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Geometric descriptions of polygon and chain spaces

Jean-Claude HAUSMANN

Abstract. We give a few simple methods to geometically describe some poly-
gon and chain spaces in Rd. They are strong enough to give tables of m-gons
and m-chains when m ≤ 6.

Introduction

For a = (a1, . . . , am) ∈ Rm
>0 and d an integer, define the subspace Cm

d (a) of
∏m−1

i=1 Sd−1 by

Cm
d (a) =

{
z = (z1, . . . , zm−1) ∈

m−1∏

i=1

Sd−1 |
m−1∑

i=1

aizi = am e1

}
,

where e1 = (1, 0, . . . , 0) is the first vector of the standard basis e1, . . . , ed of Rd. An
element of Cm

d (a), called a chain, can be visualized as a configuration of (m − 1)-
segments in Rd, of length a1, . . . , am−1, joining the origin to ame1. The group
O(d − 1), seen as the subgroup of O(d) stabilizing the first axis, acts naturally (on
the left) on Cm

d (a). The quotient space by SO(d − 1) coincides with the polygon
space

Nm
d (a) = SO(d − 1)

∖
Cm

d (a)

≈ SO(d)

∖
{
ρ = (ρ1, . . . ρm) ∈ (Rd)m | |ρi| = ai and

∑m
i=1 ρi = 0

}
.

The notations are that of [HR04] where it is emphasized how the union Nm
d of

Nm
d (a) for all a ∈ Rm

>0 is related to the spaces studied in statistical shape analysis
(see, e.g. [KBCL99]). An element a ∈ Rm

>0 is generic if Cm
1 (a) = ∅, that is to say

there is no lined chain or polygon configuration. When a is generic, Cm
d (a) is a

smooth closed manifold of dimension (m − 2)(d − 1) − 1 (see, e.g. [Ha89]).
Mathematical robotics is specially interested in the chain and polygon spaces

for d = 2, 3. When a is generic, the action of SO(d − 1) on Cm
d is then free and

therefore Nm
2 (a) and Nm

3 (a) are closed smooth manifolds of dimension m − 3 and
2(m − 3) respectively (in addition, Nm

3 (a) carries a symplectic structure, see e.g.
[KM96]). One has Cm

2 (a) = Nm
2 (a) and Cm

3 (a) → Nm
3 (a) is a principal circle

bundle.
In this paper, we present a few geometrical methods permitting us to describe

in some cases the spaces Cm
d (a) and Nm

d (a). From the classification results (see
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2 JEAN-CLAUDE HAUSMANN

Section 1), this enables us to describe all the chain or polygon spaces in Rd when
m ≤ 6 (tables in Section 3).

1. Review of the classification results

The idea of the classification of the polygon and chain spaces goes back to
[Wa85]. Details may be found in [HR04].

1.1. Short subsets. Let a = (a1, . . . , am) ∈ Rm
>0. A subset J of {1, . . . , m} is

called short if
∑

i∈J ai <
∑

i/∈J ai. Short subsets form, with inclusion, a poset S(a).
Define Sm(a) = {J ∈ S(a) | m ∈ J}.

Lemma 1.2. Let a and a′ be generic elements in Rm
>0. Suppose that Sm(a) and

Sm(a′) are poset isomorphic. Then:

(i) Cm
d (a) and Cm

d (a′) are O(d − 1)-equivariantly diffeomorphic.
(ii) Nm

d (a) and Nm
d (a′) are diffeomorphic.

Proof: If Sm(a) ≈ Sm(a′), then there is a poset isomorphism ϕ : S(a)
≈
→ S(a′)

with ϕ(m) = m (see [HK98, Proposition 2.5]). It is well known that S(a) ≈ S(a′)
implies (ii) (see, e.g. [HK98, Proposition 2.2] or [HR04, Theorem 1.1]). We
give however the variation of the proof to get the less classical (stronger) fact that
S(a) ≈ S(a′) implies (i).

Let Kd(a) = {z = (z1, . . . , zm) ∈
∏m

i=1 Sd−1 |
∑m

i=1 aizi = 0}. The group O(d)
acts on the left on Kd(a) and Nm

d (a) = SO(d)\Kd(a). The function F : Kd(a) →
Sd−1 given by F (z) = zm is a submersion (since F is O(d)-equivariant). One has
Cm

d (a) = F−1(−e1) with its residual O(d − 1)-action.

