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GEOMETRIC GRID CLASSES OF PERMUTATIONS

MICHAEL H. ALBERT, M. D. ATKINSON, MATHILDE BOUVEL, NIK RUŠKUC,
AND VINCENT VATTER

Abstract. A geometric grid class consists of those permutations that can be
drawn on a specified set of line segments of slope ±1 arranged in a rectangular
pattern governed by a matrix. Using a mixture of geometric and language
theoretic methods, we prove that such classes are specified by finite sets of for-
bidden permutations, are partially well ordered, and have rational generating
functions. Furthermore, we show that these properties are inherited by the
subclasses (under permutation involvement) of such classes, and establish the
basic lattice theoretic properties of the collection of all such subclasses.

1. Introduction

Subsequent to the resolution of the Stanley-Wilf Conjecture in 2004 by Marcus
and Tardos [21], two major research programmes have emerged in the study of
permutation classes:

• to characterise the possible growth rates of permutation classes and
• to provide necessary and sufficient conditions for permutation classes to
have amenable generating functions.

With regard to the first programme, we point to the work of Kaiser and Klazar [20],
who characterised the possible growth rates up to 2, and the work of Vatter [25], who
extended this characterisation up to the algebraic number κ ≈ 2.20557, the point at
which infinite antichains begin to emerge, and where the transition from countably
many to uncountably many permutation classes occurs. The second programme is
illustrated by the work of Albert, Atkinson, and Vatter [3], who showed that all
subclasses of the separable permutations not containing Av(231) or a symmetry of
this class have rational generating functions.

Both research programmes rely on structural descriptions of permutation classes,
in particular, the notion of grid classes. Here we study the enumerative and order-
theoretic properties of a certain type of grid class called a geometric grid class.

While we present formal definitions in the next two sections, geometric grid
classes may be defined briefly as follows. Suppose that M is a 0/±1 matrix. The
standard figure of M , which we typically denote by Λ, is the point set in R2 con-
sisting of:

• the increasing open line segment from (k− 1, �− 1) to (k, �) if Mk,� = 1 or
• the decreasing open line segment from (k − 1, �) to (k, �− 1) if Mk,� = −1.

(Note that in order to simplify this correspondence, we index matrices first by col-
umn, counting left to right, and then by row, counting bottom to top throughout.)
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Figure 1. The permutation 351624 on the left and the permu-
tation 153426 on the right lie, respectively, in the geometric grid
classes of (

1 −1
−1 1

)
and

(
−1 1
1 −1

)
.

The geometric grid class of M , denoted by Geom(M), is then the set of all permu-
tations that can be drawn on this figure in the following manner. Choose n points
in the figure, with no two on a common horizontal or vertical line. Then label the
points from 1 to n from bottom to top and record these labels reading from left to
right.

Much of our perspective and inspiration comes from Steve Waton, who consid-
ered two particular geometric grid classes in his thesis [28]. These are the permu-
tations which can be drawn from a circle, later studied by Vatter and Waton [27],
and the permutations which can be drawn on an X, later studied by Elizalde [12].
Examples of these two grid classes are shown in Figure 1.1

A permutation class is said to be geometrically griddable if it is contained in
some geometric grid class. With that final piece of terminology, we can state the
main results of this paper.

• Theorem 6.1. Every geometrically griddable class is partially well ordered.
(Such classes do not contain infinite antichains.)

• Theorem 6.2. Every geometrically griddable class is finitely based. (These
classes can be defined by only finitely many forbidden patterns.)

• Theorem 8.1. Every geometrically griddable class is in bijection with a
regular language and thus has a rational generating function.

• Theorem 9.1. The simple, sum indecomposable, and skew indecomposable
permutations in every geometrically griddable class are each in bijection
with a regular language and thus have rational generating functions.

• Theorem 10.3. The atomic geometrically griddable classes are precisely
the geometric grid classes of •-isolated 0/•/±1 matrices, and every geo-
metrically griddable class can be expressed as a finite union of such classes.
(This type of geometric grid class is defined in Section 10.)

For the remainder of the introduction we present the (standard) definitions of
permutation classes. In the next section we formalise the geometric notions of

1The drawing on the left of Figure 1 has been drawn as a diamond to fit with the general
approach of this paper, but by stretching and shrinking the x- and y-axes in the manner formalised
in Section 2, it is clear that any permutation that can be “drawn on a diamond” can also be “drawn
on a circle”.
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this paper. Section 3 contains a brief discussion of grid classes of forests, while
Section 4 introduces partial multiplication matrices. Sections 5–10 introduce a
correspondence between permutations in a geometric grid class and words, and
utilise this correspondence to establish the main results of the paper. Finally, in
Section 11, we conclude with numerous open problems.

The permutation π of {1, 2, . . . , n} contains or involves the permutation σ of
{1, 2, . . . , k} (written σ ≤ π) if π has a subsequence of length k which is or-
der isomorphic to σ. For example, π = 391867452 (written in list, or one-line
notation) contains σ = 51342, as can be seen by considering the subsequence
π(2)π(3)π(5)π(6)π(9) = 91672. A permutation class is a downset of permuta-
tions under this containment ordering; thus if C is a permutation class, π ∈ C, and
σ ≤ π, then σ ∈ C.

For any permutation class C there is a unique (and possibly infinite) antichain
B such that

C = Av(B) = {π : β �≤ π for all β ∈ B}.
This antichain B is called the basis of C. We denote by Cn (for n ∈ N) the set of
permutations in C of length n, and we refer to

∞∑
n=0

|Cn|xn =
∑
π∈C

x|π|

as the generating function of C.
Finally, a permutation class, or indeed any partially ordered set, is said to be

partially well ordered (pwo) if it contains neither an infinite strictly descending
chain nor an infinite antichain. Of course, permutation classes cannot contain
infinite strictly descending chains, so in this context being pwo is equivalent to
having no infinite antichain.

2. The geometric perspective

Geometric ideas play a significant role in this paper, and to provide background
we reintroduce permutations and the involvement relation in a somewhat nonstan-
dard manner.

We call a subset of the plane a figure. We say that the figure F ⊆ R2 is involved
in the figure G, denoted F ≤ G, if there are subsets A,B ⊆ R and increasing
injections φx : A → R and φy : B → R such that

F ⊆ A×B and φ(F) = {(φx(a), φy(b)) : (a, b) ∈ F} ⊆ G.
The involvement relation is a preorder (it is reflexive and transitive but not neces-
sarily antisymmetric) on the collection of all figures. If F ≤ G and G ≤ F , then we
say that F and G are (figure) equivalent and write F ≈ G. Note that in the case
of figures with only finitely many points, two figures are equivalent if and only if
one can be transformed to the other by stretching and shrinking the axes. Three
concrete examples are provided below.

• The figures F = {(a, |a|) : a ∈ R} and G = {(a, a2) : a ∈ R} are equivalent.
To see that F ≤ G, take A× B = R× R≥0, φx(a) = a, and φy(b) = b2. To

see that G ≤ F , take A×B = R× R≥0, φx(a) = a, and φy(b) =
√
b.

