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We provide a framework for structural multiscale geometric orga-
nization of graphs and subsets of �n. We use diffusion semigroups
to generate multiscale geometries in order to organize and repre-
sent complex structures. We show that appropriately selected
eigenfunctions or scaling functions of Markov matrices, which
describe local transitions, lead to macroscopic descriptions at
different scales. The process of iterating or diffusing the Markov
matrix is seen as a generalization of some aspects of the Newto-
nian paradigm, in which local infinitesimal transitions of a system
lead to global macroscopic descriptions by integration. We provide
a unified view of ideas from data analysis, machine learning, and
numerical analysis.

The geometric organization of graphs and data sets in �n is a
central problem in statistical data analysis. In the continuous

Euclidean setting, tools from harmonic analysis, such as Fourier
decompositions, wavelets, and spectral analysis of pseudo-
differential operators, have proven highly successful in many areas
such as compression, denoising, and density estimation (1, 2). In this
paper, we extend multiscale harmonic analysis to discrete graphs
and subsets of �n. We use diffusion semigroups to define and
generate multiscale geometries of complex structures. This frame-
work generalizes some aspects of the Newtonian paradigm, in which
local infinitesimal transitions of a system lead to global macroscopic
descriptions by integration, the global functions being characterized
by differential equations. We show that appropriately selected
eigenfunctions of Markov matrices (describing local transitions, or
affinities in the system) lead to macroscopic representations at
different scales. In particular, the top eigenfunctions permit a
low-dimensional geometric embedding of the set into �k, with k ��
n, so that the ordinary Euclidean distance in the embedding space
measures intrinsic diffusion metrics on the data. Many of these
ideas appear in a variety of contexts of data analysis, such as spectral
graph theory, manifold learning, nonlinear principal components,
and kernel methods. We augment these approaches by showing that
the diffusion distance is a key intrinsic geometric quantity linking
spectral theory of the Markov process, Laplace operators, or
kernels, to the corresponding geometry and density of the data.
This opens the door to the application of methods from numerical
analysis and signal processing to the analysis of functions and
transformations of the data.

Diffusion Maps
The problem of finding meaningful structures and geometric de-
scriptions of a data set X is often tied to that of dimensionality
reduction. Among the different techniques developed, particular
attention has been paid to kernel methods (3). Their nonlinearity
as well as their locality-preserving property are generally viewed as
a major advantage over classical methods like principal component
analysis and classical multidimensional scaling. Several other meth-
ods to achieve dimensional reduction have also emerged from the
field of manifold learning, e.g., local linear embedding (4), Lapla-
cian eigenmaps (5), Hessian eigenmaps (6), local tangent space
alignment (7). All these techniques minimize a quadratic distortion
measure of the desired coordinates on the data, naturally leading to
the eigenfunctions of Laplace-type operators as minimizers. We

extend the scope of application of these ideas to various tasks, such
as regression of empirical functions, by adjusting the infinitesimal
descriptions, and the description of the long-time asymptotics of
stochastic dynamical systems.

The simplest way to introduce our approach is to consider a
set X of normalized data points. Define the ‘‘quantized’’ corre-
lation matrix C � {cij}, where cij � 1 if (xi�xj) � 0.95, and cij �
0 otherwise. We view this matrix as the adjacency matrix of a
graph on which we define an appropriate Markov process to start
our analysis. A more continuous kernel version can be defined
as cij � e(1�(xi�xj)/�) � e�(�xi�xj�2/2�). The remarkable fact is that the
eigenvectors of this ‘‘corrected correlation’’ can be much more
meaningful in the analysis of data than the usual principal
components as they relate to diffusion and inference on the data.

As an illustration of the geometric approach, suppose that the
data points are uniformly distributed on a manifold X. Then it is
known from spectral graph theory (8) that if W � {wij} is any
symmetric positive semi-definite matrix, with nonnegative en-
tries, then the minimization of

Q�f� � �
i, j

wij�fi � fj�
2,

where f is a function on the data set X with the additional
constraint of unit norm, is equivalent to finding the eigenvec-
tors of D�1/2WD1/2, where D � {dij} is a diagonal matrix with
diagonal entry dii equal to the sum of the elements of W along
the ith row. Belkin et al. (5) suggest the choice wij � e�(�xi� xj�2/�),
in which case the distortion Q clearly penalizes pairs of points
that are very close, forcing them to be mapped to very close
values by f. Likewise, pairs of points that are far away from
each other play no role in this minimization. The first few
eigenfunctions {�k} are then used to map the data in a
nonlinear way so that the closeness of points is preserved. We
will provide a principled geometric approach for the selection
of eigenfunction coordinates.

