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Abstract Media hashing is an alternative approach to many
applications previously accomplished with watermarking.
The major disadvantage of the existing media hashing tech-
nologies is their limited resistance to geometric attacks.
In this paper, a novel geometric distortion-invariant image
hashing scheme, which can be employed to perform copy
detection and content authentication of digital images, is
proposed. Our major contributions are threefold: (i) a mesh-
based robust hashing function is proposed; (ii) a sophis-
ticated hash database for error-resilient and fast matching
is constructed; and (iii) the application scalability of our
scheme for content copy tracing and authentication is stud-
ied. In addition, we further investigate several media hashing
issues, including robustness and discrimination, error anal-
ysis, and complexity, with respect to the proposed image
hashing system. Exhaustive experimental results obtained
from benchmark attacks confirm the excellent performance
of the proposed method.

Keywords Authentication · Copy detection · Geometric
distortion · Hash · Robustness · Searching

1 Introduction

With the advances in multimedia and networking technolo-
gies, it has become easy to copy original material completely
and distribute illegal copies rapidly over the Internet. In or-
der to trace the unauthorized use of digital contents, media
hashing technologies have been applied to digital content
management. In contrast to data hiding, the main charac-
teristic of media hashing is its non-invasive property, which
means that no information has to be embedded in the digi-
tal content. On the other hand, a hash sequence for specific
media data needs to be extracted to obtain a condensed rep-
resentation. Technologies analogous to media hashing have
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been reported in the literature, including fingerprinting, dig-
ital signature, and passive/non-invasive watermarking. The
major feature that distinguishes media hashing from water-
marking is that the former measures “similarity” and needs
to work together with a feature database, while the latter
measures “originality” and can operate as a standalone sys-
tem. On the other hand, media hashing is also similar to me-
dia retrieval in that both need to transform media data into a
short string for the sake of compact representation. The tech-
nical difference between them is that media hashing must re-
sist (either malicious or incidental) attacks. Therefore, sev-
eral applications that call for robust identification of media
contents require the use of robust media hashing methods
[1, 2]. The technical requirements for media hashing cannot
be satisfied by means of traditional cryptographic hashing
functions because even a one bit error in a hash sequence
can lead to entirely different contents. However, limited dis-
tortions are not harmful to the visual quality and commercial
value of multimedia data.

Many existing media hashing methods were developed
for audio identification [2] and video authentication [3, 4].
In this paper, we will focus on image hashing. First of all, a
review of the literature on image hashing will be presented
in the following. In 1998, Chang et al. proposed a wavelet-
based Replicated IMage dEtector (RIME) [5] to search for
unauthorized image copying on the Internet. They used color
features only to represent an image and then used the vec-
tor quantization (VQ) technique to index images. Their sys-
tem cannot resist extensive geometric distortions. To speed
up the detection of near-replicas of images in their RIME
system, Chang et al. proposed a new clustering approach
[6] that can improve input/output efficiency by clustering
and retrieving relevant information sequentially on and from
the disk. Recently, Meng and Chang [7] used multi-scale
color and texture features to characterize images and em-
ployed the dynamic partial function (DPF) to measure the
perceptual similarity of images. Basically, the idea behind
DPF [8] is to dynamically activate partial features (thereby
discarding the other larger feature distance) in order to re-
veal the similarity between a pair of images. Although DPF



160 C.-S. Lu, C.-Y. Hsu

outperformed traditional distance metrics, the adopted im-
age feature was global in that resistance to geometric dis-
tortions was inherently limited. In [9, 10], the digital signa-
ture was proposed for image authentication. Lin and Chang
[9] created the mutual relationship of pairwise block-DCT
coefficients to distinguish JPEG compressions from mali-
cious modifications. Lu and Liao [10] built the so-called
“structural digital signature,” based on the multiscale struc-
ture of the wavelet transform, to tolerate incidental manip-
ulations and reflect intentional manipulations. However, the
ability to resist geometric manipulations was lacking [9, 10].
In [11, 12], Fridrich and Goljan proposed a robust/visual
hash function for digital watermarking. Their hash digests
of digital images were created by projections of DCT coef-
ficients to key-dependent random patterns. In [13], Venkate-
san et al. proposed an image hashing technique, which in-
cludes (i) random tiling of an image; and (ii) hash genera-
tion based on statistical feature extraction of tiles. However,
the two methods [11, 13] only achieve limited resistance to
geometric distortions. In [14–16], image-hashing methods
were proposed based on the Radon transform and exploited
its affine invariance. However, resistance to geometric dis-
tortions was found to be greatly limited if the incoming at-
tacks went beyond affine distortions. In [17], Mihcak and
Venkatesan proposed an iterative geometric image hashing
method, which contains two major steps. First, an image is
converted into a binary image by thresholding the lowest-
frequency subband in the wavelet domain in order to identify
the geometric shapes. Second, iterative filtering is applied
to the resultant binary image to obtain the hash by enhanc-
ing geometrically strong components and erasing geomet-
rically weak components. This method can only withstand
slight geometric distortions. In [18], Kim proposed an im-
age copy detection scheme that employs ordinal measures
of AC coefficients in the 8 × 8 DCT domain; i.e., the mag-
nitudes of the AC coefficients in a block are ranked in de-
scending order to represent an image. Extensive signal pro-
cessing attacks were conducted to test the method’s robust-
ness and discrimination in the case of a large database. How-
ever, this system basically could not resist geometric distor-
tions.

It is evident from the above survey that a common
disadvantage of the existing image hashing techniques is
their limited robustness against geometric distortions (for
instance, resistance to rotations is restricted to very small
angles). In view of this fact, the purpose of this paper is
to deal with this challenging problem. We shall propose
a robust mesh-based image hashing scheme for content
copy detection and tracing in a large database. Our major
contribution is the capability of achieving robustness against
extensive geometric distortions (e.g., standard benchmarks
like Stirmark3.1 and Stirmark4.0 [19, 20]). Although the
concept of image meshing has been applied to watermarking
before [21], we consider the stability of mesh generation,
which is closely related to mesh-based applications. Conse-
quently, we present here a robust mesh extraction technique
that cannot easily degrade the performance of mesh-based

hashing. We also present a robust mesh-based hash extrac-
tion technique that considers content position-dependent
features. Extensive results obtained from benchmark attacks
further confirm the robustness of the proposed scheme.

In addition to robustness, the practical use of an image
hashing system requires an ability to quickly search a large
database. In this paper, we will also show how an efficient
hash database can be built to facilitate fast hash matching.
Moreover, we shall present error analyses and investigate the
complexity, granularity, and scalability of the proposed im-
age hashing system. In particular, we will demonstrate how
our image hashing system can be applied to content authen-
tication.

The remainder of this paper is organized as follows.
Sect. 2 discusses the difference between cryptographic
hashing and media hashing, and states the media hashing
problem that need to be dealt with. In Sect. 3, the proposed
image hashing system, which includes mesh generation,
mesh-based hash generation, coarse-to-fine hash database
construction, and fast hash matching, is described. Media
hashing issues, including robustness, error analysis, com-
plexity, and scalability, are discussed in Sect. 4. Extensive
experimental results are given in Sect. 5 to verify the
performance of our scheme. Finally, concluding remarks
are given in Sect. 6.

