions of the
sequence. Several RNN architectures have been
proposed to solve the gradient vanishing or ex-
ploding problems of "vanilla" RNNs [127, 128],
such as long short-term memory [105] and gated
recurrent units [129].

• Transformers (Figure 3c) process sequence data
as non-Euclidean structures, by encoding se-
quences as either (i) a fully connected graph, or
(ii) a sequentially connected graph, where each
token is only connected to the previous tokens
in the sequence. The former approach is of-
ten used for feature extraction in general (e.g.,
in a Transformer-encoder), whereas the latter is
employed for next-token prediction e.g. in a
Transformer-decoder). The positional informa-
tion of tokens is usually encoded by positional
embedding or sinusoidal positional encoding [8].
Transformers combine graph-like processing with
the so-called attention layers. Attention layers
allow Transformers to focus on ("pay attention
to") the perceived relevant tokens for each pre-
diction. Transformers have been particularly suc-
cessful in sequence-to-sequence tasks, such as lan-
guage translation.

Extending early studies [19, 132, 133], RNNs for
next-token prediction have been routinely applied to
the de novo generation of molecules with desired bi-
ological or physicochemical properties, in combination
with transfer [19, 134–136] or reinforcement learning
[137, 138]. In this context, RNNs have shown re-
markable capability to learn the SMILES syntax [19,
134], and capture high-level molecular features ("se-
mantics"), such as physicochemical [19, 134] and bio-
logical properties [132, 135, 136, 139]. In this context,
data augmentation based on SMILES randomization
[133, 140] or bidirectional learning [141] have proven
to be efficient for improving the quality of the chemi-
cal language learned by RNNs. Most published studies
have used SMILES strings or derivative representations.
In a few studies, one-letter amino acid sequences were
employed for peptide design [51, 142–145]. RNNs have
also been applied to predict ligand–protein interactions
and the pharmacokinetic properties of drugs [54, 55],
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Figure 3: Chemical language modeling.
a. SMILES strings, in which atom types are represented by their element symbols, and bond types and branching
are indicated by other predefined alphanumeric symbols. For each molecule, via the SMILES algorithm a string
of T symbols ("tokens") is obtained (s = {s1, s2, . . . , sT }), which encodes the molecular connectivity, herein
illustrated via the color that indicates the corresponding atomic position in the graph (left) and string (right).
A molecule can be encoded via different SMILES strings depending on the chosen starting atom. Three random
permutations incorporating identical molecular information are presented.
b. Recurrent neural networks, at any sequence position t, learn to predict the next token st+1 of a sequence s
given the current sequence ({s1, s2, . . . , st}) and hidden state ht.
c. Transformer-based language models, in which the input sequence is structured as a graph. Vertices are featur-
ized according to their token identity (e.g., via token embedding, vi ∈ R

dv ) and their position in the sequence
(e.g., via sinusoidal positional encoding, pi ∈ R

dv ). During transformer learning, the vertices are updated via
residual attention blocks. After passing T attention layers, an individual feature representation sTt for each token
is obtained.

protein secondary structure [53, 146], and the tempo-
ral evolution of molecular trajectories [147]. RNNs have
been applied for molecular feature extraction [148, 149],
showing that the learned features outperformed both
traditional molecular descriptors and graph-convolution
methods for virtual screening and property prediction
[148]. The Fréchet ChemNet distance [150], which is
based on the physicochemical and biological features
learned by an RNN model, has become the de facto
reference method to capture molecular similarity in this
context.

Molecular Transformers have been applied to CASP,
which can be cast as a sequence-to-sequence translation
task, in which the string representations of the reactants
are mapped to those of the corresponding product, or
vice versa. Since their initial applications [56], Trans-
formers have been employed to predict multi-step syn-
theses [151], regio- and stereoselective reactions [152],
enzymatic reaction outcomes [153], and reaction yields
and classes [57, 154]. Recently, Transformers have been
applied to molecular property prediction [59, 155] and
optimization [156]. Transformers have also been used
for de novo molecule design by learning to translate the
target protein sequence into SMILES strings of the cor-
responding ligands [58]. Representations learned from
SMILES strings by Transformers have shown promise

for property prediction in low-data regimes [157]. Fur-
thermore, Transformers have recently been combined
with E(3) and SE(3) equivariant layers to learn the 3D
structures of proteins from their amino-acid sequence
[6, 7]. These equivariant Transformers achieve state-of-
the-art performance in protein structure prediction.

Other deep learning approaches have relied on
string-based representations for de novo design, e.g.,
conditional generative adversarial networks [158–160]
and variational autoencoders [161, 162]. Most of these
models, however, have limited or equivalent ability to
automatically learn SMILES syntax, as compared to
RNNs. 1D CNNs [163, 164] and self-attention networks
[165–167] have been used with SMILES for property
prediction. Recently, deep learning on amino acid se-
quences for property prediction was shown to perform
on par with approaches based on human-engineered fea-
tures [168].

