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Geometric descriptions of polygon and chain spaces

Jean-Claude HAUSMANN

ABSTRACT. We give a few simple methods to geometically describe some poly-
gon and chain spaces in R%. They are strong enough to give tables of m-gons
and m-chains when m < 6.

Introduction

For a = (a1,...,am) € RY, and d an integer, define the subspace C}J'(a) of
[T 5" by

m—1 m—1
Ci(a)={z=(21,...,2m-1) € H g4t Z aizi = amei},
i=1 i=1

where e; = (1,0,...,0) is the first vector of the standard basis ey, ..., eq of R?. An
element of C'(a), called a chain, can be visualized as a configuration of (m — 1)-
segments in R, of length ay,...,a,_1, joining the origin to a,e;. The group
O(d — 1), seen as the subgroup of O(d) stabilizing the first axis, acts naturally (on
the left) on CJ*(a). The quotient space by SO(d — 1) coincides with the polygon
space

Np(@) = SO(d-1\CP(a)
~ SO\ {p= (91 pm) € @™ || = s and 7, i =0}

The notations are that of [HRO04] where it is emphasized how the union N of
Ni(a) for all a € R7 is related to the spaces studied in statistical shape analysis
(see, e.g. [KBCL99]). An element a € R7 is generic if C{"(a) = 0, that is to say
there is no lined chain or polygon configuration. When a is generic, CJ'(a) is a
smooth closed manifold of dimension (m — 2)(d — 1) — 1 (see, e.g. [Ha89]).

Mathematical robotics is specially interested in the chain and polygon spaces
for d = 2,3. When a is generic, the action of SO(d — 1) on C}" is then free and
therefore N3"(a) and N3"(a) are closed smooth manifolds of dimension m — 3 and
2(m — 3) respectively (in addition, Mi*(a) carries a symplectic structure, see e.g.
[KM96]). One has Ci*(a) = N3*(a) and C§*(a) — Ni"(a) is a principal circle
bundle.

In this paper, we present a few geometrical methods permitting us to describe
in some cases the spaces CJ'(a) and N (a). From the classification results (see
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Section [T)), this enables us to describe all the chain or polygon spaces in R? when
m < 6 (tables in Section B]).

1. Review of the classification results

The idea of the classification of the polygon and chain spaces goes back to
[Wa85|. Details may be found in [HRO04].

1.1. Short subsets. Let a = (ai,...,am) € RZ;. A subset J of {1,...,m} is
called shortif ), ;a; <), ; a;. Short subsets form, with inclusion, a poset S(a).
Define Sp,(a) = {J € S(a) | m € J}.

LEMMA 1.2. Let a and o’ be generic elements in RZ,. Suppose that Sp,(a) and
Sm(a’) are poset isomorphic. Then:
(i) CJ'(a) and CJ*(a") are O(d — 1)-equivariantly diffeomorphic.
(ii) N7 (a) and N'(a') are diffeomorphic.

PrROOF: If S, (a) = Sy (a’), then there is a poset isomorphism ¢: S(a) = S(a’)
with ¢(m) = m (see [HK98| Proposition 2.5]). It is well known that S(a) ~ S(a’)
implies (ii) (see, e.g. [HK98, Proposition 2.2] or [HRO4, Theorem 1.1]). We
give however the variation of the proof to get the less classical (stronger) fact that
S(a) =~ S(a’) implies (i).

Let Kq(a) = {z = (21,...,2m) € [[1=,; ST1 | 11", a;zi = 0}. The group O(d)
acts on the left on KCgq(a) and N (a) = SO(d)\Kq4(a). The function F : Kg(a) —
S4=1 given by F(z) = 2, is a submersion (since F is O(d)-equivariant). One has
Cm(a) = F~!(—ey) with its residual O(d — 1)-action.

