
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 351, Number 4, April 1999, Pages 1403–1422
S 0002-9947(99)02086-3

GEOMETRIC GROUPS. I

VALERA BERESTOVSKII, CONRAD PLAUT, AND CORNELIUS STALLMAN

Abstract. We define a geometry on a group to be an abelian semigroup of
symmetric open sets with certain properties. Examples include well-known
structures such as invariant Riemannian metrics on Lie groups, hyperbolic
groups, and valuations on fields. In this paper we are mostly concerned with
geometries where the semigroup is isomorphic to the positive reals, which for
Lie groups come from invariant Finsler metrics. We explore various aspects
of these geometric groups, including a theory of covering groups for arcwise
connected groups, algebraic expressions for invariant metrics and inner met-
rics, construction of geometries with curvature bounded below, and finding
geometrically significant curves in path homotopy classes.

1. Introduction

In this paper we begin a study of geometries on groups. Our definition of “ge-
ometry” is based on the observation that the metric balls centered at the identity
of a (left-)invariant inner metric form a semigroup ordered by inclusion.

Definition 1.1. Let G be a topological group. A geometry on G consists of a
basis {Us}s∈S for the topology of G at the identity e, where (S, +,≤) is a partially
ordered abelian semigroup, having the following properties for all s, t ∈ S:

G1: Us ⊂ Ut if and only if s ≤ t,
G2:

⋂
s∈S

Us = {e},
G3:

⋃
s∈S

Us = G,

G4: Us is symmetric (i.e., U−1
s = Us), and

G5: Us · Ut = Us+t.

For subsets A, B ⊂ G, by AB we mean {xy : x ∈ A and y ∈ B}. The requirement
that S be abelian will be useful for results in a later paper. Also, in the present
paper S is always totally ordered, but requiring this condition in Definition 1.1
seems too restrictive. The notation “+” will be used except when we are using
an alternative operation on the reals or some subset (e.g. Example 1.6). We will
denote simply by R+ the positive reals with its usual ordering and sum operation.
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1404 VALERA BERESTOVSKII, CONRAD PLAUT, AND CORNELIUS STALLMAN

If Definition 1.1 is satisfied, we say that G is a geometric group (parameterized)
over S. (We will sometimes say that {Us} is a geometry over S when in fact {Us}
is parameterized over a subsemigroup of S. We say that a geometry on G is strong
if the closures Us of the members of the geometry also form a semigroup; that is
Us ·U t = Us+t. Since Us+t = UsUt ⊂ UsU t ⊂ Us+t, it follows that the geometry is
strong if and only if UsU t is closed. If the semigroup S is archimedean in the sense
that for every u, v ∈ S there exists a natural number n such that nu > v, and G
is a locally compact, then every element of a geometry over S must have compact
closure. It follows that any geometry over an archimedian semigroup on a locally
compact group is a strong geometry.

Example 1.1. Every (connected) Lie group with invariant Riemannian or Finsler
metric is a geometric group parameterized over R+, where the geometry is the
collection of metric balls centered at e. We will show (Proposition 3.1) that any
geometry over R+ on a topological group corresponds to an invariant inner metric.
It then follows from ([3]) that, conversely, every geometry over R+ on a Lie group
must come from a (possibly non-holonomic) invariant Finsler metric.

Example 1.2. Every Banach space is an example of a strong geometry over R+

on a topological vector space.

Example 1.3. In geometric group theory, the Cayley graph of a group G with
generating set F is provided with an inner metric, where each edge is given length
1. Let Ua = {g ∈ G : d(e, g) ≤ a}, where d(e, g) denotes the length of the shortest
edge-path joining the vertices corresponding to e and g. Then {Ua} is a geometry
parameterized over the non-negative integers (where G has the discrete topology).
Normally, this geometry is assumed to have curvature bounded above in some sense
(which we will not need, and therefore will not define in this paper).

Example 1.4. The first author proved ([5]) that any group G can be realized as
the fundamental group of a 2-dimensional topological space X having a complete
metric d of curvature (in the sense of Alexandrov) bounded above by 1, with the
additional property that every pair of points is joined by a minimal curve. The
curvature bound implies that X is locally contractible; thus we may pass to the
universal covering X̃, to which the metric d can be lifted as a metric d̃. Then by
identifying G with the images under the deck transformations (which are isometries
of X̃) of a single point x, we induce a natural geometry on G, which can also be
considered to have curvature ≤ 1 (again the topology is discrete).

Example 1.5. In [23] the second author showed that every locally compact,
arcwise connected, metrizable group admits a geometry over R+ having curva-
ture bounded below in a certain sense. These geometries are true generalizations
of invariant Riemannian metrics on connected Lie groups. See also Theorem 1.8.

Example 1.6. Let the positive reals have its usual order, and let a∧b = max{a, b}
be the algebraic operation. Then the resulting ordered semigroup is denoted by
Rmax. Note that Rmax cannot be embedded in a group because the cancellation
laws do not apply (e.g. 1∧3 = 2∧3, but 1 6= 2). Also, Rmax is not archimedean (cf.
the paragraph after Definition 1.1). Given a geometry {Ur} over Rmax on a group
G, each set Ur consists of the metric ball centered at e of radius r with respect to
some invariant metric d (see Section 3). It is easy to see that this metric must be
an ultrametric; i.e, for all x, y, z ∈ G, d(x, y) ≤ max{d(x, z), d(z, y)}. Conversely,
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GEOMETRIC GROUPS 1405

every invariant ultrametric on a group gives rise to a geometry over Rmax. It is
clear that any geometry on a group G parameterized over Rmax must consist of
open subgroups, with the result that G is totally disconnected. In a later paper
we will prove that every locally compact totally disconnected group admits such a
geometry, and investigate these geometries more fully.

Example 1.7. Valuations on fields provide interesting examples of geometries. We
give here a very brief description of valuations on fields in order to show that every
valuation gives rise to a geometry over R+ or Rmax; references for valuations on
fields are [10] and [18] (our terminology differs from that of the latter). Let K be
a field with additive identity 0 and multiplicative identity 1. A valuation |·| on K
is a nonnegative real valued mapping on K satisfying the following axioms:

1. |x| = 0 if and only if x = 0,
2. |xy| = |x| |y|, and
3. |x + y| ≤ |x|+ |y|.
We assume that a valuation is non-trivial (i.e. there is some x ∈ K such that

|x| /∈ {0, 1}). In the terminology of Section 3 of this paper, a valuation on K is
equivalent to a family {Ur} of open sets satisfying conditions M1-M5, and the sets
Ur := {x ∈ K : |x| < r} are the metric balls centered at 0 of radius r with respect to
a left-invariant metric on K. The field K with the topology induced by this metric
is a topological field. Two valuations |·|1 , |·|2 on K induce the same topology if
and only if they are equivalent, i.e. for some number c > 0, we have |x|1 = |x|c2
for all x ∈ K. Another equivalent condition is that, setting Vi(r) = {x : |x|i ≤ r}
(i = 1, 2), V1(1) = V2(1).

