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Abstract

GEOMETRIC GRAPH THEORY AND WIRELESS SENSOR NETWORKS

by

Deniz Sarioz

Advisor: Distinguished Professor János Pach

In this work, we apply geometric and combinatorial methods to explore a

variety of problems motivated by wireless sensor networks. Imagine sensors

capable of communicating along straight lines except through obstacles like

buildings or barriers, such that the communication network topology of the

sensors is their visibility graph. Using a standard distributed algorithm, the

sensors can build common knowledge of their network topology.

We first study the following inverse visibility problem: What positions

of sensors and obstacles define the computed visibility graph, with fewest

obstacles? This is the problem of finding a minimum obstacle representation

of a graph. This minimum number is the obstacle number of the graph. Using

tools from extremal graph theory and discrete geometry, we obtain for every

constant h that the number of n-vertex graphs that admit representations with

h obstacles is 2o(n2). We improve this bound to show that graphs requiring

Ω(n/ log2 n) obstacles exist.

iv



We also study restrictions to convex obstacles, and to obstacles that are

line segments. For example, we show that every outerplanar graph admits

a representation with five convex obstacles, and that allowing obstacles to

intersect sometimes decreases their required number.

Finally, we study the corresponding problem for sensors equipped with

GPS. Positional information allows sensors to establish common knowledge of

their communication network geometry, hence we wish to compute a minimum

obstacle representation of a given straight-line graph drawing. We prove that

this problem is NP-complete, and provide a O(logOPT )-factor approximation

algorithm by showing that the corresponding hypergraph family has bounded

Vapnik-Chervonenkis dimension.
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Chapter 1

Introduction and Motivation

The purpose of this work is to apply geometric and combinatorial methods to explore a

family of problems motivated by wireless sensor networks. Imagine sensors capable of

communicating along straight lines except through obstacles like buildings or barriers, and

close enough to each other to communicate subject to this visibility constraint. That is,

the communication network topology of the sensors corresponds to their visibility graph

in the presence of obstacles. Using a standard distributed algorithm, the sensors can attain

common knowledge of their network topology.

For purposes of environmental modeling in the absence of additional information, it

may be desirable for the sensors to automatically conjecture the obstacle shapes and lo-

cations, as well as the positions of the sensors, purely based on the network topology.

More succinctly, we would like to infer a plausible obstacle representation of the network

topology. An obstacle representation [4] of an abstract graph G is a point set in the plane

together with a set of obstacles, such that the visibility graph on the point set is isomorphic

to G. Without loss of generality, every obstacle is a simple polygon, and the graph vertices

together with the obstacles’ vertices are in general position, that is, no three are collinear.
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Since there are many obstacle representations for any given abstract graph, simpler expla-

nations ought to be preferred over more complicated ones. Variations on what ‘simple’

means as well as additional assumptions beget a family of inverse problems.

We first study the following inverse visibility problem: What positions of sensors and

obstacles define the computed visibility graph, with fewest obstacles? From the point of

view of application, this question corresponds to the “simplest means fewest” approach,

giving equal weight to a triangular obstacle and an obstacle with a million sides. This is the

problem of finding a minimum cardinality obstacle representation of a graph. This graph

parameter is the obstacle number of the graph. Using tools from extremal graph theory and

discrete geometry, we obtain the following result.

Theorem 2.1.2. For every constant h, the number of n-vertex graphs with obstacle number

at most h is 2o(n2).

As we will show, this is sufficient to conclude that the obstacle numbers for many

families, such as bipartite graphs, is unbounded. This result has been published in Graphs

and Combinatorics [36]. Using facts regarding order types and line segment arrangements,

we improve this bound to prove the following:

Theorem 2.4.2. There are graphs on n vertices with obstacle number at least Ω
(

n/ log2 n
)

.

Prior information on the nature of the obstacles can be very useful. Many environments

are likely to have artificial structures that are convex. Hence, we also study restriction of

the above problem to convex obstacles. An obstacle representation of a graph G with only

convex obstacles is called a convex obstacle representation of G, and the fewest number of

obstacles over all convex obstacle representations of G is called the convex obstacle number

of G.
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Theorem 3.1.1. There are graphs on n vertices with convex obstacle number at least

Ω(n/ logn).

Another meaningful measure of complexity for an obstacle representation with polyg-

onal obstacles is the total number of vertices of the obstacles. Hence, a representation that

minimizes this may be preferred. Notice that this minimum is of the same order of mag-

nitude as the minimum number of obstacles each of which is a straight line segment. An

obstacle representation of a graph G in which every obstacle is a straight line segment is

called a segment obstacle representation of G, and the fewest number of obstacles over all

segment obstacle representations of G is called the segment obstacle number of G. For this

we have:

Theorem 3.1.2. There are graphs on n vertices with segment obstacle number at least

Ω(n2/ logn).

These results were presented at the 36th International Workshop on Graph Theoretic

Concepts in Computer Science, whose proceedings were published in the Lecture Notes in

Computer Science series of Springer [32].

Alpert, Koch, and Laison [4] showed that every outerplanar graph has obstacle number

at most one. They queried whether the convex obstacle number is a bounded parameter for

outerplanar graphs. We give a construction to show:

Theorem 3.2.1. Every outerplanar graph has convex obstacle number at most five.

Using a similar technique, we prove an upper bound of four for the convex obstacle

numbers of bipartite permutation graphs. The results to be presented in this dissertation

regarding outerplanar graphs and bipartite permutation graphs have been accepted to appear

in a volume on Geometric Graph Theory [19].
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We also show that allowing segment obstacles to intersect sometimes decreases their

required number, as we formulate exact dependencies on the number of vertices for certain

families of graphs.

Finally, we study the corresponding problem for sensors equipped with GPS. Positional

information allows sensors to establish common knowledge of the geometry of their com-

munication network in addition to its topology. In mathematical terms, we wish to compute

a minimum obstacle representation of a given straight-line graph drawing.

We show that this problem can be formulated as a hypergraph transversal problem of

size polynomial in the number of graph vertices, establishing that it is in NP. We prove

that this problem is NP-hard by giving a reduction from planar vertex cover. We provide

a O(logOPT )-factor approximation algorithm by bounding the Vapnik-Chervonenkis di-

mension for the corresponding hypergraph family. This positive result was presented at the

23rd Canadian Conference on Computational Geometry [42]. An interesting special case

is that of the family of plane graphs—drawings of planar graphs in the plane without edge

crossings. Even though the problem is NP-hard already for this special case, we show the

following positive algorithmic results by a reduction to maximum degree 3 planar vertex

cover.

Corollary 4.4.2. There is a polynomial-time approximation scheme (PTAS) for computing

the obstacle number of a plane graph.

Corollary 4.4.3. Computing the obstacle number of a plane graph is fixed parameter

tractable (FPT).

These reductions and their complexity-theoretic consequences were first given in the

e-print [28].
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Recurrent notations and terminology

All of our graphs are finite and simple. A graph G consists of a finite set of elements called

the vertices of G and denoted by V (G), together with a specified set of vertex pairs called

the edges of G and denoted by E(G). A graph on V has vertex set V . For vertices u and

v of a graph G, we refer to the pair {u,v} as uv. We denote by [n] the set {1,2,3, . . . ,n}.

A labeled graph G has vertex set [n], and its edges are specified pairs in [n]. An unlabeled

graph on n vertices is an equivalence class of labeled graphs on n vertices closed under

graph isomorphism. A hypergraph, also known as a set system, is the following general-

ization of a graph. A hypergraph H consists of a set of elements called the vertices of H ,

together with a collection of specified subsets of its vertex set called the hyperedges of H .

While some concepts that we study may have reasonable projective analogues, we use

the word plane to always indicate the Euclidean plane.

The arrangement A of a set S of line segments in the plane is the incidence structure

among the vertices, edges, and cells of the arrangement, defined in the following way. A

segment endpoint or an intersection point of two segments is a vertex of A . An open

interval on a segment defining the arrangement between two vertices of the arrangement

that contains no vertex of the arrangement is an edge of A . A connected component of

the complement of the union of the segments in S is a cell of A . Arrangements of line

segments are readily extended to arrangements of lines. The graph of A is the graph on

the vertices of A with pairs defined by the edges of A .

These notations and terms are in keeping with community standards, e.g., [30].



Chapter 2

Obstacle numbers of graphs:

Bounds and ad-hoc computations

2.1 Obstacle representations of graphs and

the obstacle number of a graph

Consider a set P of points in the plane and a set of closed polygonal obstacles whose

vertices together with the points in P are in general position, that is, no three of them are

on a line. The corresponding visibility graph has P as its vertex set, two points p,q ∈ P

being connected by an edge if and only if the segment pq does not meet any of the obstacles.

Visibility graphs are extensively studied and used in computational geometry, robot motion

planning, and sensor networks; see [10], [22], [33], [34], [45].

Alpert, Koch, and Laison [4] introduced an interesting new parameter of graphs, closely

6
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related to visibility graphs. Given a graph G, we say that a set of points and a set of polyg-

onal obstacles as above constitute an obstacle representation of G if the corresponding vis-

ibility graph is isomorphic to G. A representation with h obstacles is called an h-obstacle

representation. The smallest number of obstacles over all obstacle representations of G is

called the obstacle number of G, which we denote by obs(G).

Given any placement (embedding) of the vertices of G in general position in the plane,

a straight-line drawing of G consists of the image of the embedding and the set of open

straight line segments connecting all pairs of points that correspond to the edges of G. We

refer to a pair of vertices in G that does not define an edge in G as a non-edge of G. If

there is no danger of confusion, we make no notational difference between the vertices of

G and the corresponding points, or between vertex pairs and corresponding open segments.

The complement of the set of all points that correspond to a vertex or belong to at least

one edge of G falls into connected components. Each of these components is called a face

of the drawing. In every drawing of a graph, there is a unique unbounded face, referred to

as the outside face. A 1-obstacle representation in which the obstacle lies on the outside

face is called an outside obstacle representation, and such an obstacle is called an outside

obstacle. Notice that if G has an obstacle representation with a particular placement of its

vertex set, then

1. each obstacle must lie entirely in one face of the corresponding drawing of G, and

2. each non-edge of G must be blocked by at least one of the obstacles.

Therefore, the problem of finding the minimum number of obstacles required for a

given graph drawing can be reformulated as: What is the smallest number of faces that

together block all non-edges?
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Figure 2.1 – Drawing of G1 that can be completed to a 2-obstacle representation

Alpert, Koch, and Laison [4] showed that any representation of the bipartite graph G1

which can be obtained by removing a maximum matching from a complete bipartite graph

K5,7, requires at least two obstacles. See Fig. 2.1. They also constructed a split graph G2,

i.e., a graph that splits into a complete subgraph and an independent set, with a number of

edges running between them, which has obstacle number at least two. See Fig. 2.2. We

p

Figure 2.2 – V (G2) is the union of a clique A of 92379 vertices, and an independent

set I of
(

92379
6

)

vertices of degree 6 with distinct neighborhoods. Out of every 92379

points in general position, at least 12 are in convex position. For some drawing of G2,

we show the drawing induced on such 12 vertices comprising A′ and a vertex p ∈ I

with edges to 6 vertices in A′ that alternate around conv(A′). In every drawing of G2,

every such choice of A′ and p implies the presence of at least two interior-disjoint solid

quadrilaterals with non-edges inside each.

augment the above examples with a third one: a graph G3 with obstacle number at least

two, whose complement is a bipartite graph.
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b1

b2 b3

b4

Figure 2.3 – Drawing of G3, the unique 20-vertex graph whose vertex set consists of a

clique of four (light blue) vertices and a clique of sixteen (dark red) vertices such that

every red vertex is adjacent to a distinct set of blue vertices

Lemma 2.1.1. The graph G3 specified in Fig. 2.3, which consists of two complete sub-

graphs with many edges between them, has obstacle number at least two.

We will not prove this lemma here. Instead, in Section 2.3, we shall introduce smaller

graphs G′1, G′2, and G′3 which are respectively bipartite, split, and bipartite complement

graphs, and show that each of them has obstacle number at least two.

Alpert, Koch, and Laison applied the Erdős-Szekeres convex n-gon theorem [16] to

generalize their construction of G2 to produce a sequence of graphs with arbitrarily large

obstacle numbers. Here we demonstrate that the existence of such graphs is a simple con-

sequence of the fact that no graph of obstacle number one contains a subgraph isomorphic

to G1, G2, or G3. In Section 2.2, we will show that this set of forbidden graphs allows us

to utilize some extremal-graph-theoretic tools. They yield that the number of graphs with

n vertices and bounded obstacle number is very small, compared to the total number of
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labeled graphs, which is 2(
n
2). More precisely, we obtain

Theorem 2.1.2. For any fixed positive integer h, the number of graphs on n (labeled)

vertices with obstacle number at most h is at most 2o(n2).

One of the unsolved questions left open in [4] was whether there exist bipartite graphs

with arbitrarily large obstacle number. Since total number of labeled bipartite graphs with

n vertices is at least 2n2/4, Theorem 2.1.2 immediately implies that the answer to the above

question is in the affirmative. We also give a construction from scratch.

Corollary 2.1.3. For any positive integer h, there exists a bipartite graph with obstacle

number larger than h.

2.2 Hereditary properties—Proof of Theorem 2.1.2

In 1985, Erdős, Kleitman, and Rothschild [15] proved that, as n tends to infinity, the number

of all Kℓ-free graphs on n vertices is asymptotically equal to the number of (ℓ−1)-partite

graphs with n vertices with as equal vertex classes as possible. This result was soon gener-

alized to graphs that do not contain some fixed (not necessarily induced) subgraph H [14].

Analogous questions based on the induced subgraph relation were investigated in [38],

[40], and [39]. If a graph G does not contain an induced subgraph isomorphic to a fixed

graph H, then the same is true for every induced subgraph of G. Therefore, this property is

hereditary. As we explain later, a hereditary graph property can be characterized by its set

of forbidden induced subgraphs. In order to formulate an Erdős-Kleitman-Rothschild type

theorem valid for any hereditary graph property, we need some definitions and notations.

We identify a graph property P with the set of all graphs that satisfy this property. In

the same spirit, we denote by Pn the set of all graphs on n labeled vertices which satisfy
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property P . From now on, we consider only properties that hold for infinitely many graphs.

A graph is (r,s)-colorable if its vertex set can be partitioned into r blocks, out of which

s are cliques and every remaining block is an independent set. Let C (r,s) denote the set

of all (r,s)-colorable graphs. A graph property which holds for all graphs is called trivial.

Given any nontrivial hereditary graph property P , its coloring number is defined as

r(P) = max{r | ∃s : C (r,s)⊆P}.

We now argue that the parameter r(P) exists and is at least one. By Ramsey’s Theo-

rem, every graph on n > R(k, ℓ) vertices has either a clique on k vertices or an independent

set on ℓ vertices. Hence, if a property were to exclude both a complete graph and a clique,

it would hold for finitely many graphs, contrary to hypothesis. In other words, it must be

the case that C (1,0) ⊆P or C (1,1) ⊆P , hence r(P) ≥ 1. Since r(P) is strictly less

than the number of vertices of any graph that does not belong to P , it is also bounded from

above.

Theorem 2.2.1 (Bollobás, Thomason [7]). For any nontrivial hereditary graph property

P , the number of (labeled) graphs on n vertices with property P is

|Pn|= 2

(

1− 1
r(P)

+o(1)
)

(n
2).

Here, it does not matter whether we count labeled or unlabeled graphs, because the

corresponding quantities differ only by a factor of at most n! = 2O(n logn). If for some

value r there is no s such that C (r,s) ⊆P , then for every r′ > r there is no s for which

C (r′,s)⊆P . If we can find (2,0)-colorable, (2,1)-colorable, and (2,2)-colorable graphs,

none of which has property P , then, by the preceding observations, r(P) = 1. Thus, by
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Theorem 2.2.1, we can conclude that the number of graphs on n vertices with property P

is 2o(n2).

The familiar term for a (2,0)-colorable graph is bipartite. A (2,1)-colorable graph

consists of a clique and an independent set, possibly with edges running between them;

such a graph is often called a split graph [18], [44]. A (2,2)-colorable graph consists of

two cliques, possibly with edges running between them—its complement is bipartite.

Apply Theorem 2.2.1 to the hereditary property that a graph admits a 1-obstacle rep-

resentation. The graphs G1, G2, and G3 introduced in Section 2.1 are (2,0)-, (2,1)- and

(2,2)-colorable. Thus, in view of the fact that, according to Alpert et al. and Lemma 2.1.1,

none of them admits a 1-obstacle representation, we can conclude that the number of all

graphs on n (labeled) vertices with obstacle number at most 1 is 2o(n2). In other words,

Theorem 2.1.2 holds for h = 1.

Denote the set of the first n positive integers by [n]. Given h > 1, consider a graph G on

the vertex set [n] with obstacle number at most h, and fix an obstacle representation R for

it with h obstacles O1,O2, . . . ,Oh. As usual, we do not distinguish between V (G) and the

point set corresponding to it in R. For each i ∈ [h], let Gi be the visibility graph on V (G)

determined only by the obstacle Oi. It is easy to see that G is a subgraph of Gi, since Oi by

itself blocks no more visibilities among V (G) than do all h obstacles combined. In other

words, E(G)⊆∩i∈[h]E(Gi). In fact, we have that E(G) = ∩i∈[h]E(Gi), since for every edge

uv ∈ E(G), the segment uv avoids all obstacles specified in R. Let us denote by G n
h the set

of labeled graphs on [n] with obstacle numbers at most h. Since every G ∈ G n
h is uniquely

determined by the above graphs G1,G2, . . . ,Gh ∈ G n
1 , we have

∣

∣G n
h

∣

∣≤
∣

∣G n
1

∣

∣

h
. Using the fact

that
∣

∣G n
1

∣

∣= 2o(n2), we can conclude that
∣

∣G n
h

∣

∣= 2o(n2) for any fixed h.