Let o be the bijection of {1,...,m —1} giving the poset isomorphism S, (a) =
S (a’) and then S(a) iad S(a’). Then (21, .., Zm—1,2m) = (Zo(1) - - +» Zo(m=1)» Zm)
induces a O(d — 1)-equivariant diffeomorphism from CJ*(a1,...,@m—1,am) onto
Ci(ag(1)s -+ o(m—1),am). We can therefore suppose that S(a) = S(a’) and
o = id. We claim that CJ'(a) and CJ*(a’) are then canonically diffeomorphic.
Indeed, if S(a) = S(a’), the segment [a, a’] contains only generic elements. Hence,

the union
m

X=J (Kal0) x {b}) c (] 5*") % [a,a]
bela,a’] i=1
is an O(d)-cobordism between K4(a) and K(a') and the projection 7 : X — [a, d']
has no critical point. One still has the map F : X — S9! given by F(z,t) = z,, and
Y = F~!(—e1) is an O(d—1)-cobordism between C7*(a) and CJ'(a’), with again the
projection 7 over [a,a’] being a submersion. The standard metric on H;i_ll Sd-1
induces an O(d — 1) invariant Riemannian metric on Y. Following the gradient
lines of 7 for this metric gives the required O(d — 1)-equivariant diffeomorphism

:Cra) S cem(a). [

1.3. Walls and chambers. For J C {1,...,m}), let H; be the hyperplane (wall)
of R™ defined by

Hy = {(al,...,am) e€R™ ’ Zai = Zal}.
icJ igJ
The union H(R™) of all these walls determines a set Ch((Rx)"™) of open chambers
in (R>0)™ whose union is the set of generic elements. Two generic elements a and
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a’ are in the same chamber if and only if S(a) = S(a’). We call Ch(a) the chamber
of a generic element a. If o is a chamber, the poset S(a) is the same for all a € «
and is denoted by S(«).

1.4. Permutations. Let o be a permutation of {1,...,m}. The map which sends
(#1,--+,2m) t0 (25(1),- - -»Zo(m)) induces a diffeomorphism from Nj*(a1,...,am)
onto N7* (@ (1), - - - Go(m)). For the sake of the classification of Nj*(a), we may as
well assume that a € R” where

R” :={(a1,...,am) ER™ [0 < a1 < - < an}.

Observe that we then do not classify all the chain spaces CJ*(a) but only those for
which a,, > a; for i < m. Indeed, the permutation ¢ induces a diffeomorphism
from CJ* (a1, ..., am) onto CJ*(ag(1), - - -, Ao(m)) if and only if o(m) = m. We denote
by Ch(R™) the set of chambers determined in R”: by the hyperplane arrangement
H(R™).

1.5. The genetic code of a chamber. A chamber o € Ch(R™) is determined by
S(«) which, in turn, is determined by S,,,(«). Consider the partial order “—” on
the subsets of {1,...,m} where A — B if and only if there exits a non-decreasing
map ¢ : A — B such that ¢(z) > z. For instance X — Y if X C Y since one can
take ¢ being the inclusion. The genetic code of « is the set of elements Ay,..., Ag
of Sy (o) which are maximal with respect to the order “—”. Thus, the chamber
a is determined by its genetic code; we write o = (Ay,..., Ax) and call the sets
A; the genes of . As, in this paper m < 9, we abbreviate a subset A by the
sequence of its digits, e.g. {6,2,1} = 621. In [HRO04], an algorithm is presented
to list by their genetic codes all the elements of Ch(R"!) and then all the chambers
up to permutation of the components. Tables for m < 6 are given in [HRO04] (and
in Section Bl below); more tables, for m < 9, may be found in [HRWeb|. The
algorithm produces, in each chamber «, a representative amin(a) € «; though this
is not proved theoretically, amin(c) turned out in all known cases to have integral
components a; and minimal > a;. See examples in the tables below.

2. Procedures of description

2.1. Adding a tiny edge. Let a = (as,. .., a,) be a generic element of Rﬁ_l.
If ¢ > 0is small enough, the m-tuple a™t := (8, az, ..., an) is a generic element of R”?

for 0 < 6 < e. This defines a map Ch(R”1) u Ch(R™), sending « to o™, which is
injective (see [HRO04, Lemma 5.1]). The genetic code of o™ has the same number
of genes than that of « and the correspondence goes as follows. If {p1,...,p,} is a
gene of «, then {pf, ...,pF,1} is a gene of o™, where p?’ = p; + 1. For example:
(631,65)T = (7421,761). The minimal integral representative amin(a™) of a™
is a conventional representative: it starts with a 0 followed by the components
of amin(a). Example: as amin((3)) = (1,1,1), then amin({3)") = amin({41)) =
(0,1,1,1), amin({41)") = amin((521)) = (0,0,1,1,1), etc. It has to be understood
that these vanishing components stand for small enough positive real numbers,
whose sum is less than 1.