2 Problem statement

Media hashing is recognized as an alternative approach to
several applications that were previously performed using
digital watermarking. Here, a scenario of copy detection and
tracing is given to outline how an image hashing approach
can be employed to manage digital image contents. Given
an image owned by its creator, an image copy detection sys-
tem needs to find out whether illegal copies of the image
exist on the Internet and, if they exist, return a list of suspect
URLs. This content searching strategy can be accomplished
by means of image hashing, and the output of the hashing
system can offer owners information about unauthorized use
of their precious media data.

Referring to the image space shown in Fig. 1, let I de-
note an image, and let X denote the set of images that are
modified from I by means of content-preserving operations
(e.g., filtering, compression, and geometric distortions) and
are defined as being perceptually similar to I. Although per-
ceptual similarity is still an ill-posed concept [8, 22], we will
propose a hash-based matching metric in the next section
for image searching. We further use Y to denote those im-
ages that are modified from I but can hardly be recognized as
originating in I. For example, severe noise adding and severe
cropping are two representative attacks that can generate the
elements of Y . In addition, we denote using Z a set which
contains all the other images that are irrelevant to I and its
modified versions. Consequently, {I} ∪ X ∪ Y ∪ Z is a case
that forms an entire image space.
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Fig. 1 The image space. I is an element in the image space. X denotes
the set of images modified from I that are still perceptually similar to
I. Y denotes the set of images modified from I that are perceptually
different from I. Z is the set of images that are irrelevant to I

In order to represent the condensed essence of an im-
age for perceptual similarity measurement, a hash function
is usually employed. Conventionally, a cryptographic hash
function, H c, is used to map an image I as a short binary
string, H c(I). One of the most important properties of cryp-
tographic hashing is that it is collision-free, which means
that it is hard to find two different images that can be trans-
formed to produce the same hashes. Let z ∈ Z , and let z and
I be distinct. The collision-free property of cryptographic
hashing will yield H c(I) �= H c(z). Furthermore, let x ∈ X ;
then, cryptographic hashing will yield H c(I) �= H c(x). This
implies that cryptographic hashing inherently produces to-
tally different hash sequences if the media content has been
modified.

However, this characteristic is too restricted to be suit-
able for multimedia applications since multimedia content
permits acceptable distortions. As a result, it is necessary
to develop a media hashing function, Hm, that can pro-
vide error-resilience. The error-resilience property of me-
dia hashing is defined as follows. It is said that x (∈ X )
is successfully identified as having been modified from I
if d(Hm(I), Hm(x)) ≤ ε holds, where d(·, ·) indicates a
Hamming distance function. In other words, if two images
are perceptually similar, their corresponding hashes must
be highly correlated. In addition, the desired media hash
function still needs to possess the collision-free property,
like cryptographic hashing, except that the distance mea-
sure is changed to d(Hm(I), Hm(x)) > ε. On the other
hand, it is insignificant whether y (∈ Y) can be identi-
fied as having been modified from I or not because y is
severely degraded from I and they are perceptually dissim-
ilar in terms of similarity measurement. It should be noted
that the traditional cryptographic hash function is a special
case of the media hash function in that its ε value is set to
0. Overall, the main idea behind media hashing is to de-
velop a robust hash function that can identify perceptually
similar media contents and possess the collision-free prop-
erty. Issues related to media hashing will be discussed in
Sect. 4.

Fig. 2 Block diagram of the proposed mesh-based image hashing sys-
tem

Fig. 3 Block diagram of the proposed image query system: a query
image (QI) enters the hash database for possible retrieval of its original
image from the image database

3 Proposed image hashing approach

The block diagrams of the proposed mesh-based image
hashing system and image query system are depicted in
Figs. 2 and 3, respectively. In our method, the mesh gener-
ation algorithm is executed in the lower-frequency compo-
nent of an image in the wavelet domain so that more robust
salient points can be detected (Sect. 3.1). Then, a mesh nor-
malization process (Sect. 3.2) is used to transfer the decom-
posed meshes as normalized meshes of fixed sizes. Since
the conventional image transformation methods (DCT or
wavelet) cannot be directly applied to the triangle mesh to
extract its feature, each triangle mesh is made square be-
fore hash extraction. Finally, a mesh-based hash extraction
algorithm (Sect. 3.3) can be used to generate hash sequences
of equal length to facilitate hash matching (Sect. 3.4). Basi-
cally, hash extraction can be conducted in either the DCT [9]
or wavelet [10] domain. Instead of the wavelet-based hash
extraction method, in this paper, the DCT-based hash ex-
traction method is adopted because a shorter binary hash se-
quence is easy to create. The major components of our pro-
posed image hashing system will be sequentially described
in this section.

3.1 Robust image mesh generation

The extraction of robust meshes plays an important role
in our method since it is a prerequisite for withstanding
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geometric distortions. To generate meshes, the first step is to
detect the salient points of an image. Among the ubiquitous
feature point extraction methods, the Harris detector has
been widely used. However, the original Harris detector
is not yet robust enough to be used for our purposes since
we need to deal with query images that may have been
manipulated. If the Harris detector is directly applied in the
spatial domain, the noise component of an image will affect
the detection of salient points. Thus, we propose to im-
prove its robustness by applying it in the lowest-frequency
subband of the downsampled-discrete wavelet transform
(DS-DWT) domain. Our intention is twofold: (i) to avoid
detection of salient points in the high-frequency subbands
that are inherently contaminated with noises; and (ii) to
reduce the space for mesh and hash generations. Empirical
results obtained from hundreds of images (manipulated by
means of Stirmark3.1 and Stirmark4.0 [19, 20]) verify the
robustness of salient point detection.

Once the feature point extraction process is finished, the
Delaunay tessellation is exploited to decompose the image
into a set of disjointed triangles. Each triangle (called a mesh
in this paper) is regarded as the minimum unit for robust
hash extraction. The overall mesh generation process is sum-
marized as follows: (i) the original image I is transformed
via downsampled discrete wavelet decomposition, and the
lowest-frequency subband signal, ILL, is selected; (ii) the set
of feature points P is generated by applying the Harris detec-
tor to ILL; and (iii) Delaunay tessellation is performed using
P to obtain a set, M, of meshes (|M| is used to denote the
number of meshes in M).

Although a few differences between the meshes gen-
erated from the original image and its modified versions
may exist, these differences are not certain to affect the
hash-based similarity measurement, as will be explained in
Sect. 3.4.