A valuation is non-archimedean if the following condition holds: (3′) |x + y| ≤
max{|x| , |y|}. Condition (3′) is equivalent to the corresponding metric being an
ultrametric, and so from Example 1.6, we see that {Ur} must be a geometry of
the (additive) group K over Rmax. A non-archimedean valuation on a field F can
be extended to a (non-archimedean) valuation on any finite dimensional extension
field E of F .

In the equivalence class of any archimedean (i.e. not non-archimedean) valuation
on K there is a unique valuation which defines a strong geometry over R+, on K;
it is the geometry induced by an embedding of K in the complex numbers C with
the usual norm.

As a standard example, one can define on the rational numbers Q the (non-
archimedean) p-adic valuation |·|p for any prime p by

∣∣∣ pau
v

∣∣∣
p

= p−a, where u, v are

nonzero and not divisible by p. (We set |0| = 0.) Every nontrivial valuation on Q
is equivalent to |·|p for some p or the usual absolute value |·|∞.

Every “valuated” field K has a completion K: a valuated field containing K
whose metric is the completion of the metric of K. For example, the completion of
Q with |·|∞ is R with |·|∞; the completion of Q with |·|p is the field Qp of p-adic
numbers. The closure Zp of Z in Qp is the ring of p-adic integers. The extension
of a complete valuation on F to a finite dimensional extension E of F is uniquely
determined.

Every local (i.e. nondiscrete locally compact) topological field is complete rel-
ative to any compatible valuation. As an example of such a field we can take the
field Fq((t)) of formal power series over the finite field Fq with q elements, where
q = ps, p a prime. Here each element x of Fq((t)) and the valuation |·|c have the
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1406 VALERA BERESTOVSKII, CONRAD PLAUT, AND CORNELIUS STALLMAN

following form: x = 0 or x =
∞∑

n=I

αntn, I ∈ Z, αn ∈ Fq, αI 6= 0; |x|c = cI , 0 < c < 1,

and |0| = 0. Every local field admits at most one (up to equivalence) compatible
valuation |·|. Up to isomorphism there are only three possible cases, each of which
corresponds to a geometry:

(a) If |·| is archimedean, then (K, |·|) = (R, |·|∞) or (C, |·|∞).
(b) If |·| is non-archimedean and the characteristic of K is 0, then K is a finite

dimensional extension of Qp, for some prime p, and |·| is the unique extension of
|·|p.

(c) If |·| is non-archimedean and the characteristic of K is p 6= 0, then (K, |·|) =
(Fq((t)), |·|c) for some q = ps and 0 < c < 1.

If K is a valuated field, we let Vr = {x : |x| ≤ r} and note that V := V1 is
a multiplicative semigroup of K. The set U = V − U1 is the group of units, and
contains 1. If the valuation is non-archimedean, then V is a ring, the so-called
valuation ring.

More generally, one can define a valuation on a field K with values in a linearly
ordered multiplicative group (S, ·,≤) with unit 1, (S is the value group) using the
axioms (1), (2), (3′). It is interesting to note that every such group S can be
realized as the value group for an appropriate valuated field. For such a valuation,
the valuation ring V has the property that for any x ∈ K\{0}, x or x−1 is in V .
Conversely, every such ring V in a field K is a valuation ring for some valuation |·|
with value group S = K∗/U . Here K∗ = (K\{0}, ·) is the (abelian) multiplicative
group of the field K and U is the group of units of the ring V , which consists of all
x ∈ K such that x and x−1 are both in V . Let f : K∗ → K∗/U be the canonical
automorphism. One defines f(x) ≤ f(y) if and only if xy−1 ∈ V , 0 ≤ x; and
|x| = f(x), x ∈ K∗, |0| = 0. Evidently one obtains in this way a geometry on the
additive group K.

Example 1.8. Let Z(K) be the integer lattice in the algebra K of the real, com-
plex, or quaternion numbers, given a Euclidean norm ‖·‖ such that ‖ab‖ = ‖a‖ ‖b‖
and ‖1‖ = 1. For example, Z(R) is the integers; Z(C) is the “Gaussian integers.”
We let l be the real dimension of the vector space K. Then any ideal J in Z(K) is
principal: J = (q), where q is an element in J of least norm. Since J is generated
from the cyclic subgroup generated by q and rotations of angle π

2 , it is easy to see
geometrically that the “fundamental domain” for such an ideal is an l-dimensional
cube of side length ‖q‖. It follows that the index I(J) = [Z(K) : J ] = ‖q‖l. For
‖q‖ > 1, we can consider the ideals J(n) = (qn), n = 0, 1, 2, . . . , where (q0) = Z(K).
The natural inverse limit G of the finite abelian groups Z(K)/J(n) is a compact
totally disconnected group, in fact a generalization of the p-adic integers. (Here
the group operation is that induced by the sum, not the product, in the alge-
bra K, so is abelian even for the quaternions.) For any z 6= 0 in Z(K), we let
deg(z) = max{n : z ∈ J(n)}. Then deg(z) < ∞ since

⋂
J(n) = {0}. We define

deg(0) = +∞. If we let Ur = {z : f(z) < r}, where f(z) = ‖q‖− deg(z), we obtain a
geometry on Z(K). Alternatively, we can take a power of f(z) in the definition. If
we take the completion of the metric corresponding to this geometry, we obtain a
geometry on G of the type described in Example 1.6.

It is interesting to observe the contrast between geometries over R+ and Rmax.
The first requires a very connected (i.e. arcwise and locally arcwise connected)
topology, while the second requires a totally disconnected topology. A geometry
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over R+ corresponds to an inner metric, which for a locally compact group has the
property that for every distinct x, y, there is a distinct point z such that d(x, y) =
d(x, z)+d(z, y). A geometry over Rmax corresponds to an ultrametric, which has the
property that for distinct points x, y, z, the triangle inequality is never an equality.