Let σ be the bijection of {1, . . . , m−1} giving the poset isomorphism Sm(a)
≈
→

Sm(a′) and then S(a)
≈
→ S(a′). Then (z1, . . . , zm−1, zm) 7→ (zσ(1), . . . , zσ(m−1), zm)

induces a O(d − 1)-equivariant diffeomorphism from Cm
d (a1, . . . , am−1, am) onto

Cm
d (aσ(1), . . . , aσ(m−1), am). We can therefore suppose that S(a) = S(a′) and

σ = id. We claim that Cm
d (a) and Cm

d (a′) are then canonically diffeomorphic.
Indeed, if S(a) = S(a′), the segment [a, a′] contains only generic elements. Hence,
the union

X =
⋃

b∈[a,a′]

(
Kd(b) × {b}

)
⊂

(
m∏

i=1

Sd−1
)
× [a, a′]

is an O(d)-cobordism between Kd(a) and K(a′) and the projection π : X → [a, a′]
has no critical point. One still has the map F : X → Sd−1 given by F (z, t) = zm and
Y = F−1(−e1) is an O(d−1)-cobordism between Cm

d (a) and Cm
d (a′), with again the

projection π over [a, a′] being a submersion. The standard metric on
∏m−1

i=1 Sd−1

induces an O(d − 1) invariant Riemannian metric on Y . Following the gradient
lines of π for this metric gives the required O(d − 1)-equivariant diffeomorphism

Ψ : Cm
d (a)

≈
→ Cm

d (a′).

1.3. Walls and chambers. For J ⊂ {1, . . . , m}), let HJ be the hyperplane (wall)
of Rm defined by

HJ :=
{

(a1, . . . , am) ∈ R
m

∣
∣
∣

∑

i∈J

ai =
∑

i/∈J

ai

}

.

The union H(Rm) of all these walls determines a set Ch((R>0)
m) of open chambers

in (R>0)
m whose union is the set of generic elements. Two generic elements a and
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a′ are in the same chamber if and only if S(a) = S(a′). We call Ch(a) the chamber
of a generic element a. If α is a chamber, the poset S(a) is the same for all a ∈ α
and is denoted by S(α).

1.4. Permutations. Let σ be a permutation of {1, . . . , m}. The map which sends
(z1, . . . , zm) to (zσ(1), . . . , zσ(m)) induces a diffeomorphism from Nm

d (a1, . . . , am)
onto Nm

d (aσ(1), . . . , aσ(m)). For the sake of the classification of Nm
d (a), we may as

well assume that a ∈ Rm
ր

where

R
m
ր

:= {(a1, . . . , am) ∈ R
m | 0 < a1 ≤ · · · ≤ am} .

Observe that we then do not classify all the chain spaces Cm
d (a) but only those for

which am ≥ ai for i < m. Indeed, the permutation σ induces a diffeomorphism
from Cm

d (a1, . . . , am) onto Cm
d (aσ(1), . . . , aσ(m)) if and only if σ(m) = m. We denote

by Ch(Rm
ր

) the set of chambers determined in R
m
ր

by the hyperplane arrangement
H(Rm).

1.5. The genetic code of a chamber. A chamber α ∈ Ch(Rm
ր

) is determined by
S(α) which, in turn, is determined by Sm(α). Consider the partial order “→֒” on
the subsets of {1, . . . , m} where A →֒ B if and only if there exits a non-decreasing
map ϕ : A → B such that ϕ(x) ≥ x. For instance X →֒ Y if X ⊂ Y since one can
take ϕ being the inclusion. The genetic code of α is the set of elements A1, . . . , Ak

of Sm(α) which are maximal with respect to the order “→֒”. Thus, the chamber
α is determined by its genetic code; we write α = 〈A1, . . . , Ak〉 and call the sets
Ai the genes of α. As, in this paper m ≤ 9, we abbreviate a subset A by the
sequence of its digits, e.g. {6, 2, 1} = 621. In [HR04], an algorithm is presented
to list by their genetic codes all the elements of Ch(Rm

ր
) and then all the chambers

up to permutation of the components. Tables for m ≤ 6 are given in [HR04] (and
in Section 3 below); more tables, for m ≤ 9, may be found in [HRWeb]. The
algorithm produces, in each chamber α, a representative amin(α) ∈ α; though this
is not proved theoretically, amin(α) turned out in all known cases to have integral
components ai and minimal

∑
ai. See examples in the tables below.

2. Procedures of description

2.1. Adding a tiny edge. Let a = (a2, . . . , am) be a generic element of Rm−1
ր

.
If ε > 0 is small enough, the m-tuple a+ := (δ, a2, . . . , am) is a generic element of Rm

ր

for 0 < δ ≤ ε. This defines a map Ch(Rm−1
ր

)
+
→ Ch(Rm

ր
), sending α to α+, which is

injective (see [HR04, Lemma 5.1]). The genetic code of α+ has the same number
of genes than that of α and the correspondence goes as follows. If {p1, . . . , pr} is a
gene of α, then {p+

1 , . . . , p+
r , 1} is a gene of α+, where p+

i = pi + 1. For example:
〈631, 65〉+ = 〈7421, 761〉. The minimal integral representative amin(α

+) of α+

is a conventional representative: it starts with a 0 followed by the components
of amin(α). Example: as amin(〈3〉) = (1, 1, 1), then amin(〈3〉+) = amin(〈41〉) =
(0, 1, 1, 1), amin(〈41〉+) = amin(〈521〉) = (0, 0, 1, 1, 1), etc. It has to be understood
that these vanishing components stand for small enough positive real numbers,
whose sum is less than 1.