3.2 Mesh normalization

Once the set of meshes in an image has been produced, each
original mesh Mk(∈ M) is normalized as Mnom

k to gener-
ate a mesh-based hash Hk , where Mnom

k is a right-angled
triangle. The aim of normalization is to keep all normal-
ized meshes the same size and the extracted mesh-based
hashes the same length to make mesh-based hash com-
parisons possible. Figure 4 illustrates the relationship be-
tween Mk and Mnom

k , where 〈A, B, C〉 and 〈 Á, B́, Ć〉 de-
note the corners of Mk and Mnom

k , respectively. In addition,
let 〈A, B, C〉 be arranged to satisfy ∠B AC ≥ ∠ABC ≥
∠AC B, where ∠B AC denotes an angle centered at cor-
ner A, and let 〈 Á, B́, Ć〉 be arranged to satisfy ∠B́ ÁĆ >

∠ Á B́Ć ≥ ∠ ÁĆ B́, where | ¯́AB́| ≤ | ¯́AĆ |. When the normal-
ization process is performed, 〈A, B, C〉 is first mapped to
〈 Á, B́, Ć〉 sequentially. That is, this “angle order” must be
maintained to keep uniform warping in order to not affect
the generation of normalized meshes and their correspond-
ing hashes. Here, non-uniform warping implies that an orig-
inal mesh and its attacked mesh are normalized in a different

Fig. 4 The angle ordering between an original mesh and its normalized
mesh. The angle ordering is determined by sorting the three angles
in descending order. The length of the two shorter sides in the right-

angled triangle satisfies | ¯́AB́| ≤ | ¯́AĆ |

angle order; thus, the resultant normalized meshes will pro-
duce different hashes. After angle order-based corner map-
ping is performed, Mk is transformed into Mnom

k through the
procedures of affine transformation and interpolation (Chap.
5 of [23] and Chap. 12 of [24]).

There are two major problems that will affect the angle
order. One involves severe geometric distortions that change
the order of three angles in a mesh. However, this factor will
lead to apparent destruction of the visual quality of images,
which will, thus, lose their commercial value. Therefore, we
can ignore this problem. The other problem occurs when two
or three angles are nearly the same in magnitude such that
even a slight distortion can change their order. This problem
must be dealt with since the visual quality of an image is
only imperceptibly modified. Our solution is to generate two
(if two angles are nearly the same) or six (if three angles
are nearly the same) different hashes for such a mesh by
changing the angle order sequentially with respect to a query
image. In addition, we keep one mesh in order to have one
corresponding hash in the hash database to save space.

In the implementation, the length of both shorter sides,¯́AB́ = ¯́AĆ , in a normalized mesh that is a right-angled
triangle needs to be chosen carefully based on the follow-
ing considerations. First, if the side is short enough, par-
tial information of an original mesh will be lost, and not
enough discriminable features will be provided among dif-
ferent meshes (i.e., does not obey collision-free). Second, if
the side is long enough, the execution time will be mostly
spent on mesh warping, which will become a bottleneck in
the scheme. Finally, since the extracted feature points may
have deviated from their original positions, larger normal-
ized meshes will enlarge this impact to degrade the robust-
ness of hash generation. In addition to the above consider-
ations, we have performed extensive experiments (the same
as the one that will be described in Sect. 5.1) based on using
different sizes of normalized meshes and obtained the fol-
lowing results: (i) if | ¯́AB́| = | ¯́AĆ | = 64 pixels is adopted
(the hash’s length is 256), the robustness is significantly de-

graded; (ii) if | ¯́AB́| = | ¯́AĆ | = 48 pixels (the hash’s length

is 144) and | ¯́AB́| = | ¯́AĆ | = 32 pixels (the hash’s length is
64) are, respectively, adopted, their robustness capabilities
are comparable. By taking the above three considerations
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into account, the length of both sides is empirically verified

to be | ¯́AB́| = | ¯́AĆ | = 32 pixels so as to obtain a trade-off
among discrimination and robustness of the hash, and the
complexity of normalization. This choice will become clear
in Sect. 3.3 that the size of a mesh-based hash sequence is
linearly proportional to the size of a normalized mesh.

3.3 Robust mesh-based hashing

The goal of image hashing is to transform image content into
a feature sequence in order to obtain a condensed represen-
tation. This feature sequence must be short enough for fast
matching and preserve distinguishable features for similar-
ity measurement to be feasible. In addition, a robust hashing
algorithm is necessary to accommodate possible changes of
normalization results. With the above crucial factors taken
into consideration, in this paper, the robust hash of each nor-
malized mesh Mnom

k is extracted in the block-DCT domain
(our experience showed that it is not easy to obtain a shorter
hash in the wavelet domain [10]). The extracted hash bits
are position-dependent and belong to a certain type of local
feature.

First, each triangle Mnom
k is flipped and padded with its

flipped version to form a 32×32 block. Each 32×32 block is
divided into sixty four 4 × 4 blocks, as illustrated in Fig. 5a.
Second, the 4 × 4 DCT transform is performed, and the first
AC coefficient (located at the lowest frequency subband ex-
cept for the DC term) of each 4×4 block is selected. All the

Fig. 5 Mesh padding for hash extraction in the block-DCT domain: a
full hash generation and b coarse hash generation

selected AC coefficients form an AC sequence with a length
of 64. It should be noted that due to the effect of padding,
the upper triangular region and the lower triangular region
capture different features. For example, as shown in Fig. 5a,
if the dark-gray block in the lower triangular region captures
the horizontal feature, then its padding counterpart will cap-
ture the vertical feature. The DC coefficients are not selected
because they are not helpful for capturing identifiable fea-
tures. Finally, this AC sequence is sorted according to the
magnitudes of its 64 elements, and the hash bits, Hk(s)’s,
are assigned as follows:

Hk(s) =





1, if |ACs
k (1)| belongs to the first 32

largest AC coefficients

0, otherwise,
(1)

where Hk(·) is a hash bit in a binary hash sequence Hk and
ACs

k(1) (0 ≤ s ≤ 63) denotes the first AC coefficient in a
4 × 4 block s of a normalized mesh Mnom

k .
It is worth mentioning that the hash bits determined by

Eq. (1) are image position-dependent (i.e., s). Unlike other
hashing methods that have adopted global or statistical fea-
tures, this additional security measure should be used to
avoid the collision problem, where two dissimilar images
have similar hashes. We shall further discuss this problem
in Sect. 4.1.

In Eq. (1), one hash bit is generated from a 4 × 4 block.
In addition, the mesh-based hash designed according to
Eq. (1) guarantees that the number of 1’s and 0’s is the
same, i.e., uniform distribution is achieved, in order to avoid
any bias that will affect hash matching. This uniform distri-
bution of hash bits is necessary to ensure that the proposed
image hashing function will be collision-free and the false
matching between different meshes can be avoided (this will
be discussed in Sects. 4.1 and 4.2, respectively). We say that
this feature value Hk(·) is robust because this magnitude
relationship obtained after sorting can be approximately
preserved. Please refer to Sect. 4.1 for detailed robustness
analyses.

Note that the number of hashes is equal to the number of
meshes in an image. |Hk | is used to denote the length of a bi-
nary hash sequence Hk . In this paper, the hash dimensional-
ity, |Hk |, is fixed at 64, as explained previously. After mesh
generation and mesh-based hash extraction are performed,
the feature vector of an image I can be expressed as
{
HI

1, HI
2, . . . , HI

|MI|
}
, (2)

where |MI| and HI
k denote the number of meshes and the

k-th hash sequence in image I, respectively.

3.4 Hash database creation and mesh-based fast matching

In this section, we will discuss how to create an image hash
database with which the mesh-based matching process can
be performed when an incoming query is received. Our hash
database is designed to be suitable for two-stage fast search,
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where the first stage produces potential candidates through
a coarse matching process, and the second stage is a full
matching process used to identify the final winner (if there
is one) from the candidates. The overall image query system
is depicted in Fig. 3.