Note that, in the above examples, if G has finite diameter, then Ua = G for
sufficiently large a; in general it need not be true that if r is strictly less than s,
then Ur is a proper subset of Us. There are other types of semigroups of open
sets on groups (and other algebraic objects) in which some of the conditions of
Definition 1.1 have been changed or omitted, but which should also be considered
as geometries or pseudogeometries of some sort. We will consider these in a later
paper.

A collection of not necessarily open sets {Us} satisfying the conditions of Defini-
tion 1.1, except G3, for S = R+, has been called a Gleason semigroup in [14] . The
existence of non-trivial Gleason semigroups for metrizable locally compact groups
can be used to show the existence of non-trivial one-parameter subgroups as part
of a solution to Hilbert’s Fifth Problem (cf. [14]). In general the sets in a Gleason
semigroup are not open (and in fact, by Proposition 3.1, for locally compact, con-
nected groups, they can be open only if the underlying group is arcwise connected).
We do not know of a direct argument (and such would be interesting) that, for
an arcwise connected locally compact, metrizable group, the simple construction of
Gleason semigroups shown in [14] can be carried out in such a way that one obtains
a geometry over R+ (and hence an inner metric).

In this paper the word “group” will mean a Hausdorff topological group, and e
always denotes the identity. A subgroup of a group is assumed to have the subspace
topology. By “topological isomorphism” we mean a group isomorphism that is
also a homeomorphism. At present we are concerned mainly (not exclusively)
with arcwise connected groups, and the relation between topological properties
and geometric ones. Since our spaces are arcwise connected, we are interested in
geometries over R+. While a number of our present results concern locally compact
groups, one of our goals is to remove, to whatever extent possible, the assumption
of local compactness. This effort is necessary even for a proper study of locally
compact groups, since the universal covering group (see Theorem 1.5) of a locally
compact group may not be locally compact. We are further motivated by the fact
that infinite dimensional groups (particularly transformation groups) are often not
locally compact. Local compactness is a convenient assumption because it provides
an invariant measure, and therefore a way to do analysis. Our goal is to use direct
geometric methods in more general situations.

We begin Section 2 by introducing notions of “semidiscrete” and “hemidiscrete”
groups (Definition 2.1), and define an arcwise connected group G̃ to be a cover of
an arcwise connected group G if G = G̃/H , for some closed, normal, semidiscrete
subgroup H . Note that the quotient map π : G̃ → G may not be locally injective
(and so π is not a covering map in the usual sense). We prove:

Theorem 1.1. Let G be a complete arcwise connected topological group and H
a closed, normal semidiscrete subgroup of G. Suppose X is a simply connected,
arcwise connected and locally arcwise connected space. If f : X → G/H is a
(continuous) map such that f(x0) = e, then there is a unique (continuous) lift
f̃ : X → G such that f̃(x0) = e and π ◦ f̃ = f , where π : G→ G/H is the natural
projection.
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1408 VALERA BERESTOVSKII, CONRAD PLAUT, AND CORNELIUS STALLMAN

Corollary 1.2. If G̃ is an arcwise connected, simply connected complete cover of a
complete group G and π : G̃→ G is the quotient mapping, then ker(π) is naturally
isomorphic to π1(G).

By π1(G) we mean, as usual, homotopy equivalence classes of loops based at
e with the usual multiplication. Since left translation is a homeomorphism, the
fundamental group is independent (up to isomorphism) of base point even if the
group is not arcwise connected.

Corollary 1.3. If G is a complete group with complete arcwise connected, locally
arcwise connected, simply connected covers G̃1 and G̃2, then G̃1 is topologically
isomorphic to G̃2.

Corollary 1.4. Let G be a complete group with arcwise connected, locally arcwise
connected, complete covers G̃1 and G̃2. If G̃1 is simply connected, then there exists
a cover π : G̃1 → G̃2.

Corollaries 1.3 and 1.4 justify referring to a simply connected arcwise and locally
arcwise connected group G̃ that covers a group G as the universal cover of G. We
don’t know to what extent local arcwise connectedness is needed in the above
corollaries. However, it should be pointed out that S1 is covered both by R (in
the usual way) and by the solenoid Σ. Recall that Σ, which is connected but
not arcwise connected, is the inverse limit of circles, where the connecting maps
are multiplication by 2; the projection of Σ onto any of the circles can easily be
shown to have hemidiscrete kernel. This example also demonstrates one difficulty in
showing, in general, the existence of a universal covering group for a given arcwise
connected group: an inverse limit of groups in this category, even with discrete
kernels of the connecting maps, need not be arcwise connected.

In [13], Glushkov gives a construction of the universal covering of a connected,
locally connected, locally compact group (this paper was apparently never trans-
lated into English). Later, Lashof also gave a different construction of the universal
covering group of a connected, locally compact (or more generally LP -group) in
[20]. Glushkov constructed the Lie algebra for a locally compact group in [12] and
Lashof used a different construction of a the same object in [20]. Glushkov proved
that the universal cover is uniquely determined by the Lie algebra, and Lashof
proved the universal cover is independent of the particular inverse limit used in
his construction. We give a shorter, alternative to construction of the Glushkov-
Lashof cover for arcwise connected, metrizable locally compact groups, obtaining
the following theorem, which adds to the Glushkov-Lashof result that the kernel of
the cover is hemidiscrete (rather than just totally disconnected) and also part (5)
(which we will need later). See also Definition 2.1.

Theorem 1.5. Let G be a locally compact, arcwise connected, metrizable group.
Then there exist

1. a simply connected Lie group L (L is either trivial or non-compact),
2. at most countably many simply connected, compact, simple Lie groups Gi,
3. an at most countable product Rω of the reals,
4. an epimorphism π : G̃ := L×G1×··· ×Rω → G such that kerπ is hemidiscrete,

and
5. the projection of kerπ onto the factor Rω is the lattice Z× 1

2Z× 1
4Z× · · ·.
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Note that Corollary 1.3 gives a different, and in some ways more satisfactory,
uniqueness result than those of Glushkov and Lashof.

Rickert ([25]) stated a path lifting lemma for locally compact groups, but his
sketchy proof is partly incorrect. Rickert’s result also cannot be applied to the
simply connected cover of a locally compact group because (as is evident from
Theorem 1.5) it may not be locally compact. It also turns out that [13] contains
many of Rickert’s (later) results, including the equivalence of arcwise connectedness
and local connectedness for locally compact, connected groups.