• The figures F = {(a, a) : a ∈ R} and G = {(a, a) : a ∈ [0, 1] ∪ [2, 3]} are
equivalent. To see that F ≤ G, take A×B = R2, φx(a) = 1/(1+ e−a), and
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φy(b) = 1/(1 + e−b). To see that G ≤ F , consider the identity map with

A× B = ([0, 1] ∪ [2, 3])
2
.

• The “unit diamond” defined by F = {(a, b) : |a|+ |b| = 1} (shown on the
left of Figure 1) is equivalent to the unit circle G = {(a, b) : a2 + b2 = 1}.
To see that F ≤ G, take A×B = [−1, 1]2, φx(a) = sin(πa/2), and φy(b) =
cos(π(1 − b)/2). To see that G ≤ F , simply consider the inverses of these
maps.

To any permutation π of length n, we associate a figure which we call its plot,
{(i, π(i))}. These figures have the important property that they are independent,
by which we mean that no two points lie on a common horizontal or vertical line.
It is clear that every finite independent figure is equivalent to the plot of a unique
permutation, so we could define a permutation as an equivalence class of finite
independent figures. Under this identification, the partial order on equivalence
classes of finite independent figures is the same as the containment, or involvement,
order defined in the introduction.

Every figure F ⊆ R2 therefore naturally defines a permutation class,

Sub(F) = {permutations π : π is equivalent to a finite independent subset of F}.

For example:

• Let F = {(x, x) : x ∈ R}. Then Sub(F) contains a single permutation of
each length, namely the identity, and its basis is {21}.

• Let F = {(x, x) : x ∈ [0, 1]}∪{(x+1, x) : x ∈ [0, 1]}. Then Sub(F) consists
of all permutations having at most one descent. Its basis is {321, 2143, 3142},
as can be seen by considering the ways in which two descents might occur.

• Let F = {(x, sin(x)) : x ∈ R}. Then Sub(F) is the set of all permuta-
tions. To establish this, note that every permutation can be broken into its
increasing contiguous segments (“runs”) and points corresponding to each
run can be chosen from increasing segments of F . Its basis is, of course,
the empty set.

A geometric grid class (as defined in the introduction) is precisely Sub(Λ), where Λ
denotes the standard figure of the defining matrix. Permutation classes of the form
Sub(F) in the special case where F is the plot of a bijection between two subsets of
the real numbers have received some study before; we refer the reader to Atkinson,
Murphy, and Ruškuc [7] and Huczynska and Ruškuc [18].

The lines {x = k : k = 0, . . . , t} and {y = � : � = 0, . . . , u} play a special role
for standard figures, as they divide the figure into its cells. We extend this notion
of griddings to all figures. First, though, we need to make a technical observation:
because the real number line is order isomorphic to any open interval, it follows
that every figure is equivalent to a bounded figure, and thus we may restrict our
attention to bounded figures.

Let R = [a, b]× [c, d] be a rectangle in R2. A t× u-gridding of R is a tuple

G = (g0, g1, . . . , gt;h0, h1, . . . , hu)

of real numbers satisfying

a = g0 ≤ g1 ≤ · · · ≤ gt = b,

c = h0 ≤ h1 ≤ · · · ≤ hu = d.
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Figure 2. A 3× 2 gridding of the rectangle [a, b]× [c, d] with the
cells Ck,� indicated.

These numbers are identified with the corresponding set of vertical and horizontal
lines partitioning R into a rectangular collection of cells Ck,� as shown in Figure 2.
We often identify the gridding G and the collection of cells Ck,�.

A gridded figure is a pair (F , G), where F is a figure and G is a gridding con-
taining F in its interior. To ensure that each point of F lies in a unique cell, we
also require that the grid lines are disjoint from F . By analogy with ungridded fig-
ures and permutations, we define the preorder ≤ and the equivalence relation ≈ for
t× u gridded figures. The additional requirement is that the mapping φ = (φx, φy)
appearing in the original definition maps the (k, �) cell of one gridded figure to the
(k, �) cell of the other gridded figure. A gridded permutation is the equivalence class
of a finite independent gridded figure.

The connection between finite figures, gridded finite figures, permutations, and
gridded permutations can be formalised as follows. Let Φ and Φ�, respectively,
denote the set of all finite independent and finite gridded independent figures in
R2, and let S and S�, respectively, denote the set of all permutations and all gridded
permutations. The (obvious) mappings connecting these sets are:

• Δ : Φ� → Φ, given by removing the grid lines, i.e., (F , G) 
→ F ;
• δ : S� → S, also given by removing the grid lines, i.e., in this context,
mapping the equivalence class of (F , G) under ≈ to the equivalence class
of F under ≈;

• π� : Φ� → S�, which sends every element of Φ� to its equivalence class
under ≈;

• π : Φ → S, which sends each element of Φ to its equivalence class under
≈.

It is a routine matter to verify that the diagram

Φ� Φ

S� S

Δ

δ

π� π

commutes.
The griddings we are interested in restrict the content of cells in a way specified

by a matrix. Given a 0/±1 matrix M , we say that the gridded figure (F , G) is
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compatible with M if the following holds for all relevant k and �:

F ∩ Ck,� is

⎧⎨
⎩

increasing, if Mk,� = 1,
decreasing, if Mk,� = −1,
empty, if Mk,� = 0.

We are concerned with the images, under the maps π� and πΔ = δπ�, of the set
of all M -compatible, finite, independent, gridded figures. We denote these two sets
by Grid�(M) and Grid(M), respectively. We refer to Grid(M) as the (monotone)
grid class of M .

In this context, the standard figure Λ (as defined in the introduction) of a 0/±1
matrix M of size t×u has standard grid lines G given by {x = k : k = 0, . . . , t} and
{y = � : � = 0, . . . , u}. We refer to the pair (Λ, G) as the standard gridded figure
of M and denote it by Λ�; note that Λ� is compatible (in the sense above) with

M . The set of all gridded permutations contained in Λ� is denoted by Geom�(M),
and its image under δ is Geom(M), as defined in the introduction. Because the
standard gridded figure of a 0/±1 matrix M is compatible with M , we always have

Geom(M) ⊆ Grid(M).

In the next section we characterise the matrices for which equality is achieved.

3. Grid classes of forests

The first appearance of grid classes in the literature, in the special case where M
is a permutation matrix and under the name “profile classes”, was in Atkinson [5].
Atkinson observed that such grid classes have polynomial enumeration. Huczynska
and Vatter [19], who introduced the name “grid classes”, generalised Atkinson’s
result to show that grid classes of signed permutation matrices have eventually
polynomial enumeration. This result allowed them to give a more structural proof
of Kaiser and Klazar’s “Fibonacci dichotomy” [20], which states that for every
permutation class C, either |Cn| is greater than the nth Fibonacci number for all n
or |Cn| is eventually polynomial.

Atkinson, Murphy, and Ruškuc [6] and Albert, Atkinson, and Ruškuc [2] studied
the special case of grid classes of 0/±1 vectors, under the name “W -classes”. The
former paper proves that such grid classes are pwo and finitely based, while the
latter shows that they have rational generating functions.