This completes the proof of Theorem 2.1.2.
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2.3 Small (2,s)-colorable graphs

without 1-obstacle representations

We show that a particular 10-vertex (2,0)-colorable (i.e., bipartite) graph G′1 has obstacle

number greater than one. This improves upon the 12-vertex bipartite graph G1 in [4], and

settles a conjecture therein in the affirmative. We also show that a particular 70-vertex

(2,1)-colorable (i.e., split) graph G′2 has obstacle number greater than one, improving on

the
(

92379+
(

92379
6

))

-vertex graph implied by a construction in [4]. We finally show that

a (2,2)-colorable 10-vertex graph G′3 has obstacle number greater than one, improving on

our own 20-vertex graph G3. The graphs G1, G2, and G3 were depicted in Section 2.1.

2.3.1 A 10-vertex bipartite graph

In [4], K∗m,ns has been defined as the graph obtained from the complete bipartite graph Km,n

by removing a maximum matching. There, it was shown that every K∗m,n graph admits a

2-obstacle representation: The two independent sets are placed within disjoint half-planes,

such that the non-edges in the removed matching meet at a single point so that a single non-

outside obstacle is sufficient to meet them, while the non-edges within the independent sets

meet the outside face so that an outside obstacle is sufficient to meet them. The authors

also gave a strong hint for obtaining an outside obstacle representation of K∗4,n for every n

by providing an easily generalizable outside obstacle representation for K∗4,5. Furthermore,

they proved that G1 := K∗5,7 does not admit a 1-obstacle representation. We dedicate the

rest of this section to proving the following conjecture of theirs.

Theorem 2.3.1. G′1 := K∗5,5, the graph obtained from K5,5 by removing a perfect matching,

has obstacle number 2.
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r1

r2 r3
r4

r5

b1

b2
b3b4

b5

Figure 2.4 – A 2-obstacle representation of the bipartite graph G′1, i.e., K∗5,5

Proof. To able to refer to individual vertices of K∗5,5, let V (K∗5,5) = B⊎R such that B =

{b1,b2,b3,b4,b5} (the set of light blue vertices) and R = {r1,r2,r3,r4,r5} (the set of dark

red vertices) are independent sets and there is an edge from a blue vertex bi to a red vertex

r j if and only if i 6= j. See Fig. 2.4 for a 2-obstacle representation of G′1.

Before we proceed, we borrow some definitions and two facts from [4]. Given points

a, b, c in the plane we say a sees b to the left of c (equivalently, sees c to the right of b) if

the points a, b, and c appear in clockwise order. If a point a is outside the convex hull of

some set S of points, the relation “a sees to the left of” is transitive on S, hence is a total

ordering of S, called the a-sight ordering of S.

We paraphrase Lemma 3 of [4] in the following way.

Lemma 2.3.2. If a graph having K2,3 as an induced subgraph has a 1-obstacle representa-

tion, then in such a representation the two parts (independent sets) of the induced K2,3 are
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linearly separable. Moreover, for each part S, every vertex in the other part induces the

same sight ordering of S.

Lastly, we paraphrase a fact used in the original proof of Lemma 2.3.2. We denote by

conv(P) for the convex hull of a point set P.

Lemma 2.3.3. In a 1-obstacle representation of K∗5,5, every vertex subset S consisting of

2 red vertices and 2 blue vertices with 4 distinct subscripts (the necessary and sufficient

condition for a K2,2 to be induced) is in convex position, with both color classes appearing

contiguously around conv(S). Hence the drawing induced on S (i.e., the drawing of every

induced K2,2 in K∗5,5) is self-intersecting, a bowtie.

We now state and prove a new lemma, one of many to help prune the space of vertex

arrangements potentially amenable to 1-obstacle representations of K∗5,5.

For any three points p,q,r, we denote by ∠pqr the union of the rays −→qp and −→qr.

Lemma 2.3.4. Every 1-obstacle representation of K∗5,5 is an outside obstacle representa-

tion.

Proof. Assume that we are given a 1-obstacle representation of K∗5,5 that is not an outside

obstacle representation. At least three vertices are on the convex hull boundary of the ver-

tices by the general position assumption. Every pair of vertices appearing consecutively

around the convex hull boundary must constitute an edge, otherwise an outside obstacle

would be required to block it. Then without loss of generality b1,r2,b3 appear consecu-

tively on the bounding polygon. All other vertices including r4 are inside conv(∠b1r2b3).

Hence the drawing of the K2,2 induced on {b1,r2,b3,r4} is not a bowtie, which contradicts

Lemma 2.3.3.
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Lemma 2.3.5. In every 1-obstacle representation of K∗5,5, every vertex v is linearly separa-

ble from the set S of its neighbors, defining a v-sight ordering on S.

Proof. Assume for contradiction that we are given a 1-obstacle representation of K5,5 in

which some vertex, without loss of generality, b1, is not linearly separable from the set

of its neighbors. Then b1 is in the convex hull of {r2,r3,r4,r5}. By the general position

assumption, a triangulation of {r2,r3,r4,r5} will reveal that b1 is inside some triangle with

red vertices, Without loss of generality, ∆r3r4r5. Then by the general position assumption,

the ray
−−→
b1b2 meets an interior point of some edge of this triangle, Without loss of generality,

r4r5. This implies that the drawing of K2,2 induced on {b1,r4,b2,r5} is not a bowtie, which

contradicts Lemma 2.3.3.

In a graph drawing or obstacle representation, we say that a polygon (by which we

mean simple closed polygonal curve) is solid if it is a subset of the drawing: if every point

on it is a vertex or on an edge.

Lemma 2.3.6. In every 1-obstacle representation of K∗5,5, every vertex in R (respectively,

B) is linearly separable from B (respectively, R).

Proof. We will show that in every 1-obstacle representation of K∗5,5, each blue vertex is

linearly separable from R. The analogous statement about each red vertex and B can be

proved symmetrically.

Assume for contradiction that we are given a 1-obstacle representation of K∗5,5 in which

some blue vertex is in conv(R). Without loss of generality, b1 ∈ conv(R). By Lemma 2.3.5,

b1 is linearly separable from {r2,r3,r4,r5}. Without loss of generality,←→r2r5 is a horizontal

line with r2 to the left of r5 such that b1 is above←→r2r5 and r3r4 is inside conv(∠r2b1r5). Call

the four open regions delineated by the lines
←→
r2b1 and

←→
r5b1 the left, right, upper, and lower
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b1

r2 r5

bi

(a) For every i ∈ {3,4}, bi must

be in the shaded region.

b1

r2 r5

b3

b4

r1

(b) If b3 and b4 are on oppo-

site quadrants of b1 as shown, the

non-edge r1r5 cannot be blocked

by the outside face.

b1

r2
r5

b4

b3

r3

(c) The “possibility regions” of

b3 and r3 are shown in differ-

ent hues. Even if both regions

are unbounded, the non-edge r3b3

cannot be blocked by the outside

face.

Figure 2.5 – Subfigures (a), (b), and (c) respectively accompany the second, third, and

last paragraphs in the proof of Lemma 2.3.6. Some edges and non-edges are omitted

for clarity, as they often will be in subsequent figures.
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b1-quadrants. For each i ∈ {3,4}, since the drawing of K2,2 induced on {r2,bi,r5,b1} must

be a bowtie by Lemma 2.3.3, bi is above←→r2r5 and in either the left or the right b1-quadrant.

(See Fig. 2.5(a).)

Without loss of generality, b3 is in the left b1-quadrant. Assume for contradiction that

b4 is in the right b1-quadrant. Since b1 ∈ conv(R), r1 is in the upper b1-quadrant. Then

b3,r1,b4 are respectively in the left, upper, and right b1-quadrants, and r5 is on the boundary

of the right and lower b1-quadrants. This implies that the drawing of K2,2 induced on

{b3,r1,b4,r5} is non-self-intersecting, not a bowtie. By Lemma 2.3.3, this means b4 is in

the left b1-quadrant along with b3. (See Fig. 2.5(b).)

Notice that K2,3 is induced on {r2,r5,b1,b3,b4}. Then by Lemma 2.3.2, b3 and b4 are

above ←→r2r5 along with b1, and the r2- and r5-sight orderings of {b1,b3,b4} are the same,

with b1 appearing rightmost. Without loss of generality, r2 and r5 see b4 to the left of

b3. Hence, b3 is inside conv(∠b4r2b1) in addition to being inside conv(∠b4r5b1). By the

same token, since b1 sees r3 to be between r2 and r5, so does b4. Hence, r3 is inside

conv(∠r2b4r5), in addition to being inside conv(∠r2b1r5). These conditions ensure that

conv(∠r2b3r5) and conv(∠b4r3b1) meet to give a convex quadrilateral region with solid

boundary that has b3r3 as a diagonal. This implies that the non-edge b3r3 is not blocked by

the outside face, in contradiction to Lemma 2.3.4. (See Fig. 2.5(c).)

Denote by K−3,3 the graph obtained by removing an edge from K3,3. Note that our proof

of Lemma 2.3.6 relies on showing that the assumptions lead to a drawing of K2,2 forbidden

by Lemma 2.3.3, or to a forbidden drawing of K−3,3 like the one shown in Fig. 2.5(c).

Lemma 2.3.7. In every 1-obstacle representation of K∗5,5, the convex hulls of R and B are

disjoint, hence, there is a line separating R from B.

Proof. Assume for contradiction that we are given a 1-obstacle representation of K∗5,5 in
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which conv(R)∩ conv(B) 6= ∅. Let X denote conv(R)∩ conv(B). But by Lemma 2.3.6,

(R∪B)∩X = ∅. This means that X is a 2k-gonal shape (2 ≤ k ≤ 5) separating conv(B)

and conv(R) into k pieces each, alternating around it.

If k ≥ 3, without loss of generality, r1bi2r2bi1r3bi3 is a counterclockwise enumeration

of some convex hexagon H. Take←→r2r3 as horizontal. Without loss of generality, b4 is below

←→r2r3. By Lemma 2.3.2, b1 and b5 are also below←→r2r3. This means that {bi2 ,bi3}= {b2,b3}.

If i2 = 3, then H is solid and has the non-edge b2b3 as an internal diagonal, which therefore

requires an internal obstacle, contradicting Lemma 2.3.4. Otherwise, i2 = 2 and r2b3 meets

b2r3 at some point q, so the solid convex quadrilateral r1b2qb3 has b2b3 as an internal

diagonal, which once again requires an internal obstacle, contradicting Lemma 2.3.4.

Therefore, X separates conv(R) and conv(B) into 2 pieces each. Denote by R1 and R2

the subsets of R induced by this partition, and define B1 and B2 similarly. Without loss of

generality, |R1| ∈ {1,2} and |B1| ∈ {1,2}. Now we will show that |R1|= |B1|= 1.

Assume otherwise for contradiction. Without loss of generality, R1 = {r1,r2} and

R2 = {r3,r4,r5}. By Lemma 2.3.2, r1r3 is linearly separable from ∆b2b4b5. The line

←→r1r3 separates B1 from B2. This implies that {b2,b4,b5} ⊆ B2. Similarly, r2r4 is linearly

separable from ∆b1b3b5, which implies {b1,b3,b5} ⊆ B2. But then we have |B2| = 5, a

contradiction.

Without loss of generality, let R1 = {r1}. To see that this forces B1 = {b1}, assume for

contradiction that (without loss of generality) B1 = {b2}. Then r1r3 meets b2b4, contra-

dicting Lemma 2.3.3.

Without loss of generality, the sets R1,B1,R2,B2 appear clockwise around X , in this

order. Notice that every red vertex in R2 sees b1 rightmost in B. Without loss of generality,

let the b1-sight ordering of R be r5,r4,r3,r2,r1. To highlight the resemblance to the proof
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of Lemma 2.3.6, take the line←→r2r5 to be horizontal with r2 to the left of r5.

Since K2,3 is induced on {b1,b3,b4,r2,r5}, by Lemma 2.3.2 the r2- and r5-sight order-

ings of {b4,b3,b1} are the same. Since r2 and r5 are in R2, they see b1 as the rightmost blue

vertex and without loss of generality they see b4 to the left of b3. Thus we have exactly

the same conditions as those used in the last paragraph of the proof of Lemma 2.3.6 to

conclude that b3r3 is an interior diagonal of a solid quadrilateral, hence an outside obstacle

is insufficient in this case too.

Therefore, in a 1-obstacle representation of K∗5,5, conv(B) and conv(R) are disjoint.

Armed with the knowledge that every 1-obstacle representation of K∗5,5 is an outside

obstacle representation and requires R and B to be linearly separable, assume for contra-

diction that we are given a drawing of K∗5,5 that admits a 1-obstacle representation. We will

argue that such a drawing necessarily contains a drawing of K2,2 requiring more than one

obstacle or a drawing of K−3,3 requiring more than one obstacle. We justify the existence of

such a forbidden configuration by using an algorithm that removes vertices from the draw-

ing until inspecting the convex hull boundary of the vertices must reveal the existence of

such a configuration.

Now we give some terminology needed to describe the algorithm. By Lemma 2.3.7 the

convex hulls of B and R are disjoint. Without loss of generality, the x-axis separates B from

R, with B above and R below. Let U be a subset of the vertex set that has at least three blue

and at least three red vertices. Consider the clockwise cyclic order of the vertices in the

bounding polygon of U . If u appears immediately before v in this order, we say that the

ordered pair (u,v) is clockwise in U . The general position assumption and the linear sepa-

ration of R from B imply that a unique ordered pair of the form (ri,b j) is clockwise in U ,

and a unique ordered pair of the form (bk,rℓ) is clockwise in U . Refer to {ri,b j} as the left
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r1
r2 r3 r4

r5

b1

b2
b3b4

b5

(a) No subscript in W is

unique, so no internal ver-

tex is removed. Both diag-

onals are then non-edges, so

the left wall is removed.

r2 r3 r4

r5

b1

b2
b3b4

(b) Halting condition |W |=
|I| attained with |W | = 4

and {r3,b3} ⊆U \W , which

we can tell by inspecting W

since 3 ∈ [5]\ I and I grows

monotonically.

r2 r3

r5

b1

b3b4

(c) The forbidden drawing

of K−3,3 implied in (b) shown.

The obstacle is outside, yet

the non-edge b3r3 shown

here is not blocked by the

outside face.

Figure 2.6 – A run of the algorithm in the proof of Theorem 2.3.1. Notice that the

initial state features a placement of V (K∗5,5) in which R is linearly separable from B and

below B as required. In all but the last subfigure, only the dichromatic pairs induced

on W are shown.

wall of U and denote it by wleft = wleft(U). Similarly, refer to {bk,rℓ} as the right wall of U

and denote it by wright = wright(U). Let W =W (U) = {ri,b j,bk,rℓ}, the wall vertices of U .

The assumptions on U imply 3≤ |W | ≤ 4. Denote by I = I(U) the set of actual subscripts

of the vertices in W (U). Then 2≤ |I| ≤ 4. Refer to a pair of vertices as dichromatic if they

belong to different color classes and monochromatic otherwise. Observe that |W | − |I| is

the number of dichromatic non-edges of K∗5,5 induced on W .

Here is the algorithm sketch. Initialize U :=V (K∗5,5). The halting condition is |W |= |I|,

i.e., that every vertex in W has a distinct subscript. Repeat the following until the halting

condition arises. For every i ∈ [5], we say that ri and bi are twins. For every vertex with

a unique subscript in W , remove its twin from U (unless it has already been removed).

Remove at least one vertex in W with a twin also in W , the specifics to be described later.
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r2

r3

r4

r5 r1

b1b2

b3

b4

b5

(a) |W | = 4 and wright is a non-edge:

Removing b1 will not evict r1 from

the right wall, so b1 is removed.

r2

r3

r4

r5 r1

b2

b3
b4

b5

(b) |W |= 3 and wleft is the unique

dichromatic non-edge induced on W .

The vertex b2 is kept since it is in

both walls, while its twin r2 is re-

moved.

r3

r4

r5 r1

b2

b3
b4

b5

(c) Halting condition |W |= |I| at-

tained with |W |= 3 and b4 ∈U \W ,

which we can tell by inspecting W

since 4 ∈ [5]\ I and I grows mono-

tonically.

r3
r1

b2

b4

(d) The forbidden drawing of K2,2

implied in (c) shown. The obstacle is

outside, yet the non-edge b2b4 is not

blocked by the outside face.

Figure 2.7 – Another run of the algorithm in the proof of Lemma 2.3.1, illustrating

configurations distinct from those shown in Fig. 2.6
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A vertex v is removed from U only if its twin v is in W , and removing v will cause

v to be locked in W for the rest of the algorithm execution, due to the careful way in

which we remove a wall vertex. Assuming that this claim holds, I grows monotonically.

This means {r j,b j} ⊆ U \W for every j ∈ [5] \ I. Let us call the vertices in U \W the

interior vertices of U , and a pair {r j,b j} ⊆U \W an interior non-edge of U . Since |I| ≤

|W | ≤ 4 and I grows monotonically, U always has some interior non-edge. Furthermore, at

most two vertices from each color class are ever removed, ensuring the propagation of the

precondition |U ∩R| ≥ 3 and |U ∩B| ≥ 3 and proper termination. We now show why the

halting condition implies a forbidden configuration. The halting condition |W |= |I| arises

in two cases:

1. |W | = 3. Without loss of generality, W = {b1,r2,b3}. Then r4 is an interior ver-

tex of U by the monotonicity of I. We will show that the copy of K2,2 induced on

{b1,r2,b3,r4} gives a contradiction. r4 is inside conv(∠b1r2b3), hence the drawing

of the K2,2 induced on {b1,r2,b3,r4} is not a bowtie, which by Lemma 2.3.3 yields a

contradiction.

2. |W | = 4. Without loss of generality, wleft = {r1,b2} and wright = {b3,r4}. Then

{b5,r5} is an interior non-edge of U by the monotonicity of I. We will show that the

copy of K−3,3 induced on {r1,r4,r5,b2,b3,b5} gives a contradiction. Notice that K2,3

is induced on {r1,r4,b2,b3,b5} and on {r1,r4,r5,b2,b3}. The vertex b2 is leftmost

in the r1-sight ordering of {b2,b3,b5}, r1 is rightmost in the b2-sight ordering of

{r1,r4,r5}, b3 is rightmost in the r4-sight ordering of {b2,b3,b5}, and r4 is leftmost in

the b3-sight ordering of {r1,r4,r5}. By applying Lemma 2.3.2 to the aforementioned

two vertex sets on which K2,3 is induced, we obtain that b2 and b3 both see r5 between

r1 and r4, and that r1 and r4 both see b5 between b2 and b3. These conditions are
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sufficient to ensure that b5r5 is an internal diagonal of a solid quadrilateral and hence

cannot be blocked by the outside face, contradicting Lemma 2.3.4.