This general framework based upon diffusion processes leads to
efficient multiscale analysis of data sets for which we have a
Heisenberg localization principle relating localization in data to
localization in spectrum. We also show that spectral properties can
be employed to embed the data into a Euclidean space via a
diffusion map. In this space, the data points are reorganized in such
a way that the Euclidean distance corresponds to a diffusion metric.
The case of submanifolds of �n is studied in greater detail, and we
show how to define different kinds of diffusions to recover the
intrinsic geometric structure, separating geometry from statistics.
More details on the topics covered in this section can be found in
ref. 9. We also propose an additional diffusion map based on a
specific anisotropic kernel whose eigenfunctions capture the long-
time asymptotics of data sampled from a stochastic dynamical
system (10).
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Construction of the Diffusion Map. From the above discussion, the
data points can be thought of as being the nodes of a graph whose
weight function k(x, y) (also referred to as ‘‘kernel’’ or ‘‘affinity
function’’) satisfies the following properties:

Y k is symmetric: k(x, y) � k(y, x),
Y k is positivity preserving: for all x and y in X, k(x, y) � 0,
Y k is positive semi-definite: for all real-valued bounded func-

tions f defined on X,

�
X

�
X

k�x, y�f�x�f�y�d��x�d��y� � 0,

where � is a probability measure on X.

The construction of a diffusion process on the graph is a
classical topic in spectral graph theory [weighted graph Lapla-
cian normalization (8)], and the procedure consists in renor-
malizing the kernel k(x, y) as follows: for all x � X,

let v�x� � �
X

k�x , y�d��y� ,

and set

a�x, y� �
k�x, y�

v�x�
.

Notice that we have the following conservation property:

�
X

a�x, y�d��y� � 1. [1]

Therefore, the quantity a(x, y) can be viewed as the probability
for a random walker on X to make a step from x to y. Now we
naturally define the diffusion operator

Af�x� � �
X

a�x, y�f�y�d��y�.

As is well known in spectral graph theory (8), there is a spectral
theory for this Markov chain, and if Ã is the integral operator
defined on L2(X) with the kernel

ã�x, y� � a�x, y�� v�x�

v�y�
, [2]

then it can be verified that Ã is a symmetric operator. Conse-
quently, we have the following spectral decomposition

ã�x, y� � �
i�0

�i
2�i�x��i�y�, [3]

where �0 � 1 � �1 � �2 � . . . . Let ã(m)(x, y) be the kernel of
Ãm. Then we have

ã�m��x, y� � �
i�0

�i
2m�i�x��i�y�. [4]

Lastly, we introduce the family of diffusion maps {�m} by

�m�x� � ��0
m�0�x�

�1
m�1�x�

···
� ,

and the family of diffusion distances {Dm} defined by

Dm
2 �x, y� � ã�m��x, x� � ã�m��y, y� � 2ã�m��x, y�.

The quantity a(x, y), which is related to ã(x, y) according to Eq.
2, can be interpreted as the transition probability of a diffusion
process, while a(m)(x, y) represents the probability of transition from
x to y in m steps. To this diffusion process corresponds the distance
Dm(x, y), which defines a metric on the data that measures the rate
of connectivity of the points x and y by paths of length m in the data,
and, in particular, it is small if there are a large number of paths
connecting x and y. Note that, unlike the geodesic distance, this
metric is robust to perturbations on the data.

The dual point of view is that of the analysis of functions
defined on the data. The kernel ã(m)(x, �) can be viewed as a
bump function centered at x that becomes wider as m increases.
The distance D2m(x, y) is also a distance between the two bumps
ã(m)(x, �) and ã(m)(y, �):

D2m
2 �x, y� � �

X

�ã�m��x, z� � ã�m��y, z��2dz.

