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Abstract

In this paper we present an appearance-based sign langegmition sys-
tem which uses a weighted combination of different featurdise statistical
framework of a large vocabulary speech recognition systdine perfor-
mance of the approach is systematically evaluated andlitoes that a sig-
nificant improvement can be gained over a baseline system ajbygropriate
features are suitably combined. In particular, the wordrenate is improved
from 50% for the baseline system to 30% for the optimizedesyst

1 Introduction

Appearance-based approaches, i.e. no explicit segmmmiatiperformed on the input
data, offer some immediate advantages for automatic siggulege recognition over sys-
tems that require special data acquisition tools. In paldicthey may be used in a “real-
world” situation where no special data recording equipnieftasible. Automatic sign
language recognition is an area of high practical relevaecause sign language often is
the only means of communication for deaf people.

According to the sign language linguist Stokoe a first phogiaial model is defined
in [10] to represent a sign as a kind of “chireme”, as vowel$ @nsonants are similar to
phonemes in spoken language.

Signs can also be represented as sequences of movementeldrgegments [7],
where the movement-segment represents configuration ebarfghe signer (hand po-
sition, hand shape, etc.), and the hold-segment repref&itthe configuration of the
signer remains stationary.

In continuous signing, processes with effects similar teadaculation in speech do
also occur, but these processes do not necessarily occlirsigras. In [11] movement
epenthesis, which occurs most frequently, is modeled toettoahd movements without
meaning (intersign transition periods).

Although a couple of groups work in the field of linguistic natithg and processing of
sign language, only few groups try to automatically recagrsign language from video,
e.g. in [1] colored gloves are suited to be able to segmentitigers. Their approach
requires a valid segmentation of the data that is used foritigaand of the data that
is used to be recognized. This restricts their approach tteeraartificial tasks under
laboratory conditions.
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In [12], appearance-based features are used for the remyof segmented words of
sign language. Simple, down-scaled images are used asdgatud various transforma-
tion invariant distance measures are employed for the rétiog process.

We present an approach to the automatic training and retbogof continuous Amer-
ican sign language (ASL). The training and the recognitiomat need segmented words
because the models are automatically determined. We eragi@acking method which
uses dynamic programming to locate the dominant hand. Tdeometric features are
extracted from this dominant hand and used as features ilatiresteps of the training
and recognition process. These features are combined with-dcaled intensity images.
In the recognition process Fisher’s linear discriminaraigsis (LDA) is applied to reduce
the number of parameters to be trained and to ease disctionraf the classes [3].

In Section 2 we introduce the framework underlying the pnesgapproach, Section 3
shortly introduces the applied tracking method, and iniSeet we present the features
that are used in our approach. Section 5 presents the dattitzdss used in the experi-
ments, which are presented and interpreted in Section @llfithe paper is summarized
and concluded in Section 7.

2 System Overview

In this section we give an overview of the automatic sign lagge recognition system

which is used to recognize sentences of ASL. The system &db@s a large vocabulary

speech recognition system [6]. This allows us to adopt tblertigues developed in auto-
matic speech recognition and transfer the insights fromdbimain into automatic sign

language recognition because there are large analogieed®those areas. Common
speech recognition systems are based on the Bayes’ deaisohe basic decision rule

for the classification oﬂ = X1y eeey Xty ... XT ISE

Wy = argmax(Pr(wy) - Pr(x]|wy)), 1)

Wy

wherev\i*f is the sequence of words that is recognizl%m!vv’f) is the language model, and
Pr(x{|vv’£‘) is the visual model (cp. acoustic model in speech recogitids language
modeIPr(vv’i‘) we use a trigram language model calculated by

z

Pr(wy') = [ Pr(wn|w)=3). )

n=1

The visual modePr(x] [w)') is defined as:

.
Pr(xj |wy') = max Pr(s|s—1,W} ) - Pr(x|s,wy), ®)
t=

wheres] is the sequence of states, @ds |s_1,W)') andPr(x s, w}) are the transition
probability and emission probability, respectively. laiting, the model parameters are
estimated from the training data using the maximum likedith@riterion and the EM
algorithm with Viterbi approximation.
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Figure 1: System overview.
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As the language model, transition and emission probaislitan be weighted by ex-
ponentiation with exponents, 8 andy, respectively, the probability of the knowledge
sources are estimated as:

Priw)) —  p*(wp),
Pr(sls—1,w)) — pP(sls—1,w),
Prixs,wy) — pY(x|s,wy). (4)

Thus, the decision rule is reformulated as:

N
W = arg max{a 3 logp(wnwh~3)
W’I‘ n=1

:
+mTaXZ[Blogp(stlst1,V\/’1“)+Vlogp(xtlst,W’1“)]}- (5)
S t=

The exponents used for scalirm, 3 andy are named language model scale, time distor-
tion penalty, and word penalty, respectively.

