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GEOMETRIC FOURIER ANALYSIS

by Antonio CORDOBA

In this paper we present several results related to maximal and
square functions whose proofs have a similar flavour: after some
algebraic manipulation and the use of the uncertainty principle they
are reduced to certain properties of the geometry of "rectangles"
in FT.

A. In R2 let us consider the angles

27r/
^•= — — . 7 = = 0 , 1 , . . . , N - 1 , NeZ +

/ N
and let us denote by Hy the Hilbert transform in the direction o .̂
and by S. the projection, at the Fourier transform side, over the
angles

A, = { S , 27T/7N < arg($) < 27r(/ + 1)/N}

i.e. S,/a)=XA,(S) /O).

THEOREM 1. — There exist constants independent of N , 0 < a,
c < °°, so that

'l̂ '̂ l.^00^! '̂1')'''!.
II N ||

ii) (I IS, /I2)1721 <C[logNr' l l / l l ^ .
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B. Let 7 : [0,1] —> S'1"1 be a smooth curve crossing a finite
number of times each hyperplane of R" . Given a real number N ^£> 1
let us consider the family (B^ °^ cylinders of R" having eccen-
tricity = height/radius = N and direction in the curve 7. With a
locally integrable function / we may consider its maximal function
M/ given by the formula

MfW = sup ——— f | f(y) | d^y)
;ceR€=^ JLl{R} J^

where p. denotes Lebesgue's measure in R" .

THEOREM 2. — There exists a constant Cy , independent of N ,
such that IIM/11, <C^[logN] 2 ||/||,.

A. The square function.

S/00- (S IS,/^)!2)172,

s^a)=x^.a)/a),
A, = { $ : 27r/7N < argO) < 27r(/ + 1)/N}.



GEOMETRIC FOURIER ANALYSIS 217

Part (i) of theorem 2 was proved in ref. [4] and, therefore, we
shall concentrate in part (ii). Although we have not made a careful
analysis of the nature of the best constant a, it has to be strictly
positive, as an adequate Kakeya's set argument can show. On the
other hand, interpolating with the I^-result, one may obtain
I I S/||p < C[log N]^ 11/11^ , 2 <p < 4, which it is the best range
of p ^ s where such an inequality can hold. We shall proceed proving
a previous lemma.

In R" let us consider a cubic lattice ff = {QiJi/ez" Le- ^e

Q^5 are congruent cubes with disjoint interiors and such that
R" = u Qy • Define, for each v , the operators "P^? = XQ • / and
the square function G/(;c) = (2 | P^ f(x) |2 )172 .

LEMMA. — For each s > 1 there exists a finite constant Cy so
that for every /, a; E Cp (R") we have:

f \Gf(x)\2^(x)dx <C, f |/0c)|2 \^(x)dx,
J^n J^n

where A^o? = [(o/)*(jc)]1^ and ^-denotes the Hardy-Littlewood
maximal function.

Proof. — Without lack of generality we may assume that ^ is
the unit lattice i.e. Qy is centered at the point v E Z" and has
volume equal to one. Let ^ be a smooth function with compact
support and equal to 1 in Qo. For each y G Q^ let us consider
the Fourier multiplier my(z) = ^ e^^'y \^(z - v), z G R" . Then

v
the kernel ^ = m is a measure of finite total variation uniformly
in y G QQ . More concretely: u = ^ ^(j/ + v) § where, as

v
usual, 6^ denotes Dirac's function translated to the point x . There-
fore, |^*/0c)|2 < C S (1 + l^l)2" |V/(^ +^) | 2 | /(jc-^-^)|2

^ ^
and, since V/ is rapidly decreasing, we have:

f l^/Oc)!2^)^
R/l <CN H(l + M)2^ J\ l/OOI^Oc+y +^)^

y R

(we may assume that a? > 0).
Thus,
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f ( \^J^y*f(x)\2^(x)dx
"QO R"

<CN Sd+M)2"-^ f \f(x)\l\f w ( x + y + v ) d y .dx
v *'R" | "QQ

< C [ \f(x) |2 G;*(JC) rfx, taking N > 4w + 1.
"R"

On the other hand, if !'„/($) = ̂  - y) A?), we have:

l^y*f(x) = ̂  e2"^^/^)
V

and therefore,

^o ^" ^y^fW^^Wdxdy^ ^ ̂  IT,/^)!2^^)^.

To finish we observe that P^/ = P^ T^,/ and we may apply the weight-
ed inequality of reference [5].

Let us consider for each f e G Z a decomposition of the strip
2k <x^< 2^ into congruent disjoint parallelepipeds {Q^} whose
sides are paralled to the coordinate axis. Define:

S/Oc)=(S IP^/OOl2)172

k,v

where P^/U) = X^(^ AS) . Combining the Littlewood-Paley
theorem with the previous result we obtain:
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COROLLARY 1. — For each p , 2 <p < o°,. there exists a finite
constant Cp so that || Sf\\p < Cp \\f\\p , for every /EC^FT).

