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GEOMETRIC FLOW ON COMPACT LOCALLY
CONFORMALLY KÄHLER MANIFOLDS
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Abstract. We study two kinds of transformation groups of a compact locally confor-
mally Kähler (l.c.K.) manifold. First, we study compact l.c.K. manifolds by means of the
existence of holomorphic l.c.K. flow (i.e., a conformal, holomorphic flow with respect to the
Hermitian metric.) We characterize the structure of the compact l.c.K. manifolds with parallel
Lee form. Next, we introduce the Lee-Cauchy-Riemann (LCR) transformations as a class of
diffeomorphisms preserving the specificG-structure of l.c.K. manifolds. We show that com-
pact l.c.K. manifolds with parallel Lee form admitting a non-compact holomorphic flow of
LCR transformations are rigid: such a manifold is holomorphically isometric to a Hopf mani-
fold with parallel Lee form.

1. Introduction. Let (M, g, J ) be a connected, complex Hermitian manifold of com-
plex dimensionn ≥ 2. We denote its fundamental 2-form byω, which is defined by
ω(X, Y ) = g(X, JY ). If there exists a real 1-formθ satisfying the integrability condition

dω = θ ∧ ω with dθ = 0 ,

theng is said to be alocally conformally Kähler(l.c.K.) metric. A complex manifoldM
endowed with a l.c.K. metric is called a l.c.K. manifold. The conformal class of a l.c.K.
metric g is said to be a l.c.K. structure onM. The closed 1-formθ is calledthe Lee form
and it encodes the geometric properties of such a manifold. The vector fieldθ�, defined by
θ(X) = g(X, θ�), is called the Lee field.

The purpose of this paper is to study two kinds of transformation groups of a compact
l.c.K. manifold(M, g, J ). We first consider Autl.c.K.(M), the group of all conformal, holo-
morphic diffeomorphisms. We discuss its properties in §2. A holomorphic vector fieldZ on
(M, g, J ) generates a 1-dimensional complex Lie groupC. (The universal covering group of
C is C.) We callC a holomorphic flow onM.

DEFINITION 1.1. If a holomorphic flowC (resp. holomorphic vector fieldZ) belongs
to Aut l.c.K.(M) (resp. Lie algebra of Autl.c.K.(M)), thenC (resp.Z) is said to be aholomor-
phic l.c.K. flow(resp.holomorphic l.c.K. vector field).

2000Mathematics Subject Classification. Primary 57S25; Secondary 53C55.
Key words and phrases. Locally conformally Kähler manifold, Lee form, contact structure, strongly pseudocon-

vex CR-structure,G-structure, holomorphic complex torus action, transformation groups.
The second author is a member of EDGE, Research Training Network HPRN-CT-2000-00101, supported by

The European Human Potential Programme.

� �



202 Y. KAMISHIMA AND L. ORNEA

A nontrivial subclass of l.c.K. manifolds is formed by those(M, g, J ) having parallel
Lee form with respect to the Levi-Civita connection∇g (i.e.,∇gθ = 0). We observe that a
compact non-Kähler l.c.K. manifold(M, g, J ) with parallel Lee formθ supports a holomor-
phic vector fieldZ = θ� − iJ θ� which generates holomorphic isometries ofg. (Compare
[18], [19], [6].) We shall prove that the converse is also true:

THEOREM A. Let (M, g, J ) be a compact, connected, l.c.K. non-Kähler manifold, of
complex dimension at least2. If Aut l.c.K.(M) contains a holomorphic l.c.K. flow, then there
exists a metric with parallel Lee form in the conformal class ofg.

COROLLARY A1. With the same hypothesis,M admits a l.c.K. metric with parallel Lee
form if and only if it admits a holomorphic l.c.K. flow.

In §3, we discuss the existence of l.c.K. metrics with parallel Lee form on the Hopf man-
ifold. (Compare with [7].) LetΛ = (λ1, . . . , λn) with theλi ’s complex numbers satisfying
0 < |λn| ≤ · · · ≤ |λ1| < 1. By a primary Hopf manifoldMΛ of typeΛ we mean the
compact quotient manifold ofCn − {0} by a subgroupΓΛ generated by the transformation
(z1, . . . , zn) �→ (λ1z1, . . . , λnzn). Note that a primary Hopf manifold of typeΛ of complex
dimension 2 is a primary Hopf surface of Kähler rank 1. We prove the following:

THEOREM B. The primary Hopf manifoldMΛ of typeΛ supports a l.c.K. metric with
parallel Lee form.

See §3 which is devoted to the construction of such a metric. More generally, we prove
the existence of a l.c.K. metric with parallel Lee form on the Hopf manifold (cf. Theorem
3.1).

In the second half of the paper we adopt the viewpoint ofG-structure theory in order to
study a non-compact, non-holomorphic, transformation group of a compact l.c.K. manifold
(M, g, J ) with parallel Lee form. Locally, the 2-formω defines the real 1-formsθ , θ ◦ J and
n−1 complex 1-formsθα and their conjugates̄θα , whereθ ◦J is called theanti-Lee formand
is defined byθ ◦J (X) = θ(JX). We consider the group AutLCR(M) of transformations of M
preserving the structure of unitary coframe fieldsF = {θ, θ ◦J, θ1, . . . , θn−1, θ̄1, . . . , θ̄ n−1}.
More precisely, an elementf of Aut LCR(M) is called aLee-Cauchy-Riemann(LCR) trans-
formation if it satisfies the equations:

f ∗θ = θ ,

f ∗(θ ◦ J ) = λ · (θ ◦ J ) ,
f ∗θα = √

λ · θβUαβ + (θ ◦ J ) · vα ,
f ∗θ̄ α = √

λ · θ̄ βUαβ + (θ ◦ J ) · vα .

Hereλ, vα , Uαβ are smooth functions with values, respectively, inR+, C and U(n − 1).
Obviously, if I(M, g, J ) is the group of holomorphic isometries, then both Autl.c.K.(M) and
Aut LCR(M) contain I(M, g, J ).
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GEOMETRIC FLOW ON LOCALLY CONFORMALLY KÄHLER MANIFOLDS 203

As the main result of this part we exhibit the rigidity of compact l.c.K. manifolds under
the existence of a non-compact LCR flow:

THEOREM C. Let (M, g, J ) be a compact, connected, l.c.K. non-Kähler manifold of
complex dimension at least2, with parallel Lee formθ . Suppose thatM admits a closed
subgroupC∗ = S1×R+ of Lee-Cauchy-Riemann transformations whoseS1 subgroup induces
the Lee fieldθ�. ThenM is holomorphically isometric, up to scalar multiple of the metric, to
the primary Hopf manifoldMΛ of typeΛ endowed with the canonical l.c.K. metric as stated
in Theorem B.

ACKNOWLEDGMENT. The authors are grateful to the anonymous referee for useful
criticism. The second named author thanks JSPS for financial support and the Department of
Mathematics of Tokyo Metropolitan University for hospitality during the preparation of this
work.

2. Locally conformally Kähler transformations.

PROPOSITION 2.1. Let (M, g, J ) be a compact l.c.K. manifold withdimCM ≥ 2.
ThenAut l.c.K.(M) is a compact Lie group.

PROOF. Note that Autl.c.K.(M) is a closed Lie subgroup in the group of all conformal
diffeomorphisms of(M, g). If Aut l.c.K.(M) were noncompact, then by the celebrated result
of Obata and Lelong-Ferrand ([15], [14]),(M, g) would be conformally equivalent with the
sphereS2n, n ≥ 2. HenceM would be simply connected. It is well-known that a compact
simply connected l.c.K. manifold is conformal to a Kähler manifold (cf. [6]), which is impos-
sible because the sphereS2n has no Kähler structure. �

From now on, we shall suppose that the l.c.K. manifold we work with is compact, non-
Kähler and, moreover, that the Lee field is nowhere vanishing. In particular, such a manifold
is not simply connected (cf. [6]). Given a l.c.K. manifold(M, g, J ), let M̃ be the universal
covering space ofM, let p : M̃ → M be the canonical projection and denote also byJ the
lifted complex structure onM̃. We can associate to the fundamental 2-formω a canonical
Kähler form onM̃ as follows. Since the Lee formθ is closed, its lift toM̃ is exact, hence
p∗θ = dτ for some smooth functionτ onM̃. We puth = e−τ · p∗g (resp.Ω = e−τ · p∗ω).
It is easy to check thatdΩ = 0, thush is a Kähler metric on(M̃, J ). In particularg is
locally conformal to the Kähler metrich (compare with [6] and the bibliography therein). Let
f ∈ Aut l.c.K.(M). By definition,f ∗ω = eλ · ω for some functionλ onM. Differentiate this
equality to yield that(f ∗θ − θ − dλ) ∧ ω = 0. Asω is nondegenerate and dimC M > 1,
f ∗θ = θ + dλ. Sincep∗θ = dτ , for any lift f̃ of f to M̃ we havedf̃ ∗τ = d(τ + p∗λ), thus
−f̃ ∗τ + p∗λ = −τ + c for some constantc. We can writef̃ ∗Ω = ec ·Ω. If c �= 0, f̃ is a
holomorphic homothety with respect toh; whenc = 0, f̃ will be an isometry.

