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GEOMETRIC EXPONENTS FOR HYPERBOLIC JULIA
SETS

STEFAN-M. HEINEMANN AND BERND O. STRATMANN

Abstract. We show that the Hausdorff dimension of the Julia set as-
sociated to a hyperbolic rational map is bounded away from 2, where

the bound depends only on certain intrinsic geometric exponents. This
result is derived via lower estimates for the iterate-counting function
and for the dynamical Poincaré series. We deduce some interesting con-
sequences, such as upper bounds for the decay of the area of parallel-
neighbourhoods of the Julia set, and lower bounds for the Lyapunov

exponents with respect to the measure of maximal entropy.

1. Introduction

We consider Julia sets J(T ) $ C of hyperbolic holomorphic endomorphisms
T : C → C of the Riemann sphere. It is well-known that these maps form
a large open set inside the set of all holomorphic endomorphisms, and it is
conjectured that they are in fact dense (‘Fatou conjecture’). Furthermore,
hyperbolic maps satisfy the ‘analogue of the Ahlfors conjecture for Kleinian
groups’, which asserts that the Julia set has always vanishing 2-dimensional
Lebesgue measure. This is an immediate consequence of the well-known fact
that for hyperbolic rational maps the Julia set is porous, and hence its Haus-
dorff dimension h is strictly less than 2 (see, e.g., [13]).

In this paper we refine the latter result by giving an upper bound for h in
terms of certain intrinsic parameters. Our estimate clearly reveals the geo-
metric obstacles which prevent a hyperbolic Julia set from having Hausdorff
dimension 2. In order to state this estimate, let T have critical distance c (the
distance of J(T ) to the forward orbit of the critical points of T ), core exponent
κ (the inverse of the maximal distortion of T on J(T )), and inner lacunar-
ity exponent λ (that is, roughly, the area of U(J(T ))/

〈
T−1
∗
〉
, where U(J(T ))
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denotes a suitable neighbourhood of J(T ) and
〈
T−1
∗
〉

is the semi-group gen-
erated by the holomorphic inverse branches of T ). Our main result, Theorem
4.1, relates these three geometric exponents to the Hausdorff dimension of
J(T ). Namely, we show that

h < 2− 2 λκ10

area(Uc(J(T )))
,

where Uc(J(T )) denotes the c-neighbourhood of J(T ).
Our motivation for this estimate came from attempts to understand the

relationship between the spectrum of the Laplacian and certain intrinsic geo-
metric quantities, such as volume and length-spectrum for hyperbolic mani-
folds. For geometrically finite, infinite-volume hyperbolic manifolds a lower
bound for the bottom of the Laplace spectrum was obtained in [5] in terms of
the convex core of the manifold (i.e., its volume and the area of its boundary).
In certain cases this leads to upper bounds for the Hausdorff dimension of the
associated Kleinian limit sets. In a recent paper [12], we derived by purely
geometric means a similar type of bound for all convex cocompact Kleinian
groups.

In this paper we adopt the geometric method of [12] and show how to
adjust it to the setting of hyperbolic rational maps. We first prove the ex-
istence of geometrically well-behaved coverings of J(T ) (Lemma 2.2) and of
packings of the Fatou set F (T ) := C \ J(T ) (Lemma 2.3). This allows us to
introduce the concepts of ‘iterate-counting function’ and ‘dynamical Poincaré
series’, which are the natural analogues of the ‘orbital counting function’ and
‘Poincaré series’ for Kleinian groups. We then derive a more precise estimate
for the h-conformal measure (Lemma 2.5), and apply partial summation, a
standard technique in number theory, to obtain lower bounds for the iterate-
counting function (Lemmas 2.2 and 3.1) and the dynamical Poincaré series
(Proposition 3.3). We next interpret these estimates in terms of the fractality
of J(T ) and the lacunarity of F (T ), which then gives our main result, the
bound for the Hausdorff dimension of J(T ) stated above.