3.4.1 Similarity measurement

Since the objective of this paper is to provide a high degree
of robustness against various attacks (including geometric
distortions), partial matching is considered when similarity
is measured. In content copy detection and tracing applica-
tions, two images (Im and In) are considered to be similar if
at least N mesh-pairs are matched. Moreover, it is said that
a pair of meshes is matched if the bit error rate (BER) be-
tween their corresponding hashes is smaller than a threshold
T (0 ≤ T ≤ 1), i.e.,

BER(HIm
i , HIn

j ) = �{t |H Im
i (t) �= H In

j (t)}
|HIm

i | ≤ T, (3)

where H Im
i (t) denotes the t–th element of the i–th hash in Im

and �{} denotes the number of bit errors. The two thresholds,
T and N , will be derived based on a sufficiently small false
positive probability in Sect. 4.2.

3.4.2 Full matching

Let |MI
m | denote the number of meshes in an image Im .

Conventionally, the image hash database collects and stores
the hashes of all images. Thus, |MI

m | × |MI
n| mesh pairs

have to be compared in order to determine whether two im-
ages, Im and In , are similar or not according to the similarity
measurement described in Sect. 3.4.1. However, we cannot
rely on the exhaustive matching process only. This is be-
cause when the database is huge, the amount of time con-
sumed by exhaustive hash matching becomes tremendous.
Thus, this kind of search is not suitable for many applica-
tions that require real-time processing. We call this kind of
matching process “full matching.” Therefore, full matching
is only performed on those candidates that have been re-
trieved through a rapid coarse matching process (this will
be described in Sect. 3.4.4). A coarse-to-fine image hash
database with the error-robustness capability for fast search
will be described in the next section.

3.4.3 Creation of error-resilient tree-structured image
hash database for fast search

In order to speed-up the matching process, we propose a fast
matching technique that has two stages: (i) “coarse match-
ing” for rapid selection of candidates; (ii) “full matching”
for determining the final target from the selected candidates.
In fact, this technique looks like a coarse-to-fine searching
paradigm. The so-called coarse matching stage is mainly
used to coarsely find a set of candidates (whose size is usu-
ally significantly smaller than the entire search space) that

Fig. 6 Creation of an image hash database for fast search in a coarse-
to-fine manner. Our image hash database includes (i) error-resilient en-
tries; (ii) image indices; and (iii) image hashes

may contain the desired target. Next, full matching is con-
ducted on the set of candidates to exhaustively find the final
result. Therefore, our fast matching paradigm needs to be
used with a hash database that is designed in a sophisticated
manner. This sophisticated hash database is built as shown
in Fig. 6. The hash database consists of “entries,” each of
which links to a chain that contains the indices of images.
It is said that an image can be linked to a specific entry if
one hash of that image and the entry are similar. In practice,
each entry is the seed of a group. It is also observed that a
group associated with an entry can proliferate rapidly if this
entry is a common feature among images. As a result, our
approach to building the hash database for fast searching is a
kind of clustering method. However, unlike other clustering
methods that have been proposed for content-based image
retrieval, our clustering paradigm adopts partial clustering
instead of global clustering. That is to say, an image can be
linked to different entries as long as its hashes are similar to
more than one entry.

There are two issues that should be considered when
constructing a hash database; i.e., entries should (i) be short
enough for practical implementation and (ii) possess the
error-robustness capability in order to accommodate mod-
ifications of meshes due to attacks. By taking the above two
issues into account simultaneously, in this paper, we design
each entry as a 16-bit long hash sequence that also repre-
sents a coarse representation of a mesh. This “coarse hash,”
which is generated in a way similar to the one described in
Sect. 3.3, is described as follows. As shown in Fig. 5b, each
normalized mesh of size 32×32 is downsampled to obtain an
8 × 8 coarse block from which 8 × 8 DCT is performed and
the first AC coefficient, denoted as Bds, is selected. Mean-
while, each normalized mesh is also partitioned into sixteen
8 × 8 blocks with which 8 × 8 DCT is performed and 16
1st AC coefficients, denoted as Bp(b) (0 ≤ b ≤ 15), are
obtained. With the above setting, the coarse hash bits are the
results obtained by comparing each Bp(b) with Bds. More
specifically, the coarse hash bit of a mesh is defined as

C H(b) =
{

1, if Bp(b) ≥ Bds

0, otherwise; (4)
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where C H(b) is a hash bit in a coarse hash sequence CH.
As indicated in Eq. (4), each coarse hash is a 16-bit vector,
which implies that each entry is also composed of 16 bits,
and that there are a total of 65536 entries. The entries are
expressed as ERE0, ERE1, . . . , ERE65535, where EREi is a
binary representation of i . In our implementation, the size of
the EREi ’s needs to be controllable so that they can be stored
in an array for rapid indexing. This is related to the first is-
sue. As for error resilience, this means that even if an image
has been modified, its coarse hashes are largely unaffected.
Since the proposed coarse block has the low-frequency char-
acteristic and the coarse hash bits are designed based on the
magnitude relationship between two blocks, both are stable
and hard to change. Readers can refer to [10] for robustness
analyses. Consequently, coarse matching is able to reliably
select candidates that contain the desired target.

The clustering operation associated with each entry is
performed as follows. It is said that an image’s index id is
linked to an entry EREi if at least one coarse hash CH of the
image Iid and EREi are the same, i.e.,

BER(CH, EREi ) = 0. (5)

Through the above process, the image hash database can be
built in an off-line manner. Basically, the built image hash
database is error-resilient and tree-structured, and it permits
newcomers to join at any time.

The relationship between the image database and hash
database will be discussed in Sect. 4 with respect to the com-
plexity issue. Based on the proposed error-resilient coarse-
to-fine image hash database, the coarse matching part of the
proposed fast matching process will be described in the next
section.

3.4.4 Coarse matching

For an incoming query image, QI, each of its mesh-based
hashes tries to enter the hash database through the entries.
It is said that the j–th coarse hash of QI, CHQI

j , is allowed
to enter an entry Ei if CHQI

j and Ei satisfy Eq. (5). Since
the idea behind our coarse matching method is to rapidly se-
lect candidates for advanced full matching, we first exploit
the entries of the hash database to filter out those targets in
the image database that are identified as being dissimilar to
the incoming query. The goal is to reduce the number of im-
ages that are needed for full matching and, thus, to save time.

In our coarse matching process, if a coarse hash of an
incoming query QI is allowed to enter an entry Ei , then the
hit indicators of all the image indices that are linked to Ei
will be increased by 1 to indicate the gradual increase of the
possibility that the images are similar to the query. Let us de-
note by δ(id) the hit indicator of an image Iid. When all the
coarse hashes of QI have gone through the above process,
we retain those images (in the database) that have hit indi-
cators larger enough as candidates for full matching in order
to determine the final winner, i.e., the target with the best
match. In fact, our empirical observations indicate that the

desired target can be found from only a few candidates (e.g.,
smaller than 10). Compared with the millions of images in a
database, this number of candidates greatly reduces the time
required for searching. This also implies that most of the tar-
get images have been eliminated through coarse matching.