Now we describe how to remove wall vertices in a way that guarantees the “locking”

described above, and hence the monotonicity of I. Note that removing a vertex does not

affect a wall that it is not in.

If |W | = 4, wleft = {ri,b j}, and wright = {bk,rℓ}, then we call {ri,bk} and {b j,rℓ} the

diagonals of U . If both diagonals of U are non-edges, remove from U both vertices in wleft.

If a single diagonal of U is a non-edge, then without loss of generality, wleft = {r1,b2} and

wright = {b1,r3}. In this case, proceed to the next iteration by removing b1 from U . Now

we argue why this ensures that r3 gets locked in the right wall. For every i ∈ {4,5}, K2,2

is induced on {b1,r3,b2,ri}, hence by Lemma 2.3.3, ri /∈ int∠b2r3b1. Recalling that r2 has

already been removed, the next counterclockwise vertex after r3 on the resulting convex

hull boundary after removing b1 will still be blue. Therefore, r3 remains in the right wall.

If some wall is a non-edge, then without loss of generality, wright = {b1,r1}. If |W |= 3,

Without loss of generality, wleft = {r2,b1}. Remove r1 from U , so that r2 and b1 will be

locked in wleft. If |W | = 4, pick the vertex to remove from wright in the following way. If

r1 ∈wright(U \{b1}) then remove b1, otherwise remove r1. To show why this simple action

guarantees that the twin of the removed vertex ‘stays’ in the right wall, we need to justify

that if r1 /∈ wright(U \{b1}) then b1 ∈ wright(U \{r1}).

By hypothesis, wright(U \ {b1}) = {b′,r′} where r′ ∈ R \ {r1}. First we must explain

why b1 is the unique blue vertex in U to the right of the line
←→
r′b′. By the definition of right

wall, no vertex in U \ {b1} is to the right of the line
←→
r′b′. But if b1 were also to the left

of the line
←→
r′b′, then r′ together with b′ would constitute the right wall of U , contradicting

{b1,r1} = wright(U). Therefore, b1 is the unique blue vertex to the right of
←→
r′b′. Initialize
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a dynamic line L to
←→
r′b′. Rotate L clockwise around conv(U \ {b1,r1}) until it becomes

horizontal, allowing it to sweep the entire portion of the half-plane above the x-axis to the

right of
←→
r′b′. The vertex b1 is the unique blue vertex of U swept by L. Denote by r̂ the other

vertex of U \ {r1} on L at the precise moment when b1 is swept by L, which is unique by

the general position assumption. It is possible that r̂ = r′. No vertex of U \ {r1} is to the

right of the line
←→
r̂b1. Therefore, {r̂,b1}= wright(U \{r1}).

This completes an informal and yet complete specification of the algorithm that shows

that every 1-obstacle representation of K∗5,5 has a forbidden configuration of vertices re-

sulting in a contradiction. Therefore, the obstacle number of G′1, i.e., K∗5,5, is greater than

one. This implies that the obstacle number of G′1 is two, per its obstacle representation in

Fig. 2.4.

2.3.2 A 70-vertex split graph

Theorem 2.3.8. The split graph G′2 :=CE(6), consisting of a clique of 6 blue vertices and

an independent set of 64 red vertices each of which has a distinct set of neighbors, has

obstacle number greater than one.

Proof. While the graph CE(6) is defined unambiguously by the theorem statement, we

give the following definition of the graph family CE(k) in order to assign unique names to

the vertices of CE(6), and to be able to refer to its induced subgraphs. Denote by [k] the

set of integers {1,2, . . . ,k}. For k ∈ Z
+, let B(k) = {b1,b2, . . . ,bk} be a set of k light blue

vertices, and let R(k) = {rA | A⊆ [k]} be a set of 2k dark red vertices. Let CE(k) be the

graph on B(k)⊎R(k) in which B(k) is a clique, R(k) is an independent set, and there is an

edge between bi ∈ B(k) and rA ∈ R(k) if and only if i ∈ A.
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Figure 2.8 – Drawing of G′2, i.e., CE(6), whose vertex set consists of a clique (light

blue) of six vertices and an independent set (dark red) of 64 vertices with distinct

neighborhoods
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First we present lemmas regarding 1-obstacle representations of CE(4) that will prove

instrumental in showing that CE(6) does not have a 1-obstacle representation. We do this

by exploiting the hereditary nature of the CE family, that is, whenever k′ < k, copies of

CE(k′) can be found as an induced subgraph of CE(k) in a color-preserving fashion.

rA

b1

b2

b3

b4?

b4?

b4?

(a) Case of convex b1rAb2b3

rA

b1

b2

b3

b4?

b4?

b4?

(b) Case of concave b1rAb2b3

Figure 2.9 – For the proof of Lemma 2.3.9. The red vertex rA is A-fragmented with

1,2 ∈ A and 3,4 ∈ A. Without loss of generality, b3 is in conv(∠b1rAb2) (unshaded)

while b4 is in the complement of conv(∠b1rAb2) (shaded).

When considering obstacle representations for CE(k), for a fixed index set A ⊆ [k] we

denote [k]\A by A. For a fixed placement of the blue vertices B(k) in general position, we

say a point p in general position with respect to B(k) is A-fragmented if there are distinct

i1, i2 ∈ A and distinct i3, i4 ∈ A such that ∠bi1 pbi2 separates bi3 from bi4 .

Lemma 2.3.9. For every integer k ≥ 4, every obstacle representation of CE(k) in which

some rA ∈ R(k) is A-fragmented involves at least two obstacles.

Proof. For an arbitrary k ≥ 4, consider an obstacle representation of CE(k) in which for a

certain A ⊆ [k], rA is A-fragmented. Without loss of generality 1,2 ∈ A and 3,4 ∈ A with

b3 ∈ conv(∠b1rAb2) and b4 /∈ conv(∠b1rAb2). (See Fig. 2.9.)
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Then the quadrilateral Q = b1rAb2b3 is non-self-intersecting and has rAb3 as an internal

diagonal. Hence, an obstacle is needed inside Q, which is interior-disjoint from the com-

plement of conv(∠b1rAb2), in order to block rAb3. Since r4 /∈ conv(∠b1rAb2), so is rAb4,

therefore a different obstacle must block rAb4.

To simplify the notation for red vertices, from now on we will write the subscript i

instead of {i}, and i instead of [k]\{i} whenever convenient. We will also write B instead

of B(k) where the value of k is clear from context.

Lemma 2.3.10. For every integer k ≥ 4, in every 1-obstacle representation of CE(k), B is

in convex position.

b1 b3

b2

b4

r{3,4} r{1,4}

(a) Subcase of r{3,4} above b1r{1,4}

b1 b3

b2

b4

r{3,4}

r{1,4}

(b) Subcase of r{3,4} below b1r{1,4}

Figure 2.10 – For the proof of Lemma 2.3.10 Case 1

Proof. By Carathéodory’s Theorem, it is sufficient to prove the result for k = 4.

Assume for contradiction that we are given a 1-obstacle representation of CE(4) in

which B is not in convex position. Without loss of generality, b4 is inside the triangle

∆b1b2b3. There are two cases to consider.

Case 1: The obstacle is in conv(B). Without loss of generality, the obstacle is inside

∆b1b4b3. The vertex r{1,4} has non-edges to b2 and b3, so if it were outside of ∆b1b2b3 then
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at least one of these two non-edges would be outside of ∆b1b2b3, requiring a second obsta-

cle. Nor can r{1,4} be inside ∆b1b2b4 or ∆b2b3b4, since that would cause its non-edge with

b2 to be in inside that triangle, again requiring a second obstacle. A symmetric argument

applies to r{3,4}. Notice that r{1,4} ∈ conv(∠b4b2b3), lest it be {1,4}-fragmented. Like-

wise, r{3,4} ∈ conv(∠b1b2b4), lest it be {3,4}-fragmented. Then without loss of generality,

r{1,4} is inside ∆r{3,4}b4b3 which b1r{3,4} is outside of. (See Fig. 2.10.) Hence, distinct

obstacles are required to block b1r{3,4} and b3r{1,4}, a contradiction.

Case 2: The obstacle is outside of conv(B). Then r4 /∈ conv(B) and without loss of gen-

erality, r4 ∈ conv(∠b1b4b3). Hence the obstacle is inside ∆b1b3r4. Since the quadrilateral

Q = b1b4b3r4 is convex, every point outside of Q has a segment joining it to b4 or r4 with-

out crossing Q. Therefore, every remaining red vertex without an edge to b4, in particular,

r{1,3}, is inside Q. The introduction of r{1,3} into the drawing results in interior-disjoint

quadrilaterals Q′ = b1r{1,3}b3r4 and Q′′ = b1r{1,3}b3b4. (See Fig. 2.11.) Since r{1,3}r4 is

inside Q′ and r{1,3}b4 is inside Q′′, distinct obstacles are required to block these non-edges,

a contradiction.

b1 b3

b2

b4

r4

r{1,3}

Figure 2.11 – For the proof of Lemma 2.3.10 Case 2. The assumptions lead without

loss of generality to the configuration shown here, with r{1,3}b4 and r{1,3}r4 requiring

distinct obstacles.
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Now that we have some restrictions on the relative positions of blue vertices in all

1-obstacle representations of CE(k) for all k ≥ 4, we pursue the question of where the red

vertices can be positioned with respect to the blue vertices.

b1

b2
b3

b4

r{1,3}

Figure 2.12 – For the proof of Lemma 2.3.11 Case 2. The vertex r{1,3} is {1,3}-
fragmented.

Lemma 2.3.11. For every integer k ≥ 4, in every 1-obstacle representation of CE(k) the

obstacle is outside of conv(B), and hence R\{rB} is outside of conv(B).

Proof. By Carathéodory’s Theorem, it is sufficient to establish that the obstacle is outside

of conv(B) in the special case k = 4.

Assume for contradiction that we are given a 1-obstacle representation of CE(4) such

that the obstacle is in conv(B). By Lemma 2.3.10, B is in convex position. Without loss of

generality, b1b2b3b4 is a clockwise enumeration of B.

Case 1: r{1,3} /∈ conv(B). Imagine the polygon b1b2b3b4 bounding conv(B) as opaque:

Since it is convex, r{1,3} sees some side of conv(B) in its entirety, hence r{1,3} sees bi for

a certain even i. This means r{1,3}bi is outside conv(B), hence it will require a separate

obstacle, a contradiction.

Case 2: r{1,3} ∈ conv(B). (See Fig. 2.12.) By the convexity of B, r{1,3} is {1,3}-

fragmented, a contradiction.
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We have established that the obstacle is outside of conv(B). Assume for contradiction

that some vertex r ∈ R\{rB} is inside conv(B). Since r has a non-edge to some vertex in B,

this non-edge must be inside conv(B). Since the boundary of conv(B) is a solid polygon,

this requires an obstacle inside conv(B), contrary to what we just proved.

We introduce some further terminology to use in the context of CE(k) (for any integer

k > 0) for a fixed arrangement of B. The following definitions are meant only for points

outside of conv(B) and in general position with respect to B.

b1
b2

b3

b4

p

Figure 2.13 – Illustration of the concepts A-straight, A-convex, and A-reflex. For CE(4)
consider the given placement of B. The point p is {2,3}-straight, {4}-convex, and

{1,4,3}-reflex.

For a given A ⊆ [k], let BA denote {bi | i ∈ A}. We say that a point p is A-straight if

some line through p separates BA and BA (vacuously true if A ∈ {∅, [k]}). We say that a

point p is A-convex if it sees BA 6=∅ between two non-empty parts of BA that comprise BA.

If a point is A-convex, we say it is A-reflex. Observe that if rA is A-reflex, then an obstacle is

required in a bounded face, but not necessarily in the unbounded face. Note that for every

A ⊆ [k], every point p /∈ conv(B) in general position with respect to B is either A-straight,

A-convex, A-reflex, or A-fragmented. (See Fig. 2.13.)

Now we can finish proving with relative ease that CE(6) does not admit a 1-obstacle
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representation. Assume for contradiction that we are given a 1-obstacle representation of

CE(6). By Lemma 2.3.10, B is in convex position. Without loss of generality, b1b2b3b4b5b6

is a clockwise enumeration of B. By Lemma 2.3.11, R\{rB} is outside of conv(B). In par-

ticular, r{1,3,5} is outside of conv(B). We will show that every point outside of conv(B) and

in general position with respect to B is {1,3,5}-fragmented by showing that it is neither

{1,3,5}-straight nor {1,3,5}-convex nor {1,3,5}-reflex.

Since {b1,b3,b5} is not linearly separable from {b2,b4,b6}, no {1,3,5}-straight point

exists.

Assume for contradiction that some point p is {1,3,5}-convex. Hence p sees odd-

subscripted blue vertices together between two sets of even-subscripted blue vertices. Then

p is {i, j}-straight for some {i, j} ⊆ {2,4,6}. But bib j is a diagonal of the bounding

hexagon of B, which contradicts that it is linearly separable from B \ {bi,b j}. By a sym-

metric argument, no point is {2,4,6}-convex (i.e., {1,3,5}-reflex) either. Therefore, r{1,3,5}

Figure 2.14 – For the proof of Theorem 2.3.8. A red vertex rA adjacent exactly to blue

vertices non-adjacent in the bounding polygon of B is A-fragmented no matter what, as

in this example.

is {1,3,5}-fragmented, requiring two obstacles, a contradiction.

Therefore, G′2, i.e., CE(6), has obstacle number greater than one.



33

2.3.3 A 10-vertex graph with bipartite complement

We showed in [36] that the (2,2)-colorable 20-vertex graph G3 has obstacle number greater

than 1. One can obtain G3 from CE(4) by adding all possible edges among the vertices in

the independent set of 16 red vertices. Here, we show that a 10-vertex induced subgraph of

it, G′3, also has obstacle number greater than 1.

Let G′3 be the graph consisting of a clique of light blue vertices B = {bi | i ∈ [4]}, a

clique of dark red vertices R = {rA | A ∈
([4]

2

)

}, and additional edges between every bi and

every rA with i ∈ A. (See Fig. 2.15.)

b1 b2

b3

b4

r12

r23r13

r14

r24

r34

Figure 2.15 – Drawing of the bipartite complement graph G′3 with rotational symmetry

Theorem 2.3.12. G′3, a (2,2)-colorable graph on ten vertices, has obstacle number greater

than one.
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Proof. Assume for contradiction that we are given a 1-obstacle representation of G′3. Fol-

lowing the terminology in the preceding section, we shall say that a red vertex rA is frag-

mented if it is A-fragmented. That is, a vertex rA is not fragmented if and only if there

are points p and q such that ∠prAq strictly separates {bi | i ∈ A} from the remaining blue

vertices. If some red vertex rA is fragmented, then two obstacles will be required due to

{rA}∪B, a contradiction.

Case 1: B is not in convex position. Without loss of generality, b4 is inside the triangle

∆b1b2b3.

Subcase 1a: The obstacle is in conv(B). Case 1 of the proof of Lemma 2.3.10 is based

only on the vertices b1, b2, b3, b4, r{1,4} and r{2,4}, under the same conditions, hence that

argument applies verbatim to yield a contradiction here.

Subcase 1b: The obstacle is outside of conv(B). Let C{1,2} = conv(∠b2b4b1), C{1,3} =

conv(∠b1b4b3), and C{2,3} = conv(∠b3b4b2). Every red vertex is in precisely one of these

regions and outside of conv(B). Let f :
([3]

2

)

→
([3]

2

)

be the map such that rA ∈C f (A) when-

ever A∈
([3]

2

)

. We will show that every possible assumption about f leads to a contradiction.

Assume for contradiction that f has a fixed point. Without loss of generality, r{1,2} ∈

C{1,2}. This means that Q = b2b4b1r{1,2} is a solid convex quadrilateral, hence to block

b4r{1,2}, the obstacle is inside Q. Then, r{3,4} must be inside Q in order for the obstacle

to block both b1r{3,4} and b2r{3,4}. But then, ∠b4r{3,4}r{1,2} partitions Q into disjoint

quadrilateral regions with solid boundaries that respectively contain b1r{3,4} and b2r{3,4}.

Hence, two obstacles are required, a contradiction. Therefore, f has no fixed point.

Assume for contradiction that f is not a permutation. Without loss of generality, r{1,3}

and r{2,3} are both in C{1,2}. In order for both of these red vertices to not be fragmented,
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←−→
b3b4 must separate b1r{1,3} and b2r{2,3}. Hence, Q = b2b1r{1,3}r{2,3} is a solid, non-self-

intersecting quadrilateral. If Q is concave, we get an immediate contradiction due to Q

separating its diagonals, both of which are non-edges in G′3. If Q is convex, the obstacle

is inside Q in order to block its diagonals. But since r{1,2} is outside of C{1,2}, it does not

meet conv(Q), requiring another obstacle, a contradiction. Therefore, f is a permutation.

Since f is a permutation of three elements with no fixed point, it is cyclic. Without loss

of generality, r{1,2} ∈C{2,3} and r{1,3} ∈C{1,2}. In order to not be fragmented, r{1,2} is on

the same side of
←−→
b1b4 as b2, and r{1,3} is on the same side of

←−→
b3b4 as b1. These conditions

ensure that b1b4 does not meet r{1,2}r{1,3}. Indeed, if b2b4 and r{1,2}r{1,3} did meet at some

point p, then the convex solid quadrilateral b1r{1,3}pb4 would have b2r{1,3} inside and

b4r{1,2} outside, requiring two obstacles, a contradiction. If not, then b1r{1,3}r{1,2}b2b4 is a

non-self-intersecting solid pentagon with b2r{1,3} inside and b4r{1,2} outside, requiring two

obstacles, a contradiction.