PROPOSITION 2.1. There is a O(d — 1)-equivariant diffeomorphism
®: C(at) = St x e N a),

where S4=1 x C™ | () is equipped with the diagonal O(d — 1)-action.
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PRrROOF: Let a = (az,...,am) € a and a™ = (¢,a2,...,a,) € a. The map ® is
of the form (@1, ®2), where ®1: C7*(a™) — S and ®5: CJ*(at) — CJ"'(a) are
O(d — 1)-equivariant maps. The map ®; is just given by ®1(21,...,2m) = 21. It
remains to define ®,.

If p € R? satisfies p # —|ple1, there is a unique R, € SO(d) such that R,(p) =
Iple1 and R,(q) = q if ¢ € EV(p,e1)*, the orthogonal complement to the vector
space EV(p, e1) generated by p and e;. In particular, R., =id. The map p — R,
is smooth. We shall apply that to p = p(z), where

m
p(z) = Zaizi =q,e1 — €21 .
i=2

We may suppose that &€ < a,, so p(z) # —|p(z)|e1. The correspondence (z1, ..., zZm) —
(Rp(z)22, -+ - s Rp(z)2m) gives a smooth map

®,: C'(a™) — Czln_l(az? ey am—1, [p(2)]) -
The fact that (0, as, ..., an) is generic when 0 < § < ¢ implies that
Ch(a27 s m—1, |p(Z)|) = Ch(a) .

We can then use the canonical O(d — 1)-equivariant diffeomorphism
U: C ag, s amn, [p(2))) S €T Hag, -y am)

constructed in the proof of Lemma and define 3 = Uod,. If A € O(d — 1),
the formula AR, = R4, A holds in O(d — 1), as easily seen on EV(p,e1) and on
EV(p,e1)t. This implies that ¢ is O(d — 1)-equivariant.

We have thus constructed an O(d — 1)-equivariant smooth map ®: C7J*(at) —
S4=1 % "1 (a). The reader will easily figure out what the inverse ®~* of @ is like,
proving that & is a diffeomorphism. []

We now turn our interest to N&*(a™). Let D(a) be the total space of the D?-
disk bundle associated to C§* ' (a) — N3" (). We call double of D(c) the union
of two copies of D(«), with opposite orientations, along their common boundary
Ci ().

PROPOSITION 2.2.

(a) N (o) is diffeomorphic to S? x g1 C§*H(a).
(b) Ni*(a™) is diffeomorphic to the double of D(«).

In Part (a), S% xg1 C3" () denotes the quotient of S? x C3" *(a) by the
diagonal action of S' = SO(2). The projection S? x g1 C§" ' (a) — N !(a) is
then the S2-associated bundle to the SO(2)-principal bundle C§* ! (a) — N !(a).
A direct proof of Part (b) may be found in [HRO04, Prop. 6.4].

PRrOOF: For Part (a), we check that the diffeomorphism

d: C(at) 2 8% x N a)

of Proposition 1] descends to a diffeomorphism from N3"(at) to S? x 51 C5* ! (a).
For Part(b), we observe that D(«) is the mapping cylinder of the projection C5*~*(

N3""!(a). The double of D(a) is then diffeomorphic to M = [-1,1] x C§* (@) / ~,
where “~” is the equivalence relation generated by (—1,z) ~ (=1, Az) and (1, z) ~
(1,Az) for all z € C§" *(a) and all A € S'. Each S'-orbit of S? has an unique
point of the form (u1,0,u3). To (u,2) € S? x C7""'(a) with u = (u1,0,us), we

a) —
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associate the class [u1,z] in M and check that this correspondence gives rise to a
diffeomorphism from S? x g1 C§"~*(a) to the double of D(a). []

EXAMPLE 2.3. When m = 3, there is only one chamber @ = (3}, with amin(a) =
(1,1,1), for which C3() is not empty. Its image under adding tiny edges gives
a chamber ({m,m — 3,m —2,...,1}) € Ch(R™) with apm = (0,...,0,1,1,1)
(conventional representative, § 2.1). As C3(3) = S¢~2 with the standard O(d — 1)-
action, Propositions 2.1l and give the following