We denote byH(M̃,Ω, J ) the group of all holomorphic, homothetic transformations
of M̃ with respect to the Kähler structure(h, J ). If f1, f2 ∈ H(M̃,Ω, J ), there exist some
constantsρ(fi) (i = 1,2) satisfyingf ∗

i Ω = ρ(fi) · Ω as above. It is easy to check that
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204 Y. KAMISHIMA AND L. ORNEA

ρ(f1 ◦ f2) = ρ(f1) · ρ(f2). We obtain a continuous homomorphism:

ρ : H(M̃,Ω, J )−→ R+.(2.1)

Let π1(M) be the fundamental group ofM. Then we note thatπ1(M) ⊂ H(M̃,Ω, J ). For
this, if γ ∈ π1(M), thenγ ∗Ω = e−γ ∗τ · γ ∗p∗ω = e−γ ∗τ · p∗ω = e−γ ∗τ+τ ·Ω . SinceΩ is a
Kähler form(n ≥ 2), e−γ ∗τ+τ must be constantρ(γ ).

Let C be a holomorphic l.c.K. flow onM. If we denote byC̃ a lift of C to M̃, then
C̃ ⊂ H(M̃,Ω, J ). If V is a vector field which generates a one-parameter subgroup ofC̃, then
so doesJV with V andJV together generating̃C. We define a smooth functions : M̃ → R to
bes(x) = Ω(JVx, Vx). SinceC̃ centralizes each elementγ of π1(M), it follows thats(γ x) =
Ω(JVγx, Vγ x) = Ω(γ∗JVx, γ∗Vx) = ρ(γ )s(x). If every elementγ satisfiesρ(γ ) = 1, i.e.,
γ ∗Ω = Ω , thenπ1(M) acts as holomorphic isometries ofh so thatΩ would induce a Kähler
metric onM. By our hypothesis, this does not occur. There exists at least one elementγ such
thatρ(γ ) �= 1. In particular, we note that:

The functions is not constant onM̃.(2.2)

On the other hand, we prove the following lemma. (The proof of the lemma is almost the
same as that of [10].)

LEMMA 2.1. ρ(C̃) = R+, i.e., the groupC̃ acts by holomorphic, non-trivial homothe-
ties with respect to the Kähler metrich onM̃.

PROOF. SinceC̃ is connected, ifρ(C̃) �= R+, it must be trivial. By reduction to absur-
dity, suppose thatρ(C̃) = {1}. ThenC̃ leavesΩ invariant. As{V, JV } generates̃C, it follows
thatLV Ω = LJVΩ = 0. In particular,V s = (JV )s = 0. For any distributionD on M̃,
denote byD⊥ the orthogonal complement toD with respect to the metrich, whereh(X̃, Ỹ ) =
Ω(J X̃, Ỹ ). Since 0= (LVΩ)(JV, X̃) = VΩ(JV, X̃)−Ω([V, JV ], X̃)−Ω(JV, [V, X̃]),
if X̃ ∈ {V, JV }⊥, thenΩ(JV, [V, X̃]) = 0, similarlyΩ(V, [JV, X̃]) = 0. The equality

0 = 3dΩ(X̃, V, JV ) = X̃Ω(V, JV )− VΩ(X̃, JV )+ JVΩ(X̃, V )

−Ω([X̃, V ], JV )−Ω([V, JV ], X̃)−Ω([JV, X̃], V )
implies thatX̃Ω(V, JV ) = 0, i.e.,X̃s = 0 for anyX̃ ∈ {V, JV }⊥. Therefore,s becomes
constant, being a contradiction to (2.2). �

2.1. The submanifoldW and its pseudo-Hermitian structure. As Kerρ has one dimen-
sion, denote by−J ξ the vector field whose one-parameter subgroup{ψt }t∈R acts as holomor-
phic isometries onM̃.

ψ∗
t Ω = Ω , t ∈ R .(2.3)

Since−J ξ andξ together generate the groupC̃, the 1-parameter subgroup{ϕt}t∈R generated
by ξ acts as nontrivial holomorphic homotheties with respect toΩ by Lemma 2.1. In particu-
lar, the group{ϕt }t∈R is isomorphic toR. Sinceϕ∗

t Ω = ρ(ϕt ) ·Ω (t ∈ R, ρ(ϕt ) ∈ R+) from
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GEOMETRIC FLOW ON LOCALLY CONFORMALLY KÄHLER MANIFOLDS 205

(2.1) andρ is a continuous homomorphism,ρ(ϕt ) = eat for some constanta �= 0. We may
normalizea = 1 so that:

ϕ∗
t Ω = et ·Ω , t ∈ R .(2.4)

LEMMA 2.2. The group{ϕt }t∈R acts properly and hence freely oñM. In particular,
ξ �= 0 everywhere onM̃.

PROOF. Recall thatC lies in Autl.c.K.(M) by definition. As Autl.c.K.(M) is a compact
Lie group, its closureC in Aut l.c.K.(M) is also compact and so isomorphic to ak-torus(k ≥
2). Therefore, the liftH of C to M̃ acts properly onM̃. The liftH is isomorphic toRl × T m,
wherel + m = k. Note thatl ≥ 1 becauseρ maps any compact subgroup ofH to {1}, but
the group{ϕt}t∈R ⊂ H satisfiesρ({ϕt}) = R+. Hence the group{ϕt }t∈R has a nontrivial
summand inRl , which implies that{ϕt }t∈R is closed inH . Thus, the group{ϕt}t∈R acts
properly onM̃. If we note that{ϕt }t∈R is isomorphic toR, then it acts freely onM̃. �

PROPOSITION 2.2. Let s : M̃ → R be the smooth map defined ass(x) = Ω(Jξx, ξx).
Then1 is a regular value ofs, and hences−1(1) is a codimension one, regular submanifold
of M̃.

PROOF. As ϕt is holomorphic,s(ϕtx) = Ω(Jξϕtx , ξϕt x) = Ω(ϕt∗J ξx, ϕt∗ξx) =
et · s(x). Hence,

Lξ s = lim
t→0

ϕ∗
t s − s

t
= s .

We also note that

LξΩ = Ω .(2.5)

By Lemma 2.2, notice thatξ �= 0 everywhere onM̃. Sinces(x) �= 0, s−1(1) �= ∅. For
x ∈ s−1(1), ds(ξx) = (Lξ s)(x) = s(x) = 1. This proves thatds : TxM̃ → R is onto and so
s−1(1) is a codimension one smooth regular submanifold ofM̃. �

Let nowW = s−1(1). We can prove:

LEMMA 2.3. The submanifoldW is connected and the mapH : R×W → M̃, defined
byH(t,w) = ϕtw, is an equivariant diffeomorphism.

PROOF. LetW0 be a component ofs−1(1) andR ·W0 the set{ϕtw ; w ∈ W0, t ∈ R}.
As R = {ϕt } acts freely ands(ϕtx) = et s(x), we haveϕtW0 ∩ W0 = ∅ for t �= 0. Thus
R ·W0 is an open subset of̃M. We prove that it is also closed. LetR ·W0 be the closure of
R ·W0 in M̃. We choose a limit pointp = lim ϕtiwi ∈ R ·W0. Thens(p) = lim s(ϕtiwi) =
lim eti s(wi) = lim eti . Putt = logs(p). Thent = lim ti , soϕ−1

t (p) = lim ϕ−1
ti
(lim ϕtiwi) =

limwi . Sinces−1(1) is regular (i.e., closed with respect to the relative topology induced from
M̃), its componentW0 is also closed. Henceϕ−1

t p ∈ W0. Thereforep = ϕt(ϕ
−1
t p) ∈ R ·W0,

proving thatR · W0 is closed inM̃. In conclusion,R · W0 = M̃. Now, if W1 is another
component ofs−1(1), the same argument showsR · W1 = M̃. As R · W0 = R · W1 and
s(W1) = 1, this impliesW0 = W1, in other words,W is connected. �
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206 Y. KAMISHIMA AND L. ORNEA

Let i : W → M̃ be the inclusion andπ : M̃ → W the canonical projection. Define a
1-formη onW to be

η = i∗ιξΩ .(2.6)

Hereιξ denotes the interior product withξ . From the definition of{ψt }t∈R (see the beginning
of § 2.1) we have

dψt

dt
(x)

∣∣∣∣
t=0

= −J ξx .(2.7)

By (2.3), s(ψtw) = s(w) = 1 (w ∈ W) so that the group{ψt }t∈R leavesW invariant.
Hence, the vector field−J ξ restricts to a vector fieldA toW . If {ψ ′

t }t∈R is the one-parameter
subgroup generated byA, then

ψt = i ◦ ψ ′
t .(2.8)

LEMMA 2.4. The1-form η is a contact form onW for whichA is the characteristic
vector field(Reeb field).