In Section 3 we give a purely algebraic description of the notion of invariant
metric and invariant inner metric on a group, which leads naturally to the above
definition of geometric group. As we have mentioned, an invariant inner metric
is essentially a geometry over R+. An invariant metric is essentially the same as
a geometry over R+, except that the semigroup condition (G5) is weakened to
Us · Ut ⊂ Us+t (which corresponds to the triangle inequality). To demonstrate the
usefulness of this perspective we give a very simple (compared to the elsewhere
repeated argument found in [21]) proof that a first countable group is metrizable.
Our algebraic description also allows for the easy introduction of a quotient metric
(or inner metric), which has the following useful property:

Proposition 1.6. Let G be a group with invariant metric (or inner metric), and
H be a closed normal subgroup. If π : G → G/H is the quotient map, then π is a
weak submetry with respect to the quotient metric (or inner metric) on G/H.

The notions of weak submetry (resp. submetry) were introduced in [3]; they
simply mean that any open (resp. closed) metric ball B(p, r) (resp. C(p, r)) is
mapped precisely to B(π(p), r) (resp. C(π(p), r)). For example, a Riemannian
submersion is a weak submetry, and it is possible to prove that, conversely, every
weak submetry between Riemannian manifolds is a Riemannian submersion of class
C1 (these are unpublished results of the first author). We show in the present paper
(Proposition 3.4) that a weak submetry preserves a lower curvature bound. We
immediately have:

Corollary 1.7. If G is a group with invariant inner metric of curvature ≥ k and H
is a closed normal subgroup of G, then the quotient metric on G/H is an invariant
inner metric of curvature ≥ k.

We will not specifically use the property of curvature ≥ k in this paper, except
in the proof of Proposition 3.4; for further information and definitions we refer to
[23]. We point out here that if H is compact in Proposition 1.6, then π is in fact a
submetry. Also, we can use essentially the same definition to define a more general
quotient geometry, but we won’t use this idea in the present paper.

We give an application of Corollary 1.7 in Section 3: First we show that for
a locally compact, arcwise connected, metrizable group G, there is a surjective
homomorphism π′ : L×G1 × · · · ×E → G, where E = Rω when ω is finite, E = l2

is (the natural embedding of) separable Hilbert space in Rω when ω is infinite,
and π′ is the restriction of the map π from Theorem 1.5. We call π′ the metric
restriction of π. We prove the following theorem, which strengthens, and simplifies
the proof of, the main existence theorem of [23]:

Theorem 1.8. Let G be an arcwise connected, first countable, locally compact
group, and consider the metric restriction π′ : G̃M = L × G1 × · · · ×E → G
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of the universal cover π : G̃. → G. If the factors of G̃M are given appropriately se-
lected Riemannian metrics and G̃M is given the product metric, the quotient metric
on G = G̃M/ kerπ′ is compatible with the topology of G, and is an invariant inner
metric of curvature ≥ k.

The relevant definitions may be found in Section 3. Note that the topology on
G̃M is finer than the subspace topology induced by G̃ because the inclusion E ↪→ Rω

is continuous, but if E is infinite dimensional, the inclusion is not a homeomorphism
onto its image. Nonetheless the quotient topology on G̃M/ kerπ′ is the same as that
of G. This is possible because the “fundamental domain” of the mapping π′ may
have no interior. For example, in the special case of G = T∞ = S1 × S1 × · · ·, the
fundamental domain is the Hilbert cube in l2, and the mapping π′ : l2 → T∞ can be
considered as identifying “opposite sides” of this (compact) domain. Note also that
since the topology on G̃M is finer than the induced topology, kerπ′ = kerπ∩ G̃M is
totally disconnected. On the other hand, l2 is not topologically isomorphic to R∞

(for example, no finite metric ball in l2 contains a 1-parameter subgroup, whereas
every basis element of R∞ does). (Recall that Anderson and Bing proved that l2

and R∞ are homeomorphic in [1].) Therefore, from Corollary 1.3 and the fact that
a closed subgroup of a complete group is complete, we obtain the following:

Proposition 1.9. The kernel of the natural mapping π′ : l2 → T∞ is complete
and totally disconnected but not semidiscrete.

Thus we see that merely having a totally disconnected kernel is not sufficient
for a continuous homomorphism to have adequate covering properties. In the next
paragraph we will see explicitly which curves cannot be lifted in π′; kerπ′ is only a
special subgroup of π1(T∞) explicitly described by the metric we have constructed.

In a compact Riemannian manifold every free homotopy class of closed curves
contains a shortest representative, and that representative is a closed geodesic (if we
fix a base point, the same result holds, but the shortest element is only a geodesic
loop, with a possible break at the base point). The proof is roughly this: Due to
the local convexity of the space, one can always find a piecewise geodesic in every
path homotopy class. In particular, we can find a rectifiable curve in the class,
and so by using Ascoli’s theorem (and the local convexity) we can find a shortest
curve in the class. If we suppose this shortest curve is not a closed geodesic, we
can use local convexity a third time to shorten it, and obtain a contradiction. A
similar claim was made in [15] for compact inner metric spaces, but the statement
given there is not true. In Section 4 we give a simple counterexample contained
in the plane, in which a path homotopy class has a shortest element but does not
contain a geodesic. More importantly, we show that similar behavior occurs in
the infinite torus T∞ = S1 × S1 × · · · with a product metric, and moreover there
are path homotopy classes containing no rectifiable curves at all. We can now see
explicitly why π′ does not have good covering properties: with the metric induced
by π′ (via Theorem 1.8), it is not possible to lift non-rectifiable curves to G̃M , so
path homotopy classes without rectifiable curves are not represented in kerπ′. We
note here that the third author has shown ([27]) using Theorem 1.8 that given any
locally compact, metrizable, arcwise connected group G and 1-parameter subgroup
γ, one can construct an invariant inner metric of curvature bounded below such
that γ is rectifiable.

Our last result in this paper is the following:
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Theorem 1.10. Let G be an arcwise connected, locally compact, metrizable group
equipped with a metric of the form given by Theorem 1.8. Then every path homotopy
class based at e contains a curve of the form c(t) = γ(t)ω(t) = ω(t)γ(t), where γ(t)
is a geodesic and ω(t) is a 1-parameter subgroup (γ(t) or ω(t) may be trivial).

