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Abstract

Geometric frustration arises when lattice structure prevents simultaneous minimization of local interac-

tions. It leads to highly degenerate ground states and, subsequently, complex phases of matter such as water

ice, spin ice, and frustrated magnetic materials. Here we report a simple geometrically frustrated system

composed of closely packed colloidal spheres confined between parallel walls. Diameter-tunable microgel

spheres are self-assembled into a buckled triangular lattice with either up or down displacements analogous

to an antiferromagnetic Ising model on a triangular lattice. Experiment and theory reveal single-particle dy-

namics governed by in-plane lattice distortions that partially relieve frustration and produce ground-states

with zigzagging stripes and subextensive entropy, rather than the more random configurations and extensive

entropy of the antiferromagnetic Ising model. This tunable soft-matter system provides an uncharted arena

in which the dynamics of frustration, thermal excitations, and defects can be directly visualized.
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Geometric frustration arises in physical and biological systems1 ranging from water2 and spin

ice3 to magnets4,5, ceramics6, and high-Tc superconductors7. The essence of this phenomenon is

best captured in the model of Ising spins arranged on a two-dimensional (2D) triangular lattice

and interacting anti-ferromagnetically8,9; two of the three spins on any triangular plaquette within

this lattice can be antiparallel to minimize their anti-ferromagnetic (AF) interaction energy, but

the third spin isfrustratedbecause it cannot be simultaneously antiparallel to both neighbour-

ing spins (Fig. 1A). Such frustration leads to materials with many degenerate ground states and

extensive entropy proportional to the number of particles in the system. Consequently, small per-

turbations can introduce giant fluctuations with peculiar dynamics. Traditionally, these phenom-

ena have been explored in atomic materials by ensemble averaging techniques such as neutron

and X-ray scattering, muon spin rotation, nuclear magnetic resonance, and heat capacity and sus-

ceptibility measurements5. More recently, artificial arrays of mesoscopic constituents have been

fabricated in order to probe geometric frustration at the single-‘particle’ level. Examples of the lat-

ter include Josephson junctions10, superconducting rings11, ferromagnetic islands12–14, and recent

simulations15 of charged colloids in optical traps. Observations in these model systems, however,

have been limited to the static patterns into which these systems freeze when cooled. Thus many

questions about frustrated systems remain unexplored, particularly those associated with single-

particle dynamics. For example, how, when, and why do individual particles change states to

accommodate their local environments, and what kinetic mechanisms govern transitions to glassy

phases?

Here we report on the static anddynamicproperties of a self-assembled colloidal system anal-

ogous to Wannier’s AF Ising model8. Densely packed spheres between parallel walls form an

in-plane triangular lattice with out-of-plane up and down buckling16–26. The up-down states of the

spheres produced by buckling are analogous to up-down states of Ising spins (Fig. 1B). Nearest-

neighbour excluded volume interactions between particles favour opposite states for neighbouring

particles, as do the AF interactions between neighbouring spins in the Ising model. In contrast

to engineered mesoscopic systems10–14, however, the colloidal system facilitates easytuning of

the effective AF interaction through changes in the diameter of temperature-sensitive microgel

spheres27. The colloidal system also permits direct visualization of thermal motion at thesingle-

particle level. In the limit of weak confinement, or weak interaction strength, system properties

closely follow those predicted for the AF Ising model, but in the limit of strong confinement, they

do not. For strong interactions, the lattice deforms to maximize free volume, and the collective na-
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ture of the free-volume-dominated free energy characteristic of most soft-matter systems becomes

important. We understand these effects theoretically in terms of tiling of the plane by isosce-

les triangles. The tiling scheme identifies a ground-state consisting of zigzagging stripes with

sub-extensive entropy. Interestingly, in contrast to Ising-model predictions, first measurements of

single-particle ‘spin-flipping’ suggest that flipping dynamics depend not only on the number of

nearest-neighbour frustrated ‘bonds’, but on how these bonds are arranged. Thus the paper be-

gins to explore connections between frustrated soft matter and hard materials such as frustrated

AF media. (Unless otherwise specified, we use ‘AF Ising Model’ to refer to AF spins on arigid

triangular lattice; we will, however, also discuss this model on a deformable lattice.)

Experimental System. For walls separated by distances on order 1.5 sphere diameters, the

particles maintain in-plane triangular order but buckle out-of-plane (Fig. 2, A, D). This buckling

minimizes system free energy,F = U − TS, whereU is the internal energy,T temperature, and

S entropy. The bare interaction potential between our weakly charged27 particles was measured to

be short ranged and repulsive28, i.e. nearly hard core. Thus the dominant contribution to the free

energy is entropic. Spheres will move apart to minimize internal energy and to maximize their free

volume (V ) and entropy (proportional to lnV ). This effect gives rise to multi-body effective inter-

actions between spheres which, for low volume fractions, can be well approximated by a two-body

repulsive entropic potential with range of order the interparticle spacing29. At high volume fraction

many-body contributions to the potential may become important. The effective repulsion causes

spheres to move to the top or bottom wall, and nearest-neighbours maximize free volume by mov-

ing to opposite walls (Fig. 1B). Buckled colloidal monolayers were first observed more than two

decades ago16–18, and the AF analogy was then suggested17,30. However, to date, few quantitative

measurements have been performed on this system class, and the themes explored by most early

work centred on structural transitions exhibited by colloidal thin films as a function of increas-

ing sample thickness17–20,22–24, rather than their connection to frustrated anti-ferromagnets. The

use of temperature-sensitivediameter-tunableNIPA (N-isopropyl acrylamide) microgel spheres27

also distinguishes our experiments from earlier work. By varying temperature we change particle

size and sample volume fraction and, therefore, vary the strength of the effective AF interparticle

interactions.

