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ABSTRACT

In x-ray and ion-beam computerized tomography, there are a number of reconstruction

effects, manifested as artifacts, that can be attributed to the geometry of the experimental

setup and of the object being scanned. In this work, we will examine four geometric

effects that are common to first- and third-generation (parallel beam, 180 degree)

computerized tomography (CT) scanners and suggest solutions for each problem. The

geometric effects focused on in this paper are: "X-pattern" artifacts (believed to be caused

by several errors), edge-generated ringing artifacts (due to improper choice of the

reconstruction filter and cutoff frequency), circular-ring artifacts (caused by employing

uncalibrated detectors), and tuning-fork artifacts (generated by an incorrectly specified

center-of-rotation). Examples of ali four effects are presented. The X-pattern and edge-

generated ringing artifacts are presented with actual experimental data introducing the

artifact. Given the source of the artifact, we present simulated data designed to replicate the

artifact. Finally, we suggest ways to reduce or completely remove these artifacts. The

circular-ring and tuning-fork artifacts are introduced with actual experimental data as weil,

while digital signal processing solutions are employed to remove the artifacts from the data.

I. INTRODUCTION

Artifacts in CT images are due to many factors [MAR89, SCH89, SCH90]. A partial list is

as follows:



• Noise due to photon counting, photon scattering, electronic noise, beam-hardening,

etc.,

° Insufficient data as in the limited-view or limited-angle situations,

° Reconstruction algorithm effects,

• Geometric effects of object shape (e.g., large aspect ratio) and data acquisition.

Each of these factors should be considered in the experimental design and data analysis,

and deserve considerable study. However, this report focuses only on a few types of

common geometric effects that arise in experimental practice: (1) "X-pattern" artifacts

within square objects are believed to be caused by several errors, (2) edge-generated

ringing artifacts are due to reconstruction filter characteristics, (3) circular-ring artifacts are

due to uncalibrated detectors, and (4) tuning-fork artifacts are rc=,dting from an incorrectly

specified center of rotation.

We can achieve improved CT reconstructions by paying careful attention to ali sources of

potential error in CT scanning systems [MAR89] and the reconstruction codes [SCH90].

The four geometric effects specifically described above have their own characteristic error

signatures that can be identified, and softwaresolutions can be applied to improve the data

quality.

For ali reconstructions discussed in this work, we assume:

• Uniformly-spaced detectors along a straight line in each projection,

° Parallel-beam source illumination (or, for a fan-beam, the ability to re-bin the data

into this form),

• Use of the filtered backprojection (FBP) algorithm [HER80] with linear interpolation

between the rays for the reconstruction process.

II. BACKGROUND

A) The forward CT oroblem

In CT, the goal is to extract intbrmation about the interior of an object by constructing a

cross-sectional image (or 2D slice plane) of the object from projection data. The projected

rays are the measurements of the integrated values of an object parameter along straight
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lines through the object. For an x-ray scanner [MAR88], the object parameter is the linear

attenuation coefficient per unit volume; then the line integral represents the total attenuation

of the x-ray beam as it travels in a straight line through the object. For a proton-energy-

loss (PEL) CT scanner, the object parameter of interest is the total number of electrons per

unit volume. The measured proton energy loss, determined from the residual energy of the

transmitted protons, are converted to electrons per unit area (a line'integral of electrons

illuminated by the beam) before image reconstruction.[PON89, ANT89].

A projection is formed by combining a set of line integrals. Computationally the simplest

type of projection to work with is the parallel projection. This is the case where each line

integral in a projection represents a collection of parallel rays passing through the object at a

fixed angle. In an actual experimental set-up, a parallel projection could be measured by

moving a single source and a single detector along parallel lines on opposite sides of an

object, or by translating the object between a fixed source and detector. This is known as a

first generation CT scanning arrangement.

A second type of projection, known as a fan-beam projection, uses a single point source

placed in a fixed position relative to a line, or array, of detectors. The resulting projection

is called a fan-beam projection because the line integrals are measured along a collection of

rays that form a fan for each angle of rotation. Since fan-beam projection data can be

rearranged or "rebinned" into parallel projections, we will concern ourselves with parallel

projection data only.