4 Conclusions and outlook

Geometric deep learning in chemistry has allowed re-
searchers to leverage the symmetries of different un-
structured molecular representations, resulting in a
greater flexibility and versatility of the available com-
putational models for molecular structure generation

8



Box 3: Structure-activity landscape modeling with geometric deep learning

This worked example shows how geometric deep learning (GDL) can be used to interpret the structure-
activity landscape learned by a trained model. Starting from a publicly available molecular dataset
containing estrogen receptor binding information [130], we trained an E(3)-equivariant graph neural
network (six hidden layers, 128 hidden neurons per layer) and analyzed the learned features and their
relationship to ligand binding to the estrogen receptor. The figure shows an analysis of the learned
molecular features (third hidden layer, analyzed via principal component analysis; the first two principal
components are shown), and how these features relate to the density of active and inactive molecules in
the chemical space. The network successfully separated the molecules based on both their experimental
bioactivity and their structural features (e.g., atom scaffolds [131]) and might offer novel opportunities
for explainable AI with GDL.
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and property prediction. Such approaches represent
a valid alternative to classical chemoinformatics ap-
proaches that are based on molecular descriptors or
other human-engineered features. For modeling tasks
that are usually characterized by the need for highly
engineered rules (e.g., chemical transformations for de
novo design, and reactive site specification for CASP),
the benefits of GDL have been consistently shown. In
published applications of GDL, each molecular repre-
sentation has shown characteristic strengths and weak-
nesses.

Molecular strings, like SMILES, have proven partic-
ularly suited for generative deep learning tasks, such as
de novo design and CASP. This success may be due to
the relatively easy syntax of such a chemical language,
which facilitates next-token and sequence-to-sequence
prediction. For molecular property prediction, SMILES
strings could be limited due to their non-univocity.

Molecular graphs have shown particular usefulness
for property prediction, partly because of their human
interpretability and ease of inclusion of desired edge
and node features. The incorporation of 3D informa-
tion (e.g., with equivariant message passing) is useful
for quantum chemistry related modeling, whereas in
drug discovery applications, this approach has often
failed to clearly outbalance the increased complexity
of the model. E(3)-equivariant graph neural networks
have also been applied for conformation-aware de novo
design [169], but prospective experimental validation
studies have not yet been published.

Molecular grids have become the de facto standard

for 3D representations of large molecular systems, due
to (i) their ability to capture information at a user-
defined resolution (voxel density) and (ii) the Euclidean
structure of the input grid.

Finally, molecular surfaces are currently at the fore-
front of GDL. We expect many interesting applications
of GDL on molecular surfaces in the near future.

To further the application and impact of GDL in
chemistry, an evaluation of the optimal trade-off be-
tween algorithmic complexity, performance, and model
interpretability will be required. These aspects are cru-
cial for reconciling the “two QSARs” [170] and connect
computer science and chemistry communities. We en-
courage GDL practitioners to include aspects of inter-
pretability in their models (e.g., via XAI [85]) whenever
possible and transparently communicate with domain
experts. The feedback from domain experts will also
be crucial to develop new "chemistry-aware" architec-
tures, and further the potential of molecular GDL for
concrete prospective applications.

The potential of GDL for molecular feature extrac-
tion has not yet been fully explored. Several studies
have shown the benefits of learned representations com-
pared to classical molecular descriptors, but in other
cases, GDL failed to live up to its promise in terms of
superior learned features. Although there are several
benchmarks for evaluating machine learning models for
property prediction [171, 172] and molecule generation
[173, 174], at present, there is no such framework to en-
able the systematic evaluation of the usefulness of data-
driven features learned by AI. Such benchmarks and
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systematic studies are key to obtaining an unvarnished
assessment of deep representation learning. Moreover,
investigating the relationships between the learned fea-
tures and the physicochemical and biological properties
of the input molecules will augment the interpretability
and applicability of GDL, e.g., to modeling structure-
function relationships like structure-activity landscapes
(Box 3).

Compared to conventional QSAR approaches, in
which the assessment of the applicability domain (i.e.,
the region of the chemical space where model predic-
tions are considered reliable) has been routinely per-
formed, contemporary GDL studies lack such an as-
sessment. This systematic gap might constitute one of
the limiting factors to the more widespread use of GDL
approaches for prospective studies, as it could lead to
unreliable predictions, e.g., for molecules with different
mechanisms of action, functional groups, or physico-
chemical properties than the training data. In the fu-
ture, it will be necessary to devise “geometry-aware”
approaches for applicability domain assessment.

Another opportunity will be to leverage less ex-
plored molecular representations for GDL. For instance,
the electronic structure of molecules has vast poten-
tial for tasks such as CASP, molecular property pre-
diction, and prediction of macromolecular interactions
(e.g. protein-protein interactions). Although accu-
rate statistical and quantum mechanical simulations are
computationally expensive, modern quantum machine
learning models [175, 176] trained on large quantum
data collections [177–179] allow quantum information
to be accessed much faster with high accuracy. This
aspect could enable quantum and electronic featuriza-
tion of extensive molecular datasets, to be used as input
molecular representations for the task of interest.

Deep learning can be applied to a multitude of bio-
logical and chemical representations. The correspond-
ing deep neural network models have the potential to
augment human creativity, paving the way for new sci-
entific studies that were previously unfeasible. How-
ever, research has only explored the tip of the iceberg.
One of the most significant catalysts for the integra-
tion of deep learning in molecular sciences may be the
responsibility of academic institutions to foster interdis-
ciplinary collaboration, communication, and education.
Picking the "high hanging fruits" will only be possible
with a deep understanding of both chemistry and com-
puter science, along with out-of-the-box thinking and
collaborative creativity. In such a setting, we expect
molecular GDL to increase the understanding of molec-
ular systems and biological phenomena.
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