The chamber a = ({m,m—-3,m—2,...,1})
min (@) NG (e) N (@) Ci'(a)
0,...,0,1,1,1) | T3 T™3 | (§2)m=3 | (§4-1)m=3 x §d=2

REMARK 2.4. Let A = {m,m —3,m —2,...,1}. We claim that « = (A) as
above is the only chamber in R™ having J € S,,() with |J| = m — 3. Indeed,
let 3 € Ch(R™) having J € S,,(8) with J # A and |J| = m — 3. Then A" =
{m,m —2,m —4,...,1} would satisfy A’ — J. Then, A" = {m — 3,m — 1}
would be long, which contradicts {m — 3,m — 1} — {m —2,m} € §,,(5). Now, if
A € S8, (0), then {m, m — 2} is long, since {m, m — 2} — A. Therefore, A € S,,(5)
implies § = (A). For an application of this remark, see Propositions 2.7 and 2.10l

2.2. The manifold Vj(a). Let a € RY,. Define
m—1 m—1
Va(a) ={z=(21,...,2m-1) € H g1 | Z a;z; = teg with t > an,}.
i=1 i=1

Let f: Vy(a) — R defined by f(z) = —| 221_11 a;z;|. The group O(d — 1) acts on
Vi(a). The following proposition is proven in [Ha89, Th. 3.2].

PROPOSITION 2.5. Suppose that a € RY, is generic. Then
(i) Va(a) is a smooth O(d—1)-submanifold of Hﬁ_ll Sa=1 " of dimension (m—
2)(d — 1), with boundary CJ'(a).
(ii) f 4s a O(d — 1)-equivariant Morse function, with one critical point py
for each J € Sp(a), where p; = (21,...,2m—1) with z; equal to —e;
if i € J and ey otherwise (aligned configuration). The index of py is

d-1)(J-1). [
This permits us to get some information on CJ*(a).

EXAMPLE 2.6. The chamber (m). If S,, = {m}, f: Va(a) — R has only one
critical point, of index 0. Hence, C7*(a) ~ S(™~2(@=D=1 and the O(d — 1) action
is conjugate to that obtained by the embedding S(™~2/(d-1-1 ¢ (R¥)™~2 with
the standard diagonal action [Ha89| Prop.4.2]. The chamber of a has here genetic
code (m), with minimal representative (1,...,1,m — 2). One then has:

The chamber o = (m)
amin(a) ./\/'2771(&) N?Zn(o‘) C&n(o‘)
(1, o lm— 2) gm—3 cpm—3 S(m—2)(d—l)—1

Another consequence of Proposition is the connectivity of CJ*(ar). We saw
in Example 23] that C7'(8) = (S¥1)™=2 x §9=2if B = ({m,m —3,m—2,...,1}).
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Thus, mq—2(CJ(0)) = Z if d > 3 and mo(C3*(5)) has 2 elements. But this is an
exceptional case:

PROPOSITION 2.7. Let o be a chamber of R™ with o # ({m,m — 3,m —
2,...,1}). Then, CJ'(a) is (d — 2)-connected, i.e. m;(CJ*(a)) =0 fori<d—2.

PROOF: Let a € R™ be a representative of o. By Proposition [T, one has that
mi(Va(a)) =0if i <d—2. If « # ({m,m —3,m —2,...,1}), then |J| < m — 3
for all J € Sp,(a) by Remark 24l Then Vy(a) has a handle decomposition, starting
from C}*(a), with handles of index > (m —2)(d —1) — (m —4)(d — 1) = 2(d — 1).
Therefore, m;(CJ*(a)) = m;(Va(a)) for i <2d —2>d —2. []

REMARK 2.8. When d = 2, Proposition 27 says that ({m,m—3,m—2,...,1})
is the only chamber 3 of R™ for which NV3"(3) is not connected. This was proved
by Kapovich and Millson [KM95] (see also [FS06] Ex.2 in §1]).

2.3. Crossing walls and surgeries.

PROPOSITION 2.9. Let J C {1,...,m}, defining the wall Hy in R™. Let o and
B be two chambers of R™, with Sy (B8) = Sm(a) U{J}. Then CJ'(5) is obtained
from CJ*(a) by an O(d — 1)-equivariant surgery of index A= (d —1)(|J] —1) — 1:

CoM(B) = (CIH(a)\ (S x DP)) Ugargn (DA x §B71)

with B = (m —1—|J|)(d —1). The O(d — 1)-action on DA+ and DB comes from
their natural embedding into a product of copies of R*~1 with the diagonal action.