Next, we develop a mathematical model that expresses the attenuation coefficient in terms

of the measured intensity. Consider that we have a single monoenergetic beam of x-ray

photons (less than 1.022 MeV to avoid pair production) propagating through some

material. The beam attenuation is due to either photons completely absorbed by the material

(photoelectric absorption), or the scattering of photons from the original direction of

travel.[BAR81] Consider an incremental thickness of this material in which No

monoenergetic photons are incident upon it at some unspecified time. Due to attenuation,

somewhat less than No photons emerge from the other side. If we combine the photon loss

rate and the Compton effects into one linear attenuation parameter, B, then the number of

photons as a function of position within the slab can be modeled as

N(l) = No exp(-I.tl), (1)
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where/2 is assumed constant over the slab and I is the distance through the slab. For non-

uniform objects, where/2 changes with material, we can assume that the effects of small

regions on the total beam attenuation can be integrated. Let us represent the linear

attenuation coefficient at each small region in a single slice plane by _x,y), where x and y

are spati_J Cartesian coordinates. Then using No(L) to be the number of incident photons

along a beam path L, the number of ex_,tingphotons, N(L), will be

N(L) = N°(L) expI" fL /2(x'Y) du 1' (2)

where u is the integration distance along L. By exploiting the linear relationship between

the number of photons and intensity (number of photons per unit time-area), the above

expression can be written in terms of beam intensity, or

I(L) = l°(L)exp I" Lf /2(x,y) du 1' (3)

where Io is the measured incident intensity and I is the transmitted intensity. If we further

define g(s,O) as the linear attenuation line-integral through space along a line defined by the

polar coordinates s and 0 (which represent the point of closest approach of the line from the

origin), then

g(s,O) = f /2(x,y) du , (4)
L

where s is in the range (.,,o,+,,,,) and 0 is in the range (O,Tr). Therefore, we have

[lo(s,ff )_.)g(s,O) = In [./-_s, ']' (5)

The above relationship expresses the attenuation coefficient line integr',ds in terms of

measured intensity values. The g(_,O) values are the ones to be reconstructed (see next

section). Our scanners measure Io first, without the object in the beam-path, then they take

multiple measurements of l(s,O) at various _¢and 0. After calibration and preprocessing,

the line integrals are computed as in Equation 5. The incident intensity, Io, is shown here

to be a constant, but it too can vary over the field.
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In PEL computerized tomography, line-integral v',dues must also be derived from the actual

measurements. For an explanation of the determination of I and lo (in this case the

intensity is a measure of electrons per unit area) from PEL data, see [ANT89]. It is

possible that errors in the measurement or determination of the incident intensity, Io, can

occur in both x-ray and PEL experiments. We will examine the effects of this error in the

section on X-pattern artifacts observed in square objects.

B) The inverse CT oroblem-

From the line integral measurements,g(s,O), we must use a computer algorithm to

re.construct the slice plane into a 2D image. There are several ways to accomplish this, but

the algorithm used in many applications of tomography is the filtered backprojection

algorithm. It has been shown to be reasonably accurate and amenable to fast

implementation when presented with complete projection data [JAI89, AZE88].

The basis of the FBP algorithm is the Fourier Slice Theorem. The Fourier Slice Theorem

shows the equivalence of the one-dimensional Fourier transform of a projection to the two-

dimensional Fourier transform of the object along a single radial slice. Given the Fourier

transforms of projections from enough angles, a complete estimate of the two-dimensional

transform could be assembled and then inverted to arrive at an image estimate.

Conceptually, this approach is straight forward, but impractical because the interpolation

required before inversion is very sensitive to errors. Instead, the analytic derivation of

FBP stems directly from the Fourier Slice theorem [JAI89], and we find it to be more

commonly used. All the analyses in this report use the FBP algorithm.

