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Geometric effects induce anomalous size-dependent active transport in

structured environments
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Variations of transport efficiency in structured environments between distinct individuals in ac-
tively self-propelled systems is both hard to study and poorly understood. Here, we study the
transport of a non-tumbling Escherichia coli strain, an active-matter archetype with intrinsic size
variation but fairly uniform speed, through a periodic pillar array. We show that long-term trans-
port switches from a trapping dominated state for shorter cells to a much more dispersive state for
longer cells above a critical bacterial size set by the pillar array geometry. Using a combination of
experiments and modeling, we show that this anomalous size-dependence arises from an enhance-
ment of the escape rate from trapping for longer cells caused by nearby pillars. Our results show
that geometric effects can lead to size being a sensitive tuning knob for transport in structured
environments, with implications in general for active matter systems and, in particular, for the
morphological adaptation of bacteria to structured habitats, spatial structuring of communities and
for anti-biofouling materials design.

Structural features of environments have been recently shown to have a significant impact on the motility
phases of active matter systems [1–12]. However, much less is known about how the interplay between
variations in individual particle geometry and environmental structure affects macroscopic transport. For
motile bacterial systems, in particular, such effects [13–17] can have implications for tunable transport in
structured habitats. These implications arise because bacteria come in a variety of shapes and sizes across
species [18–20] and even within a single strain [21–23]. It has been suggested that such widely distributed
shapes and sizes are a consequence of adaptation to a diversity of features in their environments ranging from
mechanical properties to nutrient availability [18]. In particular, the optimization of transport or dispersal
is known to provide a strong selective pressure for bacterial morphology evolution [18, 24–26]. For bacteria
that live in structured or porous environments such as soil or tissue [27, 28], proximity to a surface involves
a whole host of physical interactions. These include hydrodynamic [29–32], electrostatic [33], and steric
[34] forces as well as flow induced effects [14, 15, 35], which could affect transport in a geometry dependent
manner [16, 36, 37]. Here we study the possibility that the interplay between minor, intrinsic variations
in the geometry of swimmers and structural features of the environment could lead to significant transport
effects at the macroscopic scale.

One of the main challenges for such a study is that, in a standard microscope setting, a freely moving
individual cell can only be observed, with adequate resolution of individual geometry, over a length scale
similar to that of the cell size (∼10 µm). Meaningful statistics for its long-range transport over the millimeter
scale is therefore hard to obtain. Here, we resolved this issue by following individual bacteria via a tracking
microscope, where the microscope stage is adjusted in real-time to recenter the cell of interest in the field of
view [25]. To provide a structured environment, we fabricated a rectangular microfluidic channel, 1 mm wide
and 30 µm deep, embedded with square arrays of micropillars using a standard soft photolithography method
(see Methods). A typical pillar array with pillar radii R = 15 µm and lattice size a = 40 µm (with the closest
gap thus d = a − 2R = 10 µm) is shown in Fig. 1(a). To focus on purely geometrical effects on transport
that are applicable to generic active matter systems, we used a smooth swimming Escherichia coli strain,
HCB437, which avoids any potential active response by the bacteria switching between run and tumble
phases [38]. Additionally, this strain shows a natural length variation from 2 − 10µm between individuals
allowing us to examine the effects of microscopic geometry on macroscopic transport. We visualized the
transport of these bacteria through the pillar array at a high (60× or 100×) magnification over millimeters
by reconstructing trajectories. This was done by stitching together single image frames during the course of
tracking (see Supplementary Material) as shown in Fig. 1(b). Even though the tracked bacterium navigates
the pillar array over a long distance, its detailed movement and orientation can still be resolved by visiting
every single frame with a submicron resolution (Fig. 1(b)).