Samples were prepared at low volume fraction near the melting point to produce 2D crystal

domains with∼ 104 spheres covering an area of order (60µm)2. Video microscopy measurements

were carried out far from grain boundaries on a∼(32µm)2 central area (∼2600 spheres) within
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the larger crystal domain. Particle motions were observed by microscope, recorded to videotape

using a CCD camera and tracked by standard image-processing techniques31. In most colloid ex-

periments the important thermodynamic control variable is particle volume fraction. The present

experiment achieved substantial variation in sphere diameter using small changes in temperature,

which altered thermal energies by less than1%. In this paper we monitor and report tempera-

ture rather than volume fraction because the interactions between spheres contain a soft tail that

introduces some ambiguity into the assignment of a geometric diameter to the particles. Below

24◦C the system is jammed and no dynamics are observed. Above 27.5◦C the in-plane crystals

melt. Our primary measurements of the frustrated states probe five temperatures from 24.7◦C to

27.1◦C in 0.6◦C steps. In this range, the hydrodynamic diameter of the nearly-density-matched

particles decreases linearly with increasing temperature from0.89 µm to 0.76 µm (see Fig. S1),

while the average in-plane particle separation remains constant (see Table S1). The measured in-

plane structures are crystalline. To reach thermal equilibration, the sample was annealed near the

melting point before the temperature was slowly decreased. Here “annealed” means the sample

was left to evolve for several hours near the melting point to relieve possible unbalanced pressure

and provide time for defects to move to produce higher quality crystals. Slow cycling through this

temperature range produced no hysteresis.

Anti-Ferromagnetic Order. The images in Fig. 2, A, D show roughly half of the spheres

as bright because they are in the focal plane of the microscope; the other half, located near the

bottom plate, are slightly out-of-focus and appear dark. A histogram, based on image brightness,

showing the degree to which particles are ‘up’ or ‘down’ is given in Figure S2 (Supplementary

Information). The histogram is bimodal, but clearly a range of ‘up’ and ‘down’ is evident in this

classical system. The continuous brightness profile was discretized into two ‘Ising’ states with

si = ±1. The brightness cutoff was chosen near the interior minimum so that half the particles

are up and half are down. Shifting this cutoff changed structural and dynamical analyses very

little, i.e., a few percent, for few percent shifts in up/down cutoff. The nature of the frustrated

states can be exhibited in different ways in processed images. One way focuses on the ‘bonds’

between particles. We refer to pairs of neighbouring particles in opposite states (sisj = −1)

as satisfied bonds, i.e., satisfying the effective AF interaction, and to up-up or down-down pairs

(with sisj = 1) as frustrated bonds. Images show that the frustrated bonds form a nearly single-

line labyrinth (Fig. 2B) at low temperature that then nucleates into domains (Fig. 2E) at high

temperature. Local AF order is alternatively characterized by the average number of frustrated
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bonds per particle,〈Nf〉. In the limit of weak interactions, an Ising system chooses a completely

random configuration with half of the six bonds satisfied and half frustrated, leading to〈Nf〉 = 3.

In the limit of strong interactions, on the other hand, each triangular plaquette has one frustrated

bond (Fig. 1A), a third of the bonds are frustrated, and〈Nf〉 = 2. 〈Nf〉 is a linear rescaling of the

density of excited triangles (3 up or 3 down) in Fig. 2 C, F, which ranges from 0 in the Ising ground

state to 0.5 for a random configuration. We find that〈Nf〉 decreased from approximately 2.5 to 2.1

in the temperature interval 27.1◦C-24.7◦C. Detailed statistics of the different local configurations

are presented in Supplementary Table S1.

We first consider the static properties of the frustrated samples. In particular we aim to identify

similarities and differences between the colloidal system and the Ising model. As the tempera-

ture is lowered to increase particle diameter,〈Nf〉 is observed to approach2. This behaviour is

expected in the Ising model ground state. However, the vast majority of Ising ground-state con-

figurations are disordered. The colloidal monolayers, by contrast, condense into stripe phases.

The stripes are not straight, as could be produced by higher-order interparticle interactions32.

Rather they bend and form zigzag patterns22–26 (see Fig. 2A and configuration statistics in Sup-

plementary Table S1). In this colloidal zigzag striped phase, we measured spatial correlations

Γ(i− j) = [〈sisj〉 − 〈s〉2]/[〈s2〉 − 〈s〉2] over separations|i− j|, along the principal lattice direc-

tions, of up to 20 particles and found that they decay exponentially in magnitude with alternating

sign (Supplementary Fig. S4).Γ(i−j) is positive fori−j even and negative fori−j odd. In con-

trast,Γ(i−j) averaged over the Ising ground state is positive wheni−j is an integer multiple of3.