The eigenfunctions have the classical interpretation of an orthonor-
mal basis, and their frequency content can be related to the
spectrum of operator A in what constitutes a generalized Heisenberg
principle. The key observation is that, for many practical examples,
the numerical rank of the operator A(m) decays rapidly as seen from
Eq. 4 or from Fig. 1. More precisely, since 0 	 �i 	 �0 � 1, the
kernel ã(m)(x, y), and therefore the distance Dm(x, y), can be
computed to high accuracy with only a few terms in the sum of 4,
that is to say, by only retaining the eigenfunctions �i for which �i

2m

exceeds a certain precision threshold. Therefore, the rows (the
so-called bumps) of Am span a space of lower numerical dimension,
and the set of columns can be down-sampled. Furthermore, to
generate this space, one just needs the top eigenfunctions, as
prescribed in Eq. 4. Consequently, by a change of basis, eigenfunc-
tions corresponding to eigenvalues at the beginning of the spectrum
have low frequencies, and the number of oscillations increase as one
moves further down in the spectrum.

The link between diffusion maps and distances can be sum-
marized by the spectral identity

��m�x� � �m�y��2 � �
j�0

�j
2m��j�x� � �j�y��2 � Dm

2 �x, y�,

which means that the diffusion map �m embeds the data into a
Euclidean space in which the Euclidean distance is equal to the
diffusion distance Dm. Moreover, the diffusion distance can be
accurately approximated by retaining only the terms for which
�j

2m remains numerically significant: the embedding

x � x̆ � ��0
m�0�x�, �1

m�1�x�, . . . , �j0
m�j0�x��

satisfies

Dm
2 �x, y� � �

j�0

j0�1

�j
2m��j�x� � �j�y��2�1 � O�e�
m��

� �x̆ � y̆�2�1 � O�e�
m��.

Therefore, there exists an m0 such that for all m � m0, the
diffusion map with the first j0 eigenfunctions embeds the data
into �j0 in an approximately isometric fashion, with respect to the
diffusion distance Dm.

The Heat Diffusion Map on Riemannian Submanifolds. Suppose that
the data set X is approximately lying along a submanifold M �
�n, with a density p(x) (not necessarily uniform on M). This kind
of situation arises in many applications ranging from hyperspec-
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tral imagery to image processing to vision. For instance, in the
latter field, a model for edges can be generated by considering
pixel neighborhoods whose variability is governed by a few
parameters (11, 12).

We consider isotropic kernels, i.e., kernels of the form

k��x, y� � h��x � y�2

�
� .

In ref. 5, Belkin et al. suggest to take k�(x, y) � e�(�x�y�2/�) and
to apply the weighted graph Laplacian normalization procedure
described in the previous section. They show that if the density
of points is uniform, then as � 3 0, one is able to approximate
the Laplace–Beltrami operator � on M.

However, when the density p is not uniform, as is often the case,
the limit operator is conjugate to an elliptic Schrödinger-type
operator having the more general form � 	 Q, where Q(x) �

�p(x)�p(x) is a potential term capturing the influence of the
nonuniform density. By writing the nonuniform density in a Bolt-
zmann form, p(x) � e�U(x), the infinitesimal operator can be
expressed as

�� � ��
U�2 � �U��. [5]

This generator corresponds to the forward diffusion operator
and is the adjoint of the infinitesimal generator of the backward
operator, given by

�� � 2
��
U. [6]

As is well known from quantum physics, for a double well
potential U, corresponding to two separated clusters, the first
nontrivial eigenfunction of this operator discriminates between
the two wells. This result reinforces the use of the standard graph
Laplacian for computing an approximation to the normalized cut
problem, as described in ref. 13 and more generally for the use
of the first few eigenvectors for spectral clustering, as suggested
by Weiss (14).

To capture the geometry of a given manifold, regardless of the
density, we propose a different normalization that asymptotically
recovers the eigenfunctions of the Laplace–Beltrami (heat) oper-
ator on the manifold. For any rotation-invariant kernel k�(x, y) �
h(�x � y�2��), we consider the normalization described in the box
below. The operator A� can be used to define a discrete approxi-
mate Laplace operator as

�� �
I � A�

�
,

and it can be verified that �� � �0 	 �1/2R�, where �0 is a
multiple of the Laplace–Beltrami operator � on M, and R� is
bounded on a fixed space of bandlimited functions. From this, we
can deduce the following result.