Having exhausted all possibilities, we have shown that the assumptions of Subcase 1b

lead to a contradiction.

r{1,3}

r{2,4}

b3

b2

b1

b4

(a) Subcase 2a

r{2,4}

r{1,3}

b3

b2
b1

b4

(b) Subcase 2b

Figure 2.16 – For the proof of Theorem 2.3.12 Case 2. The thick dashed non-edges

require distinct obstacles.
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Case 2: B is in convex position. Without loss of generality, the bounding polygon of B

is b1b2b3b4. To not be fragmented,

(i) r{1,3} and r{2,4} must lie outside of conv(B);

(ii) for r{1,3}, either b1,b3 ∈ conv(∠b2r{1,3}b4) or b2,b4 ∈ conv(∠b1r{1,3}b3); and

(iii) for r{2,4}, either b1,b3 ∈ conv(∠b2r{2,4}b4) or b2,b4 ∈ conv(∠b1r{2,4}b3).

Subcase 2a: b1,b3 ∈ conv(∠b2r{1,3}b4) and b2,b4 ∈ conv(∠b1r{2,4}b3). Without loss

of generality, the quadrilateral b4b1b2r{1,3} is convex and has b3 inside, and without loss of

generality, the quadrilateral b3b4b1r{2,4} is convex and has b2 inside. Hence, b2b3r{1,3}r{2,4}

is a solid convex quadrilateral with b1r{2,4} outside and b3r{2,4} inside. Therefore, two ob-

stacles are required, a contradiction.

Subcase 2b: b2,b4 ∈ conv(∠b1r{1,3}b3) or b1,b3 ∈ conv(∠b2r{2,4}b4). Due to sym-

metry, we proceed assuming the former. Without loss of generality, Q = b3b4b1r{1,3} is

a convex quadrilateral. The obstacle is inside Q due to r{1,3}b4. In order for b1r{2,4} and

b3r{2,4} to be blocked, r{2,4} is inside Q. Hence, ∠r{1,3}r{2,4}b4 partitions conv(Q) into two

regions with solid boundaries that respectively contain b1r{2,4} and r{2,4}b3. Therefore, two

obstacles are required, a contradiction.

Therefore, G′3 has obstacle number greater than one.

2.4 Improved bounds via order types

In this section, we show that there exist graphs on n vertices with obstacle number at least

Ω(n/log2 n). Better results are proved if we are allowed to use only convex obstacles or

polygonal obstacles with a small number of sides.

We improve upon Theorem 2.1.2 by using some estimates on the number of different

order types of n points in the Euclidean plane, discovered by Goodman and Pollack [24],
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[25] (see also Alon [2]). We establish the following results.

Theorem 2.4.1. The number of graphs on n (labeled) vertices with obstacle number at

most h is at most

2O(hn log2 n).

Theorem 2.4.2. There exist graphs G on n vertices with obstacle numbers

obs(G)≥Ω
(

n/log2 n
)

.

Note that Theorem 2.4.2 directly follows from Theorem 2.4.1. Indeed, since the total

number of (labeled) graphs with n vertices is at least 2Ω(n2), the existence of an n-vertex

graph with obstacle number greater than h(n) is guaranteed for sufficiently large n for any

function h such that h(n) ·n log2 n = o(n2), that is, provided that h(n) = o(n/ log2 n).

The aim of this section is to prove Theorems 2.4.1and 2.4.2. The idea is to find a short

encoding of the obstacle representations of graphs, and to use this to give an upper bound

on the number of graphs with low obstacle number.

We need to review some simple facts from combinatorial geometry. Two sets of points,

P1 and P2, in general position in the plane are said to have the same order type if there is a

one to one correspondence between them with the property that the orientation of any triple

in P1 is the same as the orientation of the corresponding triple in P2. Counting the number

of different order types is a classical task.

Theorem 2.4.3 (Goodman, Pollack [24]). The number of different order types of n points

in general position in the plane is 2O(n logn).

Remark 2.4.1. The upper bound 2O(n logn) holds also for the number of order types of n

labeled points, since the number of permutations of n points is n! = 2O(n logn).



38

In a graph drawing, the complexity of a face is the number of edges of the face, when

viewed as a polygonal set. The following result was proved by Arkin, Halperin, Kedem,

Mitchell, and Naor (see Matoušek, Valtr [31] for its sharpness).

Theorem 2.4.4 (Arkin et al. [5]). The complexity of a single face in a drawing of a graph

with n vertices is at most O(n logn).

Note that this bound does not depend of the number of edges of the graph.

Proof of Theorem 2.4.1. For any given graph G with n vertices that admits an h-obstacle

representation, fix such a representation and consider the graph drawing. Every obstacle

belongs to a single face in the straight-line drawing of G according to this obstacle repre-

sentation. In view of Theorem 2.4.4, the complexity of every face is O(n logn). Replacing

each obstacle by a slightly shrunk copy of the face containing it, we can achieve that every

obstacle is a polygonal region with O(n logn) sides.

Let S be the point sequence starting with the vertices of G, followed by the vertices

of every obstacle in cyclic order, one entire obstacle after another. Let I be the set of the

starting positions of the h obstacles in S. G is completely determined by the (labeled) order

type of S, together with I. To see this, first observe that I tells us which points in S are graph

vertices and which pairs in S define a side of a polygon. Now, notice that a given segment

uv among graph vertices is blocked if and only if it meets some side ab of some polygon,

for which a necessary and sufficient condition is that the ordered triples uav, avb, vbu, and

bua have the same orientation.

Denote by N the length of S. The number of possibilities for I is at most
(

N
h

)

≤ Nh.

Since N ≤ n+ c1hn logn for some absolute constant c1 > 0, according to Theorem 2.4.3
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and Remark 2.4.1, the number of graphs with obstacle number at most h is at most

Nh ·2O(N logN) = 2O(N logN),

in other words, it is less than 2chn log2 n for a suitable constant c > 0.

This is a generous upper bound due to overcounting, and also because most pairs (S, I)

do not encode obstacle representations.

2.5 A bound for bipartite graphs via

binary space partitions obtained by ham sandwich cuts

We present an alternate proof of the fact that the family of bipartite graphs has unbounded

obstacle number without invoking results from extremal graph theory. The proof can be

generalized to the family of split graphs and those with bipartite complement. The method

used in this proof can be applied more generally in the study of obstacle representations.

Alternate proof of Corollary 2.1.3. Denote by G(b) the bipartite graph consisting of an in-

dependent set B(b) of b blue vertices and another independent set R(b) of 2b red vertices

such that each vertex has a distinct set of neighbors. Recall that the bipartite graph G′1 ob-

tained from K5,5 by removing a maximum matching has obstacle number two. Since G(5)

has G′1 as an induced subgraph, it also has obstacle number greater than one. We define a

function k : N→ N such that the graph G(k(h)) has no h-obstacle representation.

Let k(0) = k(1) = 5. To define k on h > 1, let

a =
|R(5)|
|R(5)|−1

=
25

25−1
=

32

31
,



40

let h′ = h′(h) = 2⌈log2 h⌉, let ℓ= ℓ(h) = ⌊1+ loga h′⌋ and let k(h) = 5ℓh′.

For h> 1, we will show that G(k(h)) cannot be represented with h′≥ h obstacles. Given

an obstacle representation of G(k(h)) for h > 1, denote by B and R the sets of blue and red

vertices. Decompose the plane into h′ convex cells by taking ham sandwich cuts of {B,R}

recursively down to depth log2 h′. See Fig. 2.17 for an illustration. Since h′ is a power of

2, it divides both |B| and |R|, so by the general position assumption, no vertex is on a cell

boundary and every cell has exactly 1/h′ of B as well as of R.

We will show that every cell has an induced copy of G(5). Given a cell C , let B′=B∩C

and let R′ = R∩C . Notice that |B′| = 5ℓ. Partition B′ into ℓ blocks B1,B2, . . . ,Bℓ each

of size 5. Let I j be the subscript set of B j. If for some block j ∈ [ℓ] the condition

{A∩ I j | rA ∈ R′} = 2I j held, then there would be an induced G(5) in C . Assume for con-

tradiction that this is not the case, so for every j ∈ [ℓ], we have

∣

∣{A∩ I j | rA ∈ R′}
∣

∣≤
∣

∣2I j
∣

∣−1 = 25−1.

But this will give us

|R|
|R′| ≥

(

25

25−1

)ℓ

= aℓ > aloga h′ = h′,

which is contrary to the definition of R′ due to the strictness of the inequality.

This means each of the h′ cells has an induced copy of G(5). Every such G(5) copy

requires an internal obstacle, confined to a face within its cell, in addition to an obstacle

outside that face. Hence h′ internal obstacles and at least 1 other obstacle are necessary.

Therefore, the obstacle number of G(k(h)) is greater than h′.

Notice that in the above proof, the function k(h) is Θ(h logh). This means that G(h)
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12

2

Figure 2.17 – Illustration of the construction in the alternate proof of Corollary 2.1.3.

For an arbitrary set B of 8 (light) blue points and an arbitrary set R of 16 (dark) red

points that taken together are in general position, a binary space partition is obtained

by recursive ham sandwich cuts down to depth 3. Separating line of depth 1 and rays

of depth 2 are labeled with their respective depths. Each of the resulting 8 disjoint open

convex cells has exactly 1 blue point and 2 red points.
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has at most 2O(h logh) vertices. In other words, there are bipartite graphs on n vertices with

obstacle numbers at least Ω
( logn

log logn

)

. Despite the progress that we made using order types,

this remains the best lower bound we know of on the obstacle numbers of bipartite graphs.

This statement holds also for split graphs and graphs with bipartite complement.



Chapter 3

Obstacle numbers of graphs: Convex,

segment, and three dimensional variants

3.1 Bounds via order types for

convex and segment obstacle numbers

In this section, we apply the techniques in Section 2.4 to prove slightly better bounds for

convex obstacle numbers, and significantly better bounds for segment obstacle numbers.

Denote by obsc(G) the convex obstacle number of a graph G, and by obss(G) its segment

obstacle number.

Theorem 3.1.1. There exist graphs G on n vertices with convex obstacle numbers

obsc(G)≥Ω(n/logn) .

Proof. It is enough to bound the number of graphs that admit an obstacle representation

43
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1

2

3

(a)

1

2

3

(b) 2+

1

2

3

(c) 2+1−

1

2

3

(d) 2+1−2−

1

2

3

(e) 2+1−2−3+

1

2

3

(f) 2+1−2−3+1+

1

2

3

(g) 2+1−2−3+1+3−

1

2

3

(h) 2+1−2−3+1+3−

Figure 3.1 – Subfigures (a) to (g) show the construction of the sequence and (h) shows

the visibilities. The arrow on the tangent line indicates the direction from the point of

tangency in which we assign + as a label to the vertex. The additional arrow in (a)

indicates that the tangent line is rotated clockwise around the obstacle.

with at most h convex obstacles. Let us fix such a graph G, together with a representa-

tion. Let V be the set of points representing the vertices, and let O1, . . . ,Oh be the convex

obstacles. For any obstacle Oi, rotate an oriented tangent line ℓ along its boundary in the

clockwise direction. We can assume without loss of generality that ℓ never passes through

two points of V . Let us record the sequence of points met by ℓ. If v ∈V is met at the right

side of ℓ, we add the symbol v+ to the sequence, otherwise we add v− (Fig. 3.1). When

ℓ returns to its initial position, we stop. The resulting sequence consists of 2n characters.

From this sequence, it is easy to reconstruct which pairs of vertices are visible in the pres-

ence of the single obstacle Oi. Observe that Oi blocks uv if and only if the subsequence

induced on u and v has no consecutive pair with the same superscript. Hence, knowing

these sequences for every obstacle Oi, completely determines the visibility graph G. The
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number of distinct sequences assigned to a single obstacle is at most (2n)!, so that the num-

ber of graphs with convex obstacle number at most h cannot exceed ((2n)!)h/h! < (2n)2hn.

As long as this number is smaller than 2(
n
2), there is a graph with convex obstacle number

larger than h.

Theorem 3.1.2. There exist graphs G on n vertices with segment obstacle numbers

obss(G)≥Ω
(

n2/logn
)

.

Proof. The proof of Theorem 2.4.1 yields the following result when s is the average number

of sides among the obstacles.

Lemma 3.1.3. The number of graphs admitting an obstacle representation with at most h

obstacles, having a total of at most hs sides, is at most

2O(n logn+hs log(hs)).

When all obstacles are segments (s = 2), Lemma 3.1.3 immediately implies Theo-

rem 3.1.2. Indeed, since there are 2(
n
2) = 2Θ(n2) labeled graphs on n vertices, as long as

h = h(n) satisfies

n logn+hs log(hs) = O(n2),

we can argue that there are graphs with segment obstacle number at least Ω(h(n)).
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3.2 Convex obstacle numbers of outerplanar graphs and

bipartite permutation graphs

A disjoint convex obstacle representation is one in which the obstacles are pairwise disjoint,

and we define disjoint convex obstacle number and h-disjoint convex obstacle representa-

tion similarly. The convex obstacle number of a graph is at most its disjoint convex obstacle

number.

Recall from Section 2.4 that the number of graphs on n vertices with obstacle number

at most h is at most 2O(hn log2 n). From this, it follows that every graph class with 2ω(n log2 n)

members on n vertices has unbounded obstacle number. Also recall that the number of

graphs on n vertices with convex obstacle number at most h is at most 2O(hn logn). Since the

number of planar graphs on n vertices is 2Θ(n logn) (see [23] for exact asymptotics), these

upper bounds are inconclusive regarding the obstacle numbers or convex obstacle numbers

of the class of planar graphs or a subclass.

Nonetheless, it was shown by Alpert, Koch, and Laison [4] that every outerplanar graph

admits a 1-obstacle representation in which the obstacle is in the unbounded face. In the

same paper the question, whether the convex obstacle number of an outerplanar graph can

be arbitrarily large, was raised. We settle this question in the negatory. In particular, we

prove the following two results regarding outerplanar graphs in Subsections 3.2.1 and 3.2.2.

Theorem 3.2.1. The convex (and disjoint convex) obstacle number of every outerplanar

graph is at most five.

Theorem 3.2.2. There are outerplanar graphs having disjoint convex obstacle number at

least four.

In Section 3.2.3, we prove the following regarding bipartite permutation graphs.
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Theorem 3.2.3. The convex (and disjoint convex) obstacle number of every bipartite per-

mutation graph is most four.

3.2.1 Upper bound on convex obstacle number of outerplanar graphs

Proof of Theorem 3.2.1. We shall show that the convex obstacle number of every outerpla-

nar graph is at most five, by giving a method to generate five convex obstacles that can

represent any outerplanar graph. For a given connected outerplanar graph G, we first con-

struct a digraph
−→
G′ with certain properties, whose underlying graph is a subgraph of G.

We call
−→
G′ the BFS-digraph of G. We show an obstacle representation using five convex

obstacles for the BFS-digraph, and then modify the representation without changing the

number of obstacles to represent the graph G. We finally discuss how to accommodate the

disconnected case, still with five obstacles.

Constructing the BFS-digraph and its properties

Let G be a connected outerplanar graph. Perform the breadth-first search based Algorithm

1 on G that outputs a digraph which we call the BFS-digraph of G, and denote by
−→
G′. We

say that a vertex of a BFS digraph has depth i if its distance from the BFS root is i.

Lemma 3.2.4. A BFS-digraph
−→
G′ of a connected outerplanar graph G has a straight-line

drawing such that

1. each vertex at depth i lies on the line y =−i;

2. two edges are disjoint except possibly at their endpoints; and

3. a vertical downward ray starting at a vertex v meets the graph only at v.
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Input: A connected graph G = G(V,E)

Output: The digraph
−→
G ′ called the BFS digraph of G

V ′ :=V0 := singleton set with an arbitrarily chosen vertex of G (the BFS root)−→
E ′ :=∅

i := 0

while V ′ 6=V do

Vi+1 := {v | u ∈Vi,(u,v) ∈ E}\V ′

V ′ :=V ′∪Vi+1−→
E ′ :=

−→
E ′ ∪{−−→(u,v) | u ∈Vi,v ∈Vi+1,(u,v) ∈ E}

i := i+1

end while

return
−→
G ′(V,

−→
E ′)

Algorithm 1: Algorithm to compute a BFS-digraph of a connected graph

root

a e j

b d f h

c g

Figure 3.2 – A BFS-digraph of an outerplanar graph G drawn to exhibit the three

properties in Lemma 3.2.4. The edges without arrows correspond to edges of G that

are not in the digraph. For a given outerplanar graph G, regardless of the choice of

the BFS root, there is a drawing of the resulting BFS-digraph that satisfies the three

properties and induces a straight-line outerplanar drawing of G.
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Proof. Let
−→
G′i denote the subgraph of

−→
G′ induced on vertices at depth less than or equal to i.

We show the existence of such a drawing by constructing it. We will proceed by induction

on i.

Consider a planar embedding of the outerplanar graph G in which every vertex meets

the outer face, with all vertices on a circle having root as its topmost point. From now on,

we do not distinguish between a graph and its embedding. Draw root on the line y = 0.

Then draw all its neighbors on the line y=−1 and to its left, preserving their order in G. All

arcs are oriented downward. So far we have
−→
G′1, which satisfies the desired properties. We

now show how to extend an embedding of
−→
G′i with the desired properties to an embedding

of
−−→
G′i+1 with the desired properties. Let vi,1, . . . ,vi,ℓ denote the members of Vi in left-to-right

order. In G, the depth i+1 neighbors of vi,k, for k = 1, . . . , ℓ, lie either on the clockwise arc

from vi,k to vi,k−1 (or to the parent of vi,k if vi,k−1 does not exist), or on the counterclockwise

arc from vi,k to vi,k+1 (or to the parent of vi,k if vi,k+1 does not exist). Otherwise, G is not

planar, or its vertices are not in convex position. We denote the depth i+1 neighbors of vi,k

on the clockwise arc from vi,k to vi,k−1 (or to the parent of vi,k if vi,k−1 does not exist) as

the left children of vi,k, and those on the counterclockwise arc from vi,k to vi,k+1 (or to the

parent of vi,k if vi,k+1 does not exist) as the right children of vi,k. Note that for vertices vi, j

and vi, j+1, the rightmost child of vi, j lies before or at the same place as the leftmost child

of vi, j+1. We apply the following steps for each vi,k:

• put the left children of vi,k, preserving their order with regard to their distance from

vi,k, on the line y =−(i+1) so that they are to the left of vi,k, and to the right of vi,k−1

and the nearest left ancestor of vi,k (if they exist);

• put the right children of vi,k, preserving their order with regard to their distance from

vi,k, on the line y =−(i+1) so that they are to the right of vi,k, and are to the left of
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vi,k+1 and the nearest right ancestor of vi,k (if they exist);

• make sure that for every pair of vertices vi, j and vi, j+1, the rightmost child of vi, j and

the leftmost child of vi, j+1 preserve their ordering in G.