2. Hyperbolic Julia sets

2.1. The geometry of hyperbolic Julia sets. Throughout the paper,
let T : C → C be a hyperbolic holomorphic endomorphism of the Riemann
sphere. We assume that C is equipped with the Euclidean metric d. Let
J = J(T ) denote the Julia set of T , and F = F (T ) := C \ J(T ) the Fatou
set. Furthermore, let c = c(T ) denote the critical distance of T , that is, c
is the distance (with respect to d) between the Julia set J and the forward
orbit

⋃∞
n=1 T

`(Crit) of the critical points Crit of T . Then it is well-known
that the hyperbolicity of T is equivalent to the fact that c is strictly posi-
tive (cf. [2]). Furthermore, the periodic components of F are basins of (su-
per-)attracting periodic points. Without loss of generality, we assume that∞
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is such a periodic point, so that, in particular, J is contained in C, and that
the holomorphic inverse branches {T−1

∗ } of T are strictly contracting on J ,
i.e., maxz∈J{|(T−1

∗ )′(z)|} < 1.

Definition 2.1 (Core Exponent). The core exponent of T is defined
as κ := minz∈J{|(T−1

∗ )′(z)|}.

We now define the sequences (Cn) of coverings of J as follows. Fix an
optimal initial cover C0 of J by open discs D0,i of diameter cr0 centred at
points zi of J , where

r0 = r0(κ) :=
1− 4
√
κ

1 + 4
√
κ
.

Here ‘optimal’ is to be interpreted in the sense that the cover is of minimal
cardinality. For n ∈ N, let Cn = {Dn,i} denote the n-th lexicographical cover
of J , given by the family of all n-th inverse images of the elements in C0. Put
C :=

⋃
n∈N Cn, and order the elements of C according to their dynamical sizes,

defined by ‖D‖ := |(T−n∗ )′(zi)| for D = T−n∗ (D0,i) ∈ Cn. More precisely, let
C = {D0, D1, D2, · · · } be such that ‖Dn‖ ≥ ‖Dn+1‖, for all n ∈ N.

Lemma 2.2. For all positive t ≤ 1, the set {D ∈ C : κ2t < ‖D‖ < t}
covers the Julia set J .

Proof. We define r1 := (1 − r0)3/(1 + r0) and r2 := (1 + r0)3/(1 − r0).
By the definition of r0 it follows that r1/r2 = κ. For z ∈ J(T ), there exists
n(z) ∈ N such that

r1 · κt < |(Tn(z))′(z)|−1 ≤ r1 · t.

Let D0,i be an element of C0 such that Tn(z)(z) ∈ D0,i. If T−n(z)
z denotes the

inverse branch such that T−n(z)
z (Tn(z)(z)) = z, and zi is the center of D0,i,

then, by Koebe’s theorem (see [11]) we have∣∣∣(T−n(z)
z )′(Tn(z)(z))

∣∣∣
r2

<
∣∣∣(T−n(z)

z )′(zi)
∣∣∣ <

∣∣∣(T−n(z)
z )′(Tn(z)(z))

∣∣∣
r1

.

This shows that

κ2t = r1 ·
κt

r2
< ‖T−n(z)

z (D0,i)‖ < r1 ·
t

r1
= t. �

Let us make the following conventions. For every D0,i ∈ C0 fix a disc
F0,i ⊂ D0,i ∩ F (T ). We associate to each disc Dn an inverse image Fn ⊂ Dn

of one of the discs F0,i obtained by the same backward iterate as Dn. More
precisely, if Dn = T−i∗ (D0,j) then Fn := T−i∗ (F0,j).

The following lemma shows that we can choose the family {F0,i} such that
the induced family {Fn} serves as an inner approximation for the orbit of
a kind of fundamental domain for the ‘almost-discontinuous action’ of the
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inverse branches of T . Recall that a packing of a given set is a collection of
non-empty open subsets which are pairwise disjoint.