Theorem 2.1. Let t � 0 be a fixed number, then as � 3 0, A�
t/� �

(I � ���)t/� � (I � ��0)t/� 	 O(�1/2) � e�t�0 	 O(�1/2), and the
kernel of A�

t/� is given as

a�
�t/���x, y� � �

j�0

�j
�2t/���j

����x��j
����y�

� �
j�0

e��j
2t�j�x��j�y� � O��1/2�

� ht�x, y� � O��1/2�,

where {�j
2} and {�j} are the eigenvalues and eigenfunctions of the

limiting Laplace operator, ht(x, y) is the heat diffusion kernel at
time t, and all estimates are relative to any fixed space of band-
limited functions.

Approximation of the Laplace–Beltrami Diffusion Kernel.

1. Let p�(x) � �X k�(x, y)p(y)dy, and form the new kernel k̂�(x̆,
y) � k�(x, y)�p�(x)p�(y).

2. Apply the weighted graph Laplacian normalization to this kernel
by defining v�(x) � �X k̂�(x, y)p(y)dy, and by setting a�(x, y) � k̂�(x,
y)�v�(x).

Then the operator A�f(x) � �X a�(x, y)f(y)p(y)dy is an approx-
imation of the Laplace–Beltrami diffusion kernel at time �.

For simplicity, we assume that on the compact manifold M, the
data points are relatively densely sampled (each ball of radius ��
contains enough sample points so that integrals can approximated
by discrete sums). Moreover, if the data only covers a subdomain
of M with nonempty boundary, then �0 needs to be interpreted as
acting with Neumann boundary conditions. As in the previous

Fig. 1. The spectra of powers of A (a), and the diffusion embedding of a
mixture of two materials with different heat conductivity (b and c). The
original geometry (b) is mapped as a ‘‘butterfly’’ set, in which the red (higher
conductivity) and blue phases are organized according to the diffusion they
generate: the cord length between two points in the diffusion space measures
the quantity of heat that can travel between these points.
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section, one can compute heat diffusion distances and the corre-
sponding embedding. Moreover, any closed rectifiable curve can be
embedded as a circle on which the density of points is preserved: We
have thus separated the geometry of the set from the distribution
of the points (see Fig. 3 for an example).

Anisotropic Diffusion and Stochastic Differential Equations. So far we
have considered the analysis of general data sets by diffusion maps,
without considering the source of the data. One important case of
interest is when the data x is sampled from a stochastic dynamical
system. Consider, therefore, data sampled from a system x(t) � �n

whose time evolution is described by the following Langevin
equation

ẋ � �
U�x� � �2ẇ , [7]

where U is the free energy and w(t) is the standard n-
dimensional Brownian motion. Let p(y, t � x, s) denote the
transition probability of finding the system at location y at time
t, given an initial location x at time s. Then, in terms of the
variables {y, t}, p satisfies the forward Fokker–Planck equation
(FPE), for t � s,

�p
�t

� 
��
p � p
U�y��, [8]

whereas in terms of the variables {x, s}, the transition probability
satisfies the backward equation

�
�p
�s

� �p � 
p �
U�x� . [9]

As time t3 , the solution of the forward FPE converges to the
steady-state Boltzmann density

p�x� �
e�U�x�

Z
, [10]

where the partition function Z is the appropriate normalization
constant.

The general solution to the FPE can be written in terms of an
eigenfunction expansion

Fig. 2. A dumbbell (a) is embedded by using the first three eigenfunctions
(b). Because of the bottleneck, the two lobes are pushed away from each
other. Observe also that in the embedding space, point A is closer to the
handle (point B) than any point on the edge (like point C), because there are
many more short paths joining A and B than A and C.

Fig. 3. Original spiral curve (a) and the density of points on it (b), embedding obtained from the normalized graph Laplacian (c), and embedding from the
Laplace–Beltrami approximation (d).
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p�x, t� � �
j�0



aje��jt�j�x�, [11]

where �j are the eigenvalues of the Fokker–Planck operator, with
�0 � 1 � �1 � �2 � . . . , and with �j(x) the corresponding
eigenfunctions. The coefficients aj depend on the initial conditions.
A similar expansion exists for the backward equation, with the
eigenfunctions of the backward operator given by j(x) � eU(x)�j(x).

As can be seen from Eq. 11, the long time asymptotics of the
solution is governed only by the first few eigenfunctions of the
Fokker–Planck operator. Whereas in low dimensions, e.g., n 	 3,
approximations to these eigenfunctions can be computed via nu-
merical solutions of the partial differential equation, in general, this
is infeasible in high dimensions. On the other hand, simulations of
trajectories according to the Langevin Eq. 7 are easily performed.
An interesting question, then, is whether it is possible to obtain
approximations to these first few eigenfunctions from (large
enough) data sampled from these trajectories.