Note that due to the outerplanarity of G, a right descendent and a left descendant of a vertex

have no common descendants, rendering the last step possible. Therefore, the extended

embedding represents
−−→
G′i+1, and satisfies all three conditions.

According to this embedding, we say that two vertices are consecutive if they are on

the same horizontal line and there is no vertex between them.

Corollary 3.2.5. A vertex has at most two parents. Moreover, if a vertex v has two parents,

the parents are consecutive; and v is the rightmost child of its left parent, and the leftmost

child of its right parent.

Proof. If any of the conditions above does not hold, property 3 of Lemma 3.2.4 is violated.

By Corollary 3.2.5, we also know two vertices at depth i have a common child only if

they are consecutive.

Corollary 3.2.6. Two consecutive vertices such that one is a left child and the other is a

right child of the same parent, do not have a common child.

Proof. It directly follows from the third property of Lemma 3.2.4.

5-convex obstacle representation of the BFS-digraph of a connected outerplanar graph

We demonstrate a set of five convex obstacles and describe how to place vertices of
−→
G′ to

obtain a 5-convex obstacle representation for
−→
G′. We first describe the arrangement of the
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set of obstacles. We have two disjoint convex arcs symmetric about a horizontal line, such

that both arcs curve toward the line of symmetry. We consider the arcs to be parts of large

circles, so that they behave like lines, except that they block visibilities among vertices put

sufficiently near them. In the region bounded by the two arcs, we put three line obstacles,

which form an S-shape with perpendicular joints, so that the S-shape is equally far from

either arc, and the projection of the S-shape onto either arc covers the whole arc. We then

disconnect the line obstacles by creating a small (and similar) aperture at each joint. The

arrangement of the set of obstacles is shown in Figure 3.3.

1

1

∆− 1

∆∆

0
+∞

+∞ 0

∆
∆+1

∆
∆+1

Figure 3.3 – The arrangement of the set of five convex obstacles for outerplanar graphs

The key idea is to place all vertices of the graph sufficiently close to either of the arcs,

and control the visibilities through the created apertures. For the sake of simplicity of

exposition, from now on, we say a vertex is placed on an arc if it is sufficiently close to

an arc. For each arc, the nearby and distant apertures are respectively called the outgoing-

aperture and the incoming-aperture. For each vertex on an arc, we draw the outgoing edges

through the outgoing-aperture of its underlying arc. We parameterize the arcs such that the

intersection points of the extended vertical line segment of the S-shape set at the arcs mark

the zeros, and the positive axes of the lower arc and the upper arc point respectively to the

right and to the left. We show if the S-shape is constructed so that
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1. two positive points unit distance apart on one arc see parts of the opposite arc that

share a single point, and

2. any point on an arc sees, through the outgoing aperture, an interval of length ∆ of the

other arc;

then this obstacle set can represent BFS-digraphs of all connected outerplanar graphs.

We first investigate the structure of the set of obstacles to fulfill the conditions above.

Let ∆ ≥ 2 be at least the maximum outdegree in
−→
G′. We define the distance of two sets to

be the minimum of distances between any two of their respective points. Denote by w the

aperture’s width. Let s represent the vertical segment’s length (in the S-shape), and let x

represent the S-shape’s distance from either arc.

Considering the arcs as lines, the first condition manifests if and only if w
1
= s+x

s+2x
,

and the second condition holds if and only if w
∆
= x

s+2x
. These two equations require that

w = ∆
∆+1

and s = (∆− 1)x, and we choose x = 1 to make things simple. We next show

that the depicted set of obstacles represents any BFS-digraph. (Surely, the obstacle set

depends on ∆ which is conditioned on
−→
G′, and to list vertex coordinates of the polygonal

obstacles we would also need to know the maximum depth in
−→
G′ as we will discuss, so

strictly speaking we have an obstacle set template.)

Proposition 3.2.7. The arrangement of five convex obstacles shown in Figure 3.3, repre-

sents BFS-digraphs of all connected outerplanar graphs.

Proof. We give an algorithm to place the vertices of a connected BFS-digraph
−→
G′ so that,

together with the set of obstacles, they form an obstacle representation of
−→
G′. We consider

the two arcs in the obstacle set as lines; after all vertices are placed, we curve them a

bit—just as much that they block visibilities among vertices on them. This way, we ignore
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visibilities among vertices on the same arc (when considered as a line) and show that the

set of obstacles represents
−→
G′.

Consider a drawing of
−→
G′ that satisfies the conditions in Lemma 3.2.4. From now on,

by
−→
G′ we refer to this embedding. Place the root of

−→
G′ at coordinate 1 of the lower arc.

We get a representation of
−→
G′0, where

−→
G′i denotes the induced subgraph of

−→
G′ containing all

vertices at depth at most i. Suppose
−→
G′i is represented such that

1. all vertices at an even depth are placed on the lower arc, and all vertices at an odd

depth are placed on the upper arc;

2. on each arc, vertices at different depths are well separated, i.e., arc intervals contain-

ing all vertices at the same depth are disjoint;

3. vertices of each depth preserve their ordering in
−→
G′; and

4. every two consecutive vertices are one unit apart, with the possible exception of the

rightmost left child and the leftmost right child of the same parent.

Note that by preserving the order, we mean if a vertex is to the left of some other vertex

v in
−→
G′, it gets a smaller coordinate than v when put on an arc.

Now, we describe how to add vertices at depth i+1 to obtain a representation of
−−→
G′i+1

satisfying the conditions above. Let vi, j denote the j-th vertex at depth i and let [ai, j,bi, j]

denote the interval of the opposite arc that is visible from vi, j through the outgoing-aperture.

For each vertex vi, j at depth i in the representation of
−→
G′i, we add its children on the opposite

arc as follows:

• If vi, j has a common child with its immediate preceding sibling, put its leftmost child

at ai, j; otherwise, put the leftmost child at ai, j +
1
2
.
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• If vi, j has a common child with its immediate next sibling, put its rightmost child at

bi, j; otherwise, put the rightmost child at bi, j− 1
2
.

• Put the remaining left children, preserving their ordering, after the leftmost one so

that all left children are one unit apart.

• Put the remaining right children, preserving their ordering, before the rightmost one

so that all right children are one unit apart.

Since every point sees an interval of length ∆, we know bi, j = ai, j +∆. Thus, as each vertex

has at most ∆ children, by performing the above algorithm, the rightmost child is placed

after the leftmost one, and they are at least one unit apart. Therefore, all consecutive pairs of

vertices are of distance one, except for the rightmost left child and leftmost right child of the

same parent that can be farther apart. Moreover, we know every two points, which are one

unit apart, have a common point-of-sight; that is, the greatest point-of-sight of the smaller

point equals the smallest point-of-sight of the greater one. By Corollaries 3.2.5 and 3.2.6,

we know that if two vertices have a common child, then they are consecutive; and they

are not right and left children of the same parent. Therefore, the presented algorithm put

vertices so that two vertices at depth i and i+1 are visible in the representation, if and only

if they are connected in
−→
G′. Conditions 1, 3, and 4 are surely satisfied after performing the

algorithm. Since a vertex sees no other vertex except through the apertures, to complete the

proof, what remains to be shown is that a vertex sees only its children through its outgoing

aperture (and only its parent(s) through its incoming aperture). To that end, next we prove

that Condition 2 is satisfied, namely that vertices at different depths are well separated:

they lie in pairwise disjoint intervals.

Let I0 denote the “interval” [1,1] wherein the root is placed, and for every i ≥ 0 let

Ii+1 denote the interval visible from Ii through the outgoing aperture. Since every vertex at
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depth i is in Ii, and Ii and Ii+1 belong to different arcs, to prove Condition 2, it suffices to

show that Ii < Ii+2 (i.e., every point in Ii has a smaller coordinate than every point in Ii+2)

for every i≥ 0. If Ii = [a,b], the structure of the obstacle set yields Ii+1 = [∆×a,∆×b+∆].

Since ∆ ≥ 2, this gives I0 < I2. By induction, we obtain that Ii = [∆i,2∆i +∑
i−1
j=1 ∆ j] for

every i ≥ 1. Since ∆ ≥ 2, for every i ≥ 1 we have 2∆i +∑
i−1
j=1 ∆ j < 3∆i < ∆i+2, therefore,

Ii < Ii+2.

Since we have previously ensured that a vertex v at depth i sees only its children through

the outgoing aperture among all vertices at depth i+ 1, the well ordering of the intervals

implies that v cannot see any other vertices through the outgoing aperture. By symmetry

of sight, this implies that no vertex can see through its incoming aperture any vertex other

than its parent(s).

This concludes the proof that we gave an obstacle representation of
−→
G′.

Adjusting the representation for general outerplanar graphs

We first show how to modify the representation of a connected BFS-digraph
−→
G′ to accom-

modate its corresponding outerplanar graph G. We know that the underlying graph of
−→
G′

and G are the same, except that
−→
G′ has no edge connecting two vertices at the same depth.

Since G is an outerplanar graph, the extra edges of G, if any, are such that they connect two

consecutive vertices. Therefore, to allow existence of extra edges in the representation, we

simply shave off the portion of the arc between their endpoints.

Now, we adapt this idea for disconnected outerplanar graphs. Let C1,C2, . . . ,Cn be the

components of a given outerplanar graph. Let
−→
C′i be a BFS-digraph of Ci, as defined in

Subsection 3.2.1. Let ∆ ≥ 2 be at least the maximum outdegree among all BFS-digraphs,

and construct the obstacle set template as before. Now, let L denote the maximum depth
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among all
−→
C′i . We declare I0 to be the interval [1,1] on one arc, and for every i > 0, we

let Ii be the interval [∆i,2∆i +∑
i−1
j=1 ∆ j] on the arc opposite to interval Ii−1. The modified

algorithm for representing a disconnected outerplanar graph is as follows. For each
−→
C′i ,

put its root at an arbitrary place in I(i−1)(L+2). Then carry out the algorithm described in

Subsection 3.2.1 to place all vertices of
−→
C′i for every i. This ensures that no vertex in C′i can

see a vertex of C′j for any i 6= j. We then shave off the arcs as necessary to provide visibility

among vertices at the same depth where desired.

We obtain a representation for an arbitrary outerplanar graph, concluding the proof of

Theorem 3.2.1.

3.2.2 Lower bound on disjoint convex obstacle number

of outerplanar graphs

For a rooted tree, we use the standard terminology—the depth of a vertex is its topological

distance to the root, and the height of the tree is the maximum depth over all its vertices.

Proof of Theorem 3.2.2. Denote by Tk,h the full complete k-ary tree with height h rooted at

r. We will show that the disjoint convex obstacle number of Tk,3 is at least four, for k to be

specified later. We say that two edges form a crossing if they meet at an internal point of

both.

Lemma 3.2.8. For every m ∈ Z
+, there is a value of k such that Tk,2 has no m-convex

obstacle representation without edge crossings.

Proof. Denote by V1 the set of vertices at depth 1, which comprises an independent set.

Note that |V1| = k. For any given s, we can find a subset V ′ ⊆ V1 of size s (provided

large enough k = k(s)) such that every non-edge with both endpoints in V ′ is blocked by
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r

v1

vi
v j

vs

u j

(a) To have u j < vi without edge crossings, v ju j must

meet vivs as shown. But then, the three sides of the tri-

angle viv jvs cannot be blocked by the same convex ob-

stacle O1, which is a contradiction.

r

v1

vi v j

vs

ui

u j

(b) Since ui < vi < u j < v j, no convex obstacle can meet

both rui and ru j without crossing an edge, so we have a

contradiction to the assumption that three non-edges of

the form rui can be blocked by the same obstacle O′.

Figure 3.4 – For the proof of Lemma 3.2.8. Since all non-edges among v1,v2, . . . ,vs

are blocked by a single convex obstacle O1, these vertices are in convex position and

below r in the manner shown in both subfigures.
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a common obstacle O1. This is because we can assign every non-edge among V1 to a

single obstacle that blocks it to obtain an m-edge-coloring of a Kk induced on V1, which

by Ramsey’s Theorem has a monochromatic clique of size s for large enough k. The set

V ′ lies in some half-plane having r on its boundary, without loss of generality, below a

horizontal line; otherwise, r would be inside a triangle with vertices in V ′, yet no single

convex obstacle could block all three sides of it without meeting an edge of Tk,2. Let us

write u < v whenever the triple ruv is counterclockwise. Let v1 < v2 < .. . < vs denote the

vertices in V ′. For each i : 1 < i < s, let ui denote a child of vi. We claim that at least

(s−2)/2 (not necessarily disjoint) convex obstacles are required.

To prove the claim, assume for contradiction that some obstacle O′ blocks three non-

edges of the form rui. Then without loss of generality, for some pair i < j such that rui and

ru j are blocked by O′, both ui < vi and u j < v j hold. It must be that vi < u j; otherwise,

v ju j would cross an edge or meet O1 which blocks both viv j and v jv j+1. See Figure 3.4(a).

Choose two points pi ∈ rui∩O′ and p j ∈ ru j ∩O′. Then the segment pi p j must intersect

the union of the edges rvi and viui. See Figure 3.4(b). By the convexity of O′, we have a

contradiction.

Thus, for s≥ 2m+4, at least m+1 convex obstacles are required if no edges cross.

Assume for contradiction that we have a representation of Tk,3 with three pairwise dis-

joint convex obstacles O1, O2 and O3.

If the endpoints of a crossing induced only the two edges (that is, an “X” type crossing),

at least four convex obstacles would be needed to block the non-edges, since any convex

set that intersects two non-edges must meet an edge. However, no more than three edges

can be induced by four vertices without forcing a cycle. Therefore, the four endpoints of

every crossing induce a path with three edges.
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By Lemma 3.2.8, we know that for large enough k, there are crossings within each

subtree of Tk,3 isomorphic to Tk,2. Pick three crossings c1,c2, and c3 in Tk,3, each in a

subtree rooted at a different neighbor of the root vertex. For each i ∈ {1,2,3}, denote by

uivi and wizi the edges of the crossing ci, with the corresponding induced path on four

vertices Pi = uiviwizi.

c

v

v′

u

(a) Since the obstacle blocking vv′ must also

be responsible for blocking uv and uv′, ev-

ery neighbor of u must be inside the lightly

shaded region inside triangle vcv′.

c

v

v′

ut

(b) But every neighbor t of u is subject to the

same conditions as t! Hence, the neighbors

of t must be inside the lightly shaded region

inside triangle vcv′. . .

Figure 3.5 – Proof of Theorem 3.2.2: Case of P1 and P2 with non-disjoint convex hulls.

Non-edges shown in each subfigure imply a respective minimal portion (dark gray) of

an obstacle. The third edge of the path could have been incident on v or v′ but this

makes no difference. Only the obstacle that blocks vv′ can be inside the convex angle

v′cv.

Let us first consider the case where the convex hulls of two of these paths, say P1 and

P2, meet. If this is the case, with no vertex of P1 being inside the convex hull of P2 or vice

versa, then some edge of P1 must intersect some edge of P2, inducing an “X” type crossing

which requires four obstacles. Hence, without loss of generality, some vertex u of P1 is in

the convex hull of P2. Let c be the point of intersection of the two edges of P2. Then, u
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is inside some triangle vcv′ where v,v′ ∈ P2. If vv′ is an edge, then vcv′ induces a bounded

face, so uv would require an obstacle in addition to the three required by P2. Now, since

u is inside a triangle vcv′, the obstacle blocking vv′ must also block uv and uv′, but this

forces all neighbors of u to be inside vcv′. Applying this argument to the neighbors of u,

which satisfy the same conditions as u, we see that P1 must be completely inside vcv′ (see

Figure 3.5). But every non-edge of P1 requires a distinct obstacle, at most one of which

may coincide with one blocking vv′ while none among them may coincide with any other

obstacle, so five obstacles are required, a contradiction.

O1

Figure 3.6 – Proof of Theorem 3.2.2: Case of P1, P2 and P3 with pairwise disjoint

convex hulls

This means that the convex hulls of P1, P2 and P3 are pairwise disjoint. Recall that

for each of these paths Pi, each of the three non-edges of Pi must be blocked by a unique

obstacle among three pairwise disjoint obstacles. Hence by the Jordan Curve Theorem we

get a contradiction (see Figure 3.6).
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3.2.3 Convex obstacle number of bipartite permutation graphs

A permutation graph is a graph on [n] according to a permutation (σ1,σ2, . . . ,σn) of [n]

such that there is an edge between two elements σi > σ j whenever i < j. We show that the

idea of having a small aperture between two classes of vertices, which are placed close to

two convex obstacles, is readily extended to the class of bipartite permutation graphs.

Proof of Theorem 3.2.3. By a result from [43], a bipartite graph G(V,E) is a permutation

graph if and only if its two independent vertex classes V1 and V2 can be ordered such that

the neighborhood of every vertex ui ∈ V1 forms an interval [ai,bi] in V2, and if ui < u j for

two vertices in V then ai ≤ a j and bi ≤ b j.

We illustrate in Figure 3.7 a set C of four disjoint convex obstacles allowing an obsta-

cle representation of G. C consists of two convex arcs C1 and C2, and two vertical line

segments (labeled A ) which form an aperture between C1 and C2.

a

b

ui+1

ui

ai+1

bi

ai

bi+1

C1 C2

Figure 3.7 – Four obstacles allowing a representation of a bipartite permutation graph

Similar to the treatment of the arcs in Subsection 3.2.1, we regard C1 and C2 as line
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segments, except that they block visibilities among graph vertices placed near them. For

convenience, we shall speak of placing vertices of G on these arcs.

We put vertices of V1 and V2 on C1 and C2 respectively. Let u1,u2, . . . ,un and v1,v2, . . . ,vn

be the ordering of the vertices in V1 and V2 guaranteed by the aforementioned result in [43].