Proposition 2.1. There is a O(d − 1)-equivariant diffeomorphism

Φ: Cm
d (α+)

≈
−→ Sd−1 × Cm−1

d (α) ,

where Sd−1 × Cm
d−1(α) is equipped with the diagonal O(d − 1)-action.
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Proof: Let a = (a2, . . . , am) ∈ α and a+ = (ε, a2, . . . , am) ∈ α+. The map Φ is
of the form (Φ1, Φ2), where Φ1 : Cm

d (a+) → Sd−1 and Φ2 : Cm
d (a+) → Cm−1

d (a) are
O(d − 1)-equivariant maps. The map Φ1 is just given by Φ1(z1, . . . , zm) = z1. It
remains to define Φ2.

If p ∈ Rd satisfies p 6= −|p|e1, there is a unique Rp ∈ SO(d) such that Rp(p) =
|p|e1 and Rp(q) = q if q ∈ EV(p, e1)

⊥, the orthogonal complement to the vector
space EV(p, e1) generated by p and e1. In particular, Re1 = id. The map p → Rp

is smooth. We shall apply that to p = p(z), where

p(z) =

m∑

i=2

aizi = ame1 − εz1 .

We may suppose that ε < am, so p(z) 6= −|p(z)|e1. The correspondence (z1, . . . , zm) 7→
(Rp(z)z2, . . . , Rp(z)zm) gives a smooth map

Φ′
2 : Cm

d (a+) → Cm−1
d (a2, . . . , am−1, |p(z)|) .

The fact that (δ, a2, . . . , am) is generic when 0 < δ ≤ ε implies that

Ch(a2, . . . , am−1, |p(z)|) = Ch(a) .

We can then use the canonical O(d − 1)-equivariant diffeomorphism

Ψ: Cm−1
d (a2, . . . , am−1, |p(z)|)

≈
→ Cm−1

d (a2, . . . , am)

constructed in the proof of Lemma 1.2 and define Φ2 = Ψ◦Φ′
2. If A ∈ O(d − 1),

the formula ARp = RA(p)A holds in O(d − 1), as easily seen on EV(p, e1) and on

EV(p, e1)
⊥. This implies that φ′

2 is O(d − 1)-equivariant.
We have thus constructed an O(d − 1)-equivariant smooth map Φ: Cm

d (α+) →
Sd−1×Cm−1

d (α). The reader will easily figure out what the inverse Φ−1 of Φ is like,
proving that Φ is a diffeomorphism.

We now turn our interest to Nm
3 (α+). Let D(α) be the total space of the D2-

disk bundle associated to Cm−1
3 (α) → Nm−1

3 (α). We call double of D(α) the union
of two copies of D(α), with opposite orientations, along their common boundary
Cm
3 (α).

Proposition 2.2.

(a) Nm
3 (α+) is diffeomorphic to S2 ×S1 Cm−1

3 (α).
(b) Nm

3 (α+) is diffeomorphic to the double of D(α).

In Part (a), S2 ×S1 Cm−1
3 (α) denotes the quotient of S2 × Cm−1

3 (α) by the
diagonal action of S1 = SO(2). The projection S2 ×S1 Cm−1

3 (α) → Nm−1
3 (α) is

then the S2-associated bundle to the SO(2)-principal bundle Cm−1
3 (α) → Nm−1

3 (α).
A direct proof of Part (b) may be found in [HR04, Prop. 6.4].
Proof: For Part (a), we check that the diffeomorphism

Φ: Cm
3 (α+)

≈
→ S2 × Cm−1

3 (α)

of Proposition 2.1 descends to a diffeomorphism from Nm
3 (α+) to S2 ×S1 Cm−1

3 (α).
For Part(b), we observe that D(α) is the mapping cylinder of the projection Cm−1

3 (α) →
Nm−1

3 (α). The double of D(α) is then diffeomorphic to M = [−1, 1]×Cm−1
3 (α)

/
∼,

where “∼” is the equivalence relation generated by (−1, z) ∼ (−1, Az) and (1, z) ∼
(1, Az) for all z ∈ Cm−1

3 (α) and all A ∈ S1. Each S1-orbit of S2 has an unique

point of the form (u1, 0, u3). To (u, z) ∈ S2 × Cm−1
d (α) with u = (u1, 0, u3), we
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associate the class [u1, z] in M and check that this correspondence gives rise to a
diffeomorphism from S2 ×S1 Cm−1

3 (α) to the double of D(α).