Furthermore, for zigzagging stripes each particle has exactly two frustrated neighbours (Fig. 1C),

whereas in the fully disordered Ising ground-stateNf can be 0, 1, 2, or 3 (Fig. 1D) and only the av-

erage〈Nf〉 is 2. These observations suggest that fluctuations inNf , i.e.,Var(Nf ) = 〈N2
f 〉−〈Nf〉2,

might be a useful measure for distinguishing the zigzag stripe phase observed here from the dis-

ordered Ising ground-state. Figure 3 plots the behaviour ofVar(Nf ) as a function of〈Nf〉 for the

Ising model and for data obtained both from experiments and from hard-sphere Monte Carlo (MC)

simulations (Supplementary Information). Results from experiment and simulation agree at both

low and high volume fraction and differ from those of the Ising model, especially at high volume

fraction wherein interactions are strong. Three length scales affect the physics in this problem:

sphere diameter, wall separation, and lattice constant. Therefore, two length ratios can be varied.

The simulations showed explicitly (Fig. 3, Fig. S5 (Supplementary Information)) that the frustra-

tion behaviors as functions of sphere diameter for different plate separations were similar as long
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as the plate separation did not exceed approximately two particle diameters22,23.

Zigzagging Stripes. Ideal geometrically frustrated systems, such as the AF Ising model, are

highly degenerate with extensive entropy at zero temperature. However, in real materials, subtle

effects, for example anisotropic interactions9, long-range interactions32, boundary conditions33,

and lattice distortions34–36 relieve frustration. Our partially-ordered zigzag stripe phase at high

volume fraction is an example of frustration relief by lattice distortion. In the colloidal monolayer

the triangular packing is self-assembled, and the particles are not forced to remain at fixed positions

on the lattice26. This deformability and the fact that the free volume of the system is a collective

function of all particle positions breaks the mapping to simple Ising models with pair-wise additive

nearest neighbour interactions. In fact, the positions of the colloidal particles may be thought of as

comprising a planar structure that crumples between the two confining planes. This “crumpling”

leads to deformations of the planar triangular lattice with satisfied bonds (projected onto the plane)

on average3 − 4% shorter than frustrated bonds, see Supplementary Table S1. This difference is

consistent with the notion that each pair of neighbouring particles prefers to be separated by the

same fixed distancein 3D, whether or not their connecting bond is satisfied.

A simple tiling argument demonstrates why the colloidal system ground-state configurations of

stripes and zigzags pack better than the disordered Ising configurations. The tiling model shows

explicitly that maximal volume fractions of stripe and zigzag phases are the same (see Supple-

mentary Information). Each triangular plaquette in the Ising ground-state contains two satisfied

bonds and one frustrated bond. Thus, when spheres are close-packed in 3D, the equilateral trian-

gle defined by each such triplet of neighbouring particles is tilted, and when projected onto the 2D

plane, it deforms into an isosceles triangle with two short sides along the satisfied bonds and one

long side along the frustrated bond (Fig. 4, A, B). Subsequently, close-packed configurations of the

buckled spheres in 3D are described by tilings of the plane by isosceles triangles. Figure 4C shows

the configurations of isosceles triangles for different numbers of frustrated bonds (Nf ) in the basic

hexagonal cell. By summing up the angles around the central vertex, one immediately sees that

for Nf = 0,1,3, the triangles cannot close-pack. Only the two configurations withNf = 2 en-

able tiling the plane with isosceles triangles, or, equivalently, close-packing of the buckled spheres

in 3D. Configuration 2b corresponds to a bend in a stripe, and 2c to a stripe continuing along a

straight line. Both have the same maximal volume fraction, thus corroborating observations of

zigzagging stripes in the experiments and simulations.

Experiments and simulations indicate a preference for the stripes to form straight segments
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rather than to bend easily and thus to generate randomly zigzagging configurations (Fig. 2A).

Zigzagging stripes can be viewed as a random stack of ordered lines of alternating up and down

particles (Fig. 1C), thus straight and zigzagging stripes are analogous to the face-centred cubic

(FCC) lattice and the random hexagonal-close-packed (RHCP) structure20 in 3D. Straight and

zigzagging stripes have the same maximal volume fraction in the close-packed limit. However, for

smaller volume fractions there may be an order-by-disorder effect5,37, giving a small free volume

advantage of straight stripes over zigzagging ones, similar to the free volume advantage38 of FCC

over RHCP in 3D. Indeed, stripes in Fig. 2A have a several-particle long persistence length which

is more ordered than Fig. 1C.

Instead of an extensive entropy at zero temperature8, whereinS scales linearly with the num-

ber N of particles in the system, the buckled system has subextensive entropy. The number of

zigzagging striped configurations grows exponentially with the linear dimension of the system

(there are two possible ways of placing one row relative to its predecessor in Fig. 1C), hence the

entropy scales39 as
√

N . Alternatively, a non-branching single-line labyrinth is dictated by∼ √
N

particles on the boundary, and a cluster of order
√

N particles should be flipped for the system to

rearrange from one zigzag stripe configuration to another. Subextensive ground-state entropy also

appears in related models emulating systems with glassy dynamics40. Similar zigzag stripes have

been observed in superconducting arrays in external fields41 and in microscopic Ising models42.

