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Geometric fractal growth model for scale-free networks
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We introduce a deterministic model for scale-free networks, whose degree distribution follows a power law
with the exponent y. At each time step, each vertex generates its offspring, whose number is proportional to the
degree of that vertex with proportionality constant m—1 (m>1). We consider the two cases: First, each
offspring is connected to its parent vertex only, forming a tree structure. Second, it is connected to both its

parent and grandparent vertices, forming a loop structure. We find that both models exhibit power-law behav-
iors in their degree distributions with the exponent y=1+In(2m—1)/Inm. Thus, by tuning m, the degree
exponent can be adjusted in the range, 2<<y<<3. We also solve analytically a mean shortest-path distance d

between two vertices for the tree structure, showing the small-world behavior, that is, d~1n N/In k, where N is

system size, and k is the mean degree. Finally, we consider the case that the number of offspring is the same
for all vertices, and find that the degree distribution exhibits an exponential-decay behavior.
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I. INTRODUCTION

Recently, complex systems have received considerable at-
tention as an interdisciplinary subject [1,2]. Complex sys-
tems consist of many constituents such as individuals, sub-
strates, and companies in social, biological, and economic
systems, respectively, showing cooperative phenomena be-
tween constituents through diverse interactions and adapta-
tions to the pattern they create [3,4]. Recently, there have
been a lot of efforts to understand such complex systems in
terms of networks, composed of vertices and edges, where
vertices (edges) represent constituents (their interactions).
This approach was initiated by Erdos and Rényi (ER) [5]. In
the ER model, the number of vertices is fixed, while edges
connecting one vertex to another occur randomly with a cer-
tain probability. However, the ER model is too random to
describe real complex systems. Recently, Barabasi and Al-
bert (BA) [6,7] introduced an evolving network where the
number of vertices N increases linearly with time rather than
fixed, and a newly born vertex is connected to already exist-
ing vertices, following the so-called preferential attachment
(PA) rule; when the number of edges k incident upon a vertex
is called the degree of the vertex, the PA rule means that the
probability II; for the new vertex to connect to an already
existing vertex i is proportional to the degree k; of the se-
lected vertex i, that is,

=—". (1)

The main difference between the ER and BA models appears
in the degree distribution. For the ER network, the degree
distribution follows the Poisson distribution, while for the
BA network, it follows a power law, P(k)~k~ ¥ with y=3.
The network whose degree distribution follows a power law
is called the scale-free (SF) network [7]. SF networks are

1063-651X/2002/65(5)/056101(6)/$20.00

65 056101-1

PACS number(s): 89.70.+c, 89.75.—k, 05.10.—a

abundant in real world such as the world-wide web [8—11],
the Internet [12—15], the citation network [16], the author
collaboration network of scientific papers [17], and the meta-
bolic networks in biological organisms [18].

While a lot of models have been introduced to describe
SF networks in real world, most of them are stochastic mod-
els. However, a couple of models recently introduced by
Barabasi, Ravasz, and Vicsek (BRV) [19], and Dorogovtsev
and Mendes (DM) [20] are deterministic. In general, deter-
ministic model is useful for investigating analytically not
only topological features of SF networks in detail, but also
dynamical problems on the networks. Both the BRV and the
DM models are meaningful as not only the first attempts for
deterministic SF networks, but also as the ones constructed
in a hierarchical way, so that analytic treatments can be made
easily using recursive relations derived from the two struc-
tures in successive generations. In the BRV model, however,
the mean shortest-path distance between two vertices aver-
aged over all pairs, called the diameter, is independent of
system size. Thus, the BRV model may be relevant to some
specific systems such as the metabolic networks [18], where
the diameter is independent of system size. In this paper, we
introduce another type of the deterministic model for the SF
network, which is also constructed in a hierarchical way. Our
model is based on almost the same idea as that of the DM
model. While the DM model starts from a triangle, our
model does from a tree structure. This difference makes one
easily modify the model into more general cases such as
loopless or loop structures, and the ones with a various num-
ber of branches. Moreover, the simplicity of our model en-
ables one to obtain the analytic solution for the degree dis-
tribution and the diameter. In particular, our model includes a
control parameter, so that by tuning the parameter, we can
obtain SF networks with a variety of degree exponents in the
range, 2<<ry<3. Therefore our model should be useful to
represent various SF networks in real world, in particular, of
a tree shape. For example, the hierarchical tree structure is
known as “‘structural hole” in sociology, a typical type of
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social networks. Since the model of the structural hole is
used for investigating the centrality in social networks [21],
and moreover recent studies show that social systems also
exhibit SF behaviors [22], our model could be used for
studying social systems. Moreover, the internet structure in
the autonomous level is effectively of a tree-type [23], so
that the data packet transport on the internet can be under-
stood analytically via our deterministic model.