PROOF. First note thatη(Aw) = ιξΩ(−J ξw) = Ω(Jξw, ξw) = s(w) = 1 (w ∈
W). Moreover, from (2.5),dη = i∗dιξΩ = i∗(dιξΩ + ιξ dΩ) = i∗LξΩ = i∗Ω . Hence,
η ∧ dηn−1 �= 0 onW showing thatη is a contact form. Noting (2.3), (2.8) and that bothϕt
andψθ commutes with each other, it is easy to see that

ψ ′∗
t ιξΩ = ιξ on M̃ .

ψ ′∗
t η = η on W .

(2.9)

Let Null η = {X ∈ TW | η(X) = 0} be the contact subbundle. SinceLAη(X) = Aη(X) −
η([A,X]) and LAη = 0 from (2.9), if X ∈ Null η, then η([A,X]) = 0. Moreover,
dη(A,X) = (Aη(X) − Xη(A) − η([A,X]))/2 = 0, which implies thatdη(A,X) = 0
for all X ∈ TW , showing thatA is the characteristic vector field. �

Recall thatR → M̃
π→ W is a principal fiber bundle withTR = 〈ξ〉. By Lemma 2.3,

each pointx ∈ M̃ can be described uniquely asx = ϕtw. By (2.8),

π ◦ ψθ(x) = π ◦ ψθ (ϕtw) = π ◦ ϕt(ψθw)
= π ◦ iψ ′

θ (w) = ψ ′
θ (w) = ψ ′

θ ◦ π(x) ,(2.10)

and hence,π∗(−J ξ) = A. As i∗π∗Xx − Xx = a · ξx for some functiona, by (2.6),π maps
{ξ, J ξ}⊥ isomorphically onto Nullη. Since{ξ, J ξ}⊥ is J -invariant, there exists an almost
complex structureJ on Null η such that the following diagram is commutative:

{ξ, J ξ}⊥ π∗−−→ Null η�J �J
{ξ, J ξ}⊥ π∗−−→ Null η .

(2.11)
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PROPOSITION 2.3. The pair(η, J ) is a strictly pseudoconvex, pseudo-Hermitian struc-
ture onW .

PROOF. Let Ψ : Null η × Null η→ R be the bilinear form defined byΨ (X, Y ) =
dη(JX, Y ). There existX̃, Ỹ ∈ {ξ, J ξ}⊥ such thatπ∗X̃ = X, π∗Ỹ = Y . Then it is
easy to see thati∗JX ≡ J X̃, i∗Y ≡ Ỹ mod ξ. Using dη = i∗Ω as above,Ψ (X, Y ) =
i∗Ω(JX, Y ) = Ω(J X̃, Ỹ ) = h(X̃, Ỹ ), and henceΨ is positive definite. By definition,η is
strictly pseudoconvex. Let{ξ, J ξ}⊥ ⊗ C = B1,0 ⊕B0,1 be the canonical splitting ofJ . Then
we prove that[B1,0, B1,0] ⊂ B1,0. Let X̃, Ỹ ∈ B1,0. SinceT 1,0M̃ = {ξ− iJ ξ}⊕B1,0 (where
i = √−1) andJ is integrable onM̃, [X̃, Ỹ ] ∈ T 1,0M̃. Put [X̃, Ỹ ] = a(ξ − iJ ξ) + Z̃ for
some functiona andZ̃ ∈ B1,0. As π∗(−J ξ) = A from (2.10),π∗([X̃, Ỹ ]) = aiA + π∗Z̃.
By definition, 2dη(π∗X̃, π∗Ỹ ) = −η([π∗X̃, π∗Ỹ ]) = −ai. On the other hand, sinceΩ is
J -invariant,Ω(X̃, Ỹ ) = 0 for anyX̃, Ỹ ∈ B1,0. As above,i∗π∗X̃ ≡ X̃ modξ , similarly for
Ỹ , we obtain thatdη(π∗X̃, π∗Ỹ ) = Ω(i∗π∗X̃, i∗π∗Ỹ ) = Ω(X̃, Ỹ ) = 0. Hence,a = 0 and
so [X̃, Ỹ ] = Z̃ ∈ B1,0. If we note thatπ∗ : {ξ, J ξ}⊥ ⊗ C→Null η ⊗ C is J -isomorphic by
(2.11), then Nullη ⊗ C = π∗B1,0 ⊕ π∗B0,1 is the splitting forJ , in which we have shown
[π∗B1,0, π∗B1,0] ⊂ π∗B1,0. ThereforeJ is a complex structure on Nullη. �

Consider the group of pseudo-Hermitian transformations on(W, η, J ):

PSH(W, η, J ) = {f ∈ Diff (W) | f ∗η = η, f∗ ◦ J = J ◦ f∗ on Null η}.(2.12)

COROLLARY 2.1. The characteristic vector fieldA generates the subgroup{ψ ′
t }t∈R

consisting of pseudo-Hermitian transformations.

PROOF. By (2.3) and (2.9),ψt (resp.ψ ′
t ) preserves{ξ, J ξ}⊥ (resp. Nullη). Then the

equalityπ ◦ ψθ = ψ ′
θ ◦ π from (2.10) with diagram (2.11) implies thatψ ′

t ∗J = Jψ ′
t ∗ on

Null η. Therefore

(2.13) {ψ ′
t }t∈R ⊂ PSH(W, η, J ) . �

Proof of Theorem A
2.2. Parallel Lee form. Let againϕt be the 1-parameter subgroup generated byξ .

According to the notation in Lemma 2.3, letYϕtw ∈ TϕtwM̃ be any vector. We haveπ∗Yϕtw ∈
TwW , and hencei∗π∗Yϕtw − ϕ−t∗Yϕtw = λξw for some numberλ. Then,

ιξΩ(i∗π∗Yϕtw) = Ω(ξw, i∗π∗Yϕtw) = Ω(ξw, ϕ−t ∗Yϕtw)+Ω(ξw, λξw)

= ϕ∗−tΩ(ϕt∗ξw, Yϕtw) = e−tΩ(ξϕtw, Yϕtw) = e−t ιξΩ(Yϕtw) .
By the definition (2.6),

π∗η = π∗i∗ιξΩ = e−t ιξΩ, equivalently,etπ∗η = ιξΩ .(2.14)

AsΩ = LξΩ = dιξΩ from (2.5), we obtain that

d(etπ∗η) = Ω on M̃.(2.15)

For the given l.c.K. metricg, the Kähler metrich is obtained ash = e−τ · p∗g where
dτ = θ̃ . Asω is the fundamental 2-form ofg, note thatΩ = e−τ · p∗ω.
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208 Y. KAMISHIMA AND L. ORNEA

We now consider onM̃ the 2-form:

Θ̄ = 2e−t · d(etπ∗η) (= 2e−t ·Ω) .(2.16)

Then ḡ(X, Y ) = Θ̄(JX, Y ) is a l.c.K. metric. Put̄θ = −dt. Then, asdΘ̄ = −2e−tdt ∧
d(etπ∗η) = −dt ∧ Θ̄, we see that̄θ is the Lee form of̄g.

LEMMA 2.5. θ̄ is parallel with respect tōg (∇ ḡ θ̄ = 0).

PROOF. First we determine the Lee field̄θ� (whereθ̄ (X) = ḡ(X, θ̄ �)). We start from:

ḡ(ξ, Y ) = Θ̄(J ξ, Y ) = 2e−t (etdt ∧ π∗η + etdπ∗η)(J ξ, Y )
= 2(dt ∧ π∗η + dπ∗η)(J ξ, Y ) = 2(dt ∧ π∗η)(J ξ, Y ),

becauseA = −π∗J ξ is the characteristic vector field of the contact formη. As before, a point
x ∈ M̃ can be described uniquely asϕtw for somew ∈ W . In particular, by Lemma 2.3, the
t-coordinate ofx is t . Noting thatψθ(x) = ϕtψθw andψθw ∈ W , by the uniqueness of the
t-coordinate ofψθ (x), t (ψθ (x)) = t . From (2.7),

dt (−J ξx) = dt

(
dψθ

dθ
(x)

∣∣∣∣
θ=0

)
= dt

dθ

∣∣∣∣
θ=0

= 0 .(2.17)

The above formula becomes:

ḡ(ξ, Y ) = 2(dt ∧ π∗η)(J ξ, Y ) = −dt (Y )η(−A)
= dt (Y ) = −θ̄ (Y ) = −ḡ(Y, θ̄ �) ,

(2.18)

proving thatθ̄ � = −ξ . Next we observe that the flow{ϕs}s∈R acts by isometries with respect
to ḡ . Asϕs is holomorphic, it is enough to prove that eachϕs leavesΘ̄ invariant, but

ϕ∗
s Θ̄ = 2e−ϕ∗

s t d(eϕ
∗
s t ϕ∗

s π
∗η) = 2e−(s+t )d(es+tπ∗η) = 2e−td(etπ∗η) = Θ̄ .