Dynamics. Taken together these observations have interesting consequences for the ground-

state dynamics of frustrated systems. The Ising ground-state has a local zero-energy mode, as

shown in configuration 3c in Fig. 5A: the central particle can flip without changing the energy

of the system, thus rapidly relaxing spin correlations via a sequence of such single spin flips,

even at zero temperature. For buckled spheres, on the other hand, the close-packed configurations

have only particles withNf = 2, and, moreover, even a particle withNf = 3 in an excited

configuration has to cross an energy barrier in order to flip. Thus frustration relief creates a ‘glass-

like’ medium having energy barriers between the various energy minima. Like the glassy behavior

of an Ising model on a deformable lattice43,44, the slow dynamics we observe at low temperature

is a consequence of the absence of local zero-energy modes in the bulk.

Online movies (Supplementary Information) permit direct visualization of ‘spin flipping’ and

the motions of thermal excitations and defects in frustrated systems. Thermal excitations labeled

as coloured triangles in Fig. 2, C, F were typically found to be generated/annihilated in pairs due to

the flipping of a particle shared by the two triangles. Well-isolated thermal excitations, on the other
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hand, appear to be more stable. To quantify these effects, we first extract the full time trajectory,

si(t), of each particlei from the movies. In Fig. 5B we plot the single particle autocorrelation

function C(t) = [〈si(t)si(0)〉 − 〈si〉2]/[〈s2
i 〉 − 〈si〉2], averaged over all particles not at lattice

defects. As the temperature is lowered, the correlation function develops a stretched exponential

form, C(t) = exp[−(t/τ)β]. The measured relaxation timeτ exhibits a dramatic increase as the

particles swell at low temperature, while the extracted stretching exponentβ decreases, indicating

slow dynamics similar to those found in glasses45.

To further explore the dynamics of different local configurations (defined in Fig. 5A), Fig. 5C

shows the measured flipping ratefr of single particles with a fixed neighbour structure. We mea-

sured the probabilityp that a particle flips between consecutive images given that the Ising states

of its neighbours remained unchanged. The time intervals ofdt = 1/30 sec between frames were

short enough such thatp was typically small (0.36 at most) and the flip rate could be approximated

by fr = p/dt. At high temperature, the behaviour is similar to that of an Ising model undergo-

ing Glauber dynamics:fr ∼ e−∆E/kBT where the energy difference∆E is proportional to the

difference inNf before and after flipping. As the volume fraction is increased by lowering the

temperature, particle dynamics slow by 1-2 orders of magnitude and, more interestingly,signif-

icant differences develop between different geometrical configurations with the sameNf . Such

phenomena may not appear in the simple Ising model where the Hamiltonian depends only onNf .

Defects in the underlying lattice can strongly affect the properties of frustrated systems. How-

ever, detailed knowledge about the role of defects in frustrated systems is very limited. Our experi-

ments permit direct visualization of defects nucleating, annihilating, and diffusing (Supplementary

Information movies). By comparing trajectories containing different numbers/types of defects, ini-

tial studies suggest that defect particles have enhanced in-plane diffusion (Supplementary Fig.S6)

and slower flipping dynamics than those averaged over particles with six nearest neighbours.

Conclusion. We have presented experimental measurements of single-particle dynamics in a

geometrically frustrated system. Colloidal spheres with tunable diameter self-assemble to buckled

monolayer crystals and form a system analogous to the triangular lattice AF Ising model. By

tuning volume fraction, we found that at high compaction, in-plane lattice deformation relieves

most frustration and yields a zigzag stripe ground-state with subextensive entropy. The ‘free spins’

in the Ising ground state are removed; thus the system becomes glassy as the volume fraction is

increased. A theoretical analysis shows these features can be captured by a hard-sphere model.

We measured spatial correlations and the statistics of various local configurations as well as their
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flipping rates and found strong dependences on arrangements of neighbouring particles. As the

glassy phase is approached, we observed dramatic slowing of the dynamics and formation of

stretched exponential correlation functions. Single-defect dynamics were directly visualized and

measured for the first time. Defects have faster in-plane diffusion and slower out-of-plane flipping

than the average.

The only other experimental systems offering ‘single spin’ resolution are based on

lithography10–12. An attractive feature of the lithographic systems is that any underlying lattice

can be created. Colloidal suspensions in 2D, by contrast, will self-assemble into triangular lattices

unless an external potential is applied, and since the colloidal system is entirely self-assembling,

it possesses a comparatively rich phenomenology originating from lattice deformability. The col-

loids also offer the possibility for dynamical studies; the lithography-based arrays, by contrast, are

frozen in place.

The two-dimensional colloidal frustrated “anti-ferromagnet” we have studied provides an ideal

platform for future study of properties of frustrated and glassy systems. Sample dynamics and

structure can be microscopically imaged, and the system can be perturbed and manipulated with

laser tweezers and other tools. It thus offers hope for deeper insights into the interplay between

frustration relaxation and order, e.g., the formation of phases with lower entropy than the anti-

ferromagnetic Ising ground state, and into the connections between glassy dynamics, frustration,

and sub-extensive yet system-size-divergent entropy. Further experiments to address these issues

are readily envisioned. For example, potential energy landscapes for the particles can be created

using laser tweezers of varying strength and periodicity (including rigid lattices), enabling experi-

menters to explore the role of lattice deformability on the dynamics and the creation of structure.