3.4.5 Valid or invalid retrieval

In the proposed two-stage matching paradigm, “valid re-
trieval” is defined as follows. Given a query image (QI), a
hash database, and an image database, it is said that a target
image is effectively retrieved to match QI if (i) candidates
are retrieved that satisfy Eq. (5) during the coarse matching
process (Sect. 3.4.4); (ii) the target image is the candidate,
together with QI, that has N v mesh pairs satisfying Eq. (3)
(see Sect. 3.4.2) and N v ≥ N . Furthermore, the importance
of valid retrievals is determined according to their N v val-
ues. For example, the top n valid retrievals are the ones that
have N v values ranked among the top n of all the valid re-
trievals. In content searching and retrieval, the top 1 valid
retrieval is regarded as the best match.

On the other hand, if all N v’s are smaller than N , then
this search is considered invalid. As a result, it is concluded
that the query image does not exist in the image database.

4 Analyses of media hashing issues

In this section, several challenging issues [25], including er-
ror analyses, robustness, granularity, complexity, and scal-
ability of image hashing, will be discussed along with the
parameters used in our implementation.

4.1 Robustness and discrimination

Robustness refers to the ability of image hashes to resist
digital operations (including filtering, compression, geomet-
ric distortions, etc) such that the hashes generated before
and after attacks are similar. Usually, these digital operations
are “incidental” in that they might inevitably be applied for
different purposes. Therefore, it is necessary for an image
hashing scheme to resist incidental modifications. As indi-
cated in Eq. (1), an image hash is generated as a binary se-
quence, in which the hash bits are determined according to
the magnitudes of the AC coefficients in a normalized mesh.
In this situation, keeping the magnitude relationship nearly
unchanged (that is, the hash bits nearly unchanged) is neces-
sary to achieve robustness. In the following, we will discuss
how the magnitude relationship between AC coefficients can
be approximately maintained when incidental operations are
employed. It is said that a false negative or miss detection
occurs if a query that is a modified version of an image in
the image database cannot be correctly identified.

It was reported in [26] that the intrinsic content of
an image can be sufficiently reconstructed from larger
transformed coefficients only if they carry significant
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information. In our previous work [10], we investigated
the magnitude relationships between wavelet coefficients as
the digital signature of an image for content authentication.
These magnitude relationships were found to be mostly pre-
served under incidental manipulations and to be easily de-
stroyed by malicious distortions. This implies that if a larger
(or smaller) coefficient becomes smaller (or larger), then the
content of an image will be changed as well. In particular, if
more wavelet coefficients in the first image I1 are adjusted
significantly, based on the same positions of the significant
wavelet coefficients in the second image I2, then the con-
tent of I1 will gradually come to look like that of I2. (The
reader may refer to [27] for more detailed analyses.) Our
previous works [10, 27] revealed that it is necessary to keep
larger (smaller) wavelet coefficients larger (smaller) in or-
der to keep the perceptual content of an image relatively
unchanged, and we can apply the same principle to the pro-
posed normalized mesh-based hashing that is operated in the
block-DCT domain. The major difference is that the inter-
scale relationship is considered in the wavelet domain, while
the intra-scale relationship is considered in the block-DCT
domain to construct an image hash.

On the other hand, discrimination means that a pair of
image hashes that are randomly obtained from two differ-
ent sources should ideally be uncorrelated; i.e., the BER
obtained using Eq. (3) should be approximately 0.5. Oth-
erwise, any query is likely to be falsely recognized as exist-
ing in the image database. This false detection probability is
also known as the false positive probability. Figure 7 shows
the numerical distribution of BERs calculated from 1 million
hash pairs that were randomly generated. The length of each
hash is 64 to fit the proposed method. The mean and standard
deviation of this distribution are 0.5 and 0.062, respectively.
It can be found from these results that random hash pairs can
statistically achieve an uncorrelated distribution.

In addition, our observations of real images are exactly
consistent with the theoretical result shown in Fig. 7. One

Fig. 7 Distribution of BERs calculated from random hash pairs (each
hash has a length of 64). The horizontal axis indicates the bit error
rate, while the vertical axis indicates the probability of occurrence of
a bit error rate. In this numerical distribution, the mean and standard
deviation are 0.5 and 0.062, respectively

Fig. 8 Distribution of BERs calculated from hash pairs (each hash has
a length of 64), where one hash is Lenna’s hash, and the other hash
is from the hash database. In this distribution, the mean and standard
deviation are 0.5 and 0.062, respectively

Fig. 9 Distribution of BERs calculated based on the best matched hash
pairs (each hash has a length of 64), where one hash is Lenna’s hash,
and the other hash is from the hash database. In this distribution, the
mean and standard deviation are 0.36 and 0.054, respectively

practical result is shown in Fig. 8 for comparison. The re-
sult shown in Fig. 8 was obtained by comparing a hash pair
that was composed of a hash of Lenna and a hash of an im-
age within a database (which contained all the hashes of
20,000 images, excluding Lenna). The mean and standard
deviation of this distribution are, surprisingly, found to be
0.5 and 0.062, respectively. These results indicate that our
hash extraction method achieves sufficient randomness.

When the best match criterion, as shown in Eq. (3), is
taken into consideration, the mean of the BERs obtained
from real hash pairs will be shifted. Figure 9 shows the result
obtained by using each hash of Lenna as a query to find the
best match (with the lowest BER) in a large hash database
(which contained all the hashes of 20,000 images, excluding
Lenna). Comparing Figs. 7–9, we can see that the mean of
the BERs in Fig. 9 has shifted to a value lower than 0.5. The
main reason for this result is that the best match that is pro-
duced from all matches with the lowest BER is considered.
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Finally, we also conducted experiments based on the best
match criterion (Eq. (3)) when the hash database contains
only hash sequences that are extracted from modified ver-
sions (by means of Stirmark) of a query image. In this case,
each of the ten standard images (I1, I2, . . . , I10), which will
be discussed in Sect. 5.1, was individually used as the query
image, and its corresponding hash database was created. The
mean and standard deviation of the distribution of BERs for
each query image similar to that in Fig. 9 are summarized in
Table 1. It is observed from Table 1 that the mean BERs are
almost all smaller than 0.25.

As previously mentioned in Sect. 3.4, two thresholds, T
and N , are relevant to both the false positive and false neg-
ative probabilities. Based on the practical results (shown in
Fig. 9 and Table 1) we have obtained, it has been experi-
mentally verified that T can be reasonably set to 0.25. The
method used to determine the remaining threshold N will be
discussed in the next section. Of course, T can also be var-
ied to find different N ’s. This tedious task will be ignored in
this paper.