We place the vertices, in order, inductively. In the basis step, we place u1 arbitrarily on the

relative interior of C1. Let ai and bi denote the endpoints of the segment of C2 that ui can

see through the aperture (see Figure 3.7). We place neighbors of u1 in the relative interior

of segment a1b1 on C2 so that the order of their y-coordinates corresponds to their order in

V2.

At an inductive step i+1, where i≥ 1, we place the (i+1)-th vertex of V1 together with

its children, on the corresponding arcs as follows. We first find a consistent place for ai+1.

If the first neighbor w of the (i+ 1)-th vertex (with regards to the order in V2) is already

placed on C2, we pick ai+1 so that it precedes w (with regards to y-coordinate) and succeeds

ai and any other point already placed on C2. Otherwise, we pick ai+1 so that it succeeds bi.

We place ui+1 at the intersection of C1 and the line through ai+1 and a (see Figure 3.7). The

line through ui+1 and b intersects C2 at point bi+1, which has a higher y-coordinate than

bi. Therefore we can place neighbors of ui+1 that are not neighbors of ui on the non-empty

line segment bibi+1. This concludes the proof of Theorem 3.2.3.

3.3 Segment obstacle numbers of some graph families:

disjoint and not-necessarily-disjoint cases

We define a disjoint segment obstacle representation of a graph G as a segment obstacle

representation of G in which the obstacles are pairwise disjoint. Accordingly, we define
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the disjoint segment obstacle number of G as the fewest number of obstacles in a disjoint

segment obstacle representation of G.

We compute the exact values of the segment obstacle number and disjoint segment

obstacle number parameters for some simple graph families. For some families they turn

out to be arbitrarily far apart, while for others they are—somewhat surprisingly—within a

constant factor of one another.

3.3.1 Disjoint segment obstacle numbers

Theorem 3.3.1. The null graph on n vertices (for every n≥ 1) has disjoint segment obstacle

number n− 1. More generally, this is the disjoint segment obstacle number of every dis-

joint union of any n complete graphs, and a lower bound for the disjoint segment obstacle

number of every graph with an independent set of size n.

Theorem 3.3.2. The disjoint segment obstacle number of Cn is ⌈n/2⌉−1 for n > 3, and 0

for n = 3.

Theorem 3.3.3. The disjoint segment obstacle number of Pn, the path graph on n vertices,

is ⌈n/2⌉−1 for every n≥ 1.

For all of the above, we need the following lemma.

Lemma 3.3.4. Every m disjoint segments (no two collinear) are part of the boundary in

some decomposition of the plane into exactly m+1 convex cells.

Proof of Lemma 3.3.4. Given any m disjoint segments comprising an obstacle set S , we

build a plane graph H that contains these segments and has m+ 1 convex faces. For sim-

plicity of exposition, we consider the plane to include the point at infinity. Let H0 be the
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graph on 2m+ 1 vertices, the endpoints in S and the point at infinity; with m edges: the

segments in S . Initialize the plane graph H to H0. For every segment ab ∈S , extend it

until it meets a vertex or an internal point of an edge of H, so that the four points induce

the path a′abb′ in H (which could be a cycle if a′ and b′ are both the point at infinity).

At the end of this process, H is connected—one way of seeing this is that the point at in-

finity is reachable in H from every vertex in V (H) by following directions in (−π/2,π/2].

Further, every face of H is an intersection of half-planes and hence convex. In the iterative

stage, 2m edges are added to H, in addition to as many additional edges as new vertices,

since a new vertex is created if and only if an existing edge is subdivided. In other words, H

has exactly 2m more new edges than it has new vertices. Therefore, by Euler’s Polyhedral

Formula, the number of faces of H is |E(H)|−|V (H)|+2 = |E(H0)|−|V (H0)|+2m+2 =

m− (2m+1)+2m+2 = m+1.

Proof of Theorem 3.3.1. First we show that the disjoint segment obstacle number of every

graph with an independent set of size n is at least n−1. For every n graph vertices together

with fewer than n− 1 obstacles in the plane in a disjoint segment obstacle representation,

by Lemma 3.3.4 the obstacles can be extended to obtain a decomposition of the plane into

fewer than n convex cells, so at least two of the graph vertices are inside the same convex

cell. Hence, no obstacle could have been blocking their visibility path.

To represent the disjoint union of any n complete graphs, draw each complete graph

arbitrarily near a distinct lattice point on the x-axis. Separate them with n− 1 sufficiently

tall vertical segment obstacles. The graph vertices together with the segment endpoints

can be perturbed to attain simple position if desired. (That is, every connecting line has a

distinct slope and every three lines have empty intersection.) A special case of such a graph

is the null graph on n vertices.
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(a) C7 (b) C8

Figure 3.8 – 3-disjoint segment obstacle representations of C7 and C8

Proof of Theorem 3.3.2. C3 is a complete graph, so it has obstacle number 0.

For n > 3, since Cn has no C3 subgraph, there can be at most two vertices in a cell

in every convex decomposition of the plane with the obstacles on the boundary. By the

pidgeonhole principle, the plane cannot be decomposed into fewer than ⌈n/2⌉ convex cells

with the obstacles on the boundary, so by Lemma 3.3.4, every disjoint segment obstacle

representation of Cn has at least ⌈n/2⌉−1 obstacles.

Now we show that this is sufficient. Draw Cn on the plane as a regular n-gon with

vertices v0,v1, . . . ,vn−1. For every vi, all the segments corresponding to non-edges having

vi−1 or vi as an endpoint can be blocked simultaneously by a sufficiently long segment

obstacle inside the n-gon arbitrarily close to the edge vi−1vi and parallel to it. For every

positive even i less than n, place such a segment obstacle. See Fig. 3.8. This will suffice for

blocking all non-edges of Cn. Since Cn has exactly ⌈n/2⌉−1 vertices with non-zero even

subscript, we have succeeded in using exactly ⌈n/2⌉−1 disjoint segment obstacles.
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(a) P7 (b) P8

Figure 3.9 – 3-disjoint segment obstacle representations of P7 and P8

Proof of Theorem 3.3.3. The path graph Pn on n vertices has an independent set of size

⌈n/2⌉, so by Theorem 3.3.1 has disjoint segment obstacle number at least ⌈n/2⌉−1.

To see that this is attainable, take an obstacle representation of Cn with ⌈n/2⌉− 1 dis-

joint segment obstacles as in the proof of Theorem 3.3.2. Now extend any one of the

obstacles in a single direction, until it crosses an edge of the n-gon, giving us an obstacle

representation of Pn. See Fig. 3.9.

Therefore, for every n≥ 1, the obstacle number of Pn is ⌈n/2⌉−1.

3.3.2 Segment obstacle numbers (not necessarily disjoint)

We now explore the case in which segments are allowed to intersect one another, using

techniques similar to those in the more restricted case.

Theorem 3.3.5. The null graph on n vertices (for every n≥ 1) has segment obstacle number

⌈

(
√

8n−7−1)/2
⌉

. More generally, this is the segment obstacle number of every disjoint
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union of any n complete graphs, and a lower bound for the segment obstacle number of

every graph with an independent set of size n.

Theorem 3.3.6. The segment obstacle number of Cn is ⌈n/4⌉ for n≥ 4, and 0 for n = 3.

Theorem 3.3.7. The segment obstacle number of Pn is ⌈n/4⌉ for n≥ 3, and 0 for n≤ 2.

First, we state the analog of Lemma 3.3.4 in this context that will be useful in the proof

of Theorem 3.3.5.

Lemma 3.3.8. Every m line segments in the plane can be extended to decompose the

plane into at most m(m+ 1)/2+ 1 convex cells (they cannot be extended to decompose

the plane into more convex cells). Equivalently, every arrangement of line segments that

can be extended to decompose the plane into at least n convex cells consists of at least

s(n) :=
⌈

(
√

8n−7−1)/2
⌉

segments.

Lemma 3.3.8 follows from the well-known result that m lines partition the plane into

at most m(m+1)/2+1 convex cells and that this upper bound is attained for every simple

arrangement of lines (one in which every pair of lines meet at a unique point, and every

three lines have empty intersection). Lemma 3.3.9 complements this and is pertinent to

how a graph component needs to be embedded in a segment obstacle representation.

Lemma 3.3.9. For every plane arrangement of m≥ 1 line segments with k cells, there exists

a decomposition of the plane into at most k′ open convex cells disjoint from the segments

of the arrangement, where k′ ≤ k+2m−1. Every cell in an arrangement of line segments

can be decomposed into at most 2m such convex cells.

The following corollary to Lemma 3.3.9 is almost immediate.
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Corollary 3.3.10. For a graph with an m-segment obstacle representation, the largest in-

dependent set chosen from the vertices of a single component has size at most 2m. In

particular, a connected graph with independence number α has segment obstacle number

at least α/2.

Proof. Given a graph and an m-segment obstacle representation of it, consider any con-

nected component of the graph. This component must be in a single cell of the arrangement

of segment obstacles, otherwise some obstacle would meet the graph drawing. By Lemma

3.3.9, this cell can be decomposed into at most 2m convex cells by extending the segments,

and by the pidgeonhole principle, there can be no independent set of size 2m+ 1 in the

cell.

Proof of Theorem 3.3.5. First we show that the segment obstacle number of every graph

with an independent set of size n is at least s(n). For every n graph vertices together

with fewer than s(n) segment obstacles in the plane in a segment obstacle representation,

by Lemma 3.3.8 and the pidgeonhole principle, at least two of the vertices are inside the

same convex cell obtained by extending the segments. Hence, no obstacle could have been

blocking their visibility path.

Now we give a segment obstacle representation for the disjoint union of any n complete

graphs with s(n) segment obstacles. Start with a simple arrangement of s(n) line obsta-

cles, so that they partition the plane into n convex cells. Embed each of the n complete

graphs inside a distinct convex cell. Crop the line obstacles to segment obstacles by using

a compact disk with all graph vertices inside as an intersection mask. Due to the convexity

of the mask, every line obstacle corresponds to exactly one segment obstacle, furthermore,

every non-edge uv continues to meet obstacles at exactly the same points that it did before.

Therefore, we have a segment obstacle representation as desired. A special case of such a
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graph is the null graph on n vertices.

Proof of Lemma 3.3.9. Given any m segments with endpoints in general position compris-

ing an obstacle set S and defining k cells, we build a plane graph H containing these

segments as in the proof of Lemma 3.3.4 and show that it has k + 2m− 1 convex faces.

Denote by H0 the graph of the arrangement of S together with an isolated vertex corre-

sponding to the point at infinity. Initialize H to H0. The iterative stage is similar to that

of the proof of Lemma 3.3.4, based on extending every original segment until it meets a

vertex or edge in H.

The final plane graph H is connected and every face of it is convex. Every new edge

in the iterative stage must either join two components, or subdivide a face. Since H0 has at

least two connected components (some component including a segment in S since m≥ 1,

and another consisting of the point at infinity) and H has exactly one component, this means

that H has at most 2m−1 more faces than H0 does. In particular, a face of H0 may become

at most 2m cells of H.

Remarks (pertaining to Lemma 3.3.9): There are arrangements of m line segments that

permit the outside face to be decomposed into exactly 2m convex faces, i.e., connected

arrangements of line segments in which every endpoint is on the outside face, such as

any arrangement of pairwise intersecting line segments. For every bounded face f of an

arrangement of line segments, at least three points are on the convex hull boundary of f

and each is a point of intersection of pairs of line segments. By drawing tangents to the

convex hull of f at such three points it can be seen that at least six segment endpoints

are outside f , since each such tangent line to an extremal point of the convex hull of f

will separate two distinct endpoints defining the extremal point from the convex hull of

f . Hence, the maximum number of convex cells that a bounded face can be decomposed
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into by extending the segments is 2m−6. This is attainable for certain arrangements of m

segments in which three segments have pairwise intersection and the triangle defined by

them contains all remaining segments.

Proof of Theorem 3.3.6. The disjoint segment obstacle number of Cn in the cases of n = 3

and n = 4 carry over verbatim from the proof of Theorem 3.3.2, since Cn has disjoint

segment obstacle number at most 1 in these cases.

Cn has no C3 subgraph, so no three vertices can be inside the same convex cell in

any convex decomposition of the plane obtained by extending the segments in an obstacle

representation of Cn. Since Cn is connected, in a segment obstacle representation, all its

vertices must be in the same face defined by the obstacles, so by Lemma 3.3.9 and the

generalized pidgeonhole principle, no m line segments can comprise the obstacle set in any

obstacle representation of Cn for any n > 4m. In other words, the segment obstacle number

of Cn is at least n/4.

Now that we have established this lower bound, we explain how to obtain an ⌈n/4⌉-

segment obstacle representation of Cn. To obtain a 1-segment obstacle representation of

C4, draw C4 as a convex quadrilateral and place a segment obstacle inside the quadrilateral

that meets both diagonals. Henceforth, we focus exclusively on the case of n > 4.

Set m := ⌈n/4⌉ and θ := π/m. We shall first give an m-segment obstacle representation

of C4m, and then argue that it can be modified to be an obstacle representation of Cn. Place

m line segments s0,s1, . . . ,sm−1 of length 2 on the plane, each symmetric about the origin,

in counterclockwise order, starting with s0 on the x-axis, such that the segment endpoints

taken together constitute the vertices of a regular 2m-gon. Denote by p0 and p1 the end-

points of m0 and m1 with coordinates (1,0) and (sinθ ,cosθ), respectively. Pick ε small

enough that the point (1,ε) is strictly below the line through p1 and perpendicular to m1.
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Let u0 := (1+ δ ,ε) where δ > 0 is a parameter to be determined later. Let v0 be ob-

tained by reflecting u0 about the x-axis. For every k ∈ {1,2, . . . ,2m−1}, let uk be obtained

by rotating u0 through an angle of θk about the origin, and let vk be obtained by rotating v0

through an angle of θk about the origin. Intuitively, uk and vk flank the same endpoint of

some segment. For every δ > 0 and every k, the segment ukvk will not meet any obstacle

(setting δ := 0 is forbidden because it would put the pertinent segment endpoint between

the vertices), and the segment vkuk+1 will not meet any obstacle either. The only problem,

then, is that we may have too many undesirable visibilities. But δ can be chosen small

enough that v0 does not see u1. Since q := (1,ε) is strictly below the perpendicular line ℓ

through p1, the point q can be continuously moved to the right while applying a continuous

clockwise rotation to ℓ while keeping q below ℓ. Setting δ thus will clearly ensure for every

vertex uk that the only two points visible from uk are vk and vk+1. This is an m-segment

obstacle representation of C4m.

For the case of n = 4m− r given any m ≥ 2 and r ∈ {1,2,3}, we now explain how to

obtain an m-obstacle representation of Cn from this m-segment obstacle representation of

C4m. Remove the first r vertices among u0,u1,u2 and slightly shorten the first r obstacles

among s0,s1,s2 on their relevant sides to permit visibilities between the first r pairs among

v0v1, v1v2 and v2v3, but without introducing any additional visibilities.

Proof of Theorem 3.3.7. For n ≥ 4, the disjoint segment obstacle number of Pn has been

computed to be at most one in the proof of Theorem 3.3.3, hence the corresponding values

apply here as well. For n > 4, the lower bound for Cn applies for Pn as well, since Pn also

contains no C3 subgraph either and is yet connected. As for the upper bound, by extending

one of the segments in an ⌈n/4⌉-obstacle representation of Cn in some direction, one of the

edges of the cycle can be broken, resulting in an obstacle representation of Pn.
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3.4 Three-dimensional variants

We conclude this chapter with brief comments about three-dimensional variants.

Proposition 3.4.1. In three dimensions, every graph can be represented with one obstacle

that is a polygonal chain.

Proof. Embed in R
3 the vertices of a given graph G such that they are in general position,

that is, no four are coplanar. This ensures that no edge of G is on the same plane as a non-

edge of G. Label the non-edges of G as s1,s2, . . . ,sk. Pick points p1, p2, . . . , pk uniformly at

random inside corresponding non-edges, and denote by C the polygonal chain p1 p2 . . . pk.

By the general position condition, C will avoid all edges and vertices of G with probability

1 while meeting all non-edges by design. Therefore, V (G) together with C (which can be

perturbed to attain general position) constitute an obstacle representation of G in R
3.

Proposition 3.4.2. In three dimensions, every planar graph can be represented with one

convex obstacle.

Proof. Given a planar graph G, triangulate a planar embedding of it to obtain the graph T .

Now take a convex polyhedron C (no four vertices coplanar) with graph T . Let O be the

convex hull of the set of midpoints of all pairs in V (C) that do not correspond to edges in

G. The point set V (C) together with O (which can be perturbed to attain general position)

constitute a 1-convex obstacle representation of G in three dimensions.



Chapter 4

Obstacle representations:

Algorithms and complexity

There are various interesting questions of algorithmic importance regarding obstacle repre-

sentations of graphs. All the computations in the previous chapter exploited symmetries in

the graphs and were for the most part ad hoc. Is it possible to devise computational proce-

dures to compute, or hope to approximate, a minimum obstacle representation of a graph?

What if we fix a drawing for the given graph? What if we further restrict these drawings to

plane graphs? In this chapter, we give some answers to these questions.

As a negative result, we have that the problem of computing a minimum obstacle repre-

sentation for a given graph drawing is NP-complete, even for plane graphs. As for positive

results, we give two approximation algorithms to minimize the number of obstacles for a

drawing of any graph, with approximation factors O(logn) and O(logOPT ) for the general

case: The former is made possible by showing a reduction to a finite hypergraph transversal

problem, and the latter via bounding the Vapnik-Chervonenkis dimension of the relevant

hypergraph family. We also show that the restriction of this problem to plane graphs is

73
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Fixed Parameter Tractable (FPT) and even with weights admits a Polynomial-Time Ap-

proximation Scheme (PTAS). We conclude with some remarks about the complexity of the

original minimization problem which is quantified over all drawings of an abstract graph.

4.1 Preliminaries for computing an

obstacle representation of a graph drawing (ORGD)

Let D be a straight-line drawing of a (not necessarily planar) graph G on n vertices in the

Euclidean plane with no three graph vertices on the same line. We refer to the open line

segment between a pair of non-adjacent graph vertices as a non-edge of D. An obstacle

representation of D is the set of vertices of G identified with their positions in D together

with a collection of polygons (not necessarily convex) called obstacles, such that:

1. D does not meet any obstacle, and

2. every non-edge of D meets at least one obstacle.