Proof of theorem 1. — We may assume, without lack of generality,

that 0 < / < — so that 0 < -7r/ < 7r- .8 N 4
We define

A, = 1 (»t , + ,fc, 1 <S, <2, ̂  <„<(»< ̂ -^"j

^0,,,..,,^,

P^-X^.-/

and we want to compute:

^ f |P,/(x)P,/(^)|2^ = S f |P,/(x)P^/(x)|2^
,̂  ^2 / |/-^l<Nl/2 ^R2

+ z r l p , / (x )p fc / (x ) l 2 ^=I4- I I .
l ,-fc|>N1/2 "R2

We decompose further each sector A. into N^2 subsectors
A),...^172, where

A^ = {S= Si + ^ £ 2 ^A,|aN-1/2 <^ -1 < ( a + DN-172}.

It happens that if |/ - k\ > N172 the overlapping of the sets A^ 4- A^ ,
a, j3 = 1 , . . . , N172, is finite (uniformly on N).

Therefore, 11

ii < 2: z [ iprA^p^wi^^Ksip;/!2)1'21/21| 4

4
|,-fcl>Nl/2 ^ ^R2 II ̂  "

where the operators P^ have the obvious definition Pff^ X ^ a ' f '
We claim that /

1(2: i^i2)172! <c[iogNr ii/ii,I /^ " 4

for some universal constant C .



220 A. CORDOBA

To see this we take w > 0 in L^R") and we consider:

^ /. t^72 NV2 (^l)Nl/2

S /|P^)|^(X)^= S S Z / IP-AX) I^WAC

^ R ^ "-i ,=mW w"2

^Nl/2 ̂<c. s z / iQr/wM^Gc)^
;=1 Ct=l '•R2

where Q^/ is given, at the Fourier transform side, as multiplication
by the characteristic function of a rectangle, with sides parallel to the
coordinates axis, and dimensions N"^2 x 2N"172, M co = (Mo^)^
1 < s < °o, and M denotes the maximal function associated to the
base of rectangles with directions in the set 2n-//N, /• = 0 1 N/8
(see ret. [5]). ' > > • • • >

In establishing the last estimate we have made a repeat use of
the lemma. Using Holder's inequality together with the known esti-
mates for M, we get: I I<C[logN] ||/||4 .

We estimate I in the following manner:
-I-logN

I = = ^ ./, ^ / ^/^FfcA^I^+SllP./ll4
v=0 2-"N1/2 <^_^<3-i,+1^,1/2 ^p2 ' " ^ 1 1 ^ 1 1 4 .

Since we always have ^ || P |̂|4 < c ||/||4 and we want an estimate
/°i

with a factor of (log Ny, we may estimate each block of the proceed-
ing sum independently:

For each v we decompose the secteur A^ into subsectors

A; = {$ = ^ + ̂  £ A, | a2"N-1/2 < ̂  - 1 < (a + l)2 l>N- l/2}

and we repeat the same arguments used in the estimation of II.
To finish we observe that, by homogeneity, we have proved the

following: [(S IP,,,,/)2)172^ <C(logN)^ ||/||, , uniformly on

n, where, for each n £ Z

^i.n = {? = ^i + ̂ 2 E A/. I 2" < fi < 2"+l}

0-X^./.
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logN
We decompose A; = U U A;^n<»Nn ^'" which gives us the

.mnn^n ; /= l "=/(mod (logN]) ^decomposition
logN

(ZlVI2)1^! (IIP;/^)172;

here P7 is given by the multiplier U A,
' M==/(mod(logN]) /'"

The point is that if n^ = ̂ (mod [log N]) and, says, ^ > n^ ,
then 2"1 > N 2"2 . That is: the smaller side 2"^ of the rectangles
corresponding to Ay ^ , / = 1, 2 , . . . , N is bigger than the diameter
of the set U ' 1 A, „ .

n=n^ mod ([logN]) /'
n<n^

Furthermore, we decompose each A. ^ into N "squares" {A0^}
of side ^ 2"N~1 and following our convention we shall define the
corresponding multiplier operators P^ .

To simplify notation we shall keep / fixed in the following and
we shall assume that the index n ranges in the set of integers con-
gruent with / mod([log N]). We have:

(zip^ril:-!^!^!-)-!:
= z [[(s i^iTiL4 + 2 s f^ ip/.n/wp^/wi2^

"1>"2

< C(logN)2 ||/||̂  + 2 S / V P^/P,,^/ 2 ̂  .
Afc R2 I a

"1>"2
we have,z / ip^/p^/2^^ i / se7*o2^

7,fc a j,k af.k
rtl>n2

< C 1: S/IP^/*P^/12^
;', k a

n\>nl

-C I: I/IP^/WI2 \P^fWdx
f.k a

"1>"2
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c[(£|p,'./p)"t|(2:|p,,./i.)-"[1
I t.k.a II4 ll\,n / II 4

^C 1 1 / 1 1 ^ |(l: IP;/!2)172!2.
" / 1| 4

That is, we have obtained the inequality:

[(I lP;/12) l /2|2<C(logN)2||/^
+C||/ld|(l:|P;/|^l/212.