4.2 Error analysis

In this section, we will discuss error analysis for threshold
selection, including false positive and false negative proba-
bility analysis. Under a sufficiently small false positive and
with T = 0.25 (note that T can also be used as a variable
for the purpose of analysis), the parameter N that defines
the number of matched mesh pairs (previously mentioned in
Sect. 3.4) can be derived. Recall that the hash size of a nor-
malized mesh is 64 bits. It is said that two random meshes
(one from the query and the other from the database) are
similar if their hash comparison satisfies Eq. (3); i.e., 16 bits
at most are different. Let pb

m be the probability of finding a
pair of hashes that have 2b bit errors. It is expressed as

pb
m =

(
C32

b

)2

∑l=32
l=0

(
C32

l

)2
, (6)

where C denotes a combinatorial function and (C32
l )2 de-

notes the number of possible cases in which 2l bits in two
compared hashes are found to be different. As shown in
Eq. (1), an AC coefficient with a larger (or smaller) mag-
nitude is assigned hash bit 1 (or 0). It is said that a bit er-
ror occurs if a larger (or smaller) AC coefficient becomes
smaller (or larger). Under this circumstance, it is not hard to
realize based on Eq. (1) that bit errors will appear in pairs,
i.e., 2 bit errors, 4 bit errors, and so on. Similarly, the de-
nominator of Eq. (6) stands for the total hash sequences that
have equal numbers of 0’s and 1’s. Furthermore, let pm de-
note the probability of finding a pair of hashes that satisfy a
matching score (i.e., BER) that is equal to or smaller than T ,
which can be expressed as

pm = p0
m + p1

m + · · · + p
64T

2
m ≈ 6.70 × 10−5. (7)

Similarly, (1 − pm) denotes the probability of mismatch for
a pair of hashes.

Let H0 and H1 be two hypotheses, where H0 specifies
the queried hash does not exist in the hash database and H1
specifies the queried hash exists in the hash database. Based
on Eq. (7) and a given value of N , the false positive proba-
bility given H0, p f p|H0, is defined as

p f p|H0 =
|M|∑

n=N

C |M|
n (1 − pm)|M|−n pn

m

≥ C |M|
N (1 − pm)|M|−N pN

m

≈ C |M|
N pN

m , (8)

where |M| denotes the number of meshes in an image;
C |M|

n (1 − pm)|M|−n pn
m , with n > N , is sufficiently smaller

than C |M|
N (1− pm)|M|−N pN

m ; and (1− pm)|M|−N is approx-
imately 1. Accordingly, p f p|H1, denoting the probability of
correct match, means true positive.

On the other hand, the probability of failing to retrieve
the desired target given that H1 holds should be smaller than
the false negative probability, p f n|H1. However, it is hard
to analyze p f n|H1 since various discrepancies between the
characteristics of digital image operations exist. Based on
our observations, the false negative probability can increase
if the query image is modified to a certain extent such that
most of the detected meshes are different from the originals.
Accordingly, p f n|H0 will denote true negative.

Substituting some cases of |M| and N into Eq. (8) and
solving p f p, we find several relationships between |M|, N ,
and sufficiently small p f p. Based on these numerical results,
we can conclude that N = 3 or 4 is feasible for obtaining
a sufficiently small p f p. Of course, we can use a larger N
value to get an even lower false positive probability. How-
ever, a larger N value also implies that false negatives can
easily occur.

4.3 Complexity

The complexity of the image hashing system that will be
discussed here includes the time spent on mesh-based hash
extraction and hash comparison, and the memory required
to store the constructed hash database. They will be, respec-
tively, discussed below.

As for the size of the proposed hash database, it is the
sum of the total size of the entries, the total size of the image
indices, and the total size of the image hashes, as illustrated
in Fig. 6. Because each entry is a binary vector of 16 bits,
the entry size is, in total, 216 ×16 bits, i.e., 131,072 bytes. In
addition, the total size of the image indices can be calculated
as |I D|×
log2 |I D|�× ¯|M|

8 bytes, where |I D| denotes the num-
ber of images in the image database, 
log2 |I D|� denotes
the number of bits used to represent an image’s index (
·�
denotes the ceiling operation), and ¯|M| is the average num-
ber of meshes in an image. Furthermore, the total size of the
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Table 1 Distribution of BERs calculated based on the best matched hash pairs (each hash has a length of 64), where one hash is from the query
image, and the other hash is from the hash database that is generated from the Stirmark attacked query image

BER’s Statistics I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

Mean 0.207 0.192 0.236 0.232 0.226 0.212 0.301 0.233 0.224 0.224
Standard deviation 0.128 0.124 0.133 0.133 0.131 0.133 0.120 0.117 0.136 0.136

image hashes can be calculated as |ID|× ¯|M|×64
8 bytes. There-

fore, the ratio σ between the size of a hash database and the
size of its corresponding image database can be calculated
as follows:

σ = 131072 + |I D|×
log2 |I D|�× ¯|M|
8 + |I D|× ¯|M|×64

8

|I D| × L̄ × W̄

≈ (
log2 |I D|� + 64) × ¯|M|
8 × L̄ × W̄

, (9)

where L̄×W̄ is used to denote the average size of various im-
ages. To clarify Eq. (9), let us take an image database of size
131,072, i.e., |I D| = 217, as an example. In addition, sup-
pose L̄ ×W̄ = 216 and ¯|M| = 26 approximately hold. Then,
we find that σ ≈ 0.01, which means that the size of the hash
database when compared with the size of the image database
can be limited within the order of 10−2. Basically, the ratio,
derived in Eq. (9), depends on the characteristic of an image
database and is said to be application-dependent. However,
Eq. (9) approximately indicates the relationship between the
hash database and its corresponding image database.

As for mesh-based hash extraction, it is actually the most
time-consuming step in our method because most of the
time is spent on warping during the mesh normalization pro-
cess. Basically, the number of arithmetic operations for pixel
transformation during mesh normalization is constant and is
proportional to the number of pixels in an original mesh.
Since the total number of pixels in all meshes that are re-
quired to execute normalization is approximately equal to
the size of an image, as a result, it can be concluded that
the time complexity of mesh normalization is proportional
to image’s size.

As for hash comparison, this step has been previously
described in Sect. 3.4. Since a sophisticated hash database is
created for fast coarse matching followed by full matching,
the time required for hash comparison, when compared with
that required for full matching [28], is significantly reduced.
This is because (i) the time-cost of full matching depends on
the number of images in the image database; (ii) the time-
cost of fast matching depends on the number of meshes in
the query image and on the small but fixed number of can-
didates that should be used for full matching. In fact, the
difference between (i) and (ii) lies on the number of com-
parisons between one hash sequence from the query image
and the other one from the hash database. More specifically,
the major difference is the size of the whole hash database,
which is |ID| × M̄ averagely for condition (i), and that of
the candidates determined in the coarse matching process,
which is significantly smaller than |ID| × M̄, for condition
(ii).

Overall, in the proposed scheme, the time required for
fast matching is smaller than that required for hash extrac-
tion, which is further smaller than the time required for full
matching.

4.4 Granularity

Granularity here means the minimum size of a query that
can be identified in a feasible way in an image hashing sys-
tem. As explained in Sect. 3.4.5, a valid retrieval is defined
as one in which at least N hash pairs are matched; thus, the
granularity is basically the size of a query that can accom-
modate at least N meshes. However, it is rather difficult to
settle on a fixed value for this size since the mesh’s size is
image-dependent and may vary under different attacks.

4.5 Scalability

The scalability of an image hashing system as discussed here
is the application scalability; i.e., the same hash database
can be used for different purposes. In this paper, copy de-
tection/tracing and content authentication applications will
be investigated. Since we have described the proposed im-
age hashing method for copy detection, in the following, we
will explain how the proposed hash database can be adopted
for image content authentication.