Lemma 2.3. There exists a choice of {F0,i} with the following properties
(where, as above, r1 = (1− r0)3/(1 + r0)).

(i) The set F := {Fn : n ∈ N} is a packing of the Fatou set F .
(ii) There exists a positive constant λF = λF (T ) such that

area(Fn) ≥ λFr2
1 · ‖Dn‖2 for all n ∈ N.

Proof. The hyperbolicity of T implies that the periodic components of F
are basins of (super-)attracting periodic points. We fix such a periodic point
ω. Let p be the prime period of ω. Note that if T is a polynomial then ω
may be chosen to be equal to ∞, and consequently p = 1. Thus, there exists
a simply connected neighbourhood V of ω such that V is mapped into itself
by T p. Furthermore, for some 0 < s < 1 and Bs := {z : |z| < s}, the map
T p|V is conjugate to z 7→ (T p)′(ω) · z|Bs , if ω is an attracting fixed point, and
conjugate to z 7→ zν |Bs , if ω is a super-attracting fixed point (so that (T p)′

has a zero of order ν − 1 at ω). Let R denote the ring-domain, defined as the
pre-image (under conjugation) of {z : |(T p)′(ω)|s ≤ |z| < s} in the attracting
case, and as the pre-image (under conjugation) of {z : sν ≤ |z| < s} in the
super-attracting case. Let G denote a maximal disc in R disjoint from the
forward orbit of Crit. Clearly, all inverse branches of T are well-defined on
G. Since T i(R) ∩ T j(R) = ∅ for i 6= j, we deduce that, for any two different
inverse branches T−k∗ and T−`+ ,

T−k∗ (G) ∩ T−`+ (G) = ∅.

If E is a relatively compact set whose closure does not contain periodic points
in F , then it is well-known that T−n(E) converges to J in the Hausdorff
topology. (This is an immediate consequence of [3, Th. 6.1].) In particular,
this holds for E = G. Thus, there exists n1 such that T−n(G) ⊂

⋃
iD0,i for all

n ≥ n1. Furthermore, there exists n2 such that for each n ≥ n2 the diameter
of every element of T−n(G) is less than the Lebesgue number of the cover C0.
Finally, since C0 was chosen to be optimal, it follows that each D0,i contains
an open subset D∗0,i intersecting J such that D∗0,i ∩D0,j = ∅ for j 6= i. Hence
there exists n3 such that T−n(G) ∩D∗0,i 6= ∅ for each i and for every n ≥ n3.

With n0 := max{n1, n2, n3}, we define F0,i as a maximal disc contained
in an element of T−n0(G) and intersecting D∗0,i. Clearly, the induced sets Fn
fulfil the first assertion of the lemma, i.e., form a packing (in the above sense)
of the Fatou set. To prove the second assertion, note that for Fn = T−j∗ (F0,i)
we have

r1 · ‖Dn‖ ≤ inf
z∈F0,i

|(T−j∗ )′(z)|.
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Thus, we obtain

area(Fn) ≥ λFr2
1 · ‖Dn‖2,

where λF := mini{area(F0,i)}. �

Definition 2.4 (Inner lacunarity exponent). The inner lacunar-
ity exponent λ of T is defined as the supremum of the numbers λF from
Lemma 2.3, taken over all possible choices of families F .

2.2. Conformal measures. Recall from [1], [6] and [13] that, given a
hyperbolic rational map with Julia set of Hausdorff dimension h, there exists
a unique h-conformal measure m supported on J , i.e., a probability measure
satisfying

m(T (E)) =
∫
E

|T ′(ξ)|hdm(ξ)

for each Borel set E ⊂ J on which T is injective. It was shown in [7] that h is
the least real number s for which there exists an s-conformal measure. It is
known that m is a non-atomic measure which is in the same measure class as
the h-dimensional Hausdorff measure on J . In particular, we have 0 < h < 2.