PROOF. Let a € a and b € 3. As S5, (8) = Sm(a) U {J}, the segment [a,b] in
R™ crosses the wall H ; and has no intersection with any other wall. There exists a
vector orthogonal to H; with coordinates equal to £1. Therefore, e is transverse
to Hy and, by changing a and b if necessary, we assume that a = b + Ae;. By
Proposition [Z0] the manifold Vi (b)\intVy(a) is a O(d — 1)-equivariant cobordism W
from CJ*(a) to CJ*(b). The map f : W — R defined by f(p) = —| Z;n:_ll a;p;| is an
invariant Morse function having a single critical point p° of index (d — 1)(|J| — 1);
the components (p,...,p% ;) of p¥ satisfy p? = —e; if i € J and p{ = e if
i ¢ J. By relabeling the p; if necessary, we assume that J = {1,2,...,k,m} and
J={k+1,...,m—1}. The index of p° is then equal to (d — 1)k. Therefore, W
is obtained by adding to a collar neighborhood of C*(a) an O(d — 1)-equivariant
handle of index (d — 1)k, whence the surgery assertion. For a reference about
equivariant Morse theory, see [Wn69l § 4]. By [Wn69 Lemma 4.5], the O(d — 1)-
action is determined by the linear isotropy action on T,0W, which we shall now
describe.

Let K, = Z?Zl ajp; and L, = K, — ame1. Let p; : RY - R! and P : R* —
RI~! be the maps p;(z1,...,74) = 21 and P(21,...,74) = (v2,...,24) For £ > 0,
we consider the following open neighborhood N of p° in W

Ne=A{peW | pi(Kyp)—pi1(K,) <cand |L,| — |Lyo| <e}.
Consider the unique rotation R, € SO(d) such that R,(L,) = —|L,|e; and R,(q) =
qif g € EV(el,Kp)J- (if € is small enough, L, is not a positive multiple of e;
when p € N, thus R, is well defined). If ¢ is small enough, we check, as in

[Ha89, Proof of Theorem 3.2] that the smooth maps ¢_ : N: — (R¥1)* and
by N — (RI=1Hm=k=2 given by

6-(p) = (P(p1)s--., P(pr)) and 64(p) = (P(Rp(=prs1))s -, P(Rp(—pm-1)))
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are O(d — 1)-equivariant and give rise to a O(d — 1)-equivariant chart
6= (60— ¢4) 1 Ne = RTTHF x RITH™27F = (RTTH)™72,

where (R9~1)" is endowed with the diagonal action of O(d—1). One has ¢(p°) = 0.
The subspaces

Di={peN.| |L)|=|Lpl} and D_={peN.| K, = K}

are submanifolds of dimensions k(d—1) and (m—k—2)(d—1) respectively, satisfying
#(Dy) C (REH)E x 0 and ¢(D) € 0 x (R—1)ym=2-F,

Asin [Ha89| Proof of Theorem 3.2], we prove that f restricts to Morse functions
on D.. The single critical point p° is a minimum on D, and a maximum on D_.
Therefore, the Hessian form of fo¢~! is positive definite on Tp(R%~1)* and negative
definite on Tp(R?~1)™=2=% We have seen above that the O(d — 1)-action on these
subspaces is the standard diagonal action. By [Wn69, Lemma 4.5], this implies
the last assertion of Proposition [

PROPOSITION 2.10. Suppose, in Proposition [Z.9, that |J| = 2. Then
(1) CP(B) = CoM ) §(S971 x §im=3)(d-D-1)
3
(2) N3*(8) = N3* () 4CP

PrOOF:  Since S, (8) = Sm(a) U {J}, the chamber « is not ({m,m — 3,m —
2,...,1}) by Remark 24l By Proposition 27, C7*(«) is (d — 2)-connected. Hence,
the sphere S?=2 C C7(a) on which the surgery of Proposition is performed
is null-homotopic. We may assume that m > 4 and d > 2 since Proposition
is empty for m = 3 and C]*(a) = C*(3) = 0 because of genericity. Therefore
2(d — 2) < dimC}*(«), from which we deduce that S¢=2 C C7'(«) is isotopic to a
sphere contained in a disk. Observe that we are dealing with stably parallelizable
manifolds (for instance, CJ*(—) is the pre-image of a regular value of a map from
a product of spheres to R?). Part 1 then follows from standard results in surgery,
see e.g. [Ko93| Proposition 11.2 and p. 188].
As for Part 2, we have