The first appearance of grid classes of 0/±1 matrices in full generality was in
Murphy and Vatter [22] (again under the name “profile classes”). They were in-
terested in the pwo properties of such classes, and to state their result we need a
definition.

The cell graph of M is the graph on the vertices {(k, �) : Mk,� �= 0} in which
(k, �) and (i, j) are adjacent if the corresponding cells of M share a row or a column
and there are no nonzero entries between them in this row or column. We say that
the matrix M is a forest if its cell graph is a forest. Viewing the absolute value
of M as the adjacency matrix of a bipartite graph, we obtain a different graph, its
row-column graph.2 It is not difficult to show that the cell graph of a matrix is
a forest if and only if its row-column graph is also a forest. An example of each

2In other words, the row-column graph of a t × u matrix M is the bipartite graph on the
vertices x1, . . . , xt, y1, . . . , yu where there is an edge between xk and y� if and only if Mk,� �= 0.
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⎛
⎝ 0 −1 1 0

1 −1 0 1
0 0 0 −1

⎞
⎠

1 −1

−1 1

1

−1 x1 x2 x3 x4

y1 y2 y3

Figure 3. A matrix together with its cell graph (centre) and row-
column graph (right).

of these graphs is shown in Figure 3. These graphs completely determine the pwo
properties of grid classes:

Theorem 3.1 (Murphy and Vatter [22], later generalised by Brignall [10]). The
class Grid(M) is pwo if and only if M is a forest.

It has long been conjectured that Grid(M) has a rational generating function if
M is a forest;3 for example, by Huczynska and Vatter [19, Conjecture 2.8]. Indeed,
this conjecture was the original impetus for the present work. However, as the work
progressed, it became apparent that the geometric paradigm provided a viewpoint
which was at once more insightful and more general, and thus our perspective
shifted. The link with the original motivation is provided by the following result.

Theorem 3.2. If M is a forest, then Grid�(M) = Geom�(M) and thus Grid(M) =
Geom(M).

Proof. The proof is by induction on the number of nonzero entries of M . For
the case of a single nonzero cell, note that one can place any increasing (resp.,
decreasing) set of points on a line of slope 1 (resp., −1) by applying a horizontal
transformation.

Now suppose that M has two or more nonzero entries, denote its standard grid-

ded figure by Λ�
M = (ΛM , G), and let (k, �) denote a leaf in the cell graph of M . By

considering the transpose of M if necessary, we may assume that there are no other
nonzero entries in column k of M . Let π� be an arbitrary gridded permutation in
Grid�(M). We aim to show that π� ∈ Geom�(M).

Denote by N the matrix obtained from M by setting the (k, �) entry equal to 0,

and denote its standard gridded figure by Λ�
N = (ΛN , G). Note that the grid lines of

Λ�
N and Λ�

M are identical because the corresponding matrices are the same size. Let
σ� denote the gridded permutation obtained from π� by removing all entries in the
(k, �) cell. Because σ� lies in Grid�(N), which by induction is equal to Geom�(N),
there is a finite independent point set S ⊆ ΛN ⊆ ΛM such that (S,G) ≈ σ�. As
long as we do not demand that the new points belong to ΛM , it is clear that we can
extend S by adding points in the (k, �) cell to arrive at a point set P ⊇ S such that
(P,G) ≈ π�. Then we can apply a horizontal transformation to column k to move
these new points onto the diagonal line segment of ΛM in this cell. This horizontal
transformation does not affect the points of S, because none of those points lie in
column k, so we see that P ⊆ ΛM , and thus π� ∈ Geom�(M), as desired. �

3Note that Grid(M) can have a nonrational generating function when M is not a forest. An
example of this is given in the conclusion.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5866 M. H. ALBERT, M. D. ATKINSON, M. BOUVEL, N. RUŠKUC, AND V. VATTER

2
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1

3

Figure 4. The permutation 2413 lies in Grid
(

−1 1
1 −1

)
but not

Geom
(

−1 1
1 −1

)
. If 2413 did lie in this geometric grid class, then

beginning with the 2 and moving in a clockwise direction, we see
that the 4 lies to the right of the 2 and thus closer to the centre,
the 3 lies closer than the 4 to the centre, the 1 lies closer than the
3 to the centre, and finally, to reach a contradiction, the 2 must lie
even closer to the centre than the 1.

Because of Theorem 3.2, all of our results about geometric grid classes yield
immediate corollaries to grid classes of forests, which we shall generally not mention.
For example, our upcoming Theorem 6.1 generalises one direction of Theorem 3.1.

The fact that Grid(M) is not pwo when M is not a forest (the other direction
of Theorem 3.1), combined with Theorem 6.1 which shows that all geometric grid
classes are pwo, implies that the converse to Theorem 3.2 also holds: if Grid(M) =
Geom(M), then M is a forest. This fact can also be established by arguments
generalising those accompanying Figure 4.

4. Partial multiplication matrices

In this section we consider a particular “refinement” operation on matrices, which
is central to our later arguments. Let M be a 0/±1 matrix of size t × u and
q be a positive integer. The refinement M×q of M is the 0/±1 matrix of size
qt × qu obtained from M by replacing each 1 by a q × q identity matrix (which,
by our conventions, has ones along its southwest-northeast diagonal), each −1 by
a negative q × q anti-identity matrix, and each 0 by a q × q zero matrix. It is easy
to see that the standard figure M×q is equivalent to the standard figure of M , so
Geom(M×q) = Geom(M) for all q (although, of course, the corresponding gridded
classes differ).

The refinements M×2 play a special role throughout this paper. To explain this
we first need a definition. We say that a 0/±1 matrix M of size t × u is a partial
multiplication matrix if there are column and row signs

c1, . . . , ct, r1, . . . , ru ∈ {1,−1}
such that every entry Mk,� is equal to either 0 or the product ckr�.

As our next result shows, we are never far from a partial multiplication matrix.

Proposition 4.1. For every 0/±1 matrix M , its refinement M×2 is a partial
multiplication matrix.
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Proof. By construction, M×2 is made up of 2× 2 blocks equal to(
0 0

0 0

)
,
(

0 1

1 0

)
, and

(
−1 0

0 −1

)
.

From this it follows that (M×2)k,� ∈ {0, (−1)k+�}. Therefore we may take ck =
(−1)k and r� = (−1)� as our column and row signs. �

Because Geom(M) = Geom(M×2), we may always assume that the matrices we
work with are partial multiplication matrices. We record this useful fact below.

Proposition 4.2. Every geometric grid class is the geometric grid class of a partial
multiplication matrix.

5. Words and encodings

From the point of view of our goals in this paper, subword-closed languages over
a finite alphabet display model behaviour: all such languages are defined by finite
sets of forbidden subwords, are pwo under the subword order, and have rational
generating functions. The brunt of our subsequent effort is focused on transferring
these favourable properties from words to permutations.

Let Σ be a finite alphabet and Σ∗ be the set of all finite words (i.e., sequences)
over Σ. This set is partially ordered by means of the subword or subsequence order:
v ≤ w if one can obtain v from w by deleting letters.