Optical tweezers or magnetic traps can also be used to flip and to move individual spins, and video

microscopy can be used to probe the resulting system’s responses. Boundaries affect frustration,

but they are not well studied; such effects could be created by changing sample cell geometry or

by fixing particles to the boundary. Gravity, external fields, and surface treatment can be used

to mimic the effects of applied magnetic fields on frustrated magnetic systems. Defects affect

frustration but have not been explored at the single particle level; such effects can be studied by

doping with particles having different shapes and interaction potentials. In the theoretical arena, it

will be interesting to consider possible modifications to the rigid-lattice Ising model that generate

a zigzagged-stripe ground state, to explore more fully the relation between buckled colloidal sys-

tems and the compressible Ising model, including the possibility of generating order out of disorder
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via thermal fluctuations, and to study glassy dynamics arising from subextensive zero-temperature

entropy.
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interactions. (B) For colloids confined between walls separated of order 1.5 sphere diameters (side view),

particles move to opposite walls in order to maximize free volume. (C, D) Ising ground state configurations

wherein each triangular plaquette has two satisfied bonds and one frustrated bond. (C) Zigzag stripes

generated by stacking rows of alternating up/down particles with random sidewise shifts; all particles have

exactly 2 frustrated neighbours. (D) Particles in disordered configurations have 0, 1, 2, or 3 frustrated

neighbours (red hexagons).
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FIG. 2: Buckled monolayer of colloidal spheres. Movies are in Supplementary Information.(32 µm)2

area atT = 24.7◦C (A-C) and27.1◦C (D-F). (A, D): Bright spheres: up; dark spheres: down. (B, E):

Labyrinth patterns obtained by drawing only the frustrated up-up (red) and down-down (green) bonds. (C,

F): Corresponding Delaunay triangulations. Blue dots mark defects in the triangular lattice, i.e. particles

that do not have exactly six nearest neighbours. Thermally excited triangles with three spheres up/down are

labelled by red/green.
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average in-plane lattice constantL. Simulations collapse onto a single curve and deviate significantly from

the behaviour in the Ising model.
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FIG. 4: Tiling the plane with isosceles triangles.(A) Close-packed spheres are separated by one particle

diameterd in 3D. This distance projected on the 2D plane remainsd for a frustrated bond (sisj = 1), but is

reduced tox =
√

d2 − (h− d)2 for a satisfied bond (sisj = −1). (B) Viewed from above, each plaquette

in the lattice tends to deform to an isosceles triangle with one long side (d) along the frustrated bond and

two short sides (x < d) along the satisfied bonds. The angle larger thanπ/3 is marked in red. (C) All

possible in-plane local particle configurations appearing in the Ising ground state. The isosceles triangles

can tile the plane without extra space only forNf = 2. The “white space” forNf = 0,1,3 corresponds

to additional excluded volume. (D, E) Tilings corresponding to striped and disordered Ising ground-state

configurations, respectively, of Fig. 1, C, D.
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FIG. 5: Single particle dynamics. (A) Local configurations are labelled by their value ofNf and an

index a,b,c indicating the precise geometrical arrangement of the frustrated neighbours forNf = 2, 3, 4.

Symmetry to rotation and inversion reduces the27 possible configurations to the13 given here. (B) Single

particle autocorrelation functions plotted versus decay time. Lines are fits to stretched exponentialsC(t) =

exp[−(t/τ)β], with τ andβ given in the inset. (C) Flipping rates for the different local environments.

Configurations 7n and 5n are defects in the in-plane lattice, with 7 and 5 nearest neighbours.
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Supplementary Information

I. EXPERIMENTAL METHOD

We synthesized micrometer sized NIPA (N-isopropyl acrylamide) microgel spheres by free-

radical polymerization1. Surfaces of NIPA spheres were crosslinked with PMMA (polymethyl

methacrylate) and modified with carboxylate groups. NIPA spheres were suspended in the aqueous

buffer solution (pH = 4.0, 20 mM acetic acid). Because more than 90% of the volume of these

microgels is water, NIPA spheres have an excellent density match to the water suspension. NIPA

polymers become more hydrophobic at high temperature2, and therefore sphere diameter decreases

with increasing temperature as a result of water moving out of the microgel sphere. Figure S1

shows that fromT = 24.5◦C to28.5◦C, the hydrodynamic diameter, obtained from dynamic light

scattering, decreases linearly from 0.90µm to 0.68µm. These measurements also show that sphere

size polydispersity is small (<3%). The spheres are sterically stabilized: electrostatic interactions

are negligible because the surface charge density is very low and the ionic strength is high. A

1.5µL droplet of colloids will spread over the (18 mm)2 coverslip area via capillary forces. The

cell was sealed with epoxy so that the total volume and number density of the spheres are fixed.

The particle number density is virtually constant over the entire sample. It does not change when

the particle diameter varies since both total sample volume and total particle number are fixed.

The thickness of the sample cell varies from one to several micrometers over the (18 mm)2 area.