ThusLθ� ḡ = −Lξ ḡ = 0. Now we putσ = θ̄ in the equality(Lσ� ḡ)(X, Y ) + 2dσ(X, Y ) =
2ḡ(∇ ḡ

Xσ
�, Y ), valid for any 1-formσ , take into accountdθ̄ = 0 and obtain∇ ḡ θ̄ � = 0, which

is equivalent with∇ ḡ θ̄ = 0, soθ̄ is parallel with respect tōg as announced. �

By the equation (2.16),̄g is conformal to the lifted metricp∗g:

Θ̄ = µ · p∗ω (equivalentlyḡ = µ · p∗g) ,(2.19)

whereµ = 2e−(t+τ ) : M̃→R+ is a smooth map. We finally prove:

LEMMA 2.6. π1(M) acts by holomorphic isometries ofḡ. In particular, π1(M) leaves
θ̄ invariant.

PROOF. We prove the following two facts:
1. γ ∗π∗η = π∗η for everyγ ∈ π1(M).
2. γ ∗et = ρ(γ ) · et , whereρ : π1(M)→ R+ is the restriction of the homomorphism

defined in (2.1).
First note that asR = {ϕt } centralizesπ1(M), γ∗ξ = ξ for γ ∈ π1(M). As γ is holo-

morphic,γ∗J ξ = J ξ . Sinceπ1(M) acts onM̃ as holomorphic homothetic transformations,

� �



GEOMETRIC FLOW ON LOCALLY CONFORMALLY KÄHLER MANIFOLDS 209

(i.e.,γ ∗Ω = ρ(γ ) ·Ω), π1(M) preserves{ξ, J ξ}⊥. If we recall thatπ∗ : {ξ, J ξ}⊥ → Null η
is isomorphic, then forX ∈ {ξ, J ξ}⊥, γ ∗π∗η(X) = η(π∗γ∗X) = 0. As−π∗J ξ = A is the
characteristic field ofη, it follows thatγ ∗π∗η(J ξ) = η(π∗γ∗J ξ) = η(π∗J ξ) = −1. This
shows thatγ ∗π∗η = π∗η onM̃. On the other hand, if we noteγ∗ξ = ξ , then

γ ∗(ιξΩ)(X) = Ω(ξ, γ∗X) = Ω(γ∗ξ, γ∗X) = γ ∗Ω(ξ,X)
= ρ(γ ) ·Ω(ξ,X) = ρ(γ ) · ιξΩ(X) ,

whereρ(γ ) is a positive constant. Applyingγ ∗ to π∗η = e−t · ιξΩ from (2.14), we obtain
γ ∗e−t · ρ(γ ) = e−t . Equivalently,γ ∗et = ρ(γ ) · et . This shows 1 and 2. From (2.16),

γ ∗Θ̄ = γ ∗(2e−t · d(etπ∗η)) = 2ρ(γ )−1 · e−t d(ρ(γ ) · etγ ∗π∗η)
= 2e−t · d(etπ∗η) = Θ̄ .

Sinceḡ(X, Y ) = Θ̄(JX, Y ), π1(M) acts through holomorphic isometries ofḡ . We have that
θ̄ (Y ) = ḡ(Y, θ̄ �) = −ḡ(Y, ξ) (Y ∈ T M̃) from (2.18). Then,

γ ∗θ̄ (Y ) = −ḡ(γ∗Y, ξ) = −ḡ(γ∗Y, γ∗ξ) = −ḡ(Y, ξ) = θ̄ (Y ) . �

From this lemma, the covering mapp : M̃→M induces a l.c.K. metriĉg with parallel

Lee formθ̂ onM such thatp∗ĝ = ḡ andp∗θ̂ = θ̄ with ∇ ĝ
p∗Xθ̂(p∗Y ) = ∇ ḡ

Xθ̄(Y ). Applying
γ ∗ to both sides of (2.19), we derive

γ ∗ḡ = ḡ = µ · p∗ , γ ∗µ · γ ∗p∗g = γ ∗µ · p∗g .

Thereforeγ ∗µ = µ, which implies thatµ factors through a map̂µ : M→R+ so thatp∗ĝ =
p∗(µ̂ ·g). We haveµ̂ ·g = ĝ . The conformal class ofg contains a l.c.K. metriĉg with parallel
Lee formθ̂ . This ends the proof of Theorem A. �

As to Corollary A1 in the Introduction, we recall the following. (Compare [18], [6,
p. 37].) Let(M, g, J ) be a compact, connected, non-Kähler, l.c.K. manifold with parallel Lee
form θ . Then the following results hold:g(θ�, θ�) =const,

Lθ�J = LJ θ�J = 0 , Lθ�g = LJ θ�g = 0 .

ThenZ = θ� − iJ θ� is a holomorphic vector field because[θ�, J θ�] = 0 (cf. [12]). By
Definition 1.1,Z = θ� − iJ θ� is a holomorphic l.c.K. vector field.

PROPOSITION 2.4. The real vector fieldsθ� andJ θ� satisfy the following:
1. A flow generated by the Lee fieldθ� lifts to a one-parameter subgroup of nontrivial

homothetic holomorphic transformations with respect toΩ .
2. A flow generated by the anti-Lee field−J θ� lifts to a one-parameter subgroup con-

sisting of holomorphic isometries with respect toΩ .

PROOF. Let {ϕ̂t}t∈R be the flow generated byθ� onM and{ϕt}t∈R its lift to M̃. Denote
by ξ the vector field onM̃ induced by{ϕt }. Then,p∗ξ = θ�. Becauseθ is parallel,{ϕ̂t}
(resp.{ϕt}) acts by holomorphic isometries with respect tog (resp.p∗g). In particular,{ϕt}
preservesp∗ω. Then, forΩ = e−τp∗ω, we haveϕ∗

t Ω = e−(ϕ∗
t τ−τ )Ω . As ρ : {ϕt}t∈R→R+
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is a homomorphism andρ(ϕt ) = e−(ϕ∗
t τ−τ ) is constant for eacht ∈ R (dimCM ≥ 2), we

can describe as−(ϕ∗
t τ − τ ) = c · t for some constantc. Recall thath is the Kähler metric

associated toΩ . If {ϕt} acts as holomorphic isometries with respect toh, then the above
equation implies thatc = 0, i.e.,ϕ∗

t τ − τ = 0 for everyt , and soLξ τ = 0. On the other hand,
asdτ = p∗θ , we have:

0 = Lξ τ = dτ(ξ) = θ(p∗ξ) = θ(θ�) = const. > 0,

a contradiction. Thus,ϕ∗
t Ω = ρ(ϕt )Ω = ec·tΩ with c �= 0. Hence,{ϕt}t∈R is a group

of nontrivial homothetic holomorphic transformations isomorphic toR. On the other hand,
let {ψ̂t }t∈R (resp.{ψt }t∈R) be the flow generated by−J θ� on M (resp.−J ξ on M̃). As
p∗(J ξ) = Jp∗ξ = J θ�,

LJ ξ τ = dτ(J ξ) = p∗θ(J ξ) = θ(J θ�) = g(J θ�, θ�) = 0 ,

and henceψ∗
t τ = τ for everyt ∈ R. By the fact thatLJ θ�g = 0, LJ θ�ω = 0. This implies

thatψ∗
t Ω = ψ∗

t e
−τψ∗

t p
∗ω = e−τp∗ψ̂∗

t ω = e−τp∗ω = Ω. �

Let R → M̃
π→ W be the principal bundle, whereR = {ϕt }t∈R (cf. Lemma 2.2). Define

the centralizer ofR in H(M̃,Ω, J ) to be:

DEFINITION 2.1. CH(R) = {f ∈ H(M̃,Ω, J ) | f ◦ ϕt = ϕt ◦ f for all t ∈ R}.
As C̃ centralizes the fundamental groupπ1(M), noting the remark below (2.1), we have

π1(M) ⊂ CH(R) .(2.20)

LEMMA 2.7. There exists a homomorphismν : CH(R)→ PSH(W, η, J ) for which
π : M̃→W becomesν-equivariant. Moreover, there exists a splitting homomorphismq :
PSH(W, η, J )→CH(R).