Subsets of Σ∗ are called languages. We say that a language is subword-closed if
it is a downward closed set in the subword order (such languages are also called
piecewise testable by some; for example, Simon [23]). To borrow terminology from
permutation classes, we say that the basis of a subword-closed language L is the
set of minimal words which do not lie in L. It follows that L consists of precisely
those words which do not contain any element of its basis. Moreover, a special case
of a result of Higman [15] implies that subword-closed languages have finite bases:

Higman’s Theorem. The set of words over any finite alphabet is pwo under the
subword order.

The following characterisation of subword-closed languages is folkloric and fol-
lows directly from the fact that, for any finite set of forbidden subwords, there exists
a finite state automaton accepting words not containing these subwords, which is
acyclic except for loops at individual states.

Proposition 5.1. Let Σ be a finite alphabet. Every nonempty subword-closed lan-
guage over Σ can be expressed as a finite union of languages of the form

Σ∗
1{ε, a2}Σ∗

3{ε, a4} . . .Σ∗
2q−1{ε, a2q}Σ∗

2q+1,

where q ≥ 0, a2, . . . , a2q ∈ Σ and Σ1, . . . ,Σ2q+1 ⊆ Σ.

This fact shows that subword-closed languages are regular languages. To recall
their definition briefly, given a finite alphabet Σ, the empty language ∅, the empty
word language {ε}, and the singleton languages {a} for each a ∈ Σ are regular.
Moreover, given two regular languages K and L over Σ, their union K ∪ L, their
concatenation KL = {vw : v ∈ K and w ∈ L}, and the star L∗ = {v(1) · · · v(m) :
m ≥ 0 and v(1), . . . , v(m) ∈ L} are also regular. Alternatively, one may define
regular languages as those accepted by a deterministic finite state automaton. From
this second viewpoint, it is easy to see that given two regular languages K and L,
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p1

p2

p3

p4

p5

p6
p7

Figure 5. An example of the map ϕ for a matrix with row signs
r1 = −1 and r2 = 1 and column signs c1 = −1, c2 = c3 = 1. Here
we see that ϕ(a31a31a22a21a11a32a22) = 1527436.

their complement K \ L is also regular, a property we use many times. We say
that the generating function of the language L is

∑
x|w|, where the sum is taken

over all w ∈ L and |w| denotes the number of letters in w, i.e., its length. We use
only the most basic properties of regular languages, for which we refer the reader
to Flajolet and Sedgewick [13, Section I.4 and Appendix A.7]. In particular, the
following fact is of central importance throughout the paper.

Theorem 5.2. Every regular language has a rational generating function.

We now describe the correspondence between permutations in a geometric grid
class, Geom(M), and words over an appropriate finite alphabet. This encoding,
essentially introduced by Vatter and Waton [26], is fundamental to all of our proofs.

By Proposition 4.2, we may assume thatM is a t×u partial multiplication matrix
with column and row signs c1, . . . , ct and r1, . . . , ru. Let Λ� denote the standard
gridded figure of M , and define the cell alphabet of M to be

Σ = {ak� : Mk,� �= 0}.

Intuitively, the letter ak� represents an instruction to place a point in an appropriate
position on the line in the (k, �) cell of Λ�. This appropriate position is determined
as follows, and the whole process is depicted in Figure 5.

We say that the base line of a column of Λ� is the grid line to the left (resp.,
right) of that column if the corresponding column sign is 1 (resp., −1). Similarly,
the base line of a row of Λ� is the grid line below (resp., above) that row if the
corresponding row sign is 1 (resp., −1). We designate the intersection of the two
base lines of a cell as its base point. Note that the base point is an endpoint of the
line segment of Λ lying in this cell. As this definition indicates, we interpret the
column and row signs as specifying the direction in which the columns and rows
are “read”. Owing to this interpretation, we represent the column and row signs in
our figures by arrows, as shown in Figure 5.

To every word w = w1 · · ·wn ∈ Σ∗ we associate a permutation ϕ(w) as follows.
First we choose arbitrary distances

0 < d1 < · · · < dn < 1.

Next, for each i, we let pi be the point on the line segment in cell Ck,�, where
wi = ak,�, at infinity-norm distance di from the base point of Ck,�. It follows from
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our choice of distances d1, . . . , dn that p1, . . . , pn are independent, and we define
ϕ(w) to be the permutation which is equivalent to the set {p1, . . . , pn} of points.

It is a routine exercise to show that ϕ(w) does not depend on the particular
choice of distances d1, . . . , dn, showing that the mapping ϕ : Σ∗ → Geom(M) is

well defined. Of course there is a gridded counterpart ϕ� : Σ∗ → Geom�(M),
whereby we retain the grid lines coming from the figure Λ�.

The basic properties of ϕ and ϕ� are described by the following result.

Proposition 5.3. The mappings ϕ and ϕ� are length-preserving, finite-to-one,
onto, and order-preserving.

Proof. That ϕ is length-preserving is obvious, as it maps letters in a word to entries
in a permutation; that it is finite-to-one follows immediately from this.

In order to prove that ϕ is onto, let π ∈ Geom(M) and choose a finite set
P = {p1, . . . , pn} ⊆ Λ of points which represent π (where as usual Λ denotes the
standard figure of M). Suppose that the point pi belongs to the cell (ki, �i) of Λ

�,
and let di denote the infinity-norm distance from pi to the base point of this cell.
The points in P are independent because they are equivalent to a permutation.
Therefore, we may move the points of P independently by small amounts without
affecting its (figure) equivalence class, and thus may assume that the distances
di are distinct. By reordering the points if necessary, we may also assume that
d1 < · · · < dn. It is then clear that ϕ(ak1�1 · · · akn�n) = π, so ϕ is indeed onto.

It remains to show that ϕ is order-preserving. Suppose that v = v1 · · · vk, w =
w1 · · ·wn ∈ Σ∗ satisfy v ≤ w. Thus there are indices 1 ≤ i1 < · · · < ik ≤ n such
that v = wi1 · · ·wik . Note that if ϕ(w) is represented by the point set {p1, . . . , pn}
via the sequence of distances d1 < · · · < dn, then ϕ(v) is represented by the point
set {pi1 , . . . , pik} via the sequence of distances di1 < · · · < dik , so ϕ(v) ≤ ϕ(w).

The proofs for the gridded version ϕ� are analogous. �
Using this correspondence between words and permutations, one may give an

alternative proof of Theorem 3.2, showing that Grid�(M) = Geom�(M) and thus
that Grid(M) = Geom(M) when M is a forest. As Proposition 5.3 shows that ϕ�

maps onto Geom�(M), one only needs to show that it also maps onto Grid�(M)
when M is a forest. This is proved directly in Vatter and Waton [26].

6. Partial well order and finite bases

We now use the encoding ϕ : Σ∗ → Geom(M) from the previous section to
establish structural properties of geometrically griddable classes, i.e., subclasses of
geometric grid classes. We begin with partial well order. By Theorem 3.2, this
generalises one direction of Theorem 3.1.

Theorem 6.1. Every geometrically griddable class is partially well ordered.