2. Simply connected and universal covering groups

A net in a topological space is a subset {xα}α∈A indexed on some directed
set A (i.e., a net is a kind of generalized sequence for spaces which do not have
a countable basis). Convergence has essentially the same meaning for nets as it
does for sequences. A net {xα}α∈A in a topological group is Cauchy if for every
neighborhood U of e there exists an α such that for all β ≥ α in A, x−1

β xα ∈ U . A
topological group is complete if every Cauchy net is convergent. Locally compact
groups and groups admitting a metrically complete invariant metric are complete;
every invariant metric on a complete group must be (metrically) complete. Not
every (non-abelian) topological group can be completed as a topological group (see
[7] for more details). If G is a topological group and A is a directed indexing set, an
ordered family {Kα}α∈A of (closed) subgroups of G is a set of closed subgroups such
that if α < β, then Kβ ⊂ Kα. Associated with an ordered family {Kα}α∈A is an
inverse system of maps G/Kα

παβ← G/Kβ . Recall that the inverse limit lim←−G/Kα is
the subset of the product

∏
α∈A

G/Kα consisting of those elements (gαKα)α∈A such

that gαKα = παβ(gβKβ); i.e., gαg−1
β ∈ Kα. If each Kα is normal, then lim←−G/Kα

has the structure of a group. There is a natural mapping g 7→ (gKα) of G into
lim←−G/Kα, which is a homomorphism if each Kα is normal. The natural mapping
is injective if and only if

⋂
α∈A

Kα = {e}. For example, if G has an ordered family

{Kα} such that G/Kα is discrete and
⋂

α∈A

Kα = {e}, then G embeds in the totally

disconnected product
∏

α∈A

G/Kα, and so is itself totally disconnected. The following

lemma is proved in [7] for normal subgroups; the proof of the statement below can
be found in [27].

Lemma 2.1. Let G be complete and {Kα}α∈A be an ordered family of subgroups
of G such that for every open U 3 e there exists an α such that Kα ⊂ U . Then the
natural mapping i : G→ lim←−G/Kα is 1-1 and onto. Thus if each Kα is normal, i
is a topological isomorphism.

Definition 2.1. A complete topological group H is called semidiscrete (resp. hemi-
discrete) if every neighborhood of e in H contains an open (resp. open normal)
subgroup.

Clearly any discrete group is hemidiscrete, and the notions of hemidiscrete and
semidiscrete are equivalent for abelian groups. Recall that an open subgroup of a
topological group is automatically closed (cf. [24], p. 102). If K is an open (and
hence closed) subgroup of a topological group H , then H/K is discrete. By the
above comments we now immediately have:

Lemma 2.2. A group G is semidiscrete (resp. hemidiscrete) if and only if it is
the inverse limit of discrete G-spaces (resp. groups).

Recall that a space X is a G-space if G acts transitively on X . If H is semidis-
crete, then by Lemma 2.2, H can be written as an inverse limit of discrete spaces
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and is therefore totally disconnected. Proposition 1.9 shows that the converse state-
ment is false. On the other hand, it follows from results in [24], p. 131 that a locally
compact totally disconnected group must be semidiscrete. The proof of the next
lemma is easy.

Lemma 2.3. Let G be a group.
1. If G is semidiscrete (resp. hemidiscrete), then any closed subgroup of G is

semidiscrete (resp. hemidiscrete).
2. If G is semidiscrete (resp. hemidiscrete) and H is a closed normal subgroup

of G, then G/H is semidiscrete (resp. hemidiscrete).
3. If G is the direct product (possibly infinite) or inverse limit of semidiscrete

(resp. hemidiscrete) groups, then G is semidiscrete (resp. hemidiscrete).

Proposition 2.4. Suppose G is a complete group, H is a closed, central subgroup
of G, and both H and G/H are hemidiscrete. Then G is semidiscrete.

Proof. Let U be an open neighborhood of e in G. Since H is hemidiscrete, there is
an open set V contained in U such that V ∩H is an open normal subgroup N of
H . Since H is central, N is also normal in G. By the Third Isomorphism Theorem,
the kernel of the natural map π : G/N → G/H is isomorphic to H/N , which is a
discrete group. Thus π is a local isomorphism. Since G/N is locally isomorphic to
the hemidiscrete group G/H , G/N is semidiscrete. The proof is now complete by
Lemmas 2.1 and 2.3. �

Example 2.1. Let H = Z/(2) × Z/(2) × · · · and G be the semidirect product of
H by Z, with multiplication given by

(m, (ai))(n, (bi)) = (m + n, (ai+n + bi)).

That is, Z acts on H by translating the coordinates of each element. Then it is not
hard to show that if h := (n, (bi)) ∈ G is non-trivial such that bk = 0 for some k,
then there exists a g ∈ G such that (s, (ci)) := g−1hg satisfies ck 6= 0. It follows
that any nontrivial subgroup of H that is normal in G must equal H . So even
though H and G/K ≡ Z are hemidiscrete, G is not.

Lemma 2.5. If H is a totally disconnected normal subgroup of an arcwise con-
nected group G, then H is central.

Proof. Let h ∈ H and let g ∈ G. We need to show that g−1hg = h. Since G
is arcwise connected there is an arc γ from e to g. Let α be the arc given by
α(t) = (γ(t))−1hγ(t). Then α is an arc from e to g−1hg that stays in H . But H
being totally disconnected can contain no nontrivial arcs. Hence α must be the arc
that is constantly h and we obtain that g−1hg = h. �

Corollary 2.6. Any semidiscrete subgroup of an arcwise connected group is central
and hemidiscrete.

Proposition 2.7. Let A, B, C be complete arcwise connected groups and suppose
that there are covers π1 : A→ B and π2 : B → C. Then π2 ◦π1 : A→ C is a cover.

Proof. By Corollary 2.6 kerπi is central and hemidiscrete for i = 1, 2. The proof is
now complete by letting G = ker(π2◦π1), H = kerπ1 and K = kerπ2 in Proposition
2.4, and using Corollary 2.6. �
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A closed, semidiscrete subgroup H of a Lie group G, being totally disconnected,
is in fact discrete. This means that the quotient map G→ G/H is a covering map.
Theorem 1.1 is a generalization of this fact.

Proof of Theorem 1.1. By Corollary 2.6, H is hemidiscrete and central, and we can
take open normal subgroups {Kα} of H , which constitute a basis for the topology
of H at e. By Lemma 2.1, H = lim←−H/Kα; each H/Kα is a discrete group. Since
H is central, each Kα is central, and hence normal in both H and G. There is a
natural topological isomorphism, φα : G/H → Qα := (G/Kα)/(H/Kα). Now let
fα = φα ◦ f : X → Qα. Since the natural map qα : G/Kα → Qα has discrete
kernel, it is a covering map (cf. [24], p. 360). Since X is simply connected, arcwise
connected and locally arcwise connected, fα has a unique lift f̃α : X → G/Kα such
that f̃α(x0) = Kα and qα ◦ f̃α = fα. (For details on lifting maps to covers, see [22],
Lemma 14.2.)