PROOF. By definition, any elementf ∈ CH(R) satisfiesf∗ξ = ξ . As f ∗Ω = ρ(f )Ω ,
choosinges = ρ(f ), putγ = ϕ−s ◦ f . Then,γ ∗Ω = Ω . In particular,γ leavesW invariant.
Let γ ′ be the restriction ofγ toW (i.e., i ◦ γ ′ = γ ). Using (2.6) andγ∗ξ = ξ , we have that
γ ′∗η = γ ∗LξΩ = LξΩ = η. Henceγ ′ ∈ PSH(W, η, J ). If we defineν(f ) = γ ′, then
it is easy to see thatν is a well-defined homomorphism. Letx = ϕtw be a point inM̃. As
π(x) = w, π(f x) = π(ϕsγ (ϕtw)) = π(ϕsϕt iγ

′w) = π(iγ ′w) = γ ′w = ν(f )π(x), soπ is
ν-equivariant.

Forγ ∈ PSH(W, η, J ), we define a diffeomorphism̃γ : M̃→M̃ to be

γ̃ (x) = γ̃ (ϕtw) = ϕtγw .(2.21)

By definition, π ◦ γ̃ = γ ◦ π and thet-coordinate satisfies that̃γ ∗t = t . By (2.15) and
γ ∗η = η, it follows that γ̃ ∗Ω = d(eγ

∗t π∗γ ∗η) = d(etπ∗η) = Ω. To see that̃γ : M̃→M̃

is holomorphic, notice that̃γ∗ξ = ξ . As γ̃ (ψθx) = γ̃ (ψθϕtw) = γ̃ (ϕt iψ
′
θw) = ϕt iγψ

′
θw,
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andγ∗A = A,

γ̃∗(−J ξx) = γ̃∗
(
dψθ

dθ
(x)

∣∣∣∣
θ=0

)
=

(
dϕt iγ (ψ

′
θw)

dθ

∣∣∣∣
θ=0

)

= ϕt∗i∗γ∗
(
dψ ′

θ

dθ
(w)

∣∣∣∣
θ=0

)
= ϕt∗i∗γ∗Aw = ϕt∗i∗Aγw

= ϕt∗(−J ξγw) = −J ξγ̃ x .

(2.22)

Hence,γ̃ preserves{ξ, J ξ}⊥. Since the complex structureJ : Null η→Null η is defined by
the commutative diagram (2.11),Jγ∗(π∗X) = γ∗J (π∗X) for X ∈ {ξ, J ξ}⊥ by definition.
Thenπ∗γ̃∗J (X) = Jγ∗π∗(X) = Jπ∗γ̃∗(X) = π∗J γ̃∗(X). As a consequence,̃γ∗ ◦ J =
J ◦ γ̃∗ on M̃. Hence,γ̃ ∈ CH(R). It is easy to check thatq(γ ) = γ̃ is a homomorphism of
PSH(W, η, J ) into CH(R) such thatν ◦ q = id. �

REMARK 2.1. From this lemma, there is an isomorphismCH(R) ≈ R×PSH(W, η, J ),
where each element ofCH(R) is described asϕs · q(α) for s ∈ R, α ∈ PSH(W, η, J ). It acts
onM̃ as

ϕs · q(α)(ϕt · w) = ϕs+t · αw ,
for which there is an equivariant principal bundle:

R −→ (CH(R), M̃) (ν,π)−→ (PSH(W, η, J ),W) .

2.3. Central group extension. The material in this subsection and, in particular, Propo-
sition 2.5, will be needed in Section 4.

Consider the exact sequence:

1−→ R −→ CH(R) ν−→ PSH(W, η, J )−→ 1 .(2.23)

Suppose thatR ∩ π1(M) is nontrivial. Then it is an infinite cyclic subgroupZ such that the
quotient groupR/Z is a circleS1. PutQ = ν(π1(M)) ⊂ PSH(W, η, J ). We have a central
group extension:

1−→ Z −→π1(M)
ν−→ Q−→ 1 .(2.24)

The above principal bundle restricts to the following one:

(Z,R)−→ (π1(M), M̃)
(ν,π)−→ (Q,W).(2.25)

As both R andπ1(M) act properly onM̃, Q acts also properly discontinuously (but not
necessarily freely) onW such that the quotient Hausdorff spaceW/Q is compact. Since
ρ(Z) ⊂ ρ(R) = R+ from § 2.1,ρ(Z) is an infinite cyclic subgroup ofR+. We need the
following lemma. (Compare [10], [5].)

LEMMA 2.8. Let1→ Z →π1(M)
ν→Q→1be the central extension as given in(2.24).

Then, π1(M) has a splitting subgroupπ ′ of finite index:
1−→ Z −→π ′ ν−→ Q′ −→ 1 .
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In particular, there exists a subgroupH ′ of π ′ which maps isomorphically onto a subgroup
Q′ of finite index inQ.

PROOF. Consider the homomorphismρ′ = ρ|π1(M) : π1(M)→ R+ from (2.1). Then,
ρ′(π1(M)) is a free abelian group of rankk ≥ 1. If we note thatρ′(Z) is an infinite cyclic
subgroup ofρ′(π1(M)), then we can choose a subgroupG of finite index inρ′(π1(M)) such
that ρ′(Z) is a direct summand inG; G = ρ′(Z) × Zk−1. Putπ ′ = ρ′−1

(G) andH ′ =
ρ′−1

(Zk−1). Then,π ′ has finite index inπ1(M). Obviously,ν mapsH ′ isomorphically onto
ν(H ′) = Q′, which is of finite index inQ. �

PROPOSITION 2.5. The subgroupQ′ acts freely onW so that the orbit spaceW/Q′ is a
closed strictly pseudoconvex pseudo-Hermitian manifold induced from the pseudo-Hermitian
structure(η, J ) onW .

PROOF. Let f = ν′−1 : Q′→H ′ be the inverse isomorphism. For eachα′ ∈ Q′ there
exists a unique elementλ(α′) ∈ R such thatf (α′) = ϕλ(α′) · q(α′). As we know thatQ acts
properly discontinuously onW from the remark below (2.25), the stabilizer at each point is
finite. Suppose thatα′w = w for some pointw ∈ W . Asα′ ∈ Qw, (α′)l = 1 for somel. Since
ϕt is a central element andq is a homomorphism, 1= f ((α′)l) = ϕlλ(α′) · q((α′)l) = ϕlλ(α′).
Thus,λ(α′) = 0, i.e.,f (α′) = q(α′). By the definition of the action(π ′, M̃), f (α′)(ϕtw) =
q(α′)(ϕtw) = ϕtα

′w = ϕtw. As π ′ acts freely onM̃, f (α′) = 1 and soα′ = 1. If we note
thatQ′ ⊂ PSH(W, η, J ), then(η, J ) induces a pseudo-Hermitian structure(η̂, J ) onW/Q′.
Here we use the same notationJ for the complex structure on Null̂η. �

3. Examples of l.c.K. manifolds with parallel Lee form. In this section we present
an explicit construction for the Hopf manifolds.

Let S2n−1 = {(z1, . . . , zn) ∈ Cn | |z1|2 + · · · + |zn|2 = 1} be the sphere endowed with
its standard contact structure

η0 =
n∑
j=1

(xjdyj − yjdxj ) ,(3.1)

wherezj = xj +√−1 yj . Let J0 be the restriction of the standard complex structure ofCn to
Cn−{0}. It is known that the group of pseudo-Hermitian transformations, PSH(S2n−1, η0, J0)

is isomorphic with U(n) (see [21], for example). We define a 1-parameter subgroup{ψt }t∈R ⊂
PSH(S2n−1, η0, J0) by the formula:

ψt (z1, . . . , zn) = (eita1z1, . . . , e
itanzn) ,

where i= √−1 anda1, . . . , an ∈ R. The vector field induced by this action is

A =
n∑
j=1

aj

(
xj

d

dyj
− yj

d

dxj

)

and satisfiesη0(A) = a1|z1|2 + · · · + an|zn|2.
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Now we require thatη0(A) > 0 everywhere onS2n−1. Then the numbersak must satisfy
(up to rearrangement):

0< a1 ≤ · · · ≤ an .(3.2)

Define a new contact formηA on the sphere by

ηA = 1∑n
j=1aj |zj |2

· η0 .

The contact distributions ofη0 and ηA coincide, but the characteristic field ofηA is A:
ηA(A) = 1, ιAdηA = 0. As A generates the flow{ψt }t∈R ⊂ PSH(S2n−1, η0, J0), note
thatψt∗ ◦ J0 = J0 ◦ ψt∗ on NullηA. Define a 2-form on the productR × S2n−1 by:

ΩA = 2d(etpr∗ηA) , t ∈ R .