Hard spheres form a monolayer triangular lattice, a monolayer buckled phase, two-layer square

lattice, etc., at different wall separations3,4. We choose an area with cell thickness corresponding

to the monolayer buckled phase. In the38.4 × 51.2 µm2 field of view, the thickness variation is

∼20 nm, which is much smaller than the sphere diameter, thus walls are effectively parallel. Our

temperature controller (Bioptechs) on the microscope has 0.1◦C resolution.

The pair potentialsu(r) of NIPA spheres were measured from the radial distribution function,

g(r = |r|), in a dilute monolayer with∼10% areal fraction. The radial distribution function is the

azimuthal average of the pair correlation function

g(r) =
1

n2
〈ρ(r′ + r)ρ(r′)〉, (1)

whereρ(r) =
∑N(t)

j=1 δ(r− rj(t)) is the distribution ofN particles in the field of view andn is the

number density. We corrected for image artifacts5 at each temperature using the method described
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in Ref. 6. Fromg(r), we applied the liquid structure theory to extract7,8 the pair potentials,u(r),

for example see Fig.1A of Ref.11. The effective radius atu(r) = 1 kBT is usually about 12%

smaller than the corresponding hydrodynamic radius measured by dynamic light scattering.

A five minute video was recorded at 30 frames/sec for each temperature. The particle in-plane

(x, y) positions in each frame were obtained from standard image analysis algorithms9 with 0.5

pixel = 40 nm spatial resolution. The field of view has a slightly brighter central region under

the illumination of the microscope. We measured this non-uniform background and removed

it from the particles’ brightness profiles. The histogram of particles’ brightness has a bimodal

distribution as shown in Fig. S2. 48%±2% of the particles were darker than the central minimum

point for all temperatures. The smaller percentage of darker particles is a result of illumination

and imaging and not of gravity. Our small Brownian NIPA spheres are very well density matched

and the gravitational heightkBT/mg > 100 µm is much greater than the cell thickness. Thus we

discretizes to 1 and -1 with a 50:50 ratio based on their brightness.

II. NUMERICAL SIMULATIONS

We model the NIPA particles as hard spheres of diameterd confined between parallel hard

walls of separationh. We performed 3D Monte Carlo (MC) simulations with two types of time

steps, involving either a small displacement of a single particle or a lateral volume-preserving

deformation of the simulation box. Due to the hard core nature of the interactions, temperature

is irrelevant and each MC move is accepted if there are no sphere overlaps after it. The average

lattice constantL is set by the number density and is defined as the nearest neighbour separation

the system would obtain had the particles been arranged in a perfect triangular lattice. We typically

usedN = 1600 particles and modifiedN to verify numerical convergence.

III. TABLE S1 FOR CONFIGURATION STATISTICS

Table S1 gives detailed statistics of the different local configurations defined in Fig. 5A.
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IV. OUT-OF-PLANE SPATIAL CORRELATIONS

The spatial correlation of spins is reflected by the spin-spin correlation〈s(x, y)s(0, 0)〉, and

its Fourier transform, the spin-structure factor〈|s(qxy)s(−qxy)|〉. They can be displayed frame

by frame as movies or averaged over all frames as shown in Fig. S3. Note that their hexagonal

patterns reflect the 6-fold symmetry in particles’ spin correlations, not the underlying in-plane lat-

tice. For example, numerically randomizing spins on the same triangular lattice yields no pattern

of 〈s(x, y)s(0, 0)〉. Moreover,〈s(x, y)s(0, 0)〉 appears to be insensitive to the accurate value ofs.

For example, very similar values for〈s(x, y)s(0, 0)〉 were obtained by the three following ways:

1) assumings(x, y) is proportional to the total brightness of the sphere at(x, y); 2) rescaling the

bimodally distributed brightness to a uniform distribution; or 3) discretizings to 1 or -1. The first

inner dark hexagonal rings in Fig. S3, A, C, E indicate that nearest neighbours (at separations of

one lattice constantL) are anti-correlated. The second bright ring indicates that the next layers of

neighbours (
√

3L, 2L) are positively correlated. After averaging over∼9000 frames, Fig. S3, C-F

are much smoother than the same individual frames displayed in the movies. This smoothness

indicates that the sample explored a large number of configurations during the 5-minute experi-

ments. In contrast, the noisy Fig. S3, A, B, at24.7◦C suggest that the system was trapped into a

more or less glassy state. The video ofT = 24.7◦C shows that most particles were frozen. At

even lower temperatures, spheres are almost completely jammed. Discrete dots in Fig. S3C reflect

discrete pair separations on the triangular lattice. At higher temperature, particles jiggled more

around their lattice sites and smeared out these discrete dots.

Both the mass-density and spin structure factors of an ideal random zigzag-stripe (rzs) state

will exhibit Bragg lines analogous to the Bragg rods in the structure factor of the random hexag-

onal close-packed (rhcp) structure12. For the equilateral-to-isosceles distortion we observe, these

structure factors are very similar to those of a hexagonal lattice out to about the third ring of recip-

rocal lattice vectors. Unfortunately, our system does not present ideal rzs order. It has regions of

extended straight stripes that are inconsistent with an ideal rzs phase, and it has a sufficient number

of defects that the orientational order of stripes of any kind is destroyed. Thus our experiments do

not cleanly exhibit Bragg lines.