The obstacle number of D is the least number of obstacles over all obstacle representations

of D. We denote by ORGD the decision version of the obstacle representation of a graph

drawing problem, namely: Given a graph drawing D with no three vertices on a line, and

an integer k, do there exist s polygons that complete D to an obstacle representation that

satisfies s≤ k?
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4.1.1 Intersection hypergraphs and their transversals

A hypergraph is a pair (X ,F ) in which X is a set of ground elements, and F is a col-

lection of subsets of X . We introduce the following notation and terminology for inter-

section hypergraphs. Let X and Y be collections of sets. For each y ∈ Y , let N(y) =

{x ∈ X | x∩ y 6=∅}, and say that y generates N(y). Let F = {N(y) | y ∈ Y}. Then (X ,F )

is an intersection hypergraph, which we shall denote by H(X ,Y ) whenever convenient.1

Similarly, for each x ∈ X , let N(x) = {y ∈ Y | x∩ y 6=∅}, and say that x generates N(x).

Let F ′= {N(x) | x ∈ X}. The hypergraph (Y,F ′), which we shall denote by H(Y,X) when

convenient, is known as the dual of the hypergraph H(X ,Y ).

A transversal of an intersection hypergraph H(X ,Y ) is a subset T ⊆ X such that every

member of Y —that meets some member of X—meets some member of T . Let τ denote the

minimum cardinality of a transversal of H(X ,Y ). The (optimization version of) the hyper-

graph transversal problem is to compute τ exactly, and this has an equivalent formulation

as the set cover problem. The decision version of the hypergraph transversal problem is

NP-complete; indeed, the restriction to the case in which every member of Y meets exactly

two members of X corresponds to a canonical NP-complete problem, “Vertex Cover.”

4.1.2 Reducing ORGD to a poly(n) sized transversal problem

Theorem 4.1.1. ORGD is in NP.

Proof. Recall that for a given graph drawing D, we refer to a connected component of

1In many well-studied geometric hypergraphs H(X ,Y ), each set in X is a singleton. The intersection of a

member of X with a member of Y thus corresponds to the inclusion of the former in the latter. The members

of Y are commonly referred to as ranges, especially in hypergraphs in which Y is a natural feature of the

geometric space that the “points” of X belong to, e.g., the set of all half-spaces, all balls, or all axis-parallel

boxes. We eschew the use of the term range since this is not the case for problems we are interested in, and

also because our hypergraphs are defined by intersection not limited to inclusion: A set in X can meet two

disjoint sets in Y and vice versa.
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the complement of D as a face of the drawing. To rephrase an observation in [4] in our

context, in an obstacle representation of D with cardinality obs(D), there can be at most one

obstacle per face, for otherwise obstacles in the same face could be merged, contradicting

the minimality of obs(D). Hence for any given graph drawing, each polygonal obstacle

to be included in a minimal obstacle representation can be considered to be a face of the

drawing. If need be, one can compute for each face a representative simple polygon that

lies inside the face and meets every non-edge that the face meets. (This is not always a

simple matter of perturbing the boundary of a face to lie inside the face, since a face may

have holes and so its boundary may be a disconnected set.)

Since an n-vertex graph has fewer than n2 edges (with Ω(n2) edges attainable), its

drawing must have fewer than n4 faces (with Ω(n4) faces attainable). Computing obs(D) is

therefore a matter of computing a transversal for the finite intersection hypergraph H(X ,Y )

where X is the face set of D and Y is the non-edge set of D. Observe that |X | < n4 and

Y < n2, with |X | = Ω(n4) attainable simultaneously with |Y | = Ω(n2). Using a represen-

tation of D with integer coordinates represented as signed integers, an incidence matrix

representation of H(X ,Y ) with fewer than n8 bits (and possibly Ω(n8)) can be computed

using standard techniques [10] in time polynomial in the number of input bits, and in time

poly(n) in the RAM model with unit-cost arithmetic operations.

From now on, we will assume that the obstacles will be chosen from the O(n4) faces of

the given drawing, which we shall refer to as canonical obstacles.
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4.2 NP-hardness via reduction from planar vertex cover

Here we prove the following.

Corollary 4.2.1. ORGD is NP-complete.

A plane graph is a planar graph drawn on the plane without edge crossings and with no

vertex on an edge. Denote by ORPeG the restriction of ORGD to plane graphs. Corollary

4.2.1 follows from Theorem 4.1.1 and the following.

Theorem 4.2.2. ORPeG is NP-Hard.

Recall that given a graph G = (V,E), a vertex cover for G is a subset U ⊆ V that

contains at least one endpoint from every edge. We denote by P-VC the decision version of

the vertex cover for planar graphs problem, namely: Given a planar graph G = (V,E) and

an integer k, does there exist a vertex cover U for G satisfying |U | ≤ k? Garey, Johnson, and

Stockmeyer have shown that P-VC is NP-complete [21]. We intend to show that ORGD

is NP-hard by giving a polynomial-time reduction from P-VC to ORGD. Our reduction

is inspired by the reduction given by Garey and Johnson [20] from P-VC to P-VC-3, the

restriction of itself to maximum degree 3.

Proof. We reduce from planar vertex cover. We are given an abstract planar graph G having

(without loss of generality) no isolated vertex, and a number k. Let n= |V (G)|, m= |E(G)|,

and denote by f the number of faces in a crossing-free planar drawing of G. We will

transform G in polynomial time into a plane graph G̃ in such a way that G has a vertex

cover of size at most k if and only if G̃ has an obstacle representation of size at most k̃ (for

k̃ defined below).

First, we construct from the planar vertex cover instance G a planar vertex cover prob-

lem instance G3 of maximum degree 3, adapting and extending the construction of [20].
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We show that G3 admits a vertex cover of size at most k̃ if and only if G admits a vertex

cover of size at most k. Second, we construct an ORPeG instance G̃ in such a way that an

obstacle representation of G̃ will correspond to a vertex cover of G3 of the same size, and

vice versa.

Constructing the maximum degree 3 vertex cover instance G3. The planar graph G3

is constructed in the following way. We transform each vertex vi of G into a cycle Ci of

length 2bi, with bi ∈ deg(vi)+ {0,1,2} (with the exact value decided below). We color

the vertices of Ci alternating between blue and red. We then create a single leaf vertex zi

adjacent to some arbitrary red vertex of Ci. We transform each edge (vi,v j) of G into a path

Pi j with three edges whose endpoints are distinct blue vertices of Ci and C j. We finally

create f copies of the 3-vertex path graph P3, each constituting a component of G3.

Now we show that G has a vertex cover of size at most k if and only if G3 has a vertex

cover of size at most k′ = k+ f +m+∑i bi.

(⇒): For each vertex vi in a given vertex cover for G of size k, we select zi and all the

blue vertices of Ci, thus including an endpoint of each path Pi j; and for each vi not in the

cover, we select all the red vertices of Ci (a total so far of k +∑i bi vertices). Since for

every path Pi j at least one of the cycles Ci and C j will have all its blue vertices chosen, thus

including at least one endpoint of Pi j, choosing one internal vertex from each Pi j (m more),

and the central vertex of each P3 ( f more) suffices to complete a size k′ vertex cover for G3.

(⇐): Given a vertex cover for G3 of size k′, we obtain a canonical vertex cover for G3

of size k′′ ≤ k′ in the following way. Each copy of P3 contributes at least one vertex to a

cover, so have it contribute exactly its central vertex, for a total of f vertices. Each path

Pi j contributes at least one of its internal vertices to cover its central edge. If both internal

vertices of a path Pi j are in the given cover, take one internal vertex out and ensure that its
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blue neighbor is in, which makes for m internal vertices from these paths. Note that every

cycle Ci contributes at least bi vertices, lest some edge of the cycle be uncovered. This

holds with equality only if Ci contributes (including ‘its’ zi) exactly its red vertices—in

that case, do nothing. Otherwise, ensure that Ci contributes exactly 1+ bi vertices: ‘its’

zi and its blue vertices. Since every remaining vertex of Ci is adjacent in G3 only to blue

vertices of Ci and possibly zi, this swap will not ruin the cover. Denote by k′′ the size of

this resulting canonical vertex cover. The cycles in G3 contributing blue vertices therefore

correspond to a vertex cover for G of size k′′− f −m−∑i bi ≤ k′− f −m−∑i bi = k.

Constructing the ORGD instance G̃. In the remainder of the proof, we show how to

“implement” the graph G3 as an equivalent ORPG problem instance. The basic building

blocks of the construction are empty triangles and diamonds. An empty triangle is a face

of a plane graph that is surrounded by three edges and has no vertex inside. A diamond

consists of two empty triangles sharing an edge and having their four vertices in convex

position. Observe that a diamond contains a non-edge between two of its vertices. Hence

at least one empty triangle of every diamond must be chosen in an obstacle representation.

The f copies of P3 in G3 will match the faces of G̃ besides empty triangles, all of which

must be chosen. The remaining vertices of G3 will match the empty triangles of G̃, such

that the edges among them match the diamonds of G̃. Hence there will be a natural bijection

between minimum vertex covers of G3 and minimum obstacle representations of G̃.

To begin the construction, we use the linear-time algorithm of de Fraysseix, Pach, and

Pollack [11] to obtain a planar imbedding of G on a O(n)×O(n) portion of the integer

lattice and then perturb the coordinates to obtain general position. (We do not distinguish

between G and this imbedding.) We first visualize G̃ as a bold drawing [46] of G, whose

vertices are represented by small disks and edges by solid rectangles: we draw each vertex
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ui of G as a disk Di about ui (with boundary C̃i), and every edge uiu j as a solid rectangle

Ri j. See Fig. 4.1(a). Each Ri j has two vertices ti j,vi j on C̃i and two vertices t ji,v ji on C̃ j

such that the line uiu j is a midline of Ri j, and ti juivi jt jiu jv ji is a counterclockwise ordering

of the vertices of a convex hexagon.

ui u j

ti j

vi j t ji

v ji

Di D j

Ri j

(a) Bold drawing of vertices ui,u j and edge uiu j

ui u j

ti j

vi j t ji

v ji

(b) Edge gadget in G̃ for edge uiu j of G

Figure 4.1 – Bold drawing and edge gadget for an edge of G

We draw the disks small enough to ensure that they are well-separated from one another.

We set the radius r of every disk to the smaller of 1/4 and half of the minimum distance

between a vertex ui and an edge u juk ( j 6= i 6= k) of G. To fix a single width for all rectangles

(i.e., ||ti j − vi j||), we set a global angle measure α to the smaller of 45◦ and half of the

smallest angle between two edges of E(G) incident on the same vertex of V (G).

G̃ is modeled on the bold drawing, by implementing each edge of G (path Pi j of G3)

with an edge gadget and each vertex of G (cycle Ci of G3) with a vertex gadget. The edge

gadget, consisting of four triangles forming three diamonds, is shown in Fig. 4.1(b). (Note

that each pair vi jv ji defines a non-edge.)

The vertex gadget is a modified wheel graph whose triangles correspond to the vertices

of cycles Ci in G3 (see Fig. 4.2(c)). On every circle C̃i, for every edge uiu j in G, we color

blue the arc of measure α centered about the intersection of circle C̃i with uiu j. We place

ti j and vi j at the endpoints of this arc so that ti juivi j is a counterclockwise triple. By the
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choice of α , all blue arcs are well-separated, and hence the rectangles are well-separated

from one another and from other disks, by the choice of r. We color the remaining arcs red

to obtain a red-blue striped pattern on each circle C̃i, corresponding in color to the vertices

of the corresponding Ci in G3.

ui
ti0
vi0

ti1

vi1ti2

vi2

(a) Initial circle with blue (solid)

arcs of measure α and red

(dashed) arcs has a large red arc

of measure in [180◦−α , 270◦).

ui
ti0
vi0

ti1

vi1ti2

vi2

vi

ti

(b) After subdividing the large red

arc into three, coloring its middle

part blue, and adding dummy ver-

tices vi and ti

ui

ti0

vi0

ti1

vi1ti2

vi2

vi

ti

(c) In the resulting wheel graph,

each pair of triangles sharing an

edge induce a diamond. One dia-

mond’s non-edge is shown dashed.

Figure 4.2 – Constructing the wheel graph drawing in the case of a large red arc

On every circle C̃i, we intend to add the remaining edges between consecutive vertices

on C̃i to complete the union of the triangles ti juivi j, forming a wheel graph on hub ui, such
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ui
ti0
vi0

ti1

vi1

(a) An initial circle with blue

(solid) and red (dashed) arcs has a

very large red arc, of measure at

least 270◦.

ti0

vi0

ti1

vi1

vi

ti

vi ti

(b) After subdividing the very

large red arc into five, coloring its

second and fourth parts blue, and

adding vi and ti dummy vertices

ti0

vi0

ti1

vi1

vi

ti

vi ti

(c) In the resulting wheel graph,

each pair of triangles sharing an

edge induce a diamond. One dia-

mond’s non-edge is shown dashed.

Figure 4.3 – Constructing the wheel graph drawing in the case of a very large red arc



83

that every pair of triangles that share a spoke form a diamond. If a red arc has measure

at least 180◦−α , however, we must add additional spokes. By the general position as-

sumption, at most one red arc per wheel can have such great measure. If such a red arc

has measure less than 270◦, we divide it evenly into three parts and color the middle part

blue (see Fig. 4.2); otherwise, we divide it evenly into five parts and color the second and

fourth parts blue (see Fig. 4.3), maintaining the striped pattern in both cases. We place

dummy vertices ti and vi
2 at the newly created (zero, two, or four) arc endpoints. We add

the requisite edges to complete the wheel graph.

We place a vertex z̃i on an arbitrary red arc of C̃i, and connect it in G̃ to the end vertices

(say ti j and vik) of that arc. Thus an empty triangle ti jzivik is formed in G̃ as part of a

diamond with ui, corresponding to zi and its incident edge in G3.

In the unbounded face of G̃ we place two isolated vertices inducing a non-edge inside

the unbounded face, thus requiring this face to be chosen in any solution. Every non-

triangular face of G̃ must be selected as an obstacle, since every simple polygon with at

least 4 vertices has an internal diagonal (i.e., a non-edge). The selection of these faces are

forced moves and correspond to the selection, in a vertex cover for G3, of the central vertex

of each P3.

This completes the construction of G̃. Since each pair of neighboring triangles in G̃

indeed form a diamond and every non-triangular face is indeed a forced move, the result

follows.

Remark 4.2.1. To represent coordinates exactly as described would require a very permis-

sive unit-cost RAM model of computation in which it is possible to represent real numbers

and perform arithmetic and trigonometric functions in unit time. The reduction above can

2Dummy vertices have no adjacencies with any vertices outside of Di.
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be modified in such a way that each vertex position of G̃ is represented using O(logn) bits.

4.3 Approximation algorithms for ORGD

It is well-known that the greedy algorithm for the hypergraph transversal problem, which

iteratively adds to an initially empty set T a member x ∈ X that meets the largest number of

sets y∈Y that do not already meet some x′ ∈ T , provides a O(log |Y |)-factor approximation

[48]. A simple example shows that the approximation ratio is tight for this greedy algorithm

[48]. Thus we have a natural O(logn)-factor approximation algorithm for our problem of

computing the obstacle number for a given drawing.

4.3.1 The Vapnik-Chervonenkis dimension of a hypergraph

How about doing better? Lund and Yannakakis [29] showed that the general hypergraph

transversal problem cannot be approximated in polynomial time within ratio c lg |Y | for any

constant c < 1/4 unless NP is contained in DT IME(npoly log n). Raz and Safra [41] showed

that unless P = NP, it cannot be approximated in polynomial time within ratio c ln |Y | for

any constant c < 1/8. Alon, Moshkovitz and Safra [3] improved the hardness factor to

more than 0.2267ln |Y | under this weaker complexity theoretic assumption.

But it is well-known [35, 48] that if every member of X meets at most ∆ members of

Y , then the greedy algorithm attains an approximation ratio of O(log∆). Unfortunately,

this does not make our task easier, since it is seen that a face could meet Ω(n2) non-

edges by considering any drawing of the null graph on n vertices. Nonetheless, many

families of hypergraphs arising in geometric settings lend themselves to algorithms with

approximation ratios that do not depend on either |X | or |Y | using the following ideas.
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In the context of an intersection hypergraph H(X ,Y ), a set S⊆ X is said to be shattered

if for every A⊆ S there is some y∈Y such that S∩N(y) = A. The size of a largest shattered

set is called the V-C dimension of H(X ,Y ), after Vapnik and Chervonenkis who first defined

it in [47]. For some hypergraphs in which X and Y are both infinite, the V-C dimension is

undefined and said to be infinite. Furthermore, for a family of hypergraphs of the form

H(X ,Y ), even if each hypergraph has finite V-C dimension, there may exist no absolute

constant upper bound for the V-C dimension. If there an integer d such that every hyper-

graph in that family has V-C dimension at most d, we say that the family has bounded

V-C dimension.

Let w : 2X → [0,1] be an additive weight function with w(X) = 1. For a given ε > 0,

an ε-net (with respect to w) is a set S ⊆ X that is a transversal of H(X ,Yε), where Yε ⊆ Y

consists exactly of those members of Y each of which generates a subset of X with weight

at least ε . Haussler and Welzl have shown [27] that if the V-C dimension of H(X ,Y ) is

some integer d, then for every ε > 0 there is an ε-net of size at most cdε−1 lnε−1, where c

is a small constant. This is remarkable because the size of an ε-net bears no relation to the

sizes of X or Y . See also [30, 35].

Based on this observation, various—deterministic as well as randomized—efficient al-

gorithms have been presented [8, 12, 13, 17] to compute a transversal of size within a tiny

constant factor of dτ lnτ , where τ denotes the size of an optimum transversal. In Sub-

section 4.3.3, we formulate a specific approximation algorithm for ORGD. For now, we

suffice it to say that bounding the V-C dimension for the corresponding hypergraph implies

an efficient algorithm with approximation ratio independent of |X | or |Y | (and hence n).