Here pr : R × S2n−1 → S2n−1 is the projection. IfR = {ϕs}s∈R acts onR × S2n−1 by left
translations:ϕs(t, z) = (s+ t, z), then the groupR × PSH(S2n−1, ηA, J0) acts by homothetic
transformations with respect toΩA:

(ϕs × α)∗ΩA = es ·ΩA , α ∈ PSH(S2n−1, ηA, J0) .(3.3)

In general, PSH(S2n−1, ηA, J0) is the centralizer of{ψt }t∈R in U(n). In view of the formula
of ψt , PSH(S2n−1, ηA, J0) contains at least the maximal torus of U(n) :

T n ⊂ PSH(S2n−1, ηA, J0) .(3.4)

(For example, if allaj are distinct, PSH(S2n−1, ηA, J0) = T n.)
Let N = d/dt be the vector field induced onR × S2n−1 by theR-action. Taking into

account thatT (R × S2n−1) = N ⊕ A ⊕ Null ηA, we define an almost complex structureJA
on R × S2n−1 by

JAN = −A , JAA = N ,

JA|Null ηA = J0 ,

and show its integrability. Indeed, let

T (R × S2n−1)⊗ C = {T 1,0 + (A− iN)} ⊕ {T 0,1 + (A+ iN)}
be the splitting corresponding toJA (hereT 1,0 + T 0,1 = Null ηA ⊗ C). As JA|Null ηA =
J0, [T 1,0, T 0,1] ⊂ T 1,0. Recalling thatA is the characteristic field ofηA, we see that
[X,A] ∈ Null ηA for anyX ∈ Null ηA. If X ∈ T 1,0, then [X,A − iN] = [X,A] =
limt→0(X − ψ−t∗X)/t . Noting thatψt ∈ PSH(S2n−1, ηA, J0) (i.e.,ψt∗J0 = J0ψt∗),

JA[X,A− iN] = J0[X,A] = lim
t→0

J0X − ψ−t∗J0X

t
= [J0X,A]

= [iX,A] = i[X,A] = i[X,A− iN] .
Thus[X,A − iN] ∈ {T 1,0 + (A − iN)}. HenceJA is integrable. By the definition ofJA, it
is easy to check that the elements ofR × PSH(S2n−1, ηA, J0) are holomorphic with respect
to JA. Moreover,ΩA is JA-invariant. Hence,ΩA is a Kähler form on the complex manifold
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(R × S2n−1, JA) on whichR × PSH(S2n−1, ηA, J0) acts as the group of holomorphic ho-
mothetic transformations. Define a Hermitian metricg̃A and its fundamental 2-form̃ωA by
setting

ω̃A = 2e−t ·ΩA .
g̃A(X, Y ) = ω̃A(JAX, Y ) , X, Y ∈ T (R × S2n−1) .

(3.5)

(Compare (2.16).) By (3.3),R × PSH(S2n−1, ηA, J0) acts as holomorphic isometries of
(g̃A, JA). When we choose a properly discontinuous groupΓ ⊂ R × PSH(S2n−1, ηA, J0)

acting freely onR × S2n−1, g̃A (resp.ω̃A) induces a Hermitian metricgA (resp. the funda-
mental 2-formωA) on the quotient complex manifold(R×S2n−1/Γ, ĴA), where the complex
structureĴA is induced fromJA. We have to check thatgA is a l.c.K. metric with paral-
lel Lee form. Letp : R × S2n−1 → R × S2n−1/Γ be the projection so thatp∗ωA = ω̃A.
Sinceω̃A = e−t · ΩA, we havedω̃A = −dt ∧ ω̃A. Thus g̃A is a l.c.K. metric with Lee
form d(−t) on R × S2n−1. If we note that the groupR × PSH(S2n−1, ηA, J0) leavesd(−t)
invariant, i.e.,(ϕs × α)∗d(−t) = d(−(s + t)) = d(−t), thend(−t) induces a 1-formθ
on R × S2n−1/Γ such thatp∗θ = d(−t). The equationdω̃A = −dt ∧ ω̃A implies that
dωA = θ ∧ ωA on R × S2n−1/Γ . As dθ = 0, gA is a l.c.K. metric with Lee formθ . For
the rest, the same argument as in the proof of Lemma 2.5 can be applied to show thatθ is
the parallel Lee form ofgA. Finally, we examine the complex structureĴA on R × S2n−1/Γ .

LetH : R × S2n−1 → Cn − {0} be the diffeomorphism defined by

H(t, (z1, . . . , zn)) = (e−a1t z1, . . . , e
−ant zn),

where{a1, . . . , an} satisfies the condition (3.2). We shall show thatH is (JA, J0)-biholomor-
phic. We have:

H∗(N(s,z)) = dH(t + s, z)

dt

∣∣∣∣
t=0

= (−a1 · e−a1s · z1, . . . ,−an · e−ans · zn) ;

H∗(JAN(s,z)) = H∗(−A(s,z)) = −H∗
((
s,
d

dt
(eita1z1, . . . , e

itanzn)

∣∣∣∣
t=0

))

= −(ia1e
−a1sz1, . . . , iane−anszn) = J0H∗(N(s,z)) .

FromH∗(A(s,z)) = −J0H∗(N(s,z)), we deriveJ0H∗(A(s,z)) = H∗(N(s,z)) = H∗(JAA). Now
let X ∈ Null ηA ⊂ T S2n−1 and letσ(t) be an integral curve ofX on S2n−1: σ̇ (t) = X,
σ̇ (0) = Xz. We can viewX as a pair:X(s,z) = (s, σ̇ (0)). Then

H∗(X(s,z)) = d

dt
H(s, σ (t))|t=0 = (e−a1s σ̇1(0), . . . , e−ans σ̇n(0)) .

From this we obtain
H∗(JAX(s,z)) = H∗((s, J0σ̇ (0))) = H∗((s, (iσ̇1(0), . . . , iσ̇n(0))))

= (ie−a1s σ̇1(0), . . . , ie
−ans σ̇n(0))

= J0(e
−a1s σ̇1(0), . . . , e−ans σ̇n(0)) = J0H∗(X(s,z)) .
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ThereforeH : (R × S2n−1, JA) → (Cn − {0}, J0) is biholomorphic.
Let Hol(Cn − {0}, J0) be the group of all biholomorphic transformations. We can obtain

a faithful homomorphismR × PSH(S2n−1, ηA, J0) → Hol(Cn − {0}, J0) by associating to
eachγ ∈ R×PSH(S2n−1, ηA, J0) the biholomorphic mapH ◦γ ◦H−1. LetΓH be the image
of Γ in Hol(Cn − {0}, J0).

DEFINITION 3.1. The quotient complex manifold(Cn−{0})/ΓH is called a Hopf man-
ifold.

Since our mapH induces a holomorphic diffeomorphism̂H : (R × S2n−1)/Γ → (Cn−
{0})/ΓH , lettingĤ ∗g = gA for the l.c.K. metricgA on (R × S2n−1)/Γ , we have shown:

THEOREM 3.1. The Hopf manifold(Cn − {0})/ΓH admits a l.c.K. metricg with par-
allel Lee formθ .

By (3.4), T n ⊂ PSH(S2n−1, ηA, J0). Chooses ∈ R − {0} andn complex numbers
c1, . . . , cn ∈ S1. Let (s, (c1, . . . , cn)) ∈ R × PSH(S2n−1, ηA, J0) and consider an infinite
cyclic subgroupZ generated by this element. Then the corresponding groupZH is generated
by the element(e−a1s · c1, . . . , e

−ans · cn) acting onCn − {0}. LetΛ = (λ1, . . . , λn), with
λj = e−aj s · cj and soZH = 〈(λ1, . . . , λn)〉. The condition (3.2) ensures that the complex
numbersλj satisfy

0< |λn| ≤ · · · ≤ |λ1| < 1 .

PutMΛ = (Cn−{0})/ZH . We callMΛ aprimary Hopf manifold of typeΛ. Indeed, forn = 2,
one recovers the primary Hopf surfaces of Kähler rank 1. In particular, we derive Theorem B
in the Introduction.

REMARK 3.1. Note that the manifoldsMΛ are all diffeomorphic withS1 × S2n−1 and
that forc1 = · · · = cn = 1 anda1 = · · · = an, we obtain the standard Hopf manifold, the
first known example of a l.c.K. manifold with parallel Lee form, cf. [18].

In [7] a l.c.K. metric with parallel Lee form is constructed on the primary Hopf surface
Mλ1,λ2 = (C2−{0})/Γ , Γ ∼= Z being generated by(z1, z2) �→ (λ1z1, λ2z2), |λ1| ≥ |λ2| > 1.
There the diffeomorphism betweenMλ1,λ2 andS1 × S3 is used to construct a potential for
the Kähler metrich (in the notation of the present paper) on the universal cover. The same
diffeomorphism is then used to transport the l.c.K. structure onS1 × S3 and to show that the
induced Sasakian structure onS3 is a deformation of the standard Sasakian structure of the
3-sphere. See also [1] where a complete list of compact, complex surfaces admitting l.c.K.
metrics with parallel Lee form is provided.