The FBP algorithm for parallel projections consists of performing the following steps for

each projection angle:

• Measure the projection and convert to the line integrals g(s,O),

• Compute the one-dimensional Fourier transform of each projection,

° Apply the appropriate weighted filter function,

• Inverse Fourier transform the filtered projection,

• Sum the filtered projections over the image plane along the integration lines (this is

the backprojection operation).
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The image starts at zero and the result of backpr0jecting all of the filtered projections

produces the final reconstructed image.

III. RESULTS AND DISCUSSION

In this section, we will describe each geometric effect in turn and suggest solutions to

them. Where possible, alternate sources of more detailed information will be given.

A) "X-pattern" artifact observed in square objects

Reconstructed imager of homogeneous square objects using x-ray and PEL CT data

sometimes result in an X pattern within the reconstructed image. This is observed in the

PEL images shown in Figure 1, and could be due to any or ali of the following: incorrectly

computed electron areal density value, the partial volume effect, Coulomb repulsion

causing spreading of the beam, effective "beam softening" (an effective shift of the proton

beam to lower energy as it traverses the object most noticeable along diagonals of a square

or rectangular object), or some other unmodeled effect in the preprocessing. There was

also some question as to whether the X pattern is a result of the reconstruction algorithm.

In this work, we test only two of the above theories -- the reconstruction algorithm and a

simulated incorrect electron areal density or x-ray intensity values- and suggest further

studies to isolate the actual cause from the groundwork laid here.

The first task is to verify the reconstruction algorithm by showing that if the data represents

perfect (simulated) line-integrals through a square object, the reconstruction algorithm is

not responsible for the X-pattern artifact. We begin by simulating a two dimensional

square object as shown in Figure 2(a). The object consists of a 64 by 64 pixel image with

a centered 32 by 32 square of attenuation value 1. The projections for a first generation

scanning configuration were simulated with the software package CTSIM [AZE90]. This

package computes the noiseless line integrals, g(s,O), through the object of interest. The

reconstruction from these simulated projections, shown in Figure 2(a), reveals a uniform

square image as expected. This proves that, given correct projections from a square object,

the reconstruction algorithm produces the correct image. Therefore, for the PEL data, the

reconstruction algorithm is not responsible for the X-pattern artifact, and fault must lie with

one or a combination of the effects mentioned above.



Secondly, let us examine the effects of incorrectly measuring or computing the incident

intensity value. We investigate the effect of the multiplicative error in Io with no error in

the l(s, O)measurements. To see these effects mathematically, let us multiply !o from

Fxtuation 5 by a constant, C1'

g'(s,O) = ln[l°(s'O) * Cl 1

= In[. + ln[Cl]

g'(s,O) = g(s,O) + ln[Cl]. (6)

A multiplicative error in Io leads to an offset or bias in the line integrals. If Cl>l, the line

integrals are biased by adding the natural logarithm of the constant value. If C1<1, the line

integrals are biased by subtracting the natural logarithm of the constant value.

We have generated data sets with different values of C1 and reconstructed them (Figures 2

and 3). This was accomplished by simulating the projections through the object,

subtracting or adding a bias to the projections, setting negative values to zero, and

reconstructing the biased projections. In the ta'st case the projections were reduced by an

offset that was 50%, 30%, and 10% of their maximum value (illustrated in Figures 2(b),

(c), and (d) respectively). These images ali display reconstruction artifacts, the most

pronounced being the 50% image. The accompanying one-dimensional plots in Figures

2(e) and (f) display the respective horizontal and diagonal line-outs from Figure 2(a), (b),

(c), and (d).

In the other case, projections were increased by an offset that was 50%, 30%, and 10%

over their maximum value and are illustrated in Figures 3(b), (c), and (d) respectively.

Again, the accompanying one-dimensional plots (Figures 3(e) and (f)) display the

respective horizontal and diagonal line-outs from Figure 3(a), (b), (c), and (d).