Proof. Let C be a geometrically griddable class. By Proposition 4.2, C ⊆ Geom(M)
for some partial multiplication matrix M . As partial well order is inherited by
subclasses, it suffices to prove that Geom(M) is pwo. Let ϕ : Σ∗ → Geom(M),
where Σ is the cell alphabet of M , be the encoding introduced in Section 5. Take
A ⊆ Geom(M) to be an antichain. For every α ∈ A there is some wα ∈ Σ∗ such
that ϕ(wα) = α because ϕ is onto (Proposition 5.3). The set {wα : α ∈ A} must be
an antichain in Σ∗ because ϕ is order-preserving (Proposition 5.3 again). Higman’s
Theorem therefore shows that this set, and thus also A, is finite, as desired. �
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Our next goal is the following result.

Theorem 6.2. Every geometrically griddable class is finitely based.

We first make an elementary observation.

Proposition 6.3. The union of a finite number of geometrically griddable classes
is geometrically griddable.

Proof. Let C and D be geometrically griddable classes. Thus there are matrices
M and N such that C ⊆ Geom(M) and D ⊆ Geom(N). It follows that C ∪ D ⊆
Geom(P ) for any matrix P which contains copies of both M and N . The result for
arbitrary finite unions follows by iteration. �

Given any permutation class C, we let C+1 denote the class of one-point exten-
sions of elements of C, that is, C+1 is the set of all permutations π which contain
an entry whose removal yields a permutation in C. Every basis element of a class
C is necessarily a one-point extension of C because the removal of any entry of a
basis element of C yields a permutation in C. Since bases of permutation classes
are necessarily antichains, Theorem 6.2 will follow from the following result and
Theorem 6.1.

Theorem 6.4. If the class C is geometrically griddable, then the class C+1 is also
geometrically griddable.

Proof. It suffices to prove the result for geometric grid classes themselves, and by
Proposition 4.2 we may further restrict our attention to the case of Geom(M)
where M is a partial multiplication matrix. Take τ ∈ Geom(M)+1 to be a one-
point extension of π ∈ Geom(M). Letting Λ� = (Λ, G) denote the standard gridded
figure of M , there is a finite independent set P ⊆ Λ such that (P,G) is equivalent to
some gridding of π. Now we may add a point, say x, to P to obtain an independent
point set which is equivalent to τ . By moving x without affecting the equivalence
class of P ∪ {x}, we may further assume that x lies in the interior of a cell.

Let h and v denote, respectively, the horizontal and vertical lines passing through
x, as shown on the left of Figure 6. Our goal is to create a new, refined gridding of
Λ which contains v and h as grid lines.

The offset of a horizontal (resp., vertical) line is the distance between that line
and the base line of the row (resp., column) of Λ� that it slices through (recall from
Section 5 that the standard gridded figure of a partial multiplication matrix has
designated base lines determined by its column and row signs). From the definition
of a partial multiplication matrix, it follows that if a vertical line of offset d slices
a nonempty cell of Λ, it intersects the line segment in this cell precisely where the
horizontal line of offset d slices the line segment.

Because the cells of a standard gridded figure have unit width, v and h have
offsets strictly between 0 and 1, say 0 < d1 ≤ d2 < 1. By possibly moving x slightly
without affecting the equivalence class of P ∪{x} (which we may do because P ∪{x}
is independent), we may assume that 0 < d1 < d2 < 1. We now define our refined
gridding H, an example of which is shown on the right of Figure 6. We take
H to consist of the grid lines of G together with the 2t vertical lines which pass
through each column of Λ at the offsets d1 and d2, and the 2u horizontal lines
which pass through each row of Λ at the same two offsets. It follows from our
observations above that (Λ, H) is equivalent to the standard gridded figure of M×3
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h

Figure 6. On the left is the standard gridded figure of a partial
multiplication matrix, together with two additional (dashed) lines
intersecting at the point x. On the right is the refinement defined
in the proof of Theorem 6.4.

and in particular consists of a grid containing line segments of slope ±1, each of
which runs from corner to corner in its cell. By possibly moving the points slightly,
we may assume that no point of P lies on a grid line in H (although x lies on two
such lines).

By cutting the figure Λ at the lines v and h and moving the four resulting pieces,
we can create a new column and row whose cell of intersection contains x. (One can
also view this as expanding the lines v and h into a column and a row, respectively.)
We can then fill this cell of intersection with a line segment of slope ±1 (the choice
is immaterial) running from corner to corner; clearly, x can be shifted onto this line
segment without affecting the equivalence class of P ∪ {x}. The resulting gridded
figure consists of line segments that run from corner to corner in their cells and is
equivalent to the standard gridded figure of some partial multiplication matrix N
which is of size (3t + 1) × (3u + 1), from which it follows that τ ∈ Geom(N). As
there are only finitely many such matrices, we see that Geom+1(M) is contained
in a finite union of geometric grid classes and so is geometrically griddable by
Proposition 6.3. �

7. Gridded permutations and trace monoids

In the next two sections we show that geometrically griddable classes have ra-
tional generating functions. We divide this task into two stages. First, using trace
monoids, we show that every gridded class Geom�(M) is in bijection with a regular
language. Then, because a permutation may have many valid griddings, the sec-
ond part of our task, undertaken in the next section, is to remove this multiplicity,
allowing us to enumerate the geometric grid class Geom(M) and all its subclasses.

To illustrate the issue we seek to understand in this section, we refer the reader
to Figure 7. This example shows two different words which map to the same
gridded permutation under ϕ�. This happens because the order in which points
are consecutively inserted into independent cells — i.e., cells which share neither
a column nor a row — is immaterial. On the language level, this means that
letters which correspond to such cells “commute”. For example, in Figure 7, the
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p2

p3 p2

p3

Figure 7. Two drawings of a particular gridding of the per-
mutation 2465371. The drawing on the left is encoded as
a31a32a11a22a31a32a11, while the drawing on the right is encoded
as a31a11a32a22a31a32a11.

second and third letters of the words can be interchanged without changing the
gridded permutation, which corresponds to placing the points p2 and p3 at different
distances from their base points.

More precisely, suppose that M is a partial multiplication matrix with cell al-
phabet Σ. We say that the two words v, w ∈ Σ∗ are equivalent if one can be
obtained from the other by successively interchanging adjacent letters which rep-
resent independent cells. The equivalence classes of this relation therefore form a
trace monoid, which can be defined by the presentation

〈Σ | aijak� = ak�aij whenever i �= k and j �= �〉.
An element of this monoid (an equivalence class of words in Σ∗) is called a trace.
It is an elementary and foundational fact about presentations that two words lie in
the same trace if and only if one can be obtained from the other by a finite sequence
of applications of the defining relations aijak� = ak�aij whenever i �= k and j �= �
(Howie [17, Proposition 1.5.9 and Section 1.6]). The theory of trace monoids is
understood to considerable depth; see for example Diekert [11].

Proposition 7.1. Let M be a partial multiplication matrix with cell alphabet Σ.
For words v, w ∈ Σ∗, we have ϕ�(v) = ϕ�(w) if and only if v and w have the same
trace in the trace monoid of M .