Before we proceed, we state an important fact that we make immediate use of. It is well-

known [30] that if the V-C dimension of H(Y,X) is d, then the V-C dimension of H(X ,Y )
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is at most 2d+1. The V-C dimension of a family of hypergraphs is therefore bounded if and

only if the V-C dimension of the family of dual hypergraphs is bounded.

4.3.2 Bounding the V-C dimension

We show that the V-C dimension is bounded for the family of hypergraphs of the form

H(Y,X) where Y is the set of non-edges of a graph drawing and X is the set of faces of

that drawing. This implies that the V-C dimension of H(X ,Y ) (the hypergraph for the

transversal problem at hand) is also bounded.

Theorem 4.3.1. The V-C dimension is bounded for the family of hypergraphs of the form

H(Y,X) in which Y is the set of non-edges in a straight-line drawing D of a graph, and X

is the set of faces of D.

We can replace each face x ∈ X by a simple path x′ inside x that meets every non-edge

that x meets and does not meet any non-edges that x does not. This substitution will not

alter the hypergraph structure, and the resulting paths will be pairwise disjoint. Hence

Theorem 4.3.1 is implied by the following result.

Theorem 4.3.2. The V-C dimension is bounded for the family of hypergraphs of the form

H(Y,X) in which Y is a set of line segments (with every pair meeting at a single point or

not at all) and X is a set of pairwise disjoint simple paths.

Proof. Assume for contradiction that for every m, there is a hypergraph H(Y,X) such that

Y is a set of m line segments (with every pair meeting at a single point or not at all), X is a

set of pairwise disjoint paths, and Y is shattered.

Given m, and a pair (Y,X) such that |Y |= m and X shatters Y , let X3 ⊆ X be a minimal

set of paths that generate all the
(

m
3

)

triples in Y . That is, every path in X3 meets exactly
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three segments in Y , and for every three segments i, j,k∈Y exactly one path πi jk ∈X3 meets

all three. To keep the following argument simple, without loss of generality, no π ∈ X3

meets any intersection points among the segments, of which there are at most
(

m
2

)

=O(m2).

If there were such paths in X3, we could remove them from X3 and still be left with at least

(

m
3

)

−
(

m
2

)

= Ω(m3) paths. We will now charge each path π ∈ X3 to a line segment in Y ,

j

i

k

head

tail

Figure 4.4 – Example of an original path πi jk meeting segments i, j, and k

intuitively, “the middle segment” that it meets. Nothing prevents such a path from going

back and forth between three segments, so we need to define this more carefully. For

a given path π = πi jk that meets segments i, j,k ∈ Y (see Fig. 4.4), arbitrarily label one

end of the path as the tail and the other as the head. Starting from the tail, erase π as

long as it still meets all three segments, and stop erasing when erasing any longer would

cause the remaining path to intersect fewer segments. The tail is now on one of the three

segments, without loss of generality, i (see Fig. 4.5). Note that the path does not intersect

i anywhere else but the tail. Now start erasing π from the head in a similar fashion, and

stop erasing when erasing any more would cause the remaining path to intersect fewer than
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j

i

k

head

tail

Figure 4.5 – The interim path obtained by erasing from the tail

j

i

k

head

tail

Figure 4.6 – The final path obtained by erasing from the head too, which will be

charged to segment j
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three segments. Again, the head must be on some segment when we stop, but it could not

be on i by the above observation (see Fig. 4.6). Without loss of generality, the head is on the

segment k. Now notice that the path does not meet k anywhere else but the head. Without

changing the shatter property, let us replace πi jk with this shorter version of its former self:

starting at i, meeting j but no other segment one or more times, before it ends at k. We

charge πi jk to j.

Let ŝ be a segment that accumulated the greatest charge at the end of this process. Since

at least Ω(m3) paths were charged to at most m segments, ŝ was charged by at least Ω(m2)

paths. Let X ′ denote the set of paths in X3 that were charged to ŝ.

(a) With clipped paths from the original X ′ (b) With path endpoints on each edge of A merged

Figure 4.7 – Example of a cell of A : vertices of A indicated as black disks, paths

from X ′ drawn blue and their endpoints as red diamonds

Denote by A the arrangement of the line segments in Y \{ŝ}. Note that every path in X ′

starts at an edge of A , ends at another edge of A , and its interior is fully contained in a cell

of A (see Fig. 4.7(a)). Let G(X ′) be the graph with the endpoints of the paths as the vertex
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set, and the interiors of the paths as edges. Since the paths are pairwise disjoint, clearly,

G(X ′) is planar. Now for each edge of the arrangement, merge the path endpoints on that

edge at the midpoint of the edge while making sure that the paths remain pairwise interior-

disjoint (see Fig. 4.7(b)). Recall that by Euler’s formula a planar graph on n vertices has at

most 3n− 6 edges. It is not clear that we have a contradiction yet, since A may have up

to m2 edges (attained when every pair among the m segments cross). Hence it seems that

G(X ′) may have Θ(m2) vertices, so it is plausible that G(X ′) has Θ(m2) edges.

However, each edge of G(X ′) must be contained in a single cell that meets ŝ. Might this

mean that G(X ′) has o(m2) vertices? We know that every vertex of G(X ′) corresponds to a

distinct edge of A in a cell of A that meets ŝ. Hence, the complexity of the zone3 of ŝ is

an upper bound on |V (G(X ′))|. We present a lemma regarding the complexity of the zone

of a line segment in an arrangement of line segments.

Lemma 4.3.1 (B. Aronov, personal communication). Let A be an arrangement of n line

segments, and let s be another line segment. The zone of s has complexity O(nα(n)) where

α denotes the very slow growing inverse Ackerman function.

Proof. Let the shape s′ be obtained by enlarging s (e.g. taking the Minkowski sum of s

with a small enough disk) such that s′ meets no vertex of A that s does not. Obtain a new

arrangement A ′ of line segments by erasing s′ from A . Doing this will possibly disconnect

some original line segments that define A into two, ending up with an arrangement A ′ of

at most 2n line segments. Every point of s′ is in the same cell of this new arrangement.

Every cell in an arrangement of m line segments has complexity O(mα(m)) [37]. Hence,

every cell of A ′ has complexity at most O(2nα(2n)), i.e., O(nα(n)), including the cell

3Recall that the complexity of a cell of an arrangement is the number of edges of the arrangement that

are incident to it. The zone of a segment is the set of cells that it meets, and the complexity of the zone of a

segment is the number of edges incident to all the cells that it meets.



91

that s is in. Since every edge bordering a cell of A that s meets corresponds to one or two

edges bordering the cell of A ′ that s is in, the complexity of the zone of s in A is at most

O(nα(n)).

By Lemma 4.3.1, the zone of ŝ has complexity o(m2), hence the number of vertices

of the planar graph G(X ′) is o(m2). But since G(X ′) has Ω(m2) edges, a contradic-

tion is reached due to Euler’s Formula for a large enough value of m. Therefore, the

V-C dimension is bounded for the family of hypergraphs H(Y,X) in which Y is a set of

line segments and X is a set of pairwise disjoint paths.

4.3.3 A concrete randomized O(logτ)-approximation algorithm

We continue using the terminology of having been given a drawing D of an n-vertex graph,

with X as the set of faces in D and Y as the set of non-edges in D. For the rest of this

section, we assume that D has been processed into the incidence matrix of the hypergraph

H(X ,Y ) with O(n8) entries in memory, as discussed in Section 4.1.

We present a randomized algorithm, Algorithm 2, modeled on those presented by

Efrat and Har-Peled [12] and Efrat et al. [13], which rely on the analyses of Clarkson [9]

and Brönniman-Goodrich [8]. Their randomized algorithms for computing transversals

of unrelated hypergraphs run in low polynomial time in n and return a transversal of

size at most O(τ logτ) with high probability. Algorithm 2 uses dovetailing to vary not

only k (essentially a guess for τ) but also d (essentially a guess for the V-C dimension),

whereas the aforementioned papers implicitly or explicitly use a known upper bound on

the V-C dimension for d. Algorithm 2 simulates a pass through the algorithm of [12] for

each possible value of d rounded to the nearest power of two, and similarly compresses the

space of k for added efficiency.
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ComputeObstacleRepresentation(set of faces X , set of nonedges Y ) {
for (deekay = 2; ; deekay = 2 * deekay) {

for (k = 2; k ≤ deekay; k = 2 * k) {
d = deekay / k;

Assign weight 1 to each face in X ;

for (i = 1; i ≤ numRounds(k, |X |); i = i + 1) {

• Pick randomly a set S of sampleSize(d,k) obstacles, choosing each

obstacle randomly and independently from the face set X

according to their weights.

• Check if the obstacles in S together meet all of the non-edges in Y ;

if so, return the transversal S.

• Else, find a non-edge y that does not meet any obstacle in S, and let

N(y) be the set of faces in X that the non-edge y meets.

• Compute ω , the sum of weights of faces in N(y).
If 2kω ≤ the sum of weights of all faces in X ,

double the weight of every face in N(y).

} // end for i

} // end for k

} // end for deekay (dovetailing diagonal)

}

Algorithm 2: A randomized O(logτ)-approximation algorithm for ORGD stated using

C-style pseudocode. The expression sampleSize(d, k) stands for ⌈2dklgk⌉, and the ex-

pression numRounds(k, |X |) stands for ⌈8klg |X |⌉.
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We claim that Algorithm 2 returns a transversal of size at most O(τ logτ) with high

probability. We show this by means of arguing backward compatibility with the one in [12].

Imagine a matrix with the value of d doubling as we go one column to the right, and the

value of k doubling as we go one row down. Algorithm 2 processes one diagonal at a time,

starting from the top left, going through each diagonal in the down and left direction.

Denote by d̂ the V-C dimension of the given hypergraph, and by k̂ be the minimum

value of k for which the algorithm in [12] provides an approximation guarantee of O(τ logτ)

with high probability, terminating in polynomial time. Without loss of generality, d̂ and k̂

are powers of two. Suppose that Algorithm 2 terminates for values of d′ and k′ for which

sampleSize(d′,k′) > sampleSize(d̂, k̂). With high probability, the algorithm did not yet

consider the pair (d̂, k̂), so it terminated before it even got to the diagonal of the pair (d̂, k̂)

predicated on the product d̂k̂. Hence we have d′k′ < d̂k̂, and since sampleSize(d′,k′) >

sampleSize(d̂, k̂) we have k′ > k̂. Visually, (d′,k′) is somewhere above the diagonal for

(d̂, k̂) but below the horizontal line for k̂.

Denote d′k′/k̂ by d′′ such that (d′′, k̂) is on the same diagonal as (d′,k′) and directly

to the left of (d̂, k̂). We have d′′ < d̂, consequently, sampleSize(d′′, k̂)< sampleSize(d̂, k̂).

The diagonal segment from (d′′, k̂) to (d′,k′) has already been processed, each entry defin-

ing a sample size of no more than double the previous. Let (d∗,k∗) be the first pair that

was processed in that diagonal segment with sampleSize(d∗,k∗)≥ sampleSize(d̂, k̂). This

guarantees sampleSize(d∗,k∗) < 2 · sampleSize(d̂, k̂). Since k∗ > k̂, we must have that

numRounds(d∗,k∗) > numRounds(d̂, k̂), so Algorithm 2 should have terminated for the

pair (d∗,k∗) with high probability, preserving the approximation ratio.

This analysis also leads us to see that the expected running time of Algorithm 2 is

polynomial in n.
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4.4 For plane graphs: FPT algorithm and PTAS

via reduction to P-VC-3

Here we reduce the problem of computing a minimum obstacle representation for a plane

graph (ORPeG) to maximum degree 3 planar vertex cover (P-VC-3).

Theorem 4.4.1. Weighted ORPeG is no harder to approximate than planar vertex cover.

Proof. We are given a plane graph G on n vertices in general position and an additive

weight function w on its face set. We will construct a graph Ĝ that admits a vertex cover

of cost k if and only if G admits an obstacle representation of cost k+w(F0), where F0 is

defined in the following paragraph.

Every bounded face of G that is not an empty triangle4 must be selected as an obstacle;

moreover, the unbounded face must be chosen if and only if its convex hull boundary

contains a non-edge. Denote by F0 the set of faces in G corresponding the these forced

moves, which can be determined in polynomial time using standard techniques [10]. From

now on, we only consider the non-edges of G that are not blocked by one of these faces.

That is, non-edges that meet no faces other than empty triangles.

We now show that for every remaining non-edge s of G, there is a diamond in G such

that s meets both triangles in that diamond. Assume for contradiction that s never crosses

the diagonal edge of a diamond. Denote by u and v the endpoints of s, and orient the

plane such that u is directly below v. Obtain a sequence of empty triangles ( f0, f1, . . . , fk)

by tracing s from u (a vertex on f0) to v (a vertex on fk). Denote by vi (for 1 ≤ i ≤ k)

the unique vertex in face fk that is not a vertex of fi−1 (so that vk = v). Without loss of

generality, the reflex angle of f0 and f1 is to the right of s, which implies that v1 is to the

4Recall that an empty triangle is a bounded face on three vertices not containing any other vertices, and

that a diamond consists of two empty triangles that share an edge and have their vertices in convex position.
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right of s. In order for f2 to be the next face in this sequence, v2 must be to the left of s. In

general, in order for fi to be the next face in this sequence, vi must be on the other side of

s from vi−1. This pattern must continue indefinitely, lest two consecutive triangles form a

diamond. The indefinite continuation of this pattern implies an infinite sequence of faces

defined by s, and hence a contradiction.

We define Ĝ, which is a subgraph of the dual of G, based on diamonds: each edge of

Ĝ corresponds to diamond of G. The graph Ĝ is induced by these edges and the weights

on its vertices are the weights on the corresponding empty triangles of G. At least one of

the two triangles of every diamond must be chosen in any obstacle representation due to

the diagonal non-edge. But by the previous paragraph, this is also sufficient to block all

non-edges in G that only meet faces that are empty triangles. Therefore, we have a natural

bijection that takes vertex covers of Ĝ with cost k to obstacle representations of G with cost

k+w(F0).

Remark 4.4.1. We may wish to adopt the more realistic bit model, since a plane graph

drawing may have been expressed using a number of bits super-polynomial in |V (G)| for

vertex coordinates. In this model, the reduction could require time super-polynomial in

|V (G)| but nonetheless polynomial in the number of input bits.

From Theorem 4.4.1 we obtain the following results almost immediately.

Corollary 4.4.2. Weighted ORPeG admits a polynomial-time approximation scheme (PTAS).

Proof. Pre-process a given plane graph G on n vertices in general position (with an additive

weight function w on its face set) in polynomial time to compute F0 and Ĝ as in the proof

of Theorem 4.4.1. Denote |V (Ĝ)| by n̂.

Denote by τ the size of a minimum obstacle representation for G and denote by τ ′

the size of a minimum vertex cover for Ĝ. The well-known PTAS for Vertex Cover for
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Planar Graphs [6] can be used to obtain for any given ε > 0 a vertex cover for Ĝ of size

at most (1+ ε)τ ′ in additional time 2O(1/ε)n̂O(1) = 2O(1/ε)nO(1). Since τ = w(F0) + τ ′,

we have w(F0)+ (1+ ε)τ ′ ≤ (1+ ε)τ , which means that we have a PTAS for weighted

ORPeG.

A problem is called fixed parameter tractable (FPT) if for an input instance of size n

together with an integer k, it is possible to determine whether or not there is a solution

instance of size k in time f (k)nO(1) where f is an arbitrary function depending only on k.

An algorithm that achieves such a running time is usually referred to as an FPT algorithm.

Corollary 4.4.3. (Cardinality) ORPeG is fixed parameter tractable (FPT).

Proof. Pre-process a given plane graph G with n vertices in general position in polynomial

time (see Remark 4.4.1) to compute F0 and Ĝ as in the proof of Theorem 4.4.1. Denote

∣

∣V (Ĝ)
∣

∣ by n̂.

Using the FPT algorithm by Xiao [49] for Vertex Cover for Graphs with Maximum De-

gree 3 on Ĝ, we can compute an obstacle representation for G with k obstacles in additional

time at most 1.1616k−|F0|n̂O(1) = 1.1616k−|F0|nO(1) = 1.1616knO(1).

Alternatively, we can use the FPT algorithm by Alber et al. [1] for Vertex Cover for Pla-

nar Graphs on Ĝ to compute an obstacle representation for G with k obstacles in additional

time at most O(24
√

3(k−|F0|)n̂) = O(24
√

3(k−|F0|)n) = O(24
√

3kn).

4.5 Concluding remarks

Since computing the obstacle number for a graph drawing D exactly can be reduced to a

problem of hitting non-edges with O(n4) faces, a naive deterministic algorithm can com-

pute obs(D) in time 2O(n4). In fact, such an algorithm uses time merely nO(obs(D)), by trying
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every k-face combination for every value of k from 0 up to obs(D).

What about the original problem of determining the obstacle number of a given abstract

graph on n vertices? If all drawings of a graph could be enumerated up to the incidence

matrix of faces versus non-edges, then by using our approximation algorithm in the “inner

loop,” we could obtain a O(logOPT )-approximation to the original problem. While this

may be viable for small instances (perhaps in conjunction with a distributed approach),

we conjecture that this problem lies outside of NP and believe it to be intractable in a

centralized model of computation. Our rationale follows.

For some simple order types of n-point configurations on the plane, a coordinate rep-

resentation on an integer lattice needs exponentially many bits in n in order to allow the

order type to be inferred [26]. Further, we know that a particular labeled graph has two

drawings with different obstacle numbers but vertex sets of the same simple labeled order

type. (The dual labeled order type of the
(

n
2

)

connecting lines of n vertices in a drawing ap-

pears to be sufficient to determine the obstacle number for the drawing.) Hence, coordinate

representations of some drawings for the present purpose seem to require at least exponen-

tial storage in n. Some drawing-based certificates will in turn have sizes super-polynomial

in the number of bits that represent the abstract graph. It may be tempting to think that

a certificate could instead be based on the poly(n) sized incidence matrix of faces versus

non-edges, but it seems unlikely that one can decide in polynomial time whether or not the

given graph has some drawing corresponding to a given incidence matrix.
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[38] H. J. Prömel and A. Steger. Excluding induced subgraphs: Quadrilaterals. Random

Structures and Algorithms, 2(1):55–71, 1991.

http://arxiv.org/abs/1107.4624v2


102
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