Example 2.3. When m = 3, there is only one chamber α = 〈3〉, with amin(α) =
(1, 1, 1), for which C3

d(α) is not empty. Its image under adding tiny edges gives
a chamber 〈{m, m − 3, m − 2, . . . , 1}〉 ∈ Ch(Rm

ր
) with amin = (0, . . . , 0, 1, 1, 1)

(conventional representative, § 2.1). As C3
d〈3〉 = Sd−2 with the standard O(d − 1)-

action, Propositions 2.1 and 2.2 give the following

The chamber α = 〈{m, m − 3, m − 2, . . . , 1}〉

amin(α) Nm
2 (α) Nm

3 (α) Cm
d (α)

(0, . . . , 0, 1, 1, 1) T m−3‘

T m−3 (S2)m−3 (Sd−1)m−3 × Sd−2

Remark 2.4. Let A = {m, m − 3, m − 2, . . . , 1}. We claim that α = 〈A〉 as
above is the only chamber in Rm

ր
having J ∈ Sm(α) with |J | = m − 3. Indeed,

let β ∈ Ch(Rm
ր

) having J ∈ Sm(β) with J 6= A and |J | = m − 3. Then A′ =

{m, m − 2, m − 4, . . . , 1} would satisfy A′ →֒ J . Then, Ā′ = {m − 3, m − 1}
would be long, which contradicts {m − 3, m − 1} →֒ {m − 2, m} ∈ Sm(β). Now, if

A ∈ Sm(β), then {m, m−2} is long, since {m, m − 2} →֒ A. Therefore, A ∈ Sm(β)
implies β = 〈A〉. For an application of this remark, see Propositions 2.7 and 2.10.

2.2. The manifold Vd(a). Let a ∈ Rm
>0. Define

Vd(a) = {z = (z1, . . . , zm−1) ∈
m−1∏

i=1

Sd−1 |
m−1∑

i=1

aizi = te1 with t ≥ am} .

Let f : Vd(a) → R defined by f(z) = −|
∑m−1

i=1 aizi|. The group O(d − 1) acts on
Vd(a). The following proposition is proven in [Ha89, Th. 3.2].

Proposition 2.5. Suppose that a ∈ R
m
>0 is generic. Then

(i) Vd(a) is a smooth O(d−1)-submanifold of
∏m−1

i=1 Sd−1, of dimension (m−
2)(d − 1), with boundary Cm

d (a).
(ii) f is a O(d − 1)-equivariant Morse function, with one critical point pJ

for each J ∈ Sm(a), where pJ = (z1, . . . , zm−1) with zi equal to −e1

if i ∈ J and e1 otherwise (aligned configuration). The index of pJ is
(d − 1)(|J | − 1).

This permits us to get some information on Cm
d (a).

Example 2.6. The chamber 〈m〉. If Sm = {m}, f : Vd(a) → R has only one
critical point, of index 0. Hence, Cm

d (a) ≈ S(m−2)(d−1)−1 and the O(d − 1) action

is conjugate to that obtained by the embedding S(m−2)(d−1)−1 ⊂ (Rd)m−2 with
the standard diagonal action [Ha89, Prop. 4.2]. The chamber of a has here genetic
code 〈m〉, with minimal representative (1, . . . , 1, m − 2). One then has:

The chamber α = 〈m〉

amin(α) Nm
2 (α) Nm

3 (α) Cm
d (α)

(1, . . . , 1, m − 2) Sm−3 CPm−3 S(m−2)(d−1)−1

Another consequence of Proposition 2.5 is the connectivity of Cm
d (α). We saw

in Example 2.3 that Cm
d (β) = (Sd−1)m−3 × Sd−2 if β = 〈{m, m− 3, m− 2, . . . , 1}〉.
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Thus, πd−2(Cm
d (β)) ≈ Z if d ≥ 3 and π0(Cm

2 (β)) has 2 elements. But this is an
exceptional case:

Proposition 2.7. Let α be a chamber of Rm
ր

with α 6= 〈{m, m − 3, m −
2, . . . , 1}〉. Then, Cm

d (α) is (d − 2)-connected, i.e. πi(Cm
d (α)) = 0 for i ≤ d − 2.

Proof: Let a ∈ R
m
ր

be a representative of α. By Proposition 2.5, one has that
πi(Vd(a)) = 0 if i ≤ d − 2. If α 6= 〈{m, m − 3, m − 2, . . . , 1}〉, then |J | ≤ m − 3
for all J ∈ Sm(a) by Remark 2.4. Then Vd(a) has a handle decomposition, starting
from Cm

d (a), with handles of index ≥ (m − 2)(d − 1) − (m − 4)(d − 1) = 2(d − 1).
Therefore, πi(Cm

d (a)) ≈ πi(Vd(a)) for i ≤ 2d − 2 > d − 2.