Proof. It is clear from the preceding discussion that ϕ�(v) = ϕ�(w) whenever v and
w have the same trace.

Now suppose that ϕ�(v) = ϕ�(w). We aim to prove that v and w have the same
trace in the trace monoid of M . Clearly v and w must have the same length, say
n. We prove our assertion by induction on n. In the case where n = 1, note that
ϕ�(ak,�) consists of a single point in cell Ck,�, so if |v| = |w| = 1, then ϕ�(v) = ϕ�(w)
implies that v = w, and thus v and w are in the same trace trivially. Thus we assume
that n ≥ 2 and that the assertion is true for all words of length n− 1.

Write v = v1 · · · vn and w = w1 · · ·wn. If v1 = w1, then from the definition of
ϕ� we have ϕ�(v2 · · · vn) = ϕ�(w2 · · ·wn), and the assertion follows by induction.
Therefore we may assume that v1 �= w1.

Suppose that the column and row signs ofM are c1, . . . , ct and r1, . . . , ru and that
v1 = ak�. While there are four cases depending on the column and row signs ck and
r�, they are essentially identical, so we assume that ck = r� = 1. This means that
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among the points created by following the definition of ϕ�, the point corresponding
to v1 in ϕ�(v) is the leftmost point in its column and bottommost point in its row.
Since ϕ�(v) = ϕ�(w) as gridded permutations, ϕ�(w) must also contain a point in
cell Mk,� which is the leftmost point in its column and bottommost point in its row;
suppose this point corresponds to wi. Because ck = 1, the entries in column k are
placed from left to right, so wi must be the first letter of w which corresponds to a
cell in column k. Similarly, wi must be the first letter of w which corresponds to a
cell in row �. Therefore all of the letters w1, . . . , wi−1 correspond to cells which are
in different rows and columns from Mk,�. This shows that w lies in the same trace
as the word

w′ = wiw1 · · ·wi−1wi+1 · · ·wn = v1w1 · · ·wi−1wi+1 · · ·wn.

Observe that ϕ�(w′) = ϕ�(w) and thus ϕ�(w′) = ϕ�(v). Finally, because v and w′

have the same first letter, we see that v and w′ are in the same trace by the first
case of this argument, which implies that v and w are in the same trace, proving
the proposition. �

This result established, we are reduced to the task of choosing from each trace
a unique representative, which is a well-understood problem.

Proposition 7.2 (Anisimov and Knuth; see Diekert [11, Corollary 1.2.3]). In any
trace monoid, it is possible to choose a unique representative from each trace in
such a way that the resulting set of representatives forms a regular language.

We immediately obtain the following.

Corollary 7.3. For every partial multiplication matrix M , the (gridded) class

Geom�(M) is in bijection with a regular language.

8. Regular languages and rational generating functions

We now shift our attention to the ungridded permutations in a geometrically
griddable class. This is the most technical argument of the paper, and we outline
the general approach before delving into the formalisation.

The crux of the issue relates to the ungridded version of the encoding map ϕ and
arises because it is possible that ϕ(v) = ϕ(w) for two words v, w ∈ Σ∗ even though
ϕ�(v) �= ϕ�(w). This happens precisely when π = ϕ(v) = ϕ(w) admits two different
griddings. To discuss these different griddings, we say that the gridded permutation
(π,G) ∈ Geom�(M) is a Geom�(M) gridding of the permutation π ∈ Geom(M).
Since our goal is to establish a bijection between any geometrically griddable class
C and a regular language, if a permutation in C has multiple Geom�(M) griddings
we must choose only one. To do so, we introduce a total order on the set of all such
griddings of a fixed permutation π and aim to keep only those which are minimal
in this order.

The problem is thus translated to that of recognising minimal Geom�(M) grid-
dings: Given a word w ∈ Σ∗, how can we determine if the gridded permutation
ϕ�(w) represents the minimal Geom�(M) gridding of π = ϕ(w)? If not, then there
is a lesser gridding of π, given by some ϕ�(v). The fact that ϕ�(v) is less than ϕ�(w)
is witnessed by the position of one or more particular entries which lie in different
cells in ϕ�(v) and ϕ�(w).

In order to discuss these entries, we use the terminology of marked permutations
and marked words. A marked permutation is a permutation in which the entries are
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allowed to be marked, which we designate with an overline. (Thus our marked per-
mutations look like some other authors’ signed permutations, although the marking
is meant to convey a completely different concept.) The containment order extends
naturally, whereby we make sure that the markings line up. Formally we say that
the marked permutation π of length n contains the marked permutation σ of length
k if π has a subsequence π(i1), π(i2), . . . , π(ik) such that:

• π(i1)π(i2) · · ·π(ik) is order isomorphic to σ (this is the standard contain-
ment order) and

• for each 1 ≤ j ≤ k, π(ij) is marked if and only if σ(j) is marked.

For example, π = 391867452 contains σ = 51342, as can be seen by consider-
ing the subsequence 91672. A marked permutation class is then a set of marked
permutations which is closed downward under this containment order.

The mappings ϕ and ϕ� can be extended in the obvious manner to order-
preserving mappings ϕ and ϕ� from (Σ ∪ Σ)∗ to the marked version of Geom(M),
without and with grid lines, respectively, where here Σ is the marked cell alphabet
{a : a ∈ Σ} and both mappings send marked letters to marked entries.

Theorem 8.1. Every geometrically griddable class is in bijection with a regular
language, and thus has a rational generating function.

Proof. Let C be a geometrically griddable class. By Proposition 4.2, C ⊆ Geom(M)
for a partial multiplication matrix M . By Corollary 7.3, there is a regular language,
say L�, such that ϕ� : L� → Geom�(M) is a bijection.

We begin by defining a total order on the various griddings of each permutation
π ∈ Geom(M) and thus also on the Geom�(M) griddings of permutations in C.
Roughly, this order prefers griddings in which the entries of π lie in cells as far to
the left and bottom as possible or, in terms of grid lines, the order prefers griddings
in which the grid lines lie as far to the right and top as possible. Suppose we
have two different Geom�(M) griddings of π given by the grid lines G and H.
Because these griddings are different, there must be a leftmost vertical grid line
or, failing that, a bottommost horizontal grid line, which moved. Note that in the
former case, G and H will contain a different number of entries in the corresponding
column, while in the latter case they will contain a different number of entries in
the corresponding row.

Formally, if (π,G) contains the same number of entries as (π,H) in each of the
leftmost k− 1 columns but contains more entries than (π,H) in column k, then we
write (π,G) � (π,H), and we say that column k witnesses this fact. Otherwise, if
(π,G) and (π,H) contain the same number of entries in each column and in each of
the bottom �− 1 rows but (π,G) contains more entries than (π,H) in row �, then
(π,G) � (π,H), and we say that row � witnesses this fact. Given a permutation

π ∈ C, our aim is to choose, from all Geom�(M) griddings of π, the minimal one.