We first examined in detail the trajectories of several bacteria with different sizes. Independent of size,
bacteria are constrained to move within the open spaces between pillars and the presence of noise leads
to an overall diffusive trajectory at long times. However, we noticed two qualitatively different modes of
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motility depending on size. Short cells (2 − 5 µm), on the one hand, frequent the pillar surfaces and move
mostly in circular patterns, due to effective hydrodynamic trapping [30, 32, 36] by the pillar array (Fig. 2(a),
also see Movie S1). Distinct from a plane-wall-induced circulation [29], this circulation around the pillar
is bidirectional, regardless of the chirality embedded in the flagellar filaments (Supplementary Material,
Fig. S7). Longer cells, on the other hand, appear to escape from such traps, resulting in more persistent
movement along the directions of two orthogonal lattice vectors (here, x- and y-axes) (Fig. 2(a), also see
Movie S2). Thus, longer cells, despite feeling an increased confinement, showed an anomalous increase in
their net transport.

To further quantify these distinct effects of the pillar array on bacteria with different sizes, we computed
the probability distribution of the centers of bacteria in space within a single unit cell. As shown in Fig. 2(b)
and (c), shorter bacteria are concentrated near the pillar surface (consistent with a hydrodynamic attraction
[14]), while longer cells spend more time in the channels, confirming a size-dependent trapping effect. It is
worth noting that tracking the front end of a cell provides essentially the same distribution near the pillar
surface (Supplementary Material, Fig. S5), suggesting a negligible role of cell length in volume exclusion.

To understand the mechanism governing this effect, we considered the geometric constraints on a swimming
bacterium due to neighboring pillars. For simplicity, the bacterium is regarded as a rod-shaped pusher of
length lp, which is the effective hydrodynamic size set by the flow profile of the entire swimmer including the
cell body (of length l) and the flagella (Fig. 3a, inset). Such a pusher tends to circulate around a single pillar
in its natural state (without any neighboring pillars), due to the known hydrodynamic attraction between a
solid surface and a generic pusher swimmer, including both bacteria and synthetic microswimmers [37, 39].
In the presence of the neighboring pillars, the allowable pusher sizes are restricted, with the maximum length
lp,max determined by the geometry (Fig. 3a). In addition to the length constraint, a pusher is also subjected
to hydrodynamic interactions from the neighboring pillars. Here, we consider a pusher circulating in the
counter-clockwise direction and assume the pusher’s orientation is always tangential to the pillar surface that
it is circulating around. Depending on the orientation of the pusher relative to the pillar lattice (denoted by
angle γ), the pusher may experience a torque from the nearest-neighbor pillar that either promotes or inhibits
its circulation around the pillar. Such distinct effects are determined by the orientation angle θp of the pusher
relative to the surface normal of the nearest-neighbor pillar (Fig. 3a). Here, we consider only the normal
component of the hydrodynamic force from the pillar, associated with the anisotropic drag coefficients in
the presence of a nearby wall [40, 41]. For θp < 0, the normal force from the nearest-neighbor pillar provides
a torque that tends to tip the pusher toward the center of the pillar it is circulating around, leading to an
effective attraction to the pillar surface. For θp > 0, the torque due to the nearest-neighbor pillar tends to
tip the pusher further away from the center causing the pusher to escape (likely along the tangent to the
pillar surface). Considering the tangential components of the forces does not alter the directions of these
torques, as long as the drag coefficient normal to the pillar surface dominates. It should be noted that we
only treated the above pusher in a resistive-force-type manner to signify the geometric roles played by the
nearest-neighbor pillar. More qualitative and quantitative insights of the hydrodynamic interactions requires
resolving the flow field associated with a full pusher model including no-slip boundaries with pillar geometries
[30].

This nearest-neighbor effect leads to a series of alternating attractive and repulsive zones along the perime-
ter of the pillar (with γ ∈ [0, 2π) ), determined by the sign of θp. Figure 3b shows the calculated θp and
lp,max (see Supplementary Material) for a counter-clockwise circulating pusher and a pillar lattice that is
consistent with the experimental setting (R/a = 0.375). The attractive (θp < 0) and repulsive (θp > 0)
zones are shaded in red and blue, respectively. Zones that lack any constraints from the nearest-neighbor
pillar (in white) are also considered attractive, due to the natural circulating state of pushers (in the absence
of the neighboring pillars). This result shows four continuous attractive zones (blue plus white) along the
perimeter of the pillar, with each spanning an arc angle ∆γ0 = 1.1 rad, centered near γ = 0, π/2, π, and
3π/2, respectively.