The following estimate, which will be crucial in the sequel, gives a more pre-
cise version of the fact that the h-conformal measure is absolutely continuous
with respect to the h-dimensional Hausdorff measure.

Lemma 2.5. For each D ∈ C we have

m(D) < r2
2κ
−4 ‖D‖h.

Proof. Without loss of generality (note that, by construction, 0 < ‖D‖ ≤ 1)
we can assume that κn+2 < ‖D‖ ≤ κn, for some n ∈ N. By construction
we have D = T−j∗ (D0,i) for some i, j ∈ N. Recall that ‖D‖ is given by
|(T−j∗ )′(zi)|. Hence, applying Koebe’s theorem as in the proof of Lemma 2.2,
we immediately obtain

|(T j)′(ξ)| > 1
r2 · ‖D‖

≥ κ−n

r2

for all ξ ∈ D. By the h-conformality of m, it follows that

1 ≥ m(T j(D)) =
∫
D

|(T j)′(ξ)|hdm(ξ) >
κ−nh

rh2
·m(D).

Since h < 2, we deduce that

m(D) < r2
2κ
−4‖D‖h. �
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3. Estimates from below for the iterate-counting function and the
dynamical Poincaré series

Lemma 3.1. The ‘iterate-counting function’

N(t) := card{D ∈ C : t ≤ ‖D‖}

satisfies, for each t ∈ (0, 1],

N(t) > Kκ t
−h,

where Kκ := κ8/r2
2,

Proof. For t ∈ (0, 1] define A(t) := {D ∈ C : t ≤ ‖D‖ < t/κ2}. By
Lemma 2.2, the sets in A(t) form a covering of J . Hence, by Lemma 2.5, it
follows that

1 = m

 ⋃
D∈A(t)

D

 ≤ ∑
D∈A(t)

m(D)

≤ r2
2κ
−4

(
t

κ2

)h
card(A(t)) < r2

2κ
−8th ·N(t) = K−1

κ th ·N(t). �

Definition 3.2 (Dynamical Poincaré series). For s ≥ 0, the dynam-
ical Poincaré series for the hyperbolic rational map T is defined by∑

D∈C
‖D‖s.

It is well-known that h is the exponent of convergence of the Poincaré
series for T (see [7]). The following proposition makes this more precise by
giving an estimate for the rate at which the Poincaré series approaches infinity
as s tends to h. An immediate consequence of this result is that hyperbolic
rational maps are of ‘h-divergence type’, that is, the dynamical Poincaré series
diverges for h = s.

The proof uses partial summation, a standard technique in number theory
(see [4]).

Proposition 3.3. For each s > h, we have∑
D∈C
‖D‖s > Kκ

s

s− h
.

Proof. For n ∈ N, we define the increasing sequence tn := ‖Dn‖−1 and let
g(t) := t−s. Then t0 = 1, and for x ∈ [t0,∞),

N(1/x) = card{tn : tn ≤ x}.
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Thus, partial summation and Lemma 3.1 yield∑
‖Dn‖≥1/x

‖Dn‖s =
∑
tn≤x

g(tn)

= N(1/x)g(x)−
∫ x

t1

N(1/t)g′(t)dt

= N(1/x)g(x) + s

∫ x

1

N(1/t)/ts+1dt

> N(1/x)g(x) +Kκ s

∫ x

1

th−s−1dt

= N(1/x)g(x) +Kκ s

(
x−(s−h)

h− s
+

1
s− h

)
.

Letting x tend to infinity then proves the assertion of the proposition. �

4. Upper bounds for the Hausdorff dimension

Theorem 4.1. Let T be a hyperbolic rational map with Julia set of Haus-
dorff dimension h. If T has critical exponent c, core exponent κ and lacu-
narity exponent λ, then

h < 2− 2 λκ10

area(Uc(J(T )))
.