Imagine a scenario in which Alice would like to send an
image to Bob through a network. During the transmission
stage, in addition to the transmitted image, I, Alice will also
send the hashes of I to Bob, who can verify the authenticity
of the received image, Ia , according to the hashes, where
Ia is a modified version of I. Image content authentication
[3, 9, 10] demands that hashes be robust against incidental
modifications and sensitive to malicious distortions.

The mesh-based image authentication scheme proposed
in this paper operates as follows. First, the mesh-based
hashes are extracted from the received image, Ia , and com-
pared with the received hashes of I using Eq. (3). Then, those
meshes whose corresponding hashes do not satisfy Eq. (3)
will be marked as “incredible.”

5 Experimental results

In this study, several experiments were conducted to evaluate
the performance of the proposed mesh-based image hashing
and query system. In Sects. 5.1 and 5.2, the performance of
our copy detection scheme will be demonstrated, while in
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Sect. 5.3, the performance of our image content authentica-
tion approach will be demonstrated.

5.1 Robustness: resistance to miscellaneous attacks

First, ten color images with different contents (I1: Pepper;
I2: Lenna; I3: Bridge; I4: Sailboat; I5: Goldhill; I6: F16; I7:
Baboon; I8: Clock; I9: Tank; and I10: Splash) were used to
verify the robustness of our scheme against miscellaneous
attacks. The standard benchmark, Stirmark versions 3.1 and
4.0, was quite suitable for simulating various manipulations
of the digital images. The reader may refer to [19, 20] for
more detailed parameters of Stirmark. In this test, the origi-
nal image was used as a query to find out how many modi-
fied versions could be successfully detected. The results for
robustness verification are summarized in Tables 2 and 3, re-
spectively. In the two tables, each attack’s name is followed
by a digit in a parenthesis, which indicates the number of
times that the attack was performed with different parame-
ters. In addition, each field indicates the number of modified
images that were successfully identified. Here, N = 3 and
T = 0.25, as explained in Sects. 3.4 and 4.2, were adopted.
According to Tables 2 and 3, among 1910 modified images,
1761 could be correctly identified, which indicates that the
correct recognition rate was 92.2%.

From the above two tables, it can be observed that most
of the modified images could be successfully detected. A
few attacked images that failed to be identified are shown
in Fig. 10 for visual inspection. We can observe from
Fig. 10 that it was not possible to correctly extract meshes
from attacked images involving markedly degraded fidelity
and content elimination. In particular, severe cropping and
heavy noise addition could break the connections among
the meshes and thereby affect the hashes, thus defeating
our system even though the attacked images might have lost
their commercial value. However, compared with the exist-
ing methods1 it is evident that our scheme indeed achieves
promising resistance to extensive geometric distortions.

5.2 Identification: searching in a large database

The second group of experiments focused on the problem of
searching in a large image database. In this searching sys-
tem, the database was composed of so-called original color
images (which consisted of the Corel image database, con-
taining 20,000 images, and ten traditional images, such as
Lenna, Baboon, and so on), while the query image was sus-
pect in the sense that it could have been a modified version

1 We can see from Tables 4 and 5 of [18], Sect. 1 of [7], Table 1
of [17], Table 2 of [16], and the 2nd paragraph of Sect. 3 of [13]
that their evaluations were limited to only a few geometric attacks.
In Fig. 11 of [14], only four attacks were tested. We can see from [15]
that only few rotation and scaling attacks were tested. As described in
the 3rd paragraph of Sect. 5.1 of [6], only non-geometric attacks were
tested.

generated from our database or could have been totally ir-
relevant to the database. We used the attacked images, ob-
tained from Stirmark 3.1 and 4.0, as queries of the database.
Two measures, the recall rate and precision rate, were used
to evaluate the searching performance. They are dependent
on the parameters T , N , and n, and are, respectively, defined
as follows:

Recall (T, N , n) = No. of queries satisfying Eq.(3)

No. of total queries
,

Precision (T, N , n) = No. of queries satisfying Eq.(3)

No. of detections satisfying Eq.(3)
,

where n means the number of valid retrievals that may in-
clude the desired target. In the above two equations, “No.
of total queries” means the number of query images used
to query the database, “No. of queries satisfying Eq. (3)”
means the number of query images that can find a similar
target from the database, and “No. of detections satisfying
Eq. (3)” means the number of targets (in the database) that
can match the query image. Basically, “No. of detections
satisfying Eq. (3)” is an integer multiple (i.e., n) of “No.
of total queries.” Both the full matching and fast matching
procedures were applied to searching, and their results were
compared.

According to the full matching process (described in
Sect. 3.4.2), a so-called “successful search” needs to be
defined before the searching performance can be evaluated.
Here, a successful search means that at least one of the valid
retrievals (described in Sect. 3.4.5) contains the desired tar-
get. In this study, the top n valid retrievals were adopted to
check whether at least one of them contained the desired
target, where different values of n included 1, 2, 5, 10, and
100, respectively. In addition, we provide here information
about the overall performance in terms of both the recall
and precision rates, as depicted in Table 42. As can be seen
from Table 4, the overall searching results could improve
significantly (up to ≈90%) only if the number of valid
retrievals was less than 10. This outcome demonstrates that
the proposed searching strategy is very efficient in finding
the desired target without the need to check many valid re-
trievals. Note that the number of miss detections was slightly
larger than that obtained in the robustness test (as explained
in Sect. 5.1) because the search space had been broadened.
Basically, these results reveal that the desired originals were
hard to identify when the query images (e.g., Fig. 10) had
been severely modified. Moreover, the queries that could
not be found in the database were mostly consistent with
those that could not be identified in the robustness test.

In order to speed up the search process in the case of
a large database, the proposed fast matching process (as
described in Sect. 3.4) was also employed. The time-cost

2 It should be noted that the traditional precision rate vs. recall rate
measurement used in content retrieval may not be suitable for media
hashing. This is because we are interested in identifying the correct
target instead of just similar ones. As a result, increasing the number
of detections will dramatically decrease the precision rate.
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Table 2 Robustness of our scheme vs. Stirmark 3.1

Stirmark 3.1 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

SPA (6) 6 6 6 6 6 6 6 6 6 6
JPEG (12) 12 12 12 12 12 12 12 12 12 12
GLGT (3) 3 3 3 3 3 3 3 3 3 3
CAR (8) 8 8 8 8 8 8 7 8 8 8
LR (5) 5 5 5 5 5 5 5 5 5 5
Flipping (1) 1 1 1 1 1 1 1 1 1 1
Cropping (9) 8 7 7 8 8 8 4 8 3 6
RC (16) 15 15 15 15 14 15 12 15 14 15
Scaling (6) 6 6 4 6 6 6 2 6 4 4
RRS (16) 15 15 15 16 15 16 10 16 12 14
Shearing (6) 6 6 6 6 6 6 6 6 6 6
RB (1) 1 1 1 1 1 1 1 1 1 1

Attacks are denoted as SPA: the signal processing attack, including median filtering, Gaussian filtering, sharpening, and frequency mode Laplacian re-
moval (FMLR); JPEG: compression with quality factors ranging from 90% to 10%; GLGT: general linear geometric transform; CAR: change of the aspect
ratio; LR: line removal; RC: rotation + cropping; Scaling: scaled with factors ranging from 0.5 to 2.0; RRS: rotation + re-scaling; RB: random bending.