Given a triple (π,G,H) where (π,G) and (π,H) are Geom�(M) griddings of
some π ∈ C with (π,G) � (π,H), we mark the entries of the gridded permutation
(π,H) in the following manner. If (π,G) = (π,H), then no markings are applied. If
(π,G) � (π,H) is witnessed by column k, then we mark those entries of π which lie
in column k in (π,G) but not in (π,H). Otherwise, if (π,G) � (π,H) is witnessed
by row �, then we similarly mark those entries of π which lie in row � in (π,G) but
not in (π,H).
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Let C�
denote the set of all marked gridded permutations obtained from triples

(π,G,H), π ∈ C, in this manner. Because Geom�(M) griddings are inherited by
subpermutations and ϕ� is order-preserving, the language

J =
(
ϕ�

)−1
(
C�
)

is subword-closed in
(
Σ ∪ Σ

)∗
. In particular, J is a regular language. Loosely

speaking, the words in J containing marked letters carry information about all
the nonminimal griddings. Our goal is therefore to recognise these nonminimal
griddings in Σ∗ and remove them from the language L�.

Consider any word w ∈ L�, which encodes the Geom�(M)-gridded permutation

ϕ�(w) = (π,H). The gridding given by H is not the minimal Geom�(M) grid-
ding of π precisely if J contains a copy of w with one or more marked letters.

Let Γ :
(
Σ ∪ Σ

)∗ → Σ∗ denote the homomorphism which removes markings, i.e.,
the homomorphism given by a, a 
→ a. The words which represent nonminimal
griddings (precisely the words we wish to remove from L�) are therefore the set

K = Γ
(
J ∩

((
Σ ∪ Σ

)∗ \ Σ∗
))

.

By the basic properties of regular languages, it can be seen that K and hence
L = L� \K are regular. The proof is then complete, as ϕ : L → C is a bijection. �

9. Indecomposable and simple permutations

Here we adapt the techniques of the previous section to establish bijections be-
tween regular languages and three structurally important subsets of geometrically
griddable classes.

An interval in the permutation π is a set of contiguous indices I = [a, b] such
that the set of values π(I) = {π(i) : i ∈ I} is also contiguous. Every permutation
of length n has trivial intervals of lengths 0, 1, and n; the permutation π of length
at least 2 is said to be simple if it has no other intervals. The importance of simple
permutations in the study of permutation classes has been recognised since Albert
and Atkinson [1], whose terminology we follow. We refer to Brignall [9] for a recent
survey.

Given a permutation σ of length m and nonempty permutations α1, . . . , αm,
the inflation of σ by α1, . . . , αm — denoted σ[α1, . . . , αm] — is the permutation
obtained by replacing each entry σ(i) by an interval that is order isomorphic to αi

in such a way that the intervals are order isomorphic to σ. For example,

2413[1, 132, 321, 12] = 4 798 321 56.

Two particular types of inflations have their own names. These are the direct
sum, or simply sum, π ⊕ σ = 12[π, σ] and the skew sum π � σ = 21[π, σ]. We
say that a permutation is sum indecomposable if it is not the sum of two shorter
permutations and is skew indecomposable if it is not the skew sum of two shorter
permutations.

These notions defined, we are ready to construct regular languages which en-
code the simple, sum indecomposable, and skew indecomposable permutations in a
geometrically griddable class. Our approach mirrors the proof of Theorem 8.1.
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Theorem 9.1. The simple, sum indecomposable, and skew indecomposable permu-
tations in every geometrically griddable class are each in bijection with a regular
language and thus have rational generating functions.

Proof. We give complete details only for the case of simple permutations. The mi-
nor modifications needed to handle sum indecomposable and skew indecomposable
permutations are indicated at the end of the proof.

Let C be a geometrically griddable class. As usual, Proposition 4.2 implies that
C ⊆ Geom(M) for a partial multiplication matrix M . By Theorem 8.1, there is a
regular language L such that ϕ : L → C is a bijection.

Let C denote the set of all permutations in C with all possible markings. We say
that the markings of a marked permutation are interval consistent if the marked
entries of the permutation form a (possibly trivial) interval. Let I consist of all
marked permutations in C with interval consistent markings. Because ϕ is order-
preserving, the preimage

J = ϕ−1(I)
is subword-closed in

(
Σ ∪ Σ

)∗
and thus is a regular language.

Now consider any permutation π ∈ C. This permutation is simple if and only
if it does not have a nontrivial interval. In terms of our markings, therefore, π is
simple if and only if there is no interval consistent marking of π which contains at
least two marked entries and at least one unmarked entry. On the language level,

a word over
(
Σ ∪ Σ

)∗
has at least two marked entries and at least one unmarked

entry precisely if it lies in
(
Σ ∪ Σ

)∗ \
(
Σ∗ ∪ Σ

∗ ∪ Σ∗ΣΣ∗
)
.

Therefore the words in Σ∗ which represent nonsimple permutations in C are pre-
cisely those in the set

K = Γ
(
J ∩

((
Σ ∪ Σ

)∗ \
(
Σ∗ ∪ Σ

∗ ∪ Σ∗ΣΣ∗
)))

,

where, as in the proof of Theorem 8.1, Γ :
(
Σ ∪ Σ

)∗ → Σ∗ denotes the homo-
morphism which removes markings. The simple permutations in C are therefore
encoded by the regular language L \K, completing the proof of that case.

This proof can easily be adapted to the case of sum (resp., skew) indecomposable
permutations by defining markings to be sum consistent (resp., skew consistent) if
the underlying permutation is the sum (resp., skew sum) of its marked entries and
its unmarked entries (in either order). �

10. Atomic decompositions

The intersection of two geometrically griddable classes is trivially geometrically
griddable, and as we observed in Proposition 6.3, their union is geometrically grid-
dable as well. Therefore, within the lattice of permutation classes, the collection
of geometrically griddable classes forms a sublattice. In this section we consider
geometrically griddable classes from a lattice-theoretic viewpoint.

The permutation class C is join-irreducible (in the usual lattice-theoretic sense) if
C �= D∪E for two proper subclasses D, E � C. In deference to existing literature on
permutation classes, we refer to join-irreducible classes as atomic. It is not difficult
to show that the joint embedding property is a necessary and sufficient condition for
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the permutation class C to be atomic. This condition states that for all π, σ ∈ C,
there is a τ ∈ C containing both π and σ.

Fräıssé [14] studied atomic classes in the more general context of relational struc-
tures and established another necessary and sufficient condition. Specialised to the
context of permutations, given two linearly ordered sets A and B and a bijec-
tion f : A → B, every finite subset {a1 < · · · < an} ⊆ A maps to a finite sequence
f(a1), . . . , f(an) ∈ B that is order isomorphic to a unique permutation. We call the
set of permutations that arise in this manner the age of f , denoted Age(f : A → B).
A proof of the following result in the language of permutations can also be found
in Atkinson, Murphy and Ruškuc [7].

Theorem 10.1 (Fräıssé [14]; see also Hodges [16, Section 7.1]). The following three
conditions are equivalent for a permutation class C:

(1) C is atomic,
(2) C satisfies the joint embedding property, and
(3) C = Age(f : A → B) for a bijection f between two countable linear orders

A and B.

The next proposition is a specialisation of standard lattice-theoretic facts which
may be found in more general terms in many sources, such as Birkhoff [8].