In the previous section we saw that the infinitesimal generator of
the normalized graph Laplacian construction corresponds to a
Fokker–Planck operator with a potential 2U(x) (see Eq. 6). There-
fore, in general, there is no direct connection between the eigen-
values and eigenfunctions of the normalized graph Laplacian and
those of the underlying Fokker–Planck operator 8. However, it is
possible to construct a different normalization that yields infinites-
imal generators corresponding to the potential U(x) without the
additional factor of two.

Consider the following anisotropic kernel.

k̃��x, y� �
k��x, y�

�p��x�p��y�
[12]

A similar analysis to that of the previous section shows that the
normalized graph Laplacian construction that corresponds to
this kernel gives in the asymptotic limit the correct Fokker–
Planck operator, e.g., with the potential U(x).

Since the Euclidean distance in the diffusion map space corre-
sponds to diffusion distance in the feature space, the first few

eigenvectors corresponding to the anisotropic kernel (Eq. 12)
capture the long-time asymptotic behavior of the stochastic system
(Eq. 7). Therefore, the diffusion map can be seen as an empirical
method for homogenization (see ref. 10 for more details). These
variables are the right observables with which to implement the
equation-free complex�multiscale computations of Kevrekidis et al.
(see refs. 15 and 16).

One-Parameter Family of Diffusion Maps. In the previous sections, we
showed three different constructions of Markov chains on a discrete
data set that asymptotically recover either the Laplace–Beltrami
operator on the manifold, the backward Fokker–Planck operator
with potential 2U(x) for the normalized graph Laplacian, or U(x) for
the anisotropic diffusion kernel.

In fact, these three normalizations can be seen as specific cases
of a one-parameter family of different diffusion maps, based on the
kernel

k�
�
��x, y� �

k��x, y�

p�

�x�p�


�y�
[13]

for some 
 � 0.
It can be shown (9) that the forward infinitesimal operator

generated by this diffusion is

H f
�
�� � �� � �e�1�
�U�e��1�
�U�� . [14]

One can easily see that the interesting cases are (i) 
 � 0,
corresponding to the classical normalized graph Laplacian; (ii)

 � 1, yielding the Laplace–Beltrami operator; and (iii) 
 � 1�2
yielding the backward Fokker–Planck operator.

Therefore, while the graph Laplacian based on a kernel with

 � 1 captures the geometry of the data, with the density e�U

playing absolutely no role, the other normalizations take into
account also the density of the points on the manifold.

Directed Diffusion and Learning by Diffusion
It follows from the previous section that the embedding that one
obtains depends heavily on the choice of a diffusion kernel. In some

Fig. 4. The original function f on
the unit square (a), and the first
nontrivial eigenfunction (b). On
this plot, the colors corresponds to
the values of f.

Fig. 5. Pathology slice with partially labeled data (a),
tissue classification from spectra by using 1-nearest neigh-
bors (b), and tissue classification from spectra by using
geometric diffusion (c). The three tissue classes are marked
with blue, green, and pink.

7430 � www.pnas.org�cgi�doi�10.1073�pnas.0500334102 Coifman et al.



cases, one is interested in constructing diffusion kernels that are
data- or task-driven. As an example, consider an empirical function
F(x) on the data. We would like to find a coordinate system in which
the first coordinate has the same level lines as the empirical function
F. For that purpose, we replace the Euclidean distance in the
Gaussian kernel by the anisotropic distance.

D�
2�x, y� � d2�x, y��� � �F�x� � F�y��2��2

The corresponding limit of A�
t/� is a diffusion along the level surfaces

of F from which it follows that the first nonconstant eigenfunction
of A� has to be constant on level surfaces. This is illustrated in Fig.
4, where the graph represents the function F and the colors
correspond to the values of the first nontrivial eigenfunction. In
particular, observe that the level lines of this eigenfunction are the
integral curves of the field orthogonal to the gradient of F. This is
clear since we forced the diffusion to follow this field at a much
faster rate, in effect integrating that field. It also follows that any
differential equation can be integrated numerically by a nonisotro-
pic diffusion in which the direction of propagation is faster along the
field specified by the equation.