Remark 2.8. When d = 2, Proposition 2.7 says that 〈{m, m−3, m−2, . . . , 1}〉
is the only chamber β of Rm

ր
for which Nm

2 (β) is not connected. This was proved
by Kapovich and Millson [KM95] (see also [FS06, Ex.2 in §1]).

2.3. Crossing walls and surgeries.

Proposition 2.9. Let J ⊂ {1, . . . , m}, defining the wall HJ in Rm. Let α and
β be two chambers of Rm, with Sm(β) = Sm(α) ∪ {J}. Then Cm

d (β) is obtained
from Cm

d (α) by an O(d − 1)-equivariant surgery of index A = (d − 1)(|J | − 1) − 1:

Cm
d (β) ≈

(
Cm

d (α)\ (SA × DB)
)
∪SA×SB−1

(
DA+1 × SB−1

)
,

with B = (m− 1− |J |)(d − 1). The O(d− 1)-action on DA+1 and DB comes from
their natural embedding into a product of copies of Rd−1 with the diagonal action.

Proof. Let a ∈ α and b ∈ β. As Sm(β) = Sm(α) ∪ {J}, the segment [a, b] in
Rm crosses the wall HJ and has no intersection with any other wall. There exists a
vector orthogonal to HJ with coordinates equal to ±1. Therefore, e1 is transverse
to HJ and, by changing a and b if necessary, we assume that a = b + λe1. By
Proposition 2.5, the manifold Vd(b)\intVd(a) is a O(d−1)-equivariant cobordism W

from Cm
d (a) to Cm

d (b). The map f : W → R defined by f(ρ) = −|
∑m−1

j=1 ajρj | is an

invariant Morse function having a single critical point ρ0 of index (d − 1)(|J | − 1);
the components (ρ0

1, . . . , ρ
0
m−1) of ρ0 satisfy ρ0

i = −e1 if i ∈ J and ρ0
i = e1 if

i /∈ J . By relabeling the ρi if necessary, we assume that J = {1, 2, . . . , k, m} and
J̄ = {k + 1, . . . , m − 1}. The index of ρ0 is then equal to (d − 1)k. Therefore, W
is obtained by adding to a collar neighborhood of Cm

d (a) an O(d − 1)-equivariant
handle of index (d − 1)k, whence the surgery assertion. For a reference about
equivariant Morse theory, see [Wn69, § 4]. By [Wn69, Lemma 4.5], the O(d− 1)-
action is determined by the linear isotropy action on Tρ0W , which we shall now
describe.

Let Kρ =
∑k

j=1 ajρj and Lρ = Kρ − ame1. Let p1 : Rd → R1 and P : Rd →

Rd−1 be the maps p1(x1, . . . , xd) = x1 and P (x1, . . . , xd) = (x2, . . . , xd) For ε > 0,
we consider the following open neighborhood Nε of ρ0 in W

Nε = {ρ ∈ W | p1(Kρ0) − p1(Kρ) < ε and |Lρ| − |Lρ0 | < ε} .

Consider the unique rotation Rρ ∈ SO(d) such that Rρ(Lρ) = −|Lρ|e1 and Rρ(q) =
q if q ∈ EV(e1, Kρ)

⊥ (if ε is small enough, Lρ is not a positive multiple of e1

when ρ ∈ Nε, thus Rρ is well defined). If ε is small enough, we check, as in
[Ha89, Proof of Theorem 3.2] that the smooth maps φ− : Nε → (Rd−1)k and
φ+ : Nε → (Rd−1)m−k−2 given by

φ−(ρ) = (P (ρ1), . . . , P (ρk)) and φ+(ρ) =
(
P (Rρ(−ρk+1)), . . . , P (Rρ(−ρm−1))

)
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are O(d − 1)-equivariant and give rise to a O(d − 1)-equivariant chart

φ = (φ−, φ+) : Nε → (Rd−1)k × (Rd−1)m−2−k = (Rd−1)m−2 ,

where (Rd−1)n is endowed with the diagonal action of O(d−1). One has φ(ρ0) = 0.
The subspaces

D+ = {ρ ∈ Nε | |Lρ| = |Lρ0 |} and D− = {ρ ∈ Nε | Kρ = Kρ0}

are submanifolds of dimensions k(d−1) and (m−k−2)(d−1) respectively, satisfying
φ(D+) ⊂ (Rd−1)k × 0 and φ(D+) ⊂ 0 × (Rd−1)m−2−k.