The above spatial correlation function〈s(x, y)s(0, 0)〉 as a function of the continuous particle

positions is affected by the lattice deformation. In order to isolate the out-of-plane correlations one

may wish to map the system onto a perfect triangular lattice and calculate the ‘spin’ correlation
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function on that lattice. We measured correlations as a function of the particles’ logical distance

i− j along one of the principal directions of the lattice, as shown in Fig. S4. Mapping the particle

positions to an undeformed lattice is impossible due to the presence of in-plane topological defects.

Nonetheless, we were able to consider pairs of particlesi andj such that all particles along the

chain connecting them had exactly 6 neighbours. By this procedure the correlation is calculated

only between particles in a neighbourhood free of defects.

The experimental results are compared to the ground state of the anti-ferromagnetic (AF) Ising

model (black), obtained from a MC simulation on anN = 100 × 100 triangular lattice, and to a

phase of stripes that zigzag randomly (cyan). For short distances, correlations in the experiments

decay more or less exponentially and they decay more slowly at the lower temperatures. This pro-

cedure enables seeing this decay in a clean manner up to a separation of 8 particles forT = 24.7◦C

(blue). More importantly, one may clearly see that over the entire separation range considered of

20 particles, the sign of the correlation changes in theT = 24.7◦C experiment in the way it does

in the ideal striped phase (with the exception of|i − j| = 15 whose value is close to the noise

level). This behaviour significantly differs from the Ising model in which the correlation changes

sign every 3 particles13. ForT = 27.1◦C (red) the sign of the correlation appears to vary randomly

beyond|i − j| = 4 and there is no striped order. As seen in Fig. S4, MC simulations of hard

spheres (green and gold) agree with the experiments.

V. GEOMETRIC CALCULATIONS

The maximal particle diameterdmax for a close-packed zigzag stripe configuration may be eas-

ily calculated. Such striped configurations correspond to tiling the plane with isosceles triangles.

Each triangle has one long side of a length equal to the particle diameterd, and two shorter sides

of lengthx =
√

d2 − (h− d)2, whereh is the separation between the parallel plates confining

the spheres. The area of each isosceles triangle isA = (d/2)
[
x2 − (d/2)2]1/2

. To relate this to

the separationL between particles on a perfect triangular lattice, we consider a deformed and an

undeformed lattice with the same number density of spheres. This condition may be expressed by

equating the areas of the triangular plaquettes in the two structures. In the deformed lattice each

plaquette is isosceles with the area given above, whereas in the undeformed triangular lattice each

plaquette is an equilateral triangle of sideL, and hence area
√

3
4

L2. This leads to the following

equation for the maximal sphere diameter in terms of the plate separationh and the undeformed
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lattice constantL,

d4
max − 8hd3

max + 4h2d2
max + 3L4 = 0. (2)

We now show that the ratios between the lengths of the frustrated and satisfied bonds in Ta-

ble S1 are consistent with all neighbouring particles having a fixed 3D distance. Assume each

such pair of neighbours is separated a distance` in 3D. For a frustrated bond, both particles are at

the same height, hence the projection of this separation onto the 2D plane is`frus = `. For a bond

that satisfies the effective AF interaction, we assume each of the two particles touch the opposite

walls, hence their centres have an out-of-plane separation ofh− d, and, consequently, their sepa-

ration projected to the plane is`sat =
√

`2 − (h− d)2. In a close-packed state, the 3D separation

becomes equal to the sphere diameter` = d, hence the projected separation between a satisfied

pair is `sat = x. This yields the ratio of frustrated to satisfied lengths observed at T=24.7◦C by

settingh/d = 1.35, which is a reasonable value based on the experimental measurements.

VI. SIMULATION RESULTS

We estimate the free volume advantage of zigzag stripes over disordered Ising ground-state

configurations by MC simulation. For a given Ising configuration, we fixed the number of buckled

spheres but allowed them to rearrange in the plane and then calculated to what extent all particles

in each arrangement may be uniformly swelled to diameterdmax without overlapping. Larger

dmax, therefore, corresponds to better packing. Figure S5 shows that configurations with straight

or zigzagged stripes have the samedmax for all sample thicknesses and that thesedmax are always

much larger than that obtained from disordered configurations.

VII. IN-PLANE DYNAMICS

The in-plane dynamics can be described by the mean square displacement (MSD):

〈∆ri(t)
2〉 = 〈(ri(t)− ri(0))2〉. (3)

The plateaus of the MSD in Fig. S6A show that particles are caged by their neighbours. Higher

plateau values at high temperature indicate that cages are larger at lower volume fraction. Note

that the divergence of the MSD at high temperature does not necessarily indicate crystal melting.

Particles can jump out of cages by gliding and climbing of dislocations11. Fig. S6B clearly shows

that defects have larger in-plane motions compared to particles with 6 nearest neighbours.
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VIII. ONLINE MOVIES

All movies are in real time at 30 frames/sec.

Movie S1: Raw experimental video atT = 24.7◦C, corresponding to Fig. 2A.

Movie S2: Labyrinth pattern atT = 24.7◦C, corresponding to Fig. 2B.

Movie S3: Thermal excitations and defects atT = 24.7◦C, corresponding to Fig. 2C.