To facilitate a more quantitative comparison between the experiment and the theoretical picture, we mea-
sured a residency arc angle ∆γ = γf −γi, which is the difference between the two angles where the bacterium
enters (γi) and escapes (γf ) the vicinity of the pillar surface (Fig. 3c, inset). The bacteria continuously cir-
culates the pillar over an arc subtending this angle without leaving the surface. The experimental residency
arc angles ∆γ, plotted against cell lengths l, are shown in Fig. 3c. At short cell lengths (l . 4 µm), ∆γ can
span over larger angles (∆γ > 2π), corresponding to the presence of multi-turn circulations. As l increases,
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∆γ becomes restricted only to small angles (e.g., ∆γ . π for l & 7 µm). Such a restriction in the distribution
of ∆γ is responsible for the decrease in its mean with increasing l. For sufficiently long l (l & 10 µm), the
mean ∆γ falls beneath the size of the computed attractive zone (∆γ0 = 1.1 rad), consistent with a highly
constrained pusher that is unable to bypass any repulsive zones (as required for circulations beyond a single
attractive zone). We also note that there is no such size dependence of ∆γ for sufficiently large gaps among
pillars (Supplementary Material, Fig. S6), which further validates our geometric arguments.

To further validate our model, we investigated the statistics of the angles, γf , at which bacteria escaped
the pillar surface. The probability density function (PDF) of γf shows peaks near the diagonal directions
of the pillar lattice (Fig. 4a), consistent with the predicted locations of the repulsive zones (Fig. 3b). This
highly anisotropic distribution of γf also justifies the use of a single escaping probability Pesc (within all
repulsive zones only) for characterizing the size-dependent geometric effects. Such an escaping probability
is consistent with the stochastic nature of the competition between both the hydrodynamic attraction from
the orbited pillar and the “repulsive” contribution from the nearest-neighboring one, associated with the
fluctuating orientation and location of a microswimmer. If we consider that bacteria only escape within
repulsive zones, Pesc can be obtained as Pesc =

Ne

Nz

, where Ne and Nz correspond respectively to the number
of escaping events and the number of repulsive zones that bacteria cross during their travel along the pillars’
perimeters. Noting that the angular separation between the centers of two adjacent repulsive zones is π/2

and neglecting the detailed escaping locations, the number Nz is given by Nz =
∑Ne

i=1

(

[2∆γi/π] + 1
)

, where
i corresponds to the index of an escaping event and [·] denotes the integer part of a number. The escaping

probability is thus the inverse of an ensemble average (denoted by 〈·〉), i.e., Pesc =
〈

[

2∆γ/π + 1
]

〉

−1

. We

computed this probability Pesc from experiments for different groups of cell body lengths l. As shown in
Fig. 4b, there is a transition from a low escaping probability (Pexc ≈ 0.3) for relatively shorter cells (l . 5
µm) to a high escaping probability (Pexc ≈ 1) for relatively longer ones (l & 7 µm). A hyperbolic-tangent
fit of the experimental data yields a function (solid curve in Fig. 4b) Pesc(l) = P0 +(1−P0) tanh

(

l − lc/∆l
)

with the critical cell body length lc = 6.0 µm demarcating the distinct escaping behaviors.