As in [Ha89, Proof of Theorem 3.2], we prove that f restricts to Morse functions
on D±. The single critical point ρ0 is a minimum on D+ and a maximum on D−.
Therefore, the Hessian form of f ◦φ−1 is positive definite on T0(R

d−1)k and negative
definite on T0(R

d−1)m−2−k. We have seen above that the O(d− 1)-action on these
subspaces is the standard diagonal action. By [Wn69, Lemma 4.5], this implies
the last assertion of Proposition 2.9.

Proposition 2.10. Suppose, in Proposition 2.9, that |J | = 2. Then

(1) Cm
d (β) = Cm

d (α) ♯ (Sd−1 × S(m−3)(d−1)−1)

(2) Nm
3 (β) = Nm

3 (α) ♯ CP
m−3

Proof: Since Sm(β) = Sm(α) ∪ {J}, the chamber α is not 〈{m, m − 3, m −
2, . . . , 1}〉 by Remark 2.4. By Proposition 2.7, Cm

d (α) is (d − 2)-connected. Hence,
the sphere Sd−2 ⊂ Cm

d (α) on which the surgery of Proposition 2.9 is performed
is null-homotopic. We may assume that m ≥ 4 and d ≥ 2 since Proposition 2.10
is empty for m = 3 and Cm

1 (α) = Cm
1 (β) = ∅ because of genericity. Therefore

2(d − 2) < dim Cm
d (α), from which we deduce that Sd−2 ⊂ Cm

d (α) is isotopic to a
sphere contained in a disk. Observe that we are dealing with stably parallelizable
manifolds (for instance, Cm

d (−) is the pre-image of a regular value of a map from
a product of spheres to Rd). Part 1 then follows from standard results in surgery,
see e.g. [Ko93, Proposition 11.2 and p. 188].

As for Part 2, we have

Cm
3 (β) ≈

(
Cm
3 (α)\ (S1 × D2(m−3))

)
∪S1×S2(m−3)−1

(
D2 × S2(m−3)−1

)
.

The quotient space S1 × D2(m−3) by the action of SO(2) is a disk D2(m−3). On
the other hand, consider the tautological line bundle E → CPm−4, where E =
{(v, ℓ) ∈ Cm−3 × CPm−4 | v ∈ ℓ}. Seeing D2 as the unit disk in C, the map
g : D2 × S2(m−3)−1 → E given by g(z, w) = (zw, Cw) descends to an embedding
from SO(2)

∖
(D2 × S2(m−3)−1) to a neighborhood of the zero section of E. It

follows that Cm
3 (β) is diffeomorphic to Cm

3 (α) blown up at one point, which implies
Assertion 2 (see e.g. [MDS95, pp. 214–216]).

Example 2.11. The chamber 〈{m, m − 3, m − 2, . . . , 2}〉. Let α = 〈{m, m −
3, m − 2, . . . , 2}〉 and β = 〈{m, m − 3, m − 2, . . . , 1}〉. Then Sm(β) = Sm(α) ∪
{m, m − 3, m − 2, . . . , 1}. By Proposition 2.9, Cm

d (β) is obtained from Cm
d (α) by

an O(d − 1)-equivariant surgery of index (d − 1)(m − 3) − 1. Then, conversely,
Cm

d (α) is obtained from Cm
d (β) by an O(d − 1)-equivariant surgery of index d − 2.

By Example 2.3 and Proposition 2.7, Cm
d (β) ≈ (Sd−1)m−3 × Sd−2 while Cm

d (α) is
(d−2)-connected. This implies that the surgery on Cm

d (β) is performed on a tubular
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neighborhood of pt × Sd−2. Thus, Part 1 of Proposition 2.10 is not true, but one
has

(1) Cm
d (α) ≈

[(
(Sd−1)m−3

\B
)
× Sd−2

]
∪∂B×Sd−2 (∂B × Dd−1) ,

where B is a ((m−3)(d−1))-disk in (Sd−1)m−3. This is not a very simple expression,
except when d = 2 where Nm

2 (α) = Nm
2 (α) becomes

(2) Nm
2 (α) ≈ (Sd−1)m−3 ♯ (Sd−1)m−3 .

On the other hand, Part 2 of Proposition 2.10 is valid and we get

(3) Nm
3 (α) ≈ (S2)m−3 ♯ CP

m−3
.

It was observed by D. Schütz that there are only three chambers α ∈ Ch(Rm
ր

) such
that Sm(α) contains A = {m, m − 3, m − 2, . . . , 2}. These are

(4)
α = 〈A〉
α′ = 〈A, {m, m − 2}〉
α′′ = 〈A, {m, m − 1}〉 .