This paper is organized as follows. In Sec. II, we will
introduce deterministic models specifically for tree and loop
structures, respectively. In Sec. III, analytic treatments will
be performed for the deterministic models introduced in Sec.
II. The final section will be devoted to conclusions and dis-
cussions.

II. DETERMINISTIC MODEL

It is known that the number of vertices in most of SF
networks in real world increases with time exponentially.
Thus, our deterministic model is constructed in this evolving
way, that is, the number of vertices increases exponentially
with time, where each already existing vertex generates its
offspring, and connects them. Thus, vertices are ordered hi-
erarchically. On the other hand, for real networks, it is
known [24,25] that the PA probability II; in Eq. (1) is modi-
fied into

kit p

r_

i= , 2)
; ki+p

where u accounts for some randomness in connecting edges.
To take into account of this modified PA behavior, we intro-
duce two rules, called the addition and the multiplication
rule, in the deterministic model, depending on how new ver-
tices are generated from each old vertex. The details on both
rules will be described below.

A. Tree structure

The network forms a tree structure when new vertices
generated from an old vertex are connected to their parent
only.

1. The addition rule

In the case of the addition rule, at each time step, a con-
stant number of new vertices, say, m new vertices, are gen-
erated from each already existing vertex, and they are con-
nected to their parent only. Then the degree k;(t) at vertex i
at time ¢ evolves as

ki(t)=k(t—1)+m, 3)
so that
ki(t)=1+m(t—1;), 4)

for t=1t;, where ¢, is its birth time. On the other hand, the
number of vertices newly born at time #; becomes
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FIG. 1. Tree structures in the addition rule with m=3 att=0, 1,
and 2. The vertices born at =0, 1 and 2 are denoted by @, A and
O, respectively.

1 for ;=0
m(1+m)ti!

L(t)= (5)

for t;=1,

where the subscript A stands for the addition rule. Thus, the
total number of vertices N ,(¢) present at time ¢ is

NA(D= 2 La(t)=(1+m)". ©)

The definition of this model is illustrated schematically in
Fig. 1.

2. The multiplication rule

In the case of the multiplication rule, the number of off-
spring generated from each old vertex is not the same, but it
depends on the degree of each vertex. Let k;(¢) be the degree
of a given vertex i at time ¢. Under the multiplication rule,
the number of offspring newly generated at time ¢ from the
vertex i is proportional to its degree at the previous time, i.e.,
(m—1)k;(t—1), where m—1 is a proportionality constant.
Thus the degree of the vertex i increases by the factor m at
each time step, that is,

for t=2. The degree of the vertex, born at r=0 (r=1), at
time r=1 is ko(1)=m (k,(1)=1). Then the degree of the
vertex i at time ¢ becomes

ki(t):mtitis (8)

where #; means the birth time of the vertex i. Next, let L ,(7)
be the total number of vertices newly born at time 7, where
the subscript M stands for the multiplication rule. Then we
have the following relation:

t;—1

Ly(t)= 2, (m=1)m"™ "Ly (1)) ©

for t;=2 with L)(0)=1 and L,,(1)=m. Then we obtain
Ly(;) in a closed form to be
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FIG. 2. Tree structures in the multiplication rule with m=3 at
t=0, 1, and 2. A, (@) stands for the vertex at center born at ¢
=0. Ao (A) is the offspring of Ay born at t=1. Ay, and A, ;o
(O) are the offspring of Ay and A, respectively, born at r=2.

if t,=1 (10)
if 1;=2.

Ly(t;)=4 m
2m(m—1)2m—1)""2

The total number of vertices N, (t) at time ¢ is given by
1 if =0

1+m(2m—1)"" if =1.
(11)

Nu()= 2 Ly(t;)=

The definition of this model is illustrated schematically in
Fig. 2.

B. Loop structure

A loop structure can be generated when each newly born
vertex is connected to both its parent and grandparent verti-
ces as illustrated in Fig. 3. In particular, if the parent of a
certain vertex is the vertex born at =0, then the grandparent
is regarded as one of the vertices born at t=1. This rule is
valid for both cases of the addition and the multiplication
rule.