To show how this geometric effect manifests itself in the long-time transport of bacteria, we simulated
bacterial trajectories by a kinematic model (using the above Pesc(l)): a bacterium that reaches a pillar surface
stays on the surface and continues circulating the pillar if it is within an attractive zone or it escapes with
a probability Pesc if it enters a repulsive zone (in red in Fig. 3b). Here, we assumed that a bacterium moves
at a constant speed u, which is a fairly good approximation for the non-tumbling mutant (Supplementary
Material, Fig. S8). After escaping along the direction tangential to the pillar’s circumference, the bacterium
moves at constant speed until it reaches an attractive or repulsive zone of the next pillar along its trajectory.
A white noise in swimming direction was extracted from experimental trajectories (Supplementary Material,
Fig. S2) and introduced to the model swimmer when it is away from the pillar surface. We then computed the
corresponding mean squared-displacement (MSD) for comparison with the experimental data (Fig. 4c). To
secure optimal convergence, the MSD values were binned by path lengths ∆s and sampled over all trajectories
within the same size l group. For all experimental MSD (dots in Fig. 4c), cell body lengths l (3 - 9 µm)
were grouped every 2 µm to secure a sufficient number (& 20) of long trajectories (& 200 µm) within each
size category. All data points with less than 10 sampled trajectories were excluded. Each simulated MSD
of the corresponding l (dashed line in Fig. 4c) was computed over 100 model swimmers with each of them
traveling 400× a in total path length s from a random starting position. As shown in Fig. 4c, the simulated
MSD reproduces well the characteristics of bacterial transport. In both experimental and simulated results,
each MSD-∆s curve contains a ballistic regime for small ∆s and a diffusive regime for large ∆s. The size
of the ballistic regime can be characterized by a ballistic length ∆sc (Fig. 4c), set by the crossover point
between two distinct scaling regimes for transport (with MSD exponents α = 1 and α = 2). Interestingly,
the ballistic length ∆sc/a ≈ 1 for relatively shorter cells, reminiscent of the effective reorientation time scale
τ = a/u for point-like particles diffusing in obstacle networks [42, 43]. While converging at short ∆s, the
long-time MSD-∆s curves are noticeably higher for longer cells, corresponding to longer ballistic lengths
∆sc at longer cell lengths l and thus suggesting a finite-length effect. Again, longer cells, despite feeling
an increased confinement, display an anomalous increase in their MSD due to the geometric effects of the
neighboring pillars. These quantitative agreements between the experiment and theory further confirms the
dominant role played by geometry.

Our study illustrates the role of individual morphology in the transport of active particles in general and



4

bacteria, in particular, through periodic structured media. In living systems, this surprising enhancement
of transport for longer cells, combined with a maximal cell size set by interstitial spaces of the lattice,
suggests an optimal cell size potentially determined by the geometry of a porous environment [18, 24,
44]. Similar geometry-sensitive effects in transport of wild-type strains may already be present, but not
explicitly identified, in other studies of bacterial transport [17]. Generalizing our geometric effects to such
3D environments will enable targeted design of environmental geometry for desired size-dependent transport
and collective motion [13, 45, 46]. For a non-periodic lattice, it is expected that the above geometric effect
still applies in general, since any geometric constraints due to nearest-neighbor pillars always tend to influence
the longer cells first before they can influence shorter cells. However, the location and size of the repulsive
zones, as well as the critical cell-body length now vary for each pillar, leading to more complex escaping zones
and thus more complex global cell kinematics. Also, in the extreme case that multiple pillars are within the
vicinity, a long cell will be more easily jammed as it requires more room for reorientation, contributing to
another type of geometric constraint. These potential effects due to disorder in the crystalline structure of
the environment will be investigated in our future work.

Our findings also indicate that the transition between localized and dispersive modes is sharp and occurs
at a critical value of bacterial size, controlled by the porous environment. Bacteria with typical sizes near
this critical value may be able to access both modes of transport by adaptive change in their size based
on the local nutrient conditions or other desired transport needs.This suggests, for example, an unexplored
benefit of filamentation under starvation conditions in E. coli , in addition to others that have been proposed
in the literature [47–49]. Our results also have implications for the spatial structure of naturally occurring
bacterial colonies in structured environments where spatial location within the colony could be correlated
with age dependent cell-size, due to differential transport.