Let f̃ : X → ∏
G/Kα be defined by f̃(x) = (f̃α(x))α∈A. We first claim that

παβ ◦ f̃β = f̃α, where παβ : G/Kβ → G/Kα, α < β, is the natural map. By
uniqueness we need to show that qα ◦ παβ ◦ f̃β = fα. If f(x) = gH , then fβ(x) =
{gKβ} (equivalence class mod H) and f̃β(x) = gβKβ , with g−1

β g ∈ H . Now qα ◦
παβ ◦ f̃β(x) = qα(gβKα) = {gβKα} = fα(x) (since g−1

β g ∈ H), and the claim is
proved. An immediate consequence of the claim is that f̃(x) ∈ lim←−G/Kα; i.e., we
have in fact defined a mapping f̃ : X → lim←−G/Kα, which is isomorphic to G, by
Lemma 2.1.

We next claim that π ◦ f̃ = f . As in the previous paragraph, we have, for
x ∈ G, f(x) = gH and f̃(x) = (gαKα)α∈A, where g−1

α g ∈ H for all α. Since
f̃(x) ∈ G = lim←−G/Kα, we can also write f̃(x) = g′ = (g′Kα)α∈A; i.e., for all α,
g−1

α g′ ∈ Kα ⊂ H ; whence g−1g′ ∈ H , and the claim follows.
The continuity of f̃ and the fact that f̃(x0) = e are immediate from the definition.

Uniqueness follows from the total disconnectedness of H . We proceed as in [25].
If g̃ is another lift, let Z = {(g̃(x))−1(f̃(x)) : x ∈ X}. Since π(g̃(x)) = π(f̃(x)),
Z ⊂ H . But Z is connected, so Z = {e}. �

Proof of Corollary 1.2. We define a map ξ : π1(G) → kerπ in the usual way:
ξ([α]) = α̃(1) where α̃ is the lift of α : [0, 1] → G (α(0) = α(1) = e) starting
at e. It is trivial to verify that ξ is well-defined and injective. To see that ξ is a
homomorphism, recall that, if ∗ denotes concatenation, [α ∗ β] = [αβ]. Let α̃, β̃, α̃β

be the lifts of α, β, and the product αβ, to G̃ at e. Then π( α̃β(t)(β̃(t)−1α̃(t)−1)) =
α(t)β(t)β(t)−1α(t)−1 = e for all t. Hence the entire path α̃β(t)(β̃(t)−1α̃(t)−1) lies in
kerπ. Since kerπ is totally disconnected, α̃β(t)(β̃(t)−1α̃(t)−1) = e for all t. Finally,
it is immediate from the fact that G̃ is arcwise connected that ξ is surjective. �

Proof of Corollary 1.3. By applying Theorem 1.1 to the quotients π1 : G̃1 → G

and π2 : G̃2 → G we easily see that the lifts p1 : G̃1 → G̃2 and p2 : G̃2 → G̃1,
respectively are continuous, surjective maps, and p−1

1 = p2; i.e., p1 is a homeomor-
phism. We need to see that p1 is a homomorphism. Let g, h ∈ G̃1 and consider
the product x = p1(gh)p1(h)−1p1(g)−1 ∈ G̃2. Then π2(x) = e, so x ∈ kerπ2. The
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map η : G̃1 × G̃1 → G̃2 defined by η((g, h) = p1(gh)p1(h)−1p1(g)−1 is a continu-
ous map from the connected space G̃1 × G̃1 into a connected subset of the totally
disconnected subgroup ker π2. Since η((e, e)) = e, p1 must be a homomorphism. �

Proof of Corollary 1.4. Let πi : G̃i → G be the given covers for i = 1, 2. Again
we apply Theorem 1.1 and lift π1 to a map π : G̃1 → G̃2, which as in the above
proof is a continuous surjective homomorphism. Since π1 = π2 ◦π, kerπ is a closed
subgroup of kerπ1 and so is semidiscrete. �

We now begin the construction of the simply connected cover of a locally com-
pact, arcwise connected, metric group.

Lemma 2.8. Let G1 and G2 be compact connected Lie groups and p : G2 → G1

be an epimorphism. Let G̃1 and G̃2 be the universal covering groups of G1, G2,
respectively. Then G̃1 = S1×·· ·×Sm×Rk and G̃2 = S1×·· ·×Sn×Rl, where each
Si is a (compact) simple, simply connected Lie group, m ≤ n and k ≤ l. There is
a commutative diagram of epimorphisms

G̃1
p̃←− G̃2

q1 ↓ q2 ↓
G1

p←− G2

where qi is the covering map, and p̃ is the natural projection of the product.

Proof. Let p̃ denote the unique lift to G̃1 of the map p ◦ q2 such that p̃(e) = e

and the diagram commutes. Then p̃ is an epimorphism. In fact, for any a, b ∈ G̃2,
g = p̃(ab)p̃(b)−1p̃(a)−1 lies in ker q1, which is discrete. For any curves a(t), b(t)
joining e to a and b, the curve g(t) = p̃(a(t)b(t))p̃(b(t))−1p̃(a(t))−1 joins e to g(1)
in ker q1, hence g = g(1) = e, and it follows that p̃ is a homomorphism. For any
x ∈ G̃1, we can connect x to e by a curve, project the curve to a curve γ in G1.
Since p is a fibration ([26]), we can lift γ (perhaps not uniquely!) to G2, then lift it
again to a curve α connecting e to some point y ∈ G̃2. Since p̃ ◦ α must also be a
lift of q1 ◦ γ, it follows from uniqueness that p̃(y) = x.