H v , / ' || 4

From which the desired result follows very easily.

B. The maximal function.

Our hypothesis over 7 means that for each coES"-1 and
6 G R the function: t —> j(t).G}-b has a finite number of
changes of signum, uniformly in a; and & . It should be noted that,
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in general, C grows to infinity with this number. However, an
estimate of the form II M/||^ < C(log N)° ||/||^, should be true
with C independent of 7. This is an interesting open problem.

For every positive integer m let us consider the points of 7
given by c^ == rC/'OT , / = 1, 2 , . . . , 2^ . Let ^ > 0 be a smooth
function on the real line, supported on 1 1 \ < 2 and equal to 1 on
m < i .

We define A^/Qc) = f_^Jf(x - t^) ̂ (t) dt

and A^/(x) = sup ^|A^/(x)|.
/=1,2, . . . ,2"1

Ctem. - IIA^/11^ <Cm| | /^ , for every /GL^FT), where
C is independent of m.

We shall prove the claim by induction. The case m == 1 is a
consequence of the Hardy-Littlewood maximal theorem. Let us
assume that the result is true for k < m — 1 . It is very easy to check
that A^f(x) < A^_i/(x) + B^f(x) where

B^/OO^f lA^/^-A^1/^)!2)172.
/=!

Therefore our claim is a consequence of the estimate:
|| B^/|| < C || f\\^ , uniformly on m . To see this we use PlanchereFs
theorem:

f IB^/Oc)!2^^ f \^f(x)-^lf(x)\2dx
J^ ;=l "R"

= f i/a)!2! i^a.^j-^a.^-1)!2^;
'R" /=i

and we observe that, because of our hypotheses on 7, we have:
2m

^ I ̂ ($. c^) - ̂ (S. c '̂"1) I2 < C^ < oo uniformly on m .
/-i

To continue let us observe that, in order to prove theorem 2,
we can, without lack of generality, restrict to the case r = 2" , n £ Z
and, because of the fixed eccentricity, we may also consider cylinders
with direction in the set 7 (—) , / = 1 , . . . , N . Finally we may
take N of the form N = V , m e Z-".
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Let us define:

i) ̂ ^^^g ^p. f^f(y)id^y), where the supremum
is taken over all cylinders with dimensions (21')"-1 x N 2" and
direction 7 ( — ) .

ii) T^/W = sup T^f(x)

T^(x) = s^ip T^/(;c)

M/(x) = sup T7/^) == sup T ,f(x).
7 v I"

Given a > 0 we obtain, for each /, a sequence of disjoint
cylinders {R(}^^,... with direction 7(//N) and such that:

E^ = {x : Vf(x) > a} C U R^ where R denotes the result of
expanding R by the factor two. We have,

E ^ = [x:Mf(x)>a}= 5 E^.
/=i a

The heights of the N collections of cylinders, {R{} ,
/ = 1 , . . . , N , are bounded from above. By induction we may
obtain, for each k , a familiy of cylinders B. with dimensions
(2^).-i x 2^, ^ > ̂  > ... in such a way that:

1) No cylinder of B^ is contained in the double of another
cylinder of B .̂ , j < k .

2) If RE.5 {R^} and if

dim(R) = (2T-1 x 2^, ^_, > ^ > ̂  ,
then either R G B^ or R is contained in the double of a cylinder
in U B,. Obviously: E. C u ^

/^^ / - RGUB^

Let us denote by A^ the union of the families B.,, where
VQ - k log^N > Vf > VQ - (k 4- 1) log N and let E, = U R ,
S, = U 1. We know that E^ C U ̂  ReA<

We can now observe that the family {E,} is almost disjoint;
more concretely, if | / - / | > 2 then E , H E ^ = 0 . This is true
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because if R, G A,, R .̂ G A,, / - 7 > 2 , then the radius of R, is
greater than the height of R .̂ ans, therefore, if R, n R^ ^= 0 then
Ry C R, which it is impossible.

Let ff = f/Ef, / = 0, 1 , . . . and let S, be the maximal func-
1 /•

tion given in the following way: S,g(x) = sup ——— / \g(y)\ dp . ( y ) ,
x^R fi{R} "R

where the sup is taken over the set of cylinders of dimensions
(2T~1 x 2^N, where ^ + 2 - Hog N > v > v^ + 2 - (z + 1) log N.

The previously obtained estimate ||A^/||^ <Cm|| / | |^ implies
that S, is bounded on L2(R) with bound less than Cy(logN)3/2.

If x E E, there exists a cylinder R £ A, so that x £ R and,
therefore:

S,f,(x)> —s-f \fi(y)\d^y)
^{R} ^R

^^^^^""•^^i)"'"-
That is, E/ C {x : S,/;.(x) > 4-na}, which implies

/^{E,} < S ̂ & ̂  C^(logN)3 a-2 ^ ||̂ . ||,2

^C^logN)^-2 ||/||2.
A standard use of the Marcinkiewicz interpolation theorem would
yield the strong type inequality of Theorem 1. q.e.d.
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