C(B) ~ (C5 () (S* x DH™3))) Ugr  goom-—s-1 (D? x §2m=3=1) |

The quotient space S' x D2™=3) by the action of SO(2) is a disk D?(™~3). On
the other hand, consider the tautological line bundle E — CP™ %, where E =
{(v,£) € C"=3 x CP™* | v € £}. Seeing D? as the unit disk in C, the map
g : D? x §2(m=3)=1 _, [ given by g(z,w) = (2w, Cw) descends to an embedding
from SO(2)\(D? x S2(m=3)~1) to a neighborhood of the zero section of E. It
follows that C5*(8) is diffeomorphic to CJ*(«) blown up at one point, which implies
Assertion 2 (see e.g. [MIDS95| pp. 214-216]). []

EXAMPLE 2.11. The chamber ({m,m —3,m —2,...,2}). Let a = {{m,m —
3,m—2,...,2}) and 8 = ({m,m —3,m —2,...,1}). Then S,,(8) = Sp(a) U
{m,m — 3,m —2,...,1}. By Proposition 2.9, CJ*(5) is obtained from CJ*(a) by
an O(d — 1)-equivariant surgery of index (d — 1)(m — 3) — 1. Then, conversely,
CJ'(c) is obtained from CJ*(5) by an O(d — 1)-equivariant surgery of index d — 2.
By Example 2.3 and Proposition 277, C7'(8) ~ (S?71)m=3 x §9-2 while C7*(«a) is
(d—2)-connected. This implies that the surgery on CJ* () is performed on a tubular
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neighborhood of pt x S¢=2. Thus, Part 1 of Proposition 210 is not true, but one
has

(1) Cit(a) = [((ST )™\ B) x §972] Ugpxsa—2 (0B x D7),

where B is a ((m—3)(d—1))-disk in (S%~1)™~3. This is not a very simple expression,
except when d = 2 where NV}"(a) = NJ"(a) becomes

(2) NG () = (S92 (5972,
On the other hand, Part 2 of Proposition 210 is valid and we get
3) N (a) = (§7)" 24 TP

It was observed by D. Schiitz that there are only three chambers o € Ch(R™) such
that S, (a) contains A = {m,m —3,m —2,...,2}. These are

a = (4)
(4) o' = (A {m,m—2})
o = (A {m,m—1}).

Indeed, if A is short, then {m — 1,m — 2,1} is long and one cannot add to A
a gene containing 3 elements. As Sp,(¢/) = S (@) U {m,m — 2} and S,,(a") =
Sm(a) U {m,m — 1}, the chain and polygon spaces for o’ and o/’ may be obtain
from the above using Proposition 210l

EXAMPLE 2.12. The chamber ({m,p}). For p > 2, one has S,,({{m,p})) =
Sm({{m,p—1})) U{m, p} and S ({{m,1})) = Sm({m)) U{m,1}. Using Proposi-
tion and Example 2.6 one sees that

The chamber a = ({m,p})
N3 (a) Ng"(a) Ci'(a)
p (St x §m4) CPm—Sﬂp@m73 p(S4-1 x S(m—S)(d—l)—l)

Here, p times a manifold V' means the connected sum of p copies of V' (hence, a
sphere if p = 0). A representative of ({m,p}) is given by

(1,...,1,2,...,2,2m —p—5).
N—— —
p m—p—1
The tables of [HRWeb] show that, for m < 9 (See Section Bl below for m < 6),
this representative is amin(({m, p})), except for p = 0,1. As ({m,1}) = (m — 1)T,
Proposition gives the diffeomorphism
CPP TP m NP (({m, 1)) ~ NP ((m) ) 2 S x 1 S2m=91

In the case m = 5, we get the two topological descriptions of the Hirzebruch surface
(see, e.g. [MDS95] Ex. 6.4]).