In nature, patterned structures with periodic lattices are widely found on antibiofouling surfaces, such
as cicada wings [50] and shark skins [51]. The geometric effects we have identified thus provide a new
perspective for revisiting these microscale structures in relation to their antibiofouling effects. Conversely,
our work also suggests ways to engineer surfaces so as to either increase or decrease the residency of different
bacterial strains with slightly different sizes or even differentiating age structured populations, which may
also be of interest in biofouling applications. Such ideas could also be applied to designing environments
for the desired sorting or guiding of synthetic microswimmers as well as the geometric design of individual
swimmers.
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FIG. 1. Simultaneous large-scale and high-resolution study of bacterial transport in a micropillar array through
active tracking and image stitching. (a) The trajectory of a single E. coli (tracked up to ∼1 mm in distance and ∼10
minutes in time) was reconstructed to characterize its long-term transport. The trajectory is color coded in time. (b)
The high resolution that was preserved in each original frame in (a) provided the detailed cell and pillar geometry.
The pillars were R = 15 µm in radius, arranged in a square lattice with a lattice constant of a = 40 µm, and a gap of
d = a− 2R = 10 µm between adjacent pillars. The tracked bacterium (in a dashed contour) was l ≈ 6 µm in length.
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FIG. 2. Cell size-dependent trapping and escaping effects. (a) Multiple trajectories for different individuals (color
coded by cell length l) are mapped to the same pillar array. The shorter cells tend to circulate around the pillars
while the longer cells tend to navigate between the pillars, indicating the distinct trapped and escaping mechanisms,
respectively (highlighted in the inset). (b) Probability distribution ρ of the shorter cells (l < 5 µm), normalized by
a uniform density ρ0, shows an effective enhancement at the pillar surface. (c) A similar plot for longer cells (l > 7
µm) shows the opposite effect.
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FIG. 3. Lattice-constrained bacterial residency on the pillar surface. (a) A “pusher” representation of the bacterium
(inset, with a cell body length l and a total pusher length lp) illustrates the geometric constraints for a bacterium
circulating around a pillar (at angular position γ). An elongation of lp to lp,max (the greatest possible lp without
intersecting neighboring pillars) shows that the adjacent pillar (yellow) can either provide a positive (blue) or a
negative (red) contribution to the circulation, demarcated by the orientation (θp) of the pusher relative to surface
normal of a neighboring pillar np. This leads to periodically attractive (θp < 0 or without adjacent neighbors; blue
or white) and repulsive (θp > 0; red) zones on a pillar. (b) A computation of θp (solid lines) and maximum lp,max

(dashed lines) give rise to a residency arc angle ∆γ0 = 1.1 rad (for a = 40 µm, R = 15 µm). (c) The residency
arc angles ∆γ (squares), averaged over individual residency events (filled circles), decrease with increasing l and
eventually to values below the size of the attractive zone γ0 (when l & 10 µm), confirming suppressed circulation for
longer cells.
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FIG. 4. Size-dependent escaping and global diffusivity. (a) The non-uniform distribution of angles of escaping (γf ,
illustrated in Fig. 3c, inset) shows more probable escaping of bacteria along the diagonals (i.e., kπ/4 with k = ±1,
±3) of the square lattice, consistent with the locations of the repulsive zones. (b) The escaping probabilities Pesc are
calculated from bacterial trajectories for different cell lengths l (open squares with error bars representing the standard
errors). The solid curve corresponds to a fit with a hyperbolic tangent function. (c) The mean squared-displacement
(MSD) as a function of the path length (∆s) exhibits a transition from a ballistic regime (MSD ∝ ∆s2) to a diffusive
one (MSD ∝ ∆s) for both experiments (circles) and numerical simulations (see SI) with the corresponding Pesc

(dashed lines). The size of the ballistic regimes, depicted by a ballistic length ∆sc (arrow), increase with l or Pesc,
consistent with the geometry-induced escaping for longer cells. All lengths in trajectories are normalized by lattice
size a.
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