This study indicates the importance of correctly measuring or calculating the incident

intensity. Also, it has been verified that the image reconstruction algorithm does not

produce the X-pattern artifact. Finally, although an incorrect source intensity produces

artifacts, these artifacts do not closely match the X-patterns in Figure 1. However, Figure

2(b) does display somewhat of an X pattern and thus the data in Figure 1 may be partly due

to an inaccurate measurement of Io, Furthermore, we conclude that the X pattern in Figure
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1 may also be due to other prepr_essing steps that form the line-integrals. Likely

candidates are the partial volume effect due to the finite width of the proton beam anu the

proton beam softening. Ftu'ther studies are being conducted to investigate these

hypotheses.

B) Edge-generated ringing artifacts

In this section, the effects of filter type and cutoff specification are studied. As previously

discussed [SCH89], the filtering operation is an essential element in the filtered

backprojection algorithm. The choice of an incorrect filter or Gibb's phenomenon (caus__d

by a sharp cutoff in the filter window) can create artifacts in the reconstructed image. This

problem manifests itself as oscillatory intensity variations near the edges of sharp objects

and sometimes throughout the reconstructed image. Figure 4 shows examples of edge-

generated artifacts in the reconstruc't2on of ch'cular objects from real experimental x-ray

data. The actual projection data were reconstructed with a ramp filter [SCH89] and

normalized cutoff frequencies of 0.15, 0.25, and 0.35 times the fold-over frequency, as

shown in Figure 4(a), (b) and (c) respectively.

For ease in the comparison of various filters and cutoff values, in the following discussion

we use only simulated data. The projections for a perfect circle and square are calculated.

We then apply our FBP algorithm with the ramp and Butterworth filters at several different

cutoff frequencies. The reconstructions are tt"_n compared.

The first experiment utilizes an object consisting of a 64 by 64 pixel image with an included

circle of 16 pixel radius, with unity attenuation value throughout the circle. The projections

are generated and the FBP algorithm is applied with the ramp and Butterworth filters for

cutoffs of 0.1, 0.3, and 0.5 (as shown in Figures 5, 6 and 7). The reconstructions that use

the ramp filter show more of the ringing artifact (see Figure 5(b), (c), and (d)). The most

pronounced tinging is present in the ramp filter with a 0.1 normalized cutoff frequency.

This can be attributed to the sharp cutoff in the frequency region where the data contains

significant energy. This is very similar to convolving the data with an ideal low-pass filter

(which has a sinc function as its frequency response) introducing the Gibb's phenomena.

The Butterworth filter, on the other hand, produces significantly less tinging but the edges

tend not to be as clear. This is due to ',he fact that Butterworth low-pass filters are

characterized by the property that the magnitude characteristic is maximally flat at the

frequency origin, and the slope of the roll-off is finite (i.e., more graceful in its descent)
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[RAB75]. The lower frequencies reconstruct quite weil, while the higher frequency

information is filtered out by the filter roll-off and consequently is unavailable for

reconstruction. (Sharp edges require higher frequencies in their frequency representation.)

In the second set of experiments, the simulated circular object was replaced with a square

object. The second object consisted of a 64 by 64 pixel image with mi included 32 by 32

square at the center-of-rotation with an attenuation value of 1. Projections are generated

and the FBP algorithm is applied with th_-ramp and Butterworth filters with parameters

identical to those of the first set. As in the first set of experiments, the most pronounced

tinging was _ lth the ramp filter and a cutoff frequency of 0.1. These results are shown in

Figures 8, 9, and 10.

This study suggests that the Butterworth filter reduces the ringing artifact while the ramp

filter seems to produce sharper edges at the same cutoff. It is important to determine the

"best" filter based on noise, edge sharpness and edge tinging, and select that combination

of parameters which insure the reconstructed data to be of acceptable quality for the

intended application [SCH89].

C) Circular-ring _rtif_ct_

The,'e are many applications that use a third-generation scanning geometry [HER80]. An

inherent problem with this class of scanner becomes apparent with uncalibrated or

imbalanced detectors [SCH89] within the detector array. Gain or offset imbalances from

detector to detector in linear- or area-array detector systems produces vertical lines in the

sinogram (set of projections). Consequently, concentric rings are introduced in the

reconstructed image. T_:eprevalence of this systematic error in several of our scanners

motivates our interest in this study.