3. Tables for m = 4,5,6

For any m, there is the “trivial” chamber (), where a,, is so long that the
corresponding chain or polygon spaces are empty. When m = 4, Examples
and give the remaining two chambers:



Recall that the column C}(a) does not contain all the 4-chains, only those for
which ay > a; for I = 1,2,3. For example, C3(1,1,1e) ~ T1S9~1, the unit tangent
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Table A: m =4

a  amin(@) | N3(@) N (a) C4(a)
1 (0,0,0,1) 0 0 ,
2 (1) (1,1,1,2 1 cpt | gana
3 (41) (0,1,1,1) | S'UST | 82 | (991) x 942

bundle to S¢~!. For a complete classification of 4-chains, see [Ha89].

When m = 5, there are seven chambers. Lines 2 and 7 come from Examples[2.0]
and 231 The symbols ¥, denotes the orientable surface of genus g and 7" is the
torus (S1)”. Within the central block, each line is obtained from the previous one

by Proposition 2.10

Table B: m =5

o min (@) N3 () N3 (a) C5(a)
1 () (0,000,1) 0 0 0
2 (5)  (1,1,1,1,3) 52 CP2 G3(d—1)-1
3 (51) (0,1,1,1,2) T2 CP24TP° | 8§91 x §2d-1)-1
4 (52) (1,1,2,2,3) 2% CP242TP" | 2[$4-1 x §2d=D-1]
5 (53) (1,1,1,2,2) 5 CP243TP° | 3[S4~1 x §2(d=D-1]
6 (54) (1,1,1,1,1) A CP244TP | 4[S9-1 x §2d-1)-1)
7 (521) (0,0,1,1,1) T2UT? S2 % §2 (§9-1)2 x §d-2

Line 3 in Table B together with Equation (B]), re-proves the classical fact that

(S2 x §2)¢CP" is diffeomorphic to CP 2TP .

When m = 6, there are 21 chambers. In order to save space, we did not give
amin(@) (they can be found in [HRO4, Table 6]). The first line of each block is
obtained from § Then, each line is obtained from the previous one by

Proposition
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Table C: m =6

a N3 (@) NE (e) Ci(@)

1 0 ) ) 0

2 (6) S8 cps =11

3 (61) S1x 52 CP34CP° R (%)

4 (62) 2(S1 x §2) CP342TP° 2R(d)

5 (63) 3(S1x §2) CP343TP’ 3R(d)

6 (64) 4(S1 x 52) CP344TP’ AR(d)

7 (65) 5(51 % $2) CP345CP° 5R(d)

8 (621) T3 S?2x 1 (S%x S3) Sd=1xc3((51)) (2)
9 (621,63) T34 (S x S?) [S2x g1(S2x S 4TP° | [s4-1 xC5((51))] t R(d)
10 (621, 64) T342(S! x 52) [S2x g1(S2xS3)]§2CP° | [$4-1 xC5((51))] 4 2R(d)
11 (621, 65) T343(S! x 52) [S2x g1(S2xS3)]43CP° | [$4-1 xC5((51))] 4 3R(d)
12 (631) Yo xSt S2x 512(S?x.53) Sa=1xC3((52)) (%)
13 (631, 64) (ZaxS1) 4 (ST xS?) s2x512(52xs3):¢@3 [S4=1xC5((52)] t R(d)
14 (631,65) | (ZaxS1)§2(S1xS2) | S2x g12(S2x$3)42TP" [S4=1xC5((52))] § 2R(d)
15 (641) Y3 xSt S2x g13(S?xS%) Sd=1xC5((53)) (?)
16 (641, 65) (Z3xS1) 4 (ST x S?) s2xsl3(52xs3)ﬁc_P3 [S9=1xC5((53))] # R(d)
17 (651) Yyx St S2x g14(S? x5%) Sd=1xC5((54)) (?)
18  (6321) T3UT3 (S2)3 (84-1)3 x §4—2
19 (632) 273 (S2)34TP" co((632)) (3)
20 (632,64) 2734 (ST x S2) (S2)342TP" C5((632))  R(d)
21  (632,65) 2734 2(S1 x S?) (S2)343TP" C5((632)) §2R(d)

(M) R(d) = 891 x g3(d=1)—1 (?) see Table B. (®) See Example 21T

The list for N9(a) is present in [Wa85|] with some short-hand justification. A
version of the column for N§(«) is in [HRO4].

For m > 7, the above procedure fails to give all the chambers, since surgeries
of higher index are needed. For example, for m = 7, only 49 chambers out of 135
are reached.
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