Proposition 10.2. Every pwo permutation class can be expressed as a finite union
of atomic classes.

In order to describe the atomic geometrically griddable classes as Geom(M) for
certain matrices M , we allow our matrices to contain entries equal to • in order to
signify cells in which a permutation may contain at most one point. We have to
be a bit careful here, as it is unclear how one should interpret

(
• •

)
. We simply

forbid such configurations, in the sense formalised by the following definitions.
Suppose that M is a 0/•/±1 matrix, meaning that each entry of M lies in

{0, •, 1,−1}. We say that M is •-isolated if every • entry is the only nonzero entry
in its column and row. Given a •-isolated 0/•/±1 matrix M , its standard figure is
the point set in R2 consisting of:

• a single point at (k − 1/2, �− 1/2) if Mk,� = •,
• the line segment from (k − 1, �− 1) to (k, �) if Mk,� = 1, or
• the line segment from (k − 1, �) to (k, �− 1) if Mk,� = −1.

We can then extend the notion of geometric grid classes to 0/•/±1 matrices in the
obvious manner and obtain the following result.

Theorem 10.3. The atomic geometrically griddable classes are precisely the geo-
metric grid classes of •-isolated 0/•/±1 matrices, and every geometrically griddable
class can be expressed as a finite union of such classes.

Proof. First suppose that M is a •-isolated 0/•/±1 matrix. It is clear from the geo-
metric description of Geom(M) that given any two permutations π, σ ∈ Geom(M),
there is a permutation τ ∈ Geom(M) such that τ ≥ π, σ, so such classes satisfy the
joint embedding property and are thus atomic by Theorem 10.1.

Next we show that every geometrically griddable class can be expressed as a finite
union of classes of the form Geom(M) where M is a •-isolated 0/•/±1 matrix. Note
that this will imply that the only atomic geometrically griddable classes are of the
latter type.
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Figure 8. The standard gridded figure of the matrix(
1 −1 1

−1 0 0

)
is shown on the left, while the figure on the

right displays the subfigure for the subclass encoded by the
language {a11, a12}∗{ε, a22}{a11, a12, a32}∗{ε, a22}{a12, a32}∗.

Let C be a geometrically griddable class. By Proposition 4.2, C ⊆ Geom(M)
for some partial multiplication matrix M (note that M is a 0/±1 matrix) with
cell alphabet Σ. Since the encoding map ϕ : Σ∗ → Geom(M) is order-preserving
(Proposition 5.3), the preimage ϕ−1(C) is a subword-closed language. By Proposi-
tion 5.1, we know that ϕ−1(C) is a finite union of languages of the form

(†) Σ∗
1{ε, a2}Σ∗

3{ε, a4} . . .Σ∗
2q−1{ε, a2q}Σ∗

2q+1,

where q ≥ 0, Σ1, . . . ,Σ2q+1 ⊆ Σ, and a2, . . . , a2q ∈ Σ.
Let L denote an arbitrary language of the form (†). We will show that ϕ(L) =

Geom(ML) for some •-isolated 0/•/±1 matrixML, from which the result will follow.
We start with the standard gridded figure Λ� = (Λ, G) of M×(2q+1). Recall that
each cell of the standard gridded figure of M becomes (2q+1)2 cells in Λ� of which

(2q + 1) are nonempty. We use this to label the nonempty cells of Λ� by C
(s)
k,� for

s ∈ [2q + 1], in order of increasing distance from the base point as it would be in
the standard gridded figure of M .

The permutations in ϕ(L) are then equivalent to finite independent sets P ⊆ Λ
of the following form:

• For odd s ∈ [2q + 1], P may contain any point of Λ belonging to cells C
(s)
k,�

for any k, � such that ak,� ∈ Σs, and no points from other cells.

• For even s ∈ [2q + 1], P may contain at most one point from the cell C
(s)
k,� ,

where ak,� = as, and no points from any other cells.

Thus ϕ(L) = Sub(ΛL), where ΛL ⊆ Λ consists of:

(1) all line segments of Λ in the cells C
(s)
k,� where s ∈ [2q+1] is odd and ak,� ∈ Σs

and
(2) the centre point of the subcell C

(s)
k,� where s ∈ [2q+1] is even and as = ak,�.

Figure 8 shows an example of this construction. The subfigure ΛL is clearly the
standard gridded figure of some 0/•/±1 matrix ML. Moreover, as • entries can
only arise from case (2) above, it follows that ML is •-isolated, completing the
proof. �
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11. Concluding remarks

We have provided a comprehensive toolbox of results applicable to geometrically
griddable classes, so perhaps the most immediate question is: how can one tell if
a permutation class is geometrically griddable? Huczynska and Vatter [19] have
shown that a class is contained in a monotone grid class (i.e., it is griddable) if
and only if it does not contain arbitrarily long sums of 21 or skew sums of 12.
However, Grid(M) �= Geom(M) when M is not a forest, so it remains to determine
the precise border between griddability and geometric griddability.

None of the major proofs in the preceding sections are effective, in as much
as they all appeal to the finiteness of certain antichains of words, which follows
nonconstructively from Higman’s Theorem. Therefore these proofs do not provide
algorithms to accomplish any of the following:

• Given a 0/±1 matrixM , compute the basis of Geom(M). In particular, any
bound on the length of the basis elements would provide such an algorithm.

• Given a 0/±1 matrix M , compute the generating function for Geom(M),
the simple permutations in Geom(M), etc.

• Given a 0/±1 matrix M and a finite set of permutations B, determine the
atomic decomposition of Geom(M) ∩ Av(B) and/or its enumeration.

An intriguing, and somewhat different, question is the membership problem.
Given a 0/±1 matrix M , how efficiently (as a function of n) can one determine
if a permutation of length n lies in Geom(M)? Because geometric grid classes
are finitely based, this problem is guaranteed to be polynomial-time, but it could
conceivably be linear-time. Such a result would extend the parallel between geo-
metric grid classes and subword-closed languages, because the latter (and indeed
all regular languages) have linear-time membership problems.

While we believe that geometric grid classes play a special role in the structural
theory of permutation classes, their nongeometric counterparts also present many
natural questions. Perhaps the most natural is the finite basis question. Does the
class Grid(M) have a finite basis for every 0/±1 matrix M? We feel that the answer
should be “yes”, but have scant evidence. In his thesis, Waton [28] proves that the
grid class

Grid
(

1 1
1 1

)

is finitely based.
Another example of a finitely based nongeometric grid class appears in one of the

earliest papers on permutation patterns, where Stankova [24] proves that the class of
permutations which can be expressed as the union of an increasing and a decreasing
subsequence, called the skew-merged permutations, has the basis {2143, 3412}. In
our notation, this class is

Grid
(

−1 1
1 −1

)
.

The class of skew-merged permutations is also notable because it is the only
nongeometric grid class with a known generating function,

1− 3x

(1− 2x)
√
1− 4x

,
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due to Atkinson [4]. Could it be the case that all (monotone) grid classes have
algebraic generating functions? A first step in this direction might be a more
structural derivation of the generating function for skew-merged permutations.
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