FIG. 3. Loop structure in the multiplication rule with m=3 at
t=2. The vertices with the symbols @, A, and O are born at ¢
=0, 1, and 2, respectively.
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III. ANALYTIC SOLUTION
A. The degree distribution for the tree structure

Since the degree of each vertex has been obtained explic-
itly as in Egs. (4) and (8) and the degree of each vertex is
ordered with time, one can obtain the degree distribution via
its cumulative distribution, i.e.,

P(k)=P(k;>k—1)—P(k;>k), (12)
or

a1 =P(k>h)]

P(k) o

(13)

The details of the analytic treatments are given as follows.

1. The addition rule

Using the fact, Py 7(k;>k)=P, 7(t;<7=t—[k—1]/m),
where the subscript 7 means the tree structure, we obtain that

71

L(t))

1 m

7—1
= + 1+m)i
(1+m)" (1+m)'*! I,ZI( )

=(1+m)~*=m, (14)

Using the relation that Py 7(k)=P, r(k;>k—1)—= P4 7(k;
>k), we obtain

Py r(k)=(1+m)" DM 4+m)! =11 (15)

So, the degree distribution P4 (k) decays exponentially
with k under the addition rule.

2. The multiplication rule

Since the degree k; has been obtained explicitly as a func-
tion of time in Eq. (8), Py, 7(k;>k) is replaced by P, 7(t
<7), where 7=t—Ink/In m. Thus,

71

Ly(t;)

1+m
Cl+m(2m—1)"!

71

2(m—1)2m—1)4"2
+E =T
=2 1+m(2m—1)

ock*ln(mel)/lnm. (16)

Thus the degree distribution is obtained to be

A1 =Py (ki >k)]
ok

Py (k)= ok~ Ym), (17)

where
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vy(m)=1+1In(2m—1)/Inm. (18)

In the limit of m— 1, one can get y(1)=3, while as m goes
to infinity, one gets y(%)=2. Thus by tuning the parameter
m, one can get a variety of SF networks with different expo-
nents in the range, 2 <<y<3.

B. The degree distribution for the loop structure
1. The addition rule

Let n;(¢) be the degree of vertex i, born at time ¢;, at time
t for the loop structure. As a new vertex is connected to its
parent and grandparent, each old vertex is connected to its m
children and m? grandchildren. So, Eq. (3) is modified as

n()=n,(t—1)+(m+m?). (19)

Taking the same steps as for the loopless case, we obtain the
degree distribution following the exponential decay,

P (n)oc(1+m+m2)~momsm, (20)
where the subscript L means the loop structure.

2. The multiplication rule

Let n,(t) be the degree of vertex i at time ¢ for the loop
structure in the multiplicative rule. The degree of vertex i can
be obtained via the relation,

n()=n,(t—1)+(m— 1Dk, (t—1)+(m—1)%k;(1—2),
(21)

where the second term on the right hand side of the above
equation results from the children of the vertex i, and the
third term from the grandchildren of the vertex i. Thus, the
degree at the vertex i becomes

2m—1
ni(t)%< - )m”i, (22)

for t>1¢;. Since the degree n;(¢) depends on time ¢ similarly
to Eq. (8), we can apply Eq. (16) even to the loop case,
except that 7 is replaced by 7=t+In(2m—1)/Inm—1
—Inn/lnm. This replacement, however, does not affect the
degree exponent at all. Thus, even for the loop structure, the
degree exponent is reduced to the same value, y=1
+1n(2m—1)/Inm as the one in Eq. (18).

C. The diameter for the tree structure

The diameter d(¢) is defined as a chemical distance be-
tween two distinct vertices along the shortest path averaged
over all pairs of vertices at time ¢, that is,

d(1)= > di (1), (23)

1
N(t)(N(1)—1) =

where d; (1) is the chemical distance between vertex i to j.
For simplicity, let D(¢) denote the sum of the chemical dis-
tances between two vertices over all pairs, that is,
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D(1)=2, d, ,(1). (24)
i#j

It is not easy to derive a closed formula for D(¢) for both the
tree and the loop structures, however, we list D(¢) for the
tree structure at a few early times in the Appendix. We trace
the formula for the tree structure in two limiting cases, m
—0 and m— oo, as follows.