The system overview is shown in Fig. 1. The tracking of the ishamt-hand will be
described in Section 3. In Section 4.1 we describe how weaeixthe geometric fea-
tures from the tracked hand patches which are combined pjikarance-based features
described in Section 4.2.

3 Tracking Using Dynamic Programming

The tracking method introduced in [2] is employed in this kvdFhe used tracking algo-
rithm prevents taking possibly wrong local decisions beeathe tracking is done at the
end of a sequence by tracing back the decisions to recoh#iteibest path. The tracking
method can be seen as a two step procedure: in the first stepssre calculated for each
frame starting from the first, and in the second step, thealliploptimal path is traced

back from the last frame of the sequence to the first.

Step 1. For each positionu = (i, j) in framex at timet = 1,....,T a scoreq(t,u) is
calculated, called the local score. The global s@feu) is the total score for the best
path until timet which ends in positioru. For each positionu in imagex, the best
predecessor is searched for among a set of possible predesé&®m the scoreQ(t —



1,u"). This best predecessor is then stored in a table of baclgreBit, u) which is used
for the traceback in Step 2. This can be expressed in thexfivitprecursive equations:

Qt,u) = u};ﬂm){(Q(t —1u) =7, u)}+qt,u) (6)
B(t,u) = argmax{(Q(t—1,u)— .7 (U, u)}, (7)
u'eM(u)

whereM (u) is the set of possible predecessors of paiahd.7 (U, u) is a jump-penalty,
penalizing large movements.

Step 2. The traceback process reconstructs the best |px}%1msing the score tabl®
and the backpointer tablB. Traceback starts from the last frame of the sequence at
time T usingcr = argmay Q(T,u). The best position at time— 1 is then obtained by
c—1 = B(t,c). This process is iterated up to tirhe- 1 to reconstruct the best path.

Because each possible tracking center is not likely to pgeduhigh score, pruning
can be integrated into the dynamic programming trackingréttym for speed-up.

One possible way to track the dominant hand is to assumehisatlbject is moving
more than any other object in the sequence and to look atelifte images where motion
occurs to track these positions. Following this assumpti@use a motion information
score function to calculate local scores using the firseptiine derivative of an image.
The local score can be calculated by a weighted sum over swb pixel values inside
the tracking area. More details and further scoring fumatiare presented in [2].

4 Features

In this section we present how we extract features from thmailant hand of the signer

and how we extract appearance-based features from the sédg@nces. These different
features are then weighted and combined in the statistialdwork of a large vocabulary

speech recognition system to recognize the signs.

4.1 Geometric Features

To extract features from the tracked hand patches of theesigime hand is segmented
using a simple chain coding method [4]. In total 34 featureseatracted and can roughly
be categorized into four groups:

Basic Geometric Features. The first group of the features contains features describing
basic properties including the size of the area of the hdmal|ength of the border of
the hand, thex andy coordinates of the center of gravity, the most top-left aigthte
bottom points of the hand and the compactness. The defimfitre features is based on
basic methods of image processing [9]. In total, nine fest@are calculated, where the
definition of each is very well-known, except for compacseshe compactness of the
area is calculated by:

4-m-A
Compactness gz (8)

which ranges from 0 to 1. The compactness is O for lines and diffdes.



Moments. The second group consists of features that are based on nefaem total
of 11 features is calculated. The two dimensioffa q)th order moments of a density
distribution functionp(x,y) are defined as:

Mpg= > xPyPp(xy). 9)
Xy

If p(x,y) is piecewise continuous and it has non-zero values onlydrfittite part of the
two dimensional plane, then the moments of all orders exidtthe sequencémyg} is
uniquely determined bp(x,y) and vise versa. The small order moments of gie y)
describes the shape of the region. For exampjgis equal to the area size, ang;
andmyg gives thex andy coordinates of the center of gravity, and afsg, mpg andmg,
yield the direction of the main axis of the distribution. Témall order of the moments
is calculated in first group of the features. The momemns mgs, M1, My2, Mg, My
andmgg which are invariant against translation are calculatedhis group and used as
features.

The inertia parallel to the main axig and the inertia orthogonal to the main a3js
both invariant against translation, rotation and flipping @alculated by:

Moo
h=— <mzo+ Moz + \/(mzo— rno2)2+4m§1)

2
Moo
b= - <mzo+ M2 — \/(mzo— Mo2)? +4m§1> . (10)
The orientation of the main axis, invariant to translation acaling is calculated by:
. . 180 2mq
Orientation= ——arctan ———). 11
o — ) (11)

The eccentricity, ranges from zero for a circle to one fona s calculated by:

(Mo — Moz)? + 4my 12
(Mo 4 Mp2)?
The eccentricity is invariant against translation, raatiscaling and flipping.