We now apply this approach to the construction of empirical
models for statistical learning. Assume that a data set has been
generated by a process whose local statistical properties vary from
location to location. Around each point x, we view all neighboring
data points as having been generated by a local diffusion whose
probability density is estimated by px(y) � cxexp(�qx(x � y)), where
qx is a quadratic form obtained empirically by PCA from the data
in a small neighborhood of x. We then use the kernel a(x, z) �
� px(y)pz(y)dy to model the diffusion. Note that the distance defined
by this kernel is (��px(y) � pz(y)�2dy)1/2, which can be viewed as the
natural distance on the ‘‘statistical tangent space’’ at every point in
the data. If labels are available, the information about the labels can
be incorporated by, for example, locally warping the metric so that
the diffusion starting in one class stays in the class without leaking
to other classes. This could be obtained by using local discriminant
analysis (e.g., linear, quadratic, or Fisher discriminant analysis) to
build a local metric whose fast directions are parallel to the
boundary between classes and whose slow directions are transversal
to the classes (see, e.g., ref. 1).

In data classification, geometric diffusion provides a powerful
tool to identify arbitrarily shaped clusters with partially labelled
data. Suppose, for example, we are given a data set X with N points
from C different classes. Assume our task is to learn a function L :
X3 {1, . . . , C} for every point in X but we are given the labels of
only s �� N points in X. If we cannot infer the geometry of the data
from the label points only, many parametric methods (e.g., Gauss-
ian classifiers) and nonparametric techniques (e.g., nearest neigh-
bors) lead to poor results. In Fig. 5, we illustrate this with an
example. Here, we have a hyperspectral image of pathology tissue.
Each pixel (x, y) in the image is associated with a vector {I(x, y)}�

that reflects the material’s spectral characteristics at different
wavelengths �. We are given a partially labelled set for three

different tissue classes (marked with blue, green, and pink in Fig.
5a) and are asked to classify all pixels in the image using only
spectral, as opposed to spatial, information. Both Gaussian classi-
fiers and nearest-neighbor classifiers (see Fig. 5b) perform poorly
in this case as there is a gradual change in both shading and chemical
composition in the vertical direction of the tissue sample.

The diffusion framework, however, provides an alternative clas-
sification scheme that links points together by a Markov random
walk (see ref. 17 for a discussion): let �i be the L1-normalized
characteristic function of the initially labelled set from class i. At a
given time t, we can interpret the diffused label functions (At�i)i as
the posterior probabilities of the points belonging to class i. Choose
a time � when the margin between the classes is maximized, and
then define the label of a point x � X as the maximum a posteriori
estimate L(x; �) � argmaxiA��i. Fig. 5c shows the classification of
the pathology sample using the above scheme. The latter result
agrees significantly better with a specialist’s view of correct tissue
classification.

In many practical situations, the user may want to refine the
classification of points that occur near the boundaries between
classes in state space. One option is to use an iterative scheme,
where the user provides new labelled data where needed and then
restarts the diffusion with the new enlarged training set. However,
if the total data set X is very large, an alternative, more efficient,
scheme is to define a modified kernel that incorporates both
previous classification results and new information provided by the
user: for example, assign to each point a score si(x) � [0, 1] that
reflects the probability that a point x belongs to class i. Then use
these scores to warp the diffusion so that we have a set of
class-specific diffusion kernels {Ãi}i that slow down diffusion be-
tween points with different label probabilities. Choose, for example,
in each new iteration, weights according to k̃i(x, y) � k(x, y)si(x)si(y),
where si � A��i are the label posteriors from the previous diffusion,
and renormalize the kernel to be a Markov matrix. If the user
provides a series of consistent labelled examples, the classification
will speed up in each new iteration and the diffusion will eventually
occur only within disjoint sets of samples with the same labels.

Summary
In this article, we presented a general framework for structural
multiscale geometric organization of graphs and subsets of �n.
We introduced a family of diffusion maps that allow the explo-
ration of both the geometry, the statistics and functions of the
data. Diffusion maps provide a natural low-dimensional embed-
ding of high-dimensional data that is suited for subsequent tasks
such as visualization, clustering, and regression. In the compan-
ion article (18), we introduce multiscale methods that allow fast
computation of functions of diffusion operators on the data and
also present a scheme for extending empirical functions.
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