Let us first consider the case of m— 1. For this case, we
denote m=1+ € and €< 1. The total number of nodes N ,(¢)
at time ¢ is given by

Ny(H)=1+(1+e€)(1+2€) '=2+(2t—1)e+0(€?),
(25)

for large t. So, In(Ny,—1)~=(2¢t—1)e within the first order of
€. Moreover, the sum of all chemical distances D(¢) be-
comes

D(t)=~2+4(2t—1)e+O(€?). (26)

Using the relation in Eq. (23), we can obtain the average
distance to be

24421 1)e

=_ 2
25321 TO€)

2+41n(N,y,—1)

%mﬁ‘O(fz), (27)

Therefore, the diameter converges to 4/3 in the limit of
N y—oe.

Next, we consider the case of m—. In this case, the
term in the highest order of m could be dominant, so that we
trace the coefficient of the term in the highest order of m as
a function of time.

D(0)=0,

D(1)=2m?*+lower order terms,
D(2)=[(2+3)+ (3+4)]m*+lower order terms,
D(3)=[(2+2X3+4)+2X(3+2X4+5)+(4+2X5

+6)]m%+ lower order terms,
D(4)=[(2+3X3+3X4+5)+3(3+3X4+3X5+6)

+3(443X543X6+7)+(5+3X6+3X7

+8)]m®+ lower order terms,

D(t+1)= >, (;)2 (It{)(k+p+2)m2(’+')

p=0

+lower order terms. (28)

Using the formula [26],
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t
>k
=0

! t—1
=2 (29)

D(t) in the highest order of m is obtained explicitly to be

t—1

> (tzl)(k+p+z)m2f

t—1 —1
D(t)%pZo( p

t—1

= EO (t;1>m2’[t— 1+2(2+p)]2'?
=

(t+1)2% 2m*. (30)
On the other hand, using Eq. (11),
Ny ([N (1) —1]=2%"2m?". (31)

Therefore, the diameter d(¢) at time ¢ becomes simply

d(l)~1+1~m+l. (32)

Thus, for large N,,, the above equation is rewritten simply
as

with the mean degree k~2m, which confirms the small-
world behavior.

IV. CONCLUSIONS AND DISCUSSIONS

We have introduced a deterministic model for the scale-
free network, which is constructed in a hierarchical way. At
each time step, each already existing vertex produces its off-

PHYSICAL REVIEW E 65 056101

spring, whose number is proportional to the degree of the
vertex. Depending on whether each new offspring is con-
nected to only one or more than one old vertices, the network
forms either a tree structure or a loop structure, respectively.
We have obtained the analytic solution for the degree distri-
bution and the diameter explicitly for the deterministic
model. By tuning a control parameter in the model, we can
adjust the degree exponent in the range, 2 <<y<3. Thus this
model can represent a variety of SF networks in real world.
Moreover, we obtained the diameter of the deterministic

model analytically to be d~In N/Ink, where N is the system

size and k is the mean degree. Since the network is generated
in a hierarchical way, it is expected that a variety of physical
problems can be solved through this deterministic model by
constructing recursive relations derived from two structures
in successive generations. On the other hand, the determin-
istic model has a shortcoming that it does not include any
long-ranged edge, connecting two vertices belonging to dif-
ferent branches separated at t=0. Thus, this model can be
used only for the model for a tree structure. Despite this
shortcoming, we think that our deterministic model could
offer a guide toward generating more realistic deterministic
model for SF networks.
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APPENDIX

The closed formula for the sum of the chemical distance
between two vertices D(t) is shown for 0=r=<3.

D(t=0)=0,

D(t=1)=./\/0m+./\/'1,0[1+2(m—1)],

D(t=2)=No[m*+2m(m—1)]+ N o[m+2m(m—1)+2(m—1)+3(m—1)(m—1)]+ N [ 1 +2m* =2(m+1)+2m

+3m(m—1)]+ Ny o[ 1+2(m—1)+3(m* = 1)+4(m—1)?],

D(t=3)=No[m*+2(m*—m)(m—1)+2m(m—1)+2m(m*—m)+3m(m—1)(m—1)]+ N, [ Im*+2m* =2 +2(m—1)