Proof. Recall that r0 := (1− 4
√
κ)/(1+ 4

√
κ) < 1. By Lemma 2.3 and Propo-

sition 3.3, we have, for any family F of the type introduced in Section 2.1,
with U%(J) := {z : d(z, J) < %} for % > 0, that

area(Uc(J)) ≥ area(Ucr0(J)) >
∑
n∈N

area(Fn)

≥ λFr
2
1

∑
n∈N
‖Dn‖2 ≥ λFr2

1Kκ ·
2

2− h
.

Taking the supremum over all F , we obtain

area(Uc(J)) ≥ λ r2
1Kκ ·

2
2− h

.

An elementary rearrangement then gives the theorem. �

5. Some applications

5.1. Upper bounds for the decay of area. Theorem 4.1 may be ap-
plied to derive upper bounds for the decay of the area of ε-neighbourhoods of
the Julia set.
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To this end, consider a compact set E ⊂ Rn, and let Nε(E) denote the
minimal number of sets of diameter at most ε that cover E. For the n-
dimensional volume (voln) of the ε-neighbourhood of E, we then have the
following well-known formula (see, e.g., [8]):

lim
ε→0

logNε(E)
− log ε

= n− lim
ε→0

log voln(Uε(E))
log ε

.

Combining Theorem 4.1 with this general result from fractal geometry, we
obtain the following result.

Proposition 5.1. Let T : C→ C be a hyperbolic rational map with Julia
set J(T ) ⊂ C, critical distance c, core exponent κ and lacunarity exponent λ.
Then the area of ε-neighbourhoods of J(T ) satisfies

lim
ε→0

log area(Uε(J(T )))
log ε

≥ 2 λκ10

area(Uc(J(T )))
.

Proof. For hyperbolic Julia sets it is well-known that the Hausdorff di-
mension and the box-counting dimension coincide and are equal to h. In
particular, we have

lim
ε→0

logNε(J(T ))
− log ε

= h.

Combining this fact, Theorem 4.1, and the above mentioned formula from
fractal geometry, the assertion follows. �

5.2. Lower bounds for the Lyapunov exponent. Theorem 4.1 can be
used to derive lower bounds for the Lyapunov exponent with respect to the
measure of maximal entropy for T .

Recall that there exists a unique measure µ = µ(T ) of maximal entropy
log(d) for T , where d denotes the degree of T (see [10]). By a result of
Ledrappier [9], the Lyapunov exponent χµ with respect to µ satisfies

log d = hχµ.

Combining this relation with the estimate for h in Theorem 4.1, we immedi-
ately obtain the following proposition.

Proposition 5.2. Let T : C→ C be a hyperbolic rational map with Julia
set J(T ) ⊂ C, critical distance c, core exponent κ and lacunarity exponent λ.
Then the Lyapunov exponent χµ satisfies

χµ ≥
1
2
· log(d) · area(Uc(J(T )))

area(Uc(J(T )))− λκ10
. �
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5.3. A class of examples. Due to the fractal nature of the Julia set,
computing numerical values of the geometric exponents c, κ, λ is, in general,
a highly non-trivial task. In particular, the explicit determination of λF may
turn out to be difficult. In this section we illustrate the practical application
of our method for a certain easy class of examples.

For τ ∈ R, τ < −(5 + 2
√

5)/4, we consider the family of quadratic maps
T = Tτ given by

T : C→ C such that z 7→ z2 + τ.