Eccentricity=

(12)

Hu Moments. Here, seven features are extracted by determining thedirshamoment
invariants as described in [5].

huy = —log(mpo+ mop)

hy = —log((mpo— Moz)®+ 4md,)

hug = —log((mgo—3mi2)®+ (3mp1— mo3)?)

hus = —log((Mao+ Mi2)®+ (Mp1+ Mo3)?)

hus = —log ((”‘30—3m12)(mso+ My2) ((Meo+ My2)® — 3(Ma1 + Mo3)?)

+(3Mp1 — Mog) (M1 + Mog) (3(Mao + My2)? — (Mp1 + mos)z))
hus = —log ((mzo— Mo2) ((Mgo+ M12)? — (Mpy + Mo3)?)

+4my 1 (Mo + Myo) (Mp1 + mos))



huy = —log ((Srnzl— Mo3) (Mao -+ Mi2) ((Meo + My2)2 — 3(Mpy + Mog)?)
—(Mgo — 3My2) (Mp1 + Mog) (3(Mao + My 2)% — (Mp1 + %3)2)> (13)

All Hu moments are invariant against translation, rotatgmaling and flipping except
thehu; which is not invariant against flipping.

Combined Geometric Features. Here, seven features are calculated, taking into ac-
count the distance between the center-of-gravity for thekied object and certain posi-
tions in the images. Additionally, the distance betweendftenost point and right most
point to main axis and the distance between the front mosteardmost point to center
of gravity along main axis are calculated.

Thus, we end up with 34 geometric features that are extrdidedthe hand patches.

4.2 Appearance-based Features

In this section, we briefly introduce the appearance-basetlifes used in our continu-
ous ASL sentence recognition system. In [13], differentesgspnce-based features are
explained in more detail, including the intensity imagenstolor intensity, and differ-
ent kinds of first- and second-order derivatives to recagaegmented ASL words. The
results show that down-scaled intensity images perforrg well. According to these
results we employ these features in the work presented here.

The features are directly extracted from the images of tdeaiframes. We denote
by X (i, j) the pixel intensity at positiofi, j) in the framet of a sequence,=1,...,T.

We transfer the matrix of an image to a veckprand use it as a feature vector. To
decrease the size of the feature vector, according to tbenirafl experiments, we use the
intensity image down-scaled to 832 pixels denoted by(:

Xt,d:Xt/(laJ)7 d:321+|a (14)

wherex; = [% 1,...,%,p] is the feature vector at tintewith the dimensiorD = 1024.

5 Database

The National Center for Sign Language and Gesture Resoaf@&sston University has
published a database of ASL sentericg8]. Although this database is not produced
primarily for image processing and recognition researbh, data is available to other
research groups and, thus, can be a basis for comparisoiifecdt approaches.

The image frames are captured by a black/white cameraéiéawards the signer’s
face. The movies are recorded at 30 frames per second aniz¢éhefghe frames are
312x 242 pixels. We extract the upper center part of sizexiB#b pixels. (Parts of the
bottom of the frames show some information about the frandefaamleft and right border
of the frames are unused.)

To create our database for signer-independent ASL senteognition which we
call RWTH-Boston-104, we use 201 annotated video strean&Saf sentences. We
separate the recordings into a training and evaluation Betoptimize the parameters
of the system, the training set is split into separate tngirdind development parts. To

http://www.bu.edu/asllrp/ncslgr. html



Table 1: Corpus statistics for RWTH-Boston-104 database.

Training set Evaluation
Training | Development set

| Sentences | 131 | 30 | 40 |
Running words| 695 172 216
Unique words 103 65 79
Singletons 37 38 45

Figure 2: Example frames of the RWTH-Boston-104 databaseisly the 3 signers.

optimize parameters in training process, the system isecHby using 131 sentences from
the training set and evaluated using the 30 sentences frerdabelopment set. When

parameter tuning is finished, the training data and devedmpmiata, i.e. 161 sentences,
are used to train one model using the optimized paramethais.nfodel is then evaluated

on the so-far unseen 40 sentences from the evaluation sgtu€statistics of the database
are shown in Table 1.

Inthe RWTH-Boston-104 database, there are three sigmezsnale and two females.
The ASL sentences of the training and evaluation set aredigy all three signers to be
used in a signer-independent recognition system. The isigme dressed differently and
the brightness of their clothes is different. The signemd same sample frames of the
database are shown in Figure 2.