Indeed, if A is short, then {m − 1, m − 2, 1} is long and one cannot add to A
a gene containing 3 elements. As Sm(α′) = Sm(α) ∪ {m, m − 2} and Sm(α′′) =
Sm(α′) ∪ {m, m − 1}, the chain and polygon spaces for α′ and α′′ may be obtain
from the above using Proposition 2.10.

Example 2.12. The chamber 〈{m, p}〉. For p ≥ 2, one has Sm(〈{m, p}〉) =
Sm(〈{m, p − 1}〉) ∪ {m, p} and Sm(〈{m, 1}〉) = Sm(〈m〉) ∪ {m, 1}. Using Proposi-
tion 2.10 and Example 2.6, one sees that

The chamber α = 〈{m, p}〉

Nm
2 (α) Nm

3 (α) Cm
d (α)

p (S1 × Sm−4) CPm−3 ♯ p CP
m−3

p (Sd−1 × S(m−3)(d−1)−1)

Here, p times a manifold V means the connected sum of p copies of V (hence, a
sphere if p = 0). A representative of 〈{m, p}〉 is given by

(1, . . . , 1
︸ ︷︷ ︸

p

, 2, . . . , 2
︸ ︷︷ ︸

m−p−1

, 2m − p − 5) .

The tables of [HRWeb] show that, for m ≤ 9 (See Section 3 below for m ≤ 6),
this representative is amin(〈{m, p}〉), except for p = 0, 1. As 〈{m, 1}〉 = 〈m − 1〉+,
Proposition 2.2 gives the diffeomorphism

CPm−3 ♯ CP
m−3

≈ Nm
3 (〈{m, 1}〉) ≈ Nm

3 (〈m〉+) ≈ S2 ×S1 S2(m−3)−1 .

In the case m = 5, we get the two topological descriptions of the Hirzebruch surface
(see, e.g. [MDS95, Ex. 6.4]).

3. Tables for m = 4, 5, 6

For any m, there is the “trivial” chamber 〈〉, where am is so long that the
corresponding chain or polygon spaces are empty. When m = 4, Examples 2.6
and 2.3 give the remaining two chambers:
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Table A: m = 4

α amin(α) N 4
2 (α) N 4

3 (α) C4
d(α)

1 〈〉 (0, 0, 0, 1) ∅ ∅ ∅

2 〈4〉 (1, 1, 1, 2) S1 CP 1 S2(d−1)−1

3 〈41〉 (0, 1, 1, 1) S1 ∪̇S1 S2 (Sd−1) × Sd−2

Recall that the column C4
d(α) does not contain all the 4-chains, only those for

which a4 ≥ ai for I = 1, 2, 3. For example, C4
d(1, 1, 1ε) ≈ T 1Sd−1, the unit tangent

bundle to Sd−1. For a complete classification of 4-chains, see [Ha89].

When m = 5, there are seven chambers. Lines 2 and 7 come from Examples 2.6
and 2.3. The symbols Σg denotes the orientable surface of genus g and T r is the
torus (S1)r. Within the central block, each line is obtained from the previous one
by Proposition 2.10.

Table B: m = 5

α amin(α) N 5
2 (α) N 5

3 (α) C5
d(α)

1 〈〉 (0, 0, 0, 0, 1) ∅ ∅ ∅

2 〈5〉 (1, 1, 1, 1, 3) S2 CP 2 S3(d−1)−1

3 〈51〉 (0, 1, 1, 1, 2) T 2 CP 2 ♯ CP
2

Sd−1 × S2(d−1)−1

4 〈52〉 (1, 1, 2, 2, 3) Σ2 CP 2 ♯ 2 CP
2

2 [Sd−1 × S2(d−1)−1]

5 〈53〉 (1, 1, 1, 2, 2) Σ3 CP 2 ♯ 3 CP
2

3 [Sd−1 × S2(d−1)−1]

6 〈54〉 (1, 1, 1, 1, 1) Σ4 CP 2 ♯ 4 CP
2

4 [Sd−1 × S2(d−1)−1]

7 〈521〉 (0, 0, 1, 1, 1) T 2 ∪̇T 2 S2 × S2 (Sd−1)2 × Sd−2

Line 3 in Table B together with Equation (3), re-proves the classical fact that

(S2 × S2) ♯ CP
2

is diffeomorphic to CP 2♯ 2 CP
2
.