It is well-known that J(T ) is a Cantor set which is a subset of the real line.
Let Γ := 1/2 +

√
1/4− τ denote the outer escape radius and γ :=

√
−τ − Γ

the inner escape radius. It is easy to see that |z| > Γ implies |T (z)| > |z|, and
that |z| < γ implies |T (z)| > Γ. Hence it follows that J(T ) is contained in the
closed annulus Aγ,Γ centred at the origin with inner radius γ and outer radius
Γ. Also, note that the critical point 0 satisfies T (0) = τ , T 2(0) = τ2 + τ , and
that |Tn(0)| > |τ2 + τ | for all n > 2. Hence, the critical distance c of T is
equal to γ, and the core exponent κ of T turns out to be equal to (2Γ)−1.
Consequently, in this example the constant r0 of our construction in Section
2 is equal to ( 4

√
2Γ− 1)/( 4

√
2Γ + 1).

In order to obtain a lower bound for λ, the following observation will be
helpful. The proof of this result is straight-forward and we omit it.

Lemma 5.3. For z0 ∈ R, z ∈ C we have

|2T (z)− T (z0 + |z − z0|)− T (z0 − |z − z0|)|
≥ 2 |T (z0 + |z − z0|)− T (z0 − |z − z0|)|. �

For a closed interval I ⊂ R, let B(I) denote the ball centred on the real
line such that B(I) ∩ R = I. Then T−1

∗ (B(I)) ⊂ B(T−1
∗ (I)) holds for each

interval I ⊂ R and any holomorphic inverse branch T−1
∗ .

The structure of J(T ) as a Cantor set is as follows. J(T ) is contained in
the two intervals [−Γ,−γ] and [γ,Γ] of order 1. The inverse images of these
two intervals give rise to four intervals of order 2. By carrying on in this way,
we obtain inductively 2n intervals of order n. Clearly, (Γ− γ)/(2γ)(n−1) is an
upper bound for the length of an interval of order n. Hence, there exists n0

such that 2cr0 is greater than the maximal length of an interval of order n0.
Obviously, we have that

n0 ≤
⌊

log((Γ− γ)/(2cr0))
log(2γ)

⌋
+ 2.

Now we can construct by induction a covering of J(T ) consisting of balls of
radius cr0 as follows. Denote the intervals of order n0 from left to right by
I1, . . . , I2n0 , and choose D0,1 to be a ball of radius cr0 centred at J(T ) such
that D0,1 contains I1, . . . , Ii1 , where i1 is chosen to be maximal with respect
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Figure 1. Sketch of the regions G and G̃ for τ = −2, 5. The
shading

��
corresponds to G; the shading

��
corresponds to

G̃; the white ball is Bγ(0); the gray ball is its forward image
under T . The black regions are B([−Γ,−γ]) and B([γ,Γ]).

to this property. Next, choose D0,2 to be a ball of radius cr0 centred at J(T )
such that D0,2 contains Ii1+1, . . . , Ii2 , where i2 is chosen to be maximal with
respect to this property. Continuing in this way, we eventually obtain D0,k

such that ik = 2n0 . For ` = 1, . . . , k, it is clear that only D0,` entirely contains
the interval Ii` . Now, define the simply connected set G by

G := BΓ−τ (τ) \
(
BΓ(0) ∪B−(Γ+τ)(τ)

)
.

By Lemma 5.3, the two inverse images of G contain the set

G̃ := BΓ(0) \
(
B(Γ−γ)/2(−(Γ + γ)/2) ∪B(Γ−γ)/2((Γ + γ)/2)

)
.

We have area(G̃) = π(Γ2−(Γ−γ)2/2). Clearly, to each interval Ii` of order
n0 there corresponds an inverse image of order n0 of G̃ which is contained in
B(Ii`) and whose area is at least π(Γ2− (Γ−γ)2/2)/(2Γ)2n0 . Thus, it follows
that

λ ≥ π(Γ2 − (Γ− γ)2/2)/(2Γ)2n0 .

Since area(Uc(J(T ))) ≤ 4γ(Γ−γ) +2πγ2, we obtain for the Hausdorff dimen-
sion of J(T ) the bound

h < 2− 2π(Γ2 − (Γ− γ)2/2)/(2Γ)2n0+10

4((Γ− γ) + 2πγ)γ
.
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