The multiple detectors are calibrate¢t and software solutions are applied in an effort to

correct for gain and offset imbalances in our third-generation CT scanners [MAR89], but it

often doe,s not completely eliminate these imbalances early in the preprocessing phase.

Thus, we perform further corrections using techniques which will minimize this artifact.

The approach we use, suggested by Kowalski [KOW78], essentially consists of ensemble

averaging the projectior, _for each detector over the projection angles, high-pass filtering

the averaged projections, and using those offsets as corrections to each ctetector.



Figure 11(a), shows a partial reconstruction of a third generation scan with detector-to-

detector imbalances. Notice the concentric rings in the reconstructed image. The

complimentary image Figure 11(b) illustrates the reconstruction of the same data set with

the Kowalski algorithm applied, The line-out in Figure 11(c) shows the improved results

with the application of the algorithm with no overall magnitude shift in the data.

D) "Tuning.fork" or centering artifacts

In this section, the effects of systematic errors from incorrectly specifying the center of

rotation of a scanned object is studied. We begin by presenting experimental data of a two-

dimensional circular object (Figure 12). The incorrect specification of the projected

rotational center causes the filtered backprojection integral to introduce an artifact that has a

"tuning-fork" appearance in the reconstructed image, as well as a distortion o_ the circular

body of the object [AZE90a]. Notice that not only is the tuning-fork effect gone when the

center is correct, but the object appears to be circular, as it should be.

This artifact may be minimized by using one of several techniques: (1) an accurate

measurement of the center of rotation (sometimes highly impractical); (2) image

reconstruction using different centers until the correct one is found (usually very time

consuming); or (3) computation of the center of rotation from the sinogram. We perform

the latter by an algorithm that essentially consists of: (1) forming a signal of the computed

center-of-mass for each projection (over 180 degrees), and (2) fitting a sinusoid of known

frequency to the signal; using the sinusoidal offset as an estimate of the center of rotation.

For a complete description and analysis of this algorithm see [AZE90a].

IV. CONCLUSIONS

In this work, we examine four geornetric effects that are common to first- and third-

generation (parallel beam, 180 degree) computerized tomography scanners. The geometric

effects focused on in this paper are: X-pattern, edge-generated ringing, circular-ring, and

tuning-fork artifacts.

The study conducted on X-pattern artifacts (caused by several poss_,bleerrors) indicates the

importance of correctly calculating the incident intensity. A second, and very important,

result is the verification that the image reconstruction algorithm does not produce the X-
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pattern artifact, and therefore must be due to some other physical effects or a preprocessing

step that forms the line-integn'als.

The edge, generated tinging study points out the importance of determining the "best"

reconstruction filter based on noise, edge sharpness, and edge tinging, Insight gained

from our study on the edge-generated tinging artifact (due to improper choice of the

reconstruction filter and cutoff frequency) suggests that the ramp filter should be avoided

so that Gibb's phenomenon at sharp edges is minimized. The Butterworth filter of order

six reduces the ringing artifact at a cost of slightly smr_other edges.

Studies conducted on data with circular-ring artifacts (caused by employing balanced

detectors) suggests that gain or offset imbalances from detector to detector in linear- or

area-array detector systems produces concentric tings in the reconstructed image. A signal

processing technique which minimizes this artifact is given.

The final geometric artifact, the "tuning-fork" artifact in the reconstructed image (generated

by an incorrectly specified center-of-rotation), may be minimized by computing the center

of rotation from the sinogram. This simple procedure can be done in software.

The underlying theme of the collective studies is that we can achieve improved CT

reconstructions by paying careful attention to ali sources of potential error in CT scanning

systems arid the reconstruction codes.
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Figure Captions

Figure 1. PEL tomographic images of a uniform square object. Each image from left to
fight, top to bottom represents one slice, two adjacent sli,ces summed, three adjacent slices
summed, etc. Notice the electron density X pattern in each slice. The objex_tinspected was
known to be uniform. Thus we do not believe the X to be due to a density variation within
the object, but that it must be caused by some unknown effect(s). (Data courtesy of Art
Pontau and Dan Morse of Sandia National Laboratory, Live, more.)