X(m—1)+3{(m—1)*>+(m*—m)(m— 1)+(m—1)(m2—m)}+4(m—1)3]+/\/'2,0(m+2(m3— 1)
+3{[m(m—1)—1](m—1 )+m(m2—m)+m(m—1)}+4m(m—1)2)+N2,1,0[m+2(m2—])+3{(m3—1)
+(m— 1)(m—2)}+4{(m2—m)(m—1)+(m—1)2+(m—1)(m2—m)}+5(m—1)3]+Af3‘0[1+2(m3—1)

+3{m*(m—1)+m(m*—m)}+4m(m—1)*1+ N300 +2(m—1)+3(m* = 1) +4{[m(m—1)—1](m—1)

+m(m* = 1)} +5m(m— 1))+ Ny o[ 1+2(m* = 1)+3{(m* = 1) +(m—1)(m—1)}+4{(m*=1)(m—1)+(m—1)
X(m2=m)}+5(m=1) 1+ Ny o[ 1 +2(m—1)+3(m* = 1)+ 4{(m* = 1)+ (m—1)(m—1—1)}
+5{(m>=1)(m—1)+(m—1)(m*—1)}+6(m—1)],
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where

M,t):ms
Nop=m(m—1),
Nyjo=m(m—1),

A[?),O:mz(m_ 1 )’

PHYSICAL REVIEW E 65 056101

Nio=m*(m—1),

Nipo=m(m—1)%,
and

Nipio=m(m—1)>%

J\/i,{j} means the number of the vertices denoted by A; ;;) in
Fig. 2, where the first index 7 stands for its birth time and the
rest indices {j} are its parent vertex.

[1]TR. Albert and A.-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002).
[2] S.N. Dorogovtsev and J.EF. Mendes, Adv. Phys. (to be pub-
lished).
[3] S.H. Strogatz, Nature (London) 410, 268 (2001).
[4] N. Goldenfeld and L.P. Kadanoff, Science 284, 87 (1999).
[5] P. Erdos, A. Rényl, Publ. Math. (Debrecen) 5, 17 (1960).
[6] A.-L. Barabasi and R. Albert, Science 286, 509 (1999).
[7] A.-L. Barabasi, R. Albert, and H. Jeong, Physica A 272, 173
(1999).
[8] R. Albert, H. Jeong, and A.-L. Barabasi, Nature (London) 401,
130 (1999)
[9] B.A. Huberman and L.A. Adamic, Nature (London) 401, 131
(1999).
[10] S. Lawrence and C.L. Giles, Science 280, 98 (1998).
[11] PL. Krapivsky, G.J. Rodgers, and S. Redner, Phys. Rev. Lett.
86, 5401 (2001).
[12] M. Faloutsos, P. Faloutsos, and C. Faloutsos, Comput. Com-
mun. Rev. 29, 251 (1999).
[13] A. Broder et al., Comput. Netw. 33, 309 (2000).
[14] R. Pastor-Satorras R, A. Vazquez, and A. Vespignani, Phys.
Rev. Lett. 87, 258701 (2001).
[15] K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev. Lett. 88, 108701

(2002).

[16] S. Redner, Eur. Phys. J. B 4, 131 (1998).

[17] M.E.J. Newman, Proc. Natl. Acad. Sci. U.S.A. 98, 404 (2001);
L.A. Amaral, A. Scala, M. Barthélémy, and H.E. Stanley, ibid.
97, 11 149 (2000).

[18] H. Jeong, B. Tombor, R. Albert, Z.N. Oltvani, and A.-L. Bara-
basi, Nature (London) 407, 651 (2000).

[19] A.-L. Barabasi, E. Ravasz, and T. Vicsek, Physica A 299, 559
(2001).

[20] S.N.  Dorogovtsev ~ and  J.EF.
cond-mat/0112143.

[21] S. Wasserman and K. Faust, Social Network Analysis (Cam-
bridge University Press, Cambridge, 1994).

[22] M. Girvan and M.E.J. Newman, e-print cond-mat/0112110.

[23] K.-I. Goh, B. Kahng, and D. Kim (unpublished).

[24] PL. Krapivsky, S. Redner, and F. Leyvraz, Phys. Rev. Lett. 85,
4629 (2000).

[25] S.N. Dorogovtsev, J.EF. Mendes, and A.N. Samukhin, Phys.
Rev. Lett. 85, 4633 (2000).

[26] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Math-
ematics: A Foundation for Computer Science (Addison-
Wesley, Reading, MA, 1989).

Mendes, e-print

056101-6