Movie S4: Raw experimental video atT = 27.1◦C, corresponding to Fig. 2D.

Movie S5: Labyrinth pattern atT = 27.1◦C, corresponding to Fig. 2E.

Movie S6: Thermal excitations and defects atT = 27.1◦C, corresponding to Fig. 2F.
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over∼9000 frames atT =24.7◦C, 25.3◦C, and 27.1◦C, respectively. Axis unit: lattice constantL. (B, D,

F): the corresponding structure factor〈|s(qxy)s(−qxy)|〉 from the Fourier transform of (A, C, E). Axis unit:

reciprocal lattice constant4π/(
√

3L). (F) is3〈|s(qxy)s(−qxy)|〉 in order to be bright enough to be visible.

9



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10

−4

10
−3

10
−2

10
−1

10
0

  Zigzag 
  Stripes

  Ising GS

h/L=1.3
d/L=0.99

h/L=1.3
d/L=1.005

  T=27.1oC

  T=24.7oC

Logical Distance, |i−j|

C
or

re
la

tio
n,

 |<
s is j>

−
<

s>
2 |

FIG. S4: Static spatial correlations vs the discrete logical distance on the lattice, for experiments, simu-

lations, Ising ground state, and randomly zigzagging striped phase. The magnitude of the correlation is

plotted on the semilogarithmic scale and its sign is denoted by solid symbols for+ and open symbols for

−. Simulations given here are for plate separationsh, sphere diametersd, and average lattice spacingL,

chosen to fit the average number〈Nf 〉 of frustrated bonds in the experimental data plotted.

10



1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

h/L

d m
ax

/L

 

 

Striped Configurations
Disordered Configurations

FIG. S5: Maximal particle diameter vs. plate separation. Stripes (straight or zigzagged) pack better than

disordered Ising ground-state configurations. The green line is the theoretical prediction based on isosceles

tiling. The dashed red line is a guide to the eye for the disordered configurations. Plate separationh and

sphere diameterd are here expressed in units of the average in-plane lattice constantL.

11



0 1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

 27.1oC

 26.5oC

 25.9oC

 25.3oC

 24.7oC

(A)   All particles

t [sec]

<
∆r

i(t
)2 >

 [µ
m

2 ]

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

t [sec]

<
∆r

i(t
)2 >

 [µ
m

2 ]

 

 

(B)   T=25.9oC

All particles
nn=5
nn=6
nn=7

FIG. S6: Mean square displacements. (A) Averaging over trajectories of all particles at the different tem-

peratures. (B) Behaviour of defects at T=25.9◦C: all particles (green circles), and particles with 5 (blue

triangles), 6 (black squares), and 7 (red stars) nearest neighbours.

12



27.1◦C 26.5◦C 25.9◦C 25.3◦C 24.7◦C Ising GSZigzag Stripes Random

nn 6= 6 5.6 2.8 2.0 1.4 3.2 - - -

Nf = 0 1.3 1.2 1.2 0.9 0.2 3.3 0 1/64 = 1.6

Nf = 1 11.6 12.1 12.2 11.4 7.5 22.3 0 6/64 = 9.4

Nf = 2a 7.3 7.2 6.9 4.8 2.7 0 0 6/64 = 9.4

Nf = 2b 18.6 19.5 19.9 23.4 33.1 34.9 50 6/64 = 9.4

Nf = 2c 9.9 10.8 12.0 22.1 35.0 10.5 50 3/64 = 4.7

Nf = 3a 4.8 4.7 4.4 2.5 0.5 0 0 6/64 = 9.4

Nf = 3b 20.8 21.1 20.8 18.4 11.4 0 0 12/64 = 19.0

Nf = 3c 7.2 7.5 7.5 7.2 5.7 29.0 0 2/64 = 3.1

Nf = 4a 2.9 2.8 2.8 1.5 0.1 0 0 6/64 = 9.4

Nf = 4b 5.6 5.6 5.5 3.4 0.3 0 0 6/64 = 9.4

Nf = 4c 2.7 2.7 2.7 1.7 0.3 0 0 3/64 = 4.7

Nf = 5 1.6 1.7 1.8 1.0 0.0 0 0 6/64 = 9.4

Nf = 6 0.1 0.1 0.1 0.2 0.0 0 0 1/64 = 1.6

〈Nf 〉 2.49 2.48 2.47 2.32 2.11 2 2 3

〈ψ6〉 0.73 0.80 0.87 0.89 0.85 - - -

〈`〉frus [nm] 703 706 709 708 700 - - -

〈`〉sat [nm] 676 681 686 686 663 - - -

L [nm] 676 679 684 685 680 - - -

TABLE S1: Percentage of different types of particles averaged over∼107 particles (∼9000 frames), in-

cluding topological defects (nn 6= 6) and non-defects with different numbersNf of frustrated neighbours.

Configurations a,b,c forNf = 2, 3, 4 are defined in Fig. 6A. The three right columns are the theoretical

predictions for the Ising ground state, for randomly zigzagging stripes, and for a random state.ψ6 measures

the orientational order of the 2D lattice10. 〈`〉frus, 〈`〉sat are the mean frustrated and satisfied in-plane bond

lengths.L is the lattice constant measured from the first peak of the radial distribution function.
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