When m = 6, there are 21 chambers. In order to save space, we did not give
amin(α) (they can be found in [HR04, Table 6]). The first line of each block is
obtained from § 2.1–2.3. Then, each line is obtained from the previous one by
Proposition 2.10.
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Table C: m = 6

α N 6
2 (α) N 6

3 (α) C6
d
(α)

1 〈〉 ∅ ∅ ∅

2 〈6〉 S3 CP 3 S4(d−1)−1

3 〈61〉 S1×S2 CP 3 ♯ CP
3

R(d) (1)

4 〈62〉 2(S1×S2) CP 3 ♯ 2 CP
3

2R(d)

5 〈63〉 3(S1×S2) CP 3 ♯ 3 CP
3

3R(d)

6 〈64〉 4(S1×S2) CP 3 ♯ 4 CP
3

4R(d)

7 〈65〉 5(S1×S2) CP 3 ♯ 5 CP
3

5R(d)

8 〈621〉 T 3 S2×S1(S2×S3) Sd−1×C5
d
(〈51〉) (2)

9 〈621, 63〉 T 3♯ (S1×S2) [S2×S1(S2×S3)] ♯ CP
3

[Sd−1×C5
d
(〈51〉)] ♯ R(d)

10 〈621, 64〉 T 3♯ 2(S1×S2) [S2×S1(S2×S3)] ♯ 2 CP
3

[Sd−1×C5
d
(〈51〉)] ♯ 2R(d)

11 〈621, 65〉 T 3♯ 3(S1×S2) [S2×S1(S2×S3)] ♯ 3 CP
3

[Sd−1×C5
d
(〈51〉)] ♯ 3R(d)

12 〈631〉 Σ2×S1 S2×
S12(S2×S3) Sd−1×C5

d
(〈52〉) (2)

13 〈631, 64〉 (Σ2×S1) ♯ (S1×S2) S2×
S12(S2×S3)♯ CP

3
[Sd−1×C5

d
(〈52〉)] ♯ R(d)

14 〈631, 65〉 (Σ2×S1) ♯ 2(S1×S2) S2×S12(S2×S3)♯ 2 CP
3

[Sd−1×C5
d
(〈52〉)] ♯ 2R(d)

15 〈641〉 Σ3×S1 S2×S13(S2×S3) Sd−1×C5
d
(〈53〉) (2)

16 〈641, 65〉 (Σ3×S1) ♯ (S1×S2) S2×S13(S2×S3)♯ CP
3

[Sd−1×C5
d
(〈53〉)] ♯ R(d)

17 〈651〉 Σ4×S1 S2×S14(S2×S3) Sd−1×C5
d
(〈54〉) (2)

18 〈6321〉 T 3 ∪̇T 3 (S2)3 (Sd−1)3×Sd−2

19 〈632〉 2 T 3 (S2)3 ♯ CP
3

C6
d
(〈632〉) (3)

20 〈632, 64〉 2T 3♯ (S1×S2) (S2)3♯ 2 CP
3

C6
d
(〈632〉) ♯ R(d)

21 〈632, 65〉 2T 3♯ 2(S1×S2) (S2)3♯ 3 CP
3

C6
d
(〈632〉) ♯ 2R(d)

(1) R(d) = Sd−1×S3(d−1)−1. (2) see Table B. (3) See Example 2.11

The list for N 6
2 (α) is present in [Wa85] with some short-hand justification. A

version of the column for N 6
3 (α) is in [HR04].

For m ≥ 7, the above procedure fails to give all the chambers, since surgeries
of higher index are needed. For example, for m = 7, only 49 chambers out of 135
are reached.
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Springer Lectures Notes 1474 (1989), 146–159.

[HK98] J.-C. Hausmann and A. Knutson, “The cohomology rings of polygon spaces”, Ann. Inst.
Fourier (Grenoble) 48 (1998), 281–321.

[HR04] J.-C. Hausmann and E. Rodriguez, “ The space of clouds in an Euclidean space” Experi-
mental Mathematics. 13 (2004), 31-47.

[HRWeb] http://www.unige.ch/math/folks/hausmann/polygones. WEB site organised by J-Cl.
Hausmann and E. Rodriguez.

http://arXiv.org/abs/math/0609140
http://www.unige.ch/math/folks/hausmann/polygones


GEOMETRIC DESCRIPTIONS OF POLYGON AND CHAIN SPACES 11

[KM95] M. Kapovich and J. Millson, “On the moduli space of polygons in the Euclidean plane”,
J. Differential Geom. 42 (1995), 430–464.

[KM96] M. Kapovich and J. Millson, “The symplectic geometry of polygons in Euclidean space”,
J. Differential Geom. 44 (1996), 479–513.

[KBCL99] D.G. Kendall, D. Barden, T.K. Carne and H. Le, “Shape and Shape Theory”, John
Wiley & Sons Ltd., Chichester 1999.

[Ko93] A. Kosinski. ”Differentiable manifolds”. Academic Press 1993.
[MDS95] D. McDuff and D. Salamon “Introduction to symplectic topology”, Oxford Science Publ.

1995.
[Wa85] K. Walker “Configuration spaces of linkages”, Bachelor’s thesis, Princeton (1985).
[Wn69] A. Wasserman “Equivariant differential topology”, Topology 8 (1969) 127–150.
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