Table 3 Robustness of our scheme vs. Stirmark 4.0

Stirmark 4.0 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

AffineT (8) 8 8 8 8 8 8 8 8 8 8
ConvF (2) 2 2 2 2 2 2 1 2 1 1
Cropping (4) 2 1 1 1 2 2 0 1 1 2
JPEG (12) 12 12 12 12 12 12 12 12 12 12
MF (4) 4 4 4 4 4 4 4 4 4 4
Noise (6) 1 1 1 2 1 2 1 1 1 1
SS (3) 3 3 3 3 3 3 3 3 3 3
Scaling (6) 5 6 4 6 5 6 4 6 4 6
RML (10) 10 10 10 10 10 10 10 10 10 10
PSNR (11) 11 11 11 11 11 11 11 11 11 11
Rotation (16) 16 16 16 16 16 16 16 16 16 16
RRS (10) 10 10 10 10 10 10 10 10 10 10
RC (10) 10 10 10 10 10 10 10 10 10 10

Attacks are denoted as AffineT: affine transformation; ConvF: convolution filtering; Cropping: cropped to 3
4 , 1

2 , 1
4 , and 1

5 of the original size; JPEG:
compression with quality factors ranging from 90% to 10%; MF: median filtering; Noise: noise addition; SS: self-similarities; Scaling: scaled with factors
ranging from 0.5 to 2.0; RML: removing lines; PSNR: all pixel values increased by the same quantity; Rotation: pure rotation; RRS: rotation + re-scaling;
and RC: rotation + cropping.

Table 4 Recall rate vs. precision rate for full searching with Stirmark

Query searching
Stirmark 3.1 (890 queries) Stirmark 4.0 (1020 queries)

Top n matches 1 2 5 10 100 1 2 5 10 100
Recall rate (%) 82.1 86.5 90.7 93.3 94.5 84.4 87.1 89.4 90.4 91.2
Precision rate (%) 82.1 43.3 18.1 9.3 0.9 84.4 43.5 17.9 9.0 0.9

Fig. 10 Examples of failures in the robustness test. a and c were caused by Stirmark 4.0, and b and d were caused by Stirmark 3.1
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Fig. 11 Original images for content authentication. The detected
meshes are imposed on the images

Fig. 12 Content authentication under malicious tampering: a the im-
age modified through face substitution in the middle part of Fig. 11
a; b the areas that were detected as having been maliciously tampered
with are indicated by meshes with white lines

Fig. 13 Content authentication under malicious tampering: a the im-
age modified through object substitution applied to the top-right part
of Fig. 11b; b the areas that were detected as having been maliciously
tampered with are indicated by meshes with white lines

could be greatly reduced because entry entrance checking
offers early elimination of those images that are dissimilar
to the query. The overall performance of fast searching in
terms of both the recall and precision rates is depicted in
Table 5. Comparing Tables 4 and 5, we find that the pro-
posed fast searching strategy is efficient and achieves per-
formance comparable to that of full searching. In addition, it
can be found that the precision rates drop significantly when
the top n matches become large. This is because the target
we would like to search is the “original” corresponding to
the query image, and the number of originals for a query (if
the query is modified from the one in the database) is only
one.

Fig. 14 Content authentication under malicious tampering+incidenal
modification (affine transformation): a the modified image and its de-
tected meshes; b the areas that were detected as having been mali-
ciously tampered with are indicated by meshes with white lines

Fig. 15 Content authentication under malicious tampering+incidenal
modification(JPEG with a quality factor of 30%): a the modified image
and its detected meshes; b the areas that were detected as having been
maliciously tampered with are indicated by meshes with white lines

5.3 Content authentication

In this section, image content authentication performed us-
ing the proposed hash database will be analyzed. If the at-
tacker only manipulates the image by means of incidental
modifications, the authenticated results will be the same as
the results obtained in the robustness test, as explained in
Sect. 5.1. In addition, we will further consider two scenarios
involving actions that the attacker may perform: (i) mali-
cious modification; and (ii) malicious modification + inci-
dental modification. Some results with respect to the above
two scenarios are shown in Figs. 11–15, respectively.

Figure 11 shows two original images that were trans-
mitted from the sender Alice to the receiver Bob. During
transmission, the original images were maliciously tampered
with by pasting in an additional object to form modified
images, as shown in Figs. 12a and 13a. Since the newly
added objects destroyed the original mesh structures and
their corresponding hashes, the areas (containing a number
of meshes) that contained the pasted object were located as
shown in Figs. 12b and 13b. In addition, the images shown in
Figs. 14a and 15a were further manipulated using some inci-
dental operations. The resultant attacked images are shown
in Figs. 14a and 15a, respectively. After our authentication
scheme was performed, the areas that were detected as hav-
ing been maliciously tampered with were those shown in
Figs. 14b and 15b, respectively.
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Table 5 Recall rate vs. precision rate for fast searching with Stirmark

Fast searching
Stirmark 3.1 (890 queries) Stirmark 4.0 (1020 queries)

Top n matches 1 2 5 10 100 1 2 5 10 100
Recall rate (%) 80.5 84.5 87.2 87.2 87.2 83.6 85.1 86.0 86.2 86.2
Precision rate (%) 80.5 42.5 17.5 8.7 0.9 83.6 42.5 17.2 8.6 0.9

It can be observed from the above authentication results
that the areas that were detected as having been maliciously
tampered were composed of two kinds of meshes. The first
kind was meshes newly generated from pasted objects, while
the second kind was meshes generated due to some salient
points that changed due to incidental manipulations. How-
ever, our method in its current form could not distinguish be-
tween the two kinds of meshes. A more robust salient point
extraction technique is required.

6 Conclusions

A robust mesh-based image-hashing scheme for content
management of digital images has been proposed in this pa-
per. Our scheme is mainly composed of two components:
(i) mesh-based robust hash generation and (ii) hash database
construction for error-resilient and fast searching. In com-
parison with the existing methods, the main contribution of
our approach is that it significantly improves the resistance
of image hashing to geometric distortions. Furthermore, we
have investigated several media hashing issues, including
robustness and discrimination, error analysis, complexity,
granularity, and scalability. We have also demonstrated ap-
plication of the robust mesh-based image hashing system to
both copy detection and content authentication.

However, our scheme is somewhat complex because
most of the time is spent on mesh normalization. Fortu-
nately, the hash database used for querying and search-
ing can be built in an off-line manner. As a result, time is
mainly spent on mesh-based hash generation of an incom-
ing query image. However, our scheme compensates for this
cost by offering robustness against geometric distortions. A
fast matching process has also been proposed to speed up
searching in a large image database. To understand the im-
pact of different parameters on the false alarm rate, error
analyses were conducted to derive guidelines for determin-
ing the necessary parameters.

Some directions for further research have been identified
as follows. First, we will study the challenging problem of
achieving more robust feature point extraction for mesh gen-
eration. This problem is particularly crucial for both iden-
tification of small images and mesh-based image authenti-
cation. Second, we will extend the scope of our method to
searching and identifying images in URLs. Finally, the se-
curity of media hashing that may be application-dependent
is worth studying.
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