4. Lee-Cauchy-Riemann transformations. In this section, we study the group
Aut LCR(M) described in the Introduction.

Let {θ, θ ◦ J, θα, θ̄α}α=1,...,n−1 be a unitary, local coframe field adapted to a l.c.K. man-
ifold (M, g, J ) with parallel Lee form. Consider the subgroupG of GL(2n,R) consisting of
the following elements:

� �
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1 0 0 0
0 u vα v̄α

0 0
√
uUαβ 0

0 0 0
√
u Ūαβ


 u ∈ R+, vα ∈ C, Uαβ ∈ U(n− 1)



.

Let G→P→M be the principal bundle of theG-structure consisting of the above
coframes{θ, θ ◦ J, θα, θ̄α}. If we note thatG is isomorphic to the semidirect productCn−1

�

(U(n − 1) × R+), then the Lie algebrag is isomorphic toCn−1
� u(n − 1) + R. Note that

the subgroupCn−1 is of even rank, whileu(n− 1)+ R is of order 2. In particular, the matrix
groupg ⊂ gl(2n,R) has no element of rank 1, i.e., it iselliptic (cf. [11]). AsM is assumed to
be compact, it is known that the group of automorphismsU of P is a finite dimensional Lie
group.

DEFINITION 4.1. The group of all diffeomorphisms ofM onto itself which preserve
the aboveG-structure is denoted by AutLCR(M, g, J, θ) (or simply by AutLCR(M)). We
call AutLCR(M) the group of Lee-Cauchy-Riemann transformations on a l.c.K. manifold
(M, g, J ) adapted to the parallel Lee formθ .

By definition, iff ∈ Aut LCR(M), thenf ∗ : P→P is a bundle automorphism satisfying

f ∗θ = θ ,

f ∗(θ ◦ J ) = λ · (θ ◦ J ) for some positive, smooth functionλ ,

f ∗θα = √
λ · θβV αβ + (θ ◦ J ) ·wα ,

f ∗θ̄ α = √
λ · θ̄ β V̄ αβ + (θ ◦ J ) · w̄α

(4.1)

for functionsV αβ , wα with values in U(n − 1), respectively inC. Note that the group of
holomorphic isometries I(M, g, J ) is contained in AutLCR(M). In fact, an elementf ∈
I(M, g, J ) satisfiesf ∗θ = θ , f ∗(θ ◦ J ) = (θ ◦ J ) andf ∗ω = ω. Let {θ�, J θ�}⊥ be the
orthogonal complement of the complex plane field{θ�, J θ�} with respect tog. It is obviously
J -invariant. If we observe thatω|{θ�, J θ�}⊥ = −i

∑
α,β δαβθ

α ∧ θ̄ β , thenf ∗θα = θβUαβ ,

f ∗θ̄ α = θ̄ βŪαβ for some U(n− 1)-valued functionUαβ .

LEMMA 4.1. Any elementf ∈ Aut LCR(M) preserves{θ�, J θ�}⊥ and is holomorphic
on it.

PROOF. LetX ∈ {θ�, J θ�}⊥. The equationsf ∗θ = θ , f ∗(θ ◦ J ) = λ · (θ ◦ J ) show
that

g(f∗X, θ�) = θ(f∗X) = θ(X) = g(X, θ�) = 0 ,

g(f∗X, Jθ�) = −g(Jf∗X, θ�) = −θ(Jf∗X) = −θ ◦ J (f∗X)
= −λ · θ ◦ J (X) = −g(X, (θ ◦ J )�) = g(X, J θ�) = 0 .

(4.2)

Thusf∗ applies{θ�, J θ�}⊥ onto itself. Moreover, ifθ�α is a dual frame field toθα (simi-
larly for θ̄ α), then the frame{θ�α, θ̄ �α}α=1,...,n−1 spans{θ�, J θ�}⊥ ⊗ C. The equationf ∗θα =

� �
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√
λ · θβV αβ + (θ ◦ J ) · wα implies thatf∗θ�α = √

λ · θ�βV βα (similary for f∗θ̄ �α). Therefore

f∗ ◦ J = J ◦ f∗ on {θ�, J θ�}⊥. �

When a noncompact LCR flow exists on a compact l.c.K. manifoldM with parallel Lee
form, we shall prove a rigidity similar to the one implied by a noncompact CR-flow on a
compact CR-manifold (cf. [15], [9]).

Proof of Theorem C
4.1. Existence of spherical CR-structure onW/Q′. Let 1→ Z →π ′ ν→ Q′ → 1 be

the split central group extension from Lemma 2.8. PutM ′ = M̃/π ′. Then it is easy to see
that the Lee formθ , the LCR-actionC∗ lift to those ofM ′, so we retain the same notation
for M ′. We putC∗ = S1 × R+, whereR+ = {φ̂t }t∈R is a LCR flow onM ′. By hypothesis,
S1 = {ϕ̂t }t∈R induces the Lee fieldθ�. From 1 of Proposition 2.4,S1 lifts to a nontrivial
holomorphic homothetic flowR = {ϕt }t∈R onM̃ with respect toΩ . We obtain a LCR-action
of R × R+ on M̃ for which R acts properly as before. Consider the commutative diagram of
principal bundles:

Z −−→ π ′ ν−−→ Q′
� � �
R −−→ (R × R+, M̃) (ν̃,π)−−−→ (R+,W)� �p �p
S1 −−→ (S1 × R+,M ′) (ν̂,π̂)−−−→ (R+,W/Q′) .

(4.3)

From the bottom line, the projection̂ν maps the groupR+ = {φ̂t }t∈R onto a groupR+ =
{φ̄t }t∈R acting onW/Q′.

LEMMA 4.2. The groupR+ = {φ̄t }t∈R acts by CR-transformations onW/Q′ with re-
spect to the CR-structure induced from the strictly pseudoconvex, pseudo-Hermitian structure
(η̂, J ).

PROOF. As ξ generates the flowR = {ϕt }t∈R, p∗ξ = θ� onM ′ by hypothesis and
sop : M̃→M ′ maps the complex plane field{ξ, J ξ} onto {θ�, J θ�}. By Lemma 4.1, each
φ̂t ∈ Aut LCR(M

′) preserves{θ�, (θ◦J )�}⊥. So its liftφt preserves theJ -invariant distribution
{ξ, J ξ}⊥. Sinceπ∗ : ({ξ, J ξ}⊥, J )→ (Null η, J ) is J -isomorphic and eachφt is holomor-
phic on{ξ, J ξ}⊥, π̂∗ : ({θ�, (θ ◦ J )�}⊥, J )→ (Null η̂, J ) is alsoJ -isomorphic through the
commutative diagram and thus eachφ̄t is holomorphic on Nullη̂; (φ̄t∗ ◦J = J ◦ φ̄t∗). There-
fore, R+ = {φ̄t }t∈R is a closed, noncompact subgroup of CR-transformations ofW/Q′ with
respect to(Null η̂, J ). �

By this lemma, we obtain a compact strictly pseudoconvex CR-manifoldW/Q′ admit-
ting a closed, noncompactCR-transformationsR+. Then we apply the result of [9] to show
thatW/Q′ is CR-equivalent to the sphereS2n−1 with the standard CR-structure. In particular

� �
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Q′ = {1} and thusQ is a finite subgroup of PSH(W, η, J ) from Lemma 2.8. By the definition
of spherical CR-structure (cf. [13], [8]), there exists a developing pair:

(µ, dev) : (Aut CR(W),W)→ (PU(n,1), S2n−1)

for which dev is a CR-diffeomorphism andµ : Aut CR(W)→ PU(n,1) is the holonomy iso-
morphism. Here PU(n,1) = Aut CR(S

2n−1) and AutCR(W) is the group of all CR-automor-
phisms ofW containing the groupsR+ and PSH(W, η, J ) ⊃ Q.

As S1 (⊂ C∗) acts onM without fixed points (but not necessarily freely, i.e., with possi-
ble subset of exceptional orbitsS1·x for which the stabilizerS1

x is a non-trivial cyclic subgroup
of S1; cf. [3]), the quotient spaceM/S1 = W/Q(≈ S2n−1/µ(Q)) is an orbifold, so such a
finite subgroupQ may exist.