Figure 2. Reconstructed images simulating a negati ze incident intensity bias for projection
data of a uniform simulated square. (a) The original object consists of a 64 by 64 pixel
image with an included 32 by 32 square of unit attenuation. The projections of this object
were simulated, reduced by 50%, 30%, and 10% of their maximum vah,_, and

reconstructed (shown in (b), (c) and (d) respectivvly). Horizontal (from left to fight at the
center) and diagonal (upper left to middle) line-outs of the various reconstructions are
displayed in (e) and (f) respectively.

Figure 3. Reconstructed images simulating a positive incident intensity bias 'for simulated
projection date, of the uniform square. (a) The original object is the same as in Figure 2(a),

but is shown here at the appropriate intens._y scale for this prot-lem (since the projections
are larger, due to the positive bias being added). The projections of this object were
simulated, increased by 50%, 30%, and 10% of their maximum value, and reconstru,- ted
(shown in (b), (c) and (d) respectively). Horizontal (from left to fight at the center) and
diagonal (upper left to middle) line-outs of the various reconstructions are displayed in (e)
and (f) respectively.

Figure 4. Edge-ringing caused by the ramp filter with different cutoff frequencies. Actual
dat is shown reconstructed using filter cutoffs of (a) 0.15, (b) 0.25, and (c) 0.35 times the
fold-over frequency. Notice the appearance of ringing illustrated in the line-outs (d) that
changes with cutoff frequency. The reconstructed object is PBX9502 which is a very
unifon'n high explosive material. The projection data was acquire_ausing PBCAT
[MAR90], a first-generation scanner.

Figure 5. Ramp filter study results for a simulated circular object. (a) The original object
consists of a 64 by 64 image with a circle at the center of rotation with unit attenuation.
The projections of this object were simulated, and then reconstructed ,_sing a ramp filter in

the FBP 'algorithm at cutoffs of (b) 0.1, (c) 0.3, and (d) 0.5 times the fold-over frequency.

Figure 6. Butterworth filter study results for a simulated circular object. The original
object is the one shown in Figure 5(a). The projections of this object were simulated, and
then reconstructed using a sixth-order Butterworth filter in the FBP algorithm at cutoffs of
(b) 0.1, (c) 0.3, and (d) 0.5 times tae fold-over frequency.

Figure 7. Horizontal lice-outs through the center of tile ramp and Butterworth filtered
images shown in Fi,_:res 5 and 6.

Figure 8. Ramp filter study results for a simulated square object. (a) The original object
consists of a 64 by 64 image with an included 32 by 32 square at the center of rotation with
unit attenuation. The projections of this object were simulated, and then reconstructed
using a ramp filter in the FBP algorithm at cutoffs of (b) 0_1, (c) 0.3, and (d) 0.5 times the
fold-over frequency.
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Figure 9. Butterworth filter study results for a simulated square object. The original object
is the one shown in Figure 8(a). The projections of this object were simulated, and then
reconstructed using a sixth-order Butterworth filter in the FBP algorithm at cutoffs of (b)
0.1, (c) 0'3, and (d) 0.5 times the fold-over frequency.

Figure 10. Horizonts I line-outs through the center of the ramp and Butter'worth filtered
images of Figures 8 and 9.

Figure 11. Circular ring artifacts caused by detector.-to-detector imbalances in a third
generation scan. (a) The reconstructed image with the imbalanced projections produces a
noticeable concentric ring pattern. (b) A reconstructed image of the same data set after
applying the Kowalski algorithm reduces the artifact effectively. (c) The line-outs through
the high-density inclusion show some smoothing of the noise with little distortion of the
true features.

Figure 12. Artifacts due to an incorrect specification of the center-of-rotation. The correct
projection center is a value of 140 (shown in (c)) whose reconstruction shows no artifacts.
Other reconstructions with incorrect centers ((a), (b), (d), and (e)) display a distorted object
and the "tuning-fork" artifact.
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