6 Experimental Results

Here, we present experiments which are performed on the R®d$tion-104 database
using the described recognition framework with the pre=g:fgatures. The development
set is used to optimize the parameters of the system ingudimguage model scate,
time distortion penalty3, and word penalty, as well as the weights that are used to
combine the different features.

In Table 2 the word error rate (WER) of the system using irtgrimages down-
scaled to 32« 32 and geometric features on development and evaluati@mese¢ported.
The WER is equal to the number of deletions, substitutiortsiasertions of words di-
vided by the number of running words. In development prooe$g 131 sentences are
used to train the model, while 161 sentences are used fortfaaing. Therefore the
error rate of the system on development set is higher thah@evaluation set. Also, it
can be seen that the geometric features alone slightly datpethe appearance-based
features for the development and for the evaluation set.

In the following, we perform experiments to find the best pdtar the dimensionality
reduction using LDA for the image-features and the geométatures individually. The
results are given in Table 3. When using intensity imagefeatwith a very small number



Table 2: Word error rates [%] of the system.

| Features | Development se{ Evaluation set]
image down-scaled to 32 32 67 54
Geometric Features 61 50

Table 3: Word error rates [%] of the system employing LDA.

image down-scaled to 32 32 Geometric Features

Number of | Development| Evaluation | Development| Evaluation
components set set set set
150 61 40 - -
90 60 36 - -
44 60 37 - -
34 61 39 57 42
20 66 49 58 41
15 78 63 54 42
10 79 67 52 35

5 - - 61 37

of components, the smaller number of components yieldefavgrd error rates because
the system looses the information of the image frames. Hewehen the feature vectors
are too large, the word error rate increases because too datatthat is not relevant

for the classification disturbs the recognition processr the image features the best
dimensionality is 90 and for the geometric features, the dhiesensionality is 10.

Given these results, we now combine the different featurasrefore we start from
the previous experiments, i.e. we use the 90 most discrimipaomponents of the LDA
transformed image features and the 10 most discriminatagufes of the LDA trans-
formed geometric features (see Fig. 1).

Because the word error rate of the system relies on the gcdatorsa, B andy
the experiments are done with the optimized parameters finemprevious experiments.
Weighting the features, the word error rate of the systemeweldpment and evaluation
set, using geometric features’ parameters and intensagés parameters, are shown in
Figure 3 and Figure 4, respectively.

The graphs show the word error rate with respect to the weifjimtensity features.
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Figure 3: WER [%] using feature weighting, tuned by geonedtatures’ parameters.
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Figure 4: WER [%] using feature weighting, tuned by intensitage’s parameters.

The weight of intensity image features and geometric festare chosen such that they
add to 1.0. The experiments are performed for both the etiaiuset and the development
set and it can be seen that optimizing the settings on thdajavent set leads to good
results on the evaluation data as well. In Figure 3 the paensthat are optimized for the
geometric features are used and the weight for geometriméersity features is altered.
The best WER is achieved for a weighting of 0.2 and 0.8 for #é@ngetric and intensity
images respectively for the development and the evaluagtn

The same experiment, but with the settings optimized foritiensity features is
performed and the experimental results are given in Figuréldre, the best WER is
obtained for the development set with a weighting of 0.4 aédr@spectively. And this
also leads to a good result on the evaluation data, i.e. thé @rcor rate of 31%, Although
the best word error rate of 30% is achieved on the evaluaébn s

Interestingly, using the parameters for the intensitye=g slightly outperforms the
parameters for the geometric features. These results artodbe higher dimensionality
of the intensity features and thus the scaling factqr8, andy optimized for the intensity
images suit the new situation with a feature vector of an &igimer dimensionality better.

A direct comparison to other approaches from other resegnaips is not possible,
because the results on the RWTH-Boston-104 database dishmabhere as a first time.
The database is publicly available to other groups to etaltneir own approaches.

7 Conclusion

We presented an automatic sign language recognition systems shown that a suit-
able combination of different features yields strongly rmged word error rates over two
different baseline systems. Also LDA is a useful means afctelg the most relevant
information from feature vectors.

Even though the word error rates are high, they are still aitiye to other published
results which do not use special data acquisition devicesrgrio build a robust speaker
independent system to recognize continuous sign langaderses.

One reason for the high word error rate is the high number mglstons in the
database. Additionally we still have to cope with the prablef automatic word mod-
elling, which shows that feature extraction is importarttddao that problems like move-
ment epenthesis, word length modelling, and data sparsérae® to be considered in
continuous sign language recognition in future.
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