On the other hand, we recall some facts from the theory of hyperbolic groups (cf. [4]).
The noncompact closedµ(R+)-action onS2n−1 is characterized as whether it is either lox-
odromic(= R+) or parabolic(= R) for which R+ has exactly two fixed points{0,∞} or
R has the unique fixed point{∞} on S2n−1. Moreover, the centralizerCPU(n,1)(µ(R+)) of
µ(R+) in PU(n,1) is one of the following groups up to conjugacy:

R × U(n− 1) or R+ × U(n− 1) .(4.4)

Sinceπ1(M) centralizesR×R+, note thatQ centralizesR+ (cf. (2.24)). The holonomy group
µ(Q) belongs toCPU(n,1)(µ(R+)). Asµ(Q) is a finite subgroup, (4.4) implies that

µ(Q) ⊂ U(n− 1) .(4.5)

4.2. Rigidity of(M, g, J ) under the LCR action ofR+. Let (η0, J0) be the standard
strictly pseudoconvex pseudo-Hermitian structure onS2n−1 (cf. (3.1)). By definition, there
exists a positive functionu onW such that

dev∗η0 = u · η .(4.6)

By Lemma 2.4, we know thatA is the characteristic CR-vector field onW for (η, J ). If {ψ ′
t }

is the flow generated byA, then note from (2.1.3) that{ψ ′
t } ⊂ PSH(W, η, J ). BecauseW

is compact, PSH(W, η, J ) is compact. As PSH(W, η, J ) ⊂ Aut CR(W), the closure of the
holonomy imageµ({ψ ′

t }) (which is a connected abelian group) lies in the maximal torusT n

of the maximal compact subgroup U(n) in PU(n,1) up to conjugacy. We can describe it as

µ(ψ ′
t ) = (eia1·t , . . . , eian·t ) , t ∈ R

for someai ∈ R (i = 1, . . . , n). On the other hand, letA = dev∗(A). Since dev is equivariant,
dev(ψ ′

tw) = µ(ψ ′
t )dev(w) on S2n−1 = {z = (z1, z2, . . . , zn) ∈ Cn | |z1|2 + |z2|2 + · · · +

|zn|2 = 1}, we have

Az = dµ(ψ ′
t )

dt
=

n∑
j=1

aj

(
xj

d

dyj
− yj

d

dxj

)
, z = dev(w), zj = xj + iyj .(4.7)
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As η(A) = 1, we have

u(w) = dev∗η0(A) = η0(Az) =
n∑
j=1

aj · |zj |2 .(4.8)

Sinceu > 0 from (4.6), we can assume that, up to rearranging the order of indices

0< a1 ≤ · · · ≤ an .(4.9)

As dev−1 maps the pseudo-Hermitain structure(η, J ) onW to (dev−1∗ η, J0) on S2n−1, we
put

ηA = dev−1∗η .(4.10)

Using (4.8), we obtain

ηA = 1∑n
j=1 aj · |zj |2 · η0 on S2n−1 .(4.11)

When we note thatη0 = u′ · ηA whereu′ = u ◦ dev−1, andT (R × S2n−1) = {d/dt,A} ⊕
Null η0, denote the complex structureJA onR × S2n−1 by

JA
d

dt
= −A, JAA = d

dt
,

JA|Null η0 = J0 .

(4.12)

(Compare §3.) Let Pr: R × S2n−1→S2n−1 be the canonical projection. In view of (3.5),
setting

ΩA = d(et · Pr∗ηA) , ω̃A = 2e−t ·ΩA ,
g̃A(X, Y ) = ω̃A(JAX,Y ) ,

(4.13)

we obtain a l.c.K. structure(ΩA, JA) on the productR × S2n−1 endowed with the group
R × PSH(S2n−1, ηA, J0) of holomorphic homothetic transformations.

PROPOSITION 4.1. There exists an equivariant holomorphic isometry between the
l.c.K. manifolds(CH(R), M̃,Ω, J ) and(R × PSH(S2n−1, ηA, J0),R × S2n−1,ΩA, JA).

PROOF. LetG : M̃→R×S2n−1 be a diffeomorphism defined byG(ϕtw) = (t,dev(w)).
Note that Pr◦G = dev◦π on M̃. As every element ofCH(R) is described asϕs · q(α) from
Remark 2.1, define a homomorphismΨ : CH(R)→R × PSH(S2n−1, ηA, J0) by setting

Ψ (ϕs · q(α)) = (s, µ(α)) .

Recall that the actionq(α)(ϕtw) = ϕtαw from (2.21). Then,

G(ϕs · q(α)(ϕtw)) = G(ϕs+t · αw) = (s + t,dev(αw)) = (s + t, µ(α) dev(w))

= (s, µ(α))(t,dev(w)) = Ψ (ϕs · q(α))G(ϕtw) .
Hence,(Ψ,G) : (CH(R), M̃)→ (R × PSH(S2n−1, ηA, J0),R × S2n−1) is equivariantly dif-
feomorphic. Next, sinceG∗t = t for the t-coordinate ofR × S2n−1 and dev∗ ηA = η from

� �
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(4.10), it follows that

G∗ΩA = G∗d(et · Pr∗ηA) = d(eG
∗t ·G∗Pr∗ηA) = d(et · π∗η) = Ω .(4.14)

By definition,G∗ξ = d/dt. Moreover, whenx = ϕsw,

G(ψt(x)) = G(ϕsψtw) = G(ϕsiψ
′
tw) = (s,dev(ψ ′

tw)) = (s, µ(ψ ′
t ) dev(w)) .

By (2.7) and (4.7),

G∗(−J ξx) = dGψt

dt
(x)

∣∣∣∣
t=0

= AGx = −JA
(
d

dt

)
Gx

.

ThusG∗(J ξ) = JAG∗ξ . AsG∗ΩA = Ω from (4.14),G maps{ξ, J ξ}⊥ onto {d/dt,A}⊥.
Consider the commutative diagram:

({ξ, J ξ}⊥, J ) π∗−−→ (Null η, J )�G∗
�dev∗

({d/dt,A}⊥, JA) Pr∗−−→ (Null η0, J0) .

(4.15)

Here note thatJA = J0 on NullηA = Null η0. ForX ∈ {ξ, J ξ}⊥,

Pr∗G∗J (X) = dev∗(Jπ∗X) = J0dev∗π∗(X) = JAPr∗G∗(X) = Pr∗JAG∗(X) ,

thus,G∗J (X) = JAG∗(X). Hence,G is (J, JA)-biholomorphic. Moreover, asG∗ω̃A =
G∗(2e−tΩA) = 2e−tΩ = Θ̄ andḡ(X, Y ) = Θ̄(JX, Y ), we obtain thatG∗g̃A = ḡ. There-
fore, (Ψ,G) induces a holomorphic isometry from(M, ĝ, J ) onto (R × S2n−1/Ψ (π1(M)),
ĝA,ĴA). �

4.3. The Hopf manifoldR × S2n−1/Ψ (π1(M)). We prove thatR×S2n−1/Ψ (π1(M))

is a primary Hopf manifoldMΛ for someΛ obtained in §3. Each element ofπ1(M) is of the
form γ = ϕs · q(α) for somes ∈ R, whereν(γ ) = α ∈ Q = ν(π1(M)). By the defini-
tion of Ψ , Ψ (γ ) = (s, µ(α)). We show thatΨ (π1(M)) has no torsion element. For this,
if Ψ (γ ) is of finite order (say,l), then 1 = (0,1) = Ψ (γ l) = (ls, µ(αl )). Then,s = 0
so thatΨ (γ ) = (0, µ(α)). On the other hand, recall from (4.5) thatµ(Q) ⊂ U(n − 1)
up to conjugacy, and soµ(Q) has a fixed pointw0 ∈ S2n−1. SinceΨ (π1(M)) acts freely
on R × S2n−1, while Ψ (γ )(t, w0) = (t, µ(α)w0) = (t, w0), it follows thatΨ (γ ) = 1.
Moreover, if γ1 = ϕs1 · q(α1), γ2 = ϕs2 · q(α2), thenΨ ([γ1, γ2]) = (0, µ([α1, α2]). For
the same reason,Ψ ([π1(M), π1(M)]) = {1}. Hence,π1(M) is a finitely generated tor-
sionfree abelian group. If we recall from (2.24) that 1→ Z →π1(M)

ν→Q→ 1 is the cen-
tral group extension whereQ is finite, thenπ1(M) itself is an infinite cyclic group. Since
Ψ (π1(M)) ⊂ R × PSH(S2n−1, ηA, J0) and the projection mapsΨ (π1(M)) ontoµ(Q) in
PSH(S2n−1, ηA, J0), µ(Q) is a finite cyclic group. As PSH(S2n−1, ηA, J0) has the maximal
torusT n (cf. (3.4)), we obtain thatΨ (π1(M)) ⊂ R × T n up to conjugacy. A generator of
Ψ (π1(M)) is described as(s, (c1, . . . , cn)) ∈ R × T n. Noting (4.9), letλj = e−aj scj and

� �



GEOMETRIC FLOW ON LOCALLY CONFORMALLY KÄHLER MANIFOLDS 221

Λ = (λ1, . . . , λn). By Theorem 3.1 and the remark below it,R × S2n−1/Ψ (π1(M)) is a pri-
mary Hopf manifoldMΛ of typeΛ. This finishes the proof of Theorem C in the Introduction.
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