It is well-known that G̃1 and G̃2 are of the form G̃1 = S1 × · · · × Sm × Rk and
G̃2 = S′1×···×S′n×Rl, where each Si, S

′
i is a (compact) simple, simply connected Lie

group, and this decomposition is unique. (See, for example, [16], section II.6, and
use the fact that a Lie algebra determines a unique simply connected (connected) Lie
group.) Since the Euclidean factor Rj in each case is the identity component of the
center, it follows that p̃(Rl) ⊂ Rk. Likewise, if L1 := S1×···×Sm, L2 = S′1×···×S′n,
the compactness of L2 implies that the projection of p̃(L2) onto the Rk factor must
be trivial; i.e. p̃(L2) ⊂ L1. It follows that if pR : Rl → Rk and pL : L2 → L1

are the restrictions of p̃ to the two factors, then p̃ = pR × pL. By rewriting the
product, if necessary, we can take pR to be the natural projection. (In fact, ker pR is
connected by the homotopy sequence for the fibration (cf. [26]), and closed, so must
be a Euclidean subgroup.) Now let l2 be the Lie algebra of L2. First note that we
may write l2 = ker dpL⊕P where P = (ker dpL)⊥ is the ideal of elements orthogonal
to ker dpL with respect to the Killing form (see [16], Proposition 6.1). But l2 is
uniquely represented as s1⊕· · ·⊕ sn where si is the Lie algebra of S′i and Corollary
6.3 of [16] implies that P = sσ(1) ⊕ · · · ⊕ sσ(k) and ker dpL = sσ(k+1) ⊕ · · · ⊕ sσ(n)

where σ is some permutation of the numbers 1, . . . , n. Let l1 be the Lie algebra
of L1. Then l1 = dpL(l2) = l2/ kerdpL = P = sσ(1) ⊕ · · · ⊕ sσ(k) and dpL is the
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projection of the direct sum s1⊕· · ·⊕sn onto sσ(1)⊕· · ·⊕sσ(k). It follows now from
uniqueness for simply connected Lie groups that m = k and that Si = S′τ(σ(i)) for
i = 1, . . . , k and some permutation τ of {σ(1), . . . , σ(k)}. Uniqueness also implies
that pL is the projection of S′1 × · · · × S′n onto S′τ(σ(1)) × · · · × S′τ(σ(k)). �

Theorem 2.9. Let G be a compact, first countable, arcwise connected group. Then
there is a commutative diagram

G̃1
p̃1,2←− G̃2

p̃2,3←− · · · p̃i−1,i←− G̃i
p̃i,i+1←− · · · G̃ = lim←− G̃i

q1 ↓ q2 ↓ qi ↓ q ↓
G1

p1,2←− G2
p2,3←− · · · pi−1,i←− Gi

pi,i+1←− · · · G = lim←−Gi

where each Gi is a compact Lie group, G̃i is its universal cover, qi is the covering
map, ker pi−1,i is connected, and

1. G̃ ' S1×S2×· · ·×R×R×· · ·, where each Si is a compact, simply connected
simple Lie group, R is the real line, and either product, or both, may be
infinite,

2. q is a continuous epimorphism, and ker q = lim←− ker qi = lim←−π1(Gi) = π1(G),
where the first equality is a topological isomorphism, and ker q is hemidiscrete.

Proof. The bottom line of the diagram follows from [4], where in fact this was proved
for connected, locally connected groups (which is equivalent to arcwise connected-
ness for locally compact groups). (Except for the connectedness of ker pi−1,i—which
is vital for our proof—the bottom line follows from the classical theory of com-
pact groups.) The top line and part (1) are now a direct consequence of Lemma
2.8. The mapping q is defined by q((g̃1, g̃2, . . . )) = (q1(g̃1), q2(g̃2) . . . ), g̃i ∈ G̃i.
Clearly q is a homomorphism. To prove surjectivity, let (g1, . . . ) ∈ lim←−Gi = G, gi ∈
Gi. Pick g̃1 ∈ q−1

1 (g1). Now suppose we have chosen g̃n ∈ q−1
n (gn) such that

p̃n−1,n(g̃n) = g̃n−1 for all n ≤ i. Since the fiber of pi,i+1 is connected, it fol-
lows from the homotopy exact sequence for the fibration that the induced map
π1(Gi+1) → π1(Gi), and hence the restriction of p̃i,i+1 to ker qi+1 = π1(Gi+1),
is surjective. Now let h̃i+1 ∈ q−1

i+1(gi+1). Then k = g̃ip̃i,i+1(h̃i+1)−1 ∈ ker qi,
so there exists a k′ ∈ ker qi+1 such that p̃i,i+1(k′) = k. Letting g̃i+1 = k′h̃i+1

it is easy to verify that p̃i,i+1(g̃i+1) = g̃i and qi+1(g̃i+1) = gi+1. By induction,
we then find (g̃1, . . . ) ∈ G̃ such that q((g̃1, . . . )) = (g1, . . . ). It is also immedi-
ate that ker q = lim←− ker qi = lim←−π1(Gi). There the first equality means that they
are in fact one and the same subgroup of lim←− G̃i; i.e. they are topologically iso-
morphic. The last isomorphism lim←− π1(Gi) = π1(G) follows from the homotopy
exact sequence for the inverse limit. In fact, we have the short exact sequence
0→ lim←− 1π2(Gi)→ π1(G)→ lim←−π1(Gi)→ 0 (cf. [8], p. 249), and since π2(Gi) = 0
([17], p. 93), the desired isomorphism is obtained. (We will not explain the term
lim←− 1π2(Gi) here, but the unfamiliar reader should find it reasonable that it van-
ishes, whatever it is, if every π2(Gi) vanishes).

The epimorphism q is continuous because of the definition of inverse limit; hence
ker q is complete as a closed subgroup of the complete group G̃ = lim←− G̃i. Therefore
ker q = lim←− ker qi is hemidiscrete. �

Proof of Theorem 1.5. Suppose first that G is compact. Parts (1)–(4) are immedi-
ate from Theorem 2.9. Let Z be the projection of ker q onto the factor Rω. Since
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the remaining factor of this product is compact, the projection onto Rω is closed, so
Z is a closed, totally disconnected subgroup of Rω . By [9] there exists a topological
isomorphism φ : Rω → Rω such that φ(Z) = Z× 1

2Z× · · ·. We extend φ to be the
identity on the remaining factors of G̃, and define the new mapping π : G̃→ G by
π = q ◦ φ−1. It is easy to see that π has the desired property (5).

A simple but apparently rarely stated consequence of the Gleason-Iwasawa-
Yamabe theory of locally compact groups is that every connected locally compact
group is covered (in the usual sense) by a product of a compact group and a Lie
group (cf. [6], and Theorem 6, [13]). Thus the proof of the theorem is now finished
by Proposition 2.7. �

3. Invariant metrics

It is well known (cf. [21]) that a topological group G admits a left-invariant
metric (with the same topology) if and only if G is (Hausdorff and) first countable.
If d is such a metric on G, then the family {Us} of all metric balls in (G, d) of
positive radius s centered at e ∈ G has the following properties for all s, t ∈ R:

M1: Us is an open neighborhood of e,
M2:

⋂
s∈R+

Us = {e},
M3:

⋃
s∈R+

Us = G,

M4: Us is symmetric (i.e., U−1
s = Us), and

M5: Us · Ut ⊂ Us+t.
Then d is determined uniquely by the formula

d(g, h) = inf{s > 0 : h−1g ∈ Us}.(3.1)

Conversely, if any family of sets {Us} has properties M1-M5, then formula 3.1
defines an invariant metric d on G such that Us is the metric ball of radius s centered
at e. If the sets {Us} form a basis for the topology of G at e, then the topology of d
agrees with the topology of G. Note that we allow Us to be defined for all positive
s even if the diameter of G is finite.

We now argue the existence of a left invariant metric for a first countable group
G. First, there exists a family {Us}, with s = 2−n (n = 0, 1, . . . ) satisfying M1-M4
having the property that if s1+···+sk ≤ s, then Us1 ···Usk

⊂ Us. To see this, let {Vs},
s = 2−n, n = 0, 1, . . . , be a family of neighborhoods of G such that

⋂
Vs = {e}and

V1 = G. We will construct the family {Us} by induction in n. Let U1 = V1 = G.
Then {U1} clearly has all the desired properties except M2. Now suppose we have
constructed a family {Us}, with s = 1, . . . , 2−n having all the desired properties
except M2, and such that Us ⊂ Vs. Choose a symmetric Us/2 ⊂ Vs/2 such that
(Us/2)2 ⊂ Us. Consider a sum s1 + · · · + sj + 2−n−1 + · · · + 2−n−1 ≤ s0, where
si ∈ {1, . . . , 2−n} for i ∈ 0, 1, . . . , j and there are m terms 2−n−1. (We can assume
s0 6= 2−n−1 because in that case the sum has one term and the argument is trivial.)
Note that if m′ is the smallest even integer ≥ m, then s1 + · · ·+ sj +m′2−n−1 ≤ s0

(since s0 ≥ 2−n−1). We now have that

Us1 · · · Usj · (U2−n−1)m ⊂ Us1 · · · Usj · (U2−n−1)m′

⊂ Us1 · · · Usj · (U2−n)m′/2 ⊂ Us0 ,
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by the induction hypothesis. Since every Us ⊂ Vs, M2 holds for the entire collection.
To complete the construction of the family {Us} for s ∈ R+, let Us =

⋃
Us1 · · ·Usk

,
where the union is over all products Us1 · · · Usk

such that sj ∈ {1, 1/2, . . .} and
s1 + · · ·+ sk ≤ s. If we now let Us = U1 = G for all s > 1, it is now straightforward
to verify M5.

Definition 3.1. Let G be a group. A family {Us} of sets satisfying conditions
M1-M5 is called a metric family. The metric obtained from the formula 3.1 will be
referred to as the associated metric. Given an invariant metric d on G, the family
{Us} of metric balls will be referred to as the metric family of d.

Recall that a space (X, d) is called an inner metric space if for all x, y ∈ X ,
d(x, y) = inf{l(c)}, where c is a curve in X joining x and y, and l(c) is the length of
c. Inner metrics are the basis for most of metric geometry, including the geometry
of Riemannian manifolds. If d is a complete metric, then d is an inner metric if and
only if for each x, y ∈ X and ε > 0 there exists z ∈ X such that d(x, z) + d(z, y)−
d(x, y) ≤ ε, and |d(x, z)− d(x, y)/2| < ε. More strongly, if we can always find a
midpoint m between x and y (that is, d(x, m) = d(y, m) = 1

2d(x, y)), then any pair
of points can be joined by a minimal curve in X (i.e., a curve whose length actually
realizes the distance).

Proposition 3.1. Let G be a group with complete invariant metric d. Then d is
an inner metric if and only if the associated family {Us} of d is a geometry over
R+. If the geometry {Us} is strong, then every pair of points in G can be joined by
a minimal curve in G.

Proof. Suppose d is an inner metric; then we need only show that Us+t ⊂ UsUt.
Suppose x ∈ Us+t; suppose s + t − d(e, x) = ε > 0. Let c be a curve from e to
x of length L < d(e, x) + ε/2, and y be on c such that d(e, y) = t − ε/2. Then
d(y, x) + d(e, y) ≤ L < d(e, x) + ε/2 = s + t− ε/2, so d(e, y−1x) = d(y, x) < s; that
is, y−1x ∈ Us, y ∈ Ut, and yy−1x = x.

To prove the converse, given ε > 0 and x ∈ G and letting s = d(e, x), we need
to find y such that d(e, y) + d(y, x) − s ≤ ε, and |d(e, y)− s/2| < ε. Note that
x ∈ Us+ε = (Us/2+ε/2)2. That is, there exist y, z ∈ Us/2+ε/2 such that yz = x. But
then d(e, y)+ d(y, x) < s/2+ ε/2+ d(e, z) < s+ ε. We also have d(e, y) < s/2+ ε/2
and d(e, y) ≥ d(e, x)− d(e, z) ≥ s− s/2− ε/2 = s/2− ε/2.

For the last statement, note that if the geometry is strong, then modifying the
above argument allows us to always find a midpoint between e and x. �

Note that in the above proof, completeness is only used in the second half (see
the comments preceding Proposition 3.1).

Definition 3.2. Let G be a group and {Us} be a metric (resp. inner metric)
family on G, and let H be a closed, normal subgroup of G. If π : G→ G/H is the
quotient map, the set {Vs}, where Vs = π(Us) is called the quotient metric (resp.
inner metric) family on the group G/H .

It is trivial to verify that the quotient metric (resp. inner metric) family indeed
satisfies M1-M5 (resp. G1-G5).

Proof of Proposition 1.6. For any s > 0, x ∈ G,

π(B(x, s)) = π(xUs) = π({xy : y ∈ Us}) = {π(xy) : y ∈ Us} = {π(x)π(y) : y ∈ Us}
= {π(x)z : z ∈ Vs} = π(x)Vs = B(π(x), s). �
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Proof of Theorem 1.8. We first claim that π′ is surjective. Let x ∈ G = π(a), where
a = (x1, . . . , y1, . . . ), with x1 ∈ L, xi ∈ Gi−1 (i ≥ 2) and (y1, . . . ) ∈ Rω. We will
use the usual product notation in the factors L×G1×· · ·, and addition notation in
Rω. Let y′i = yi−2−i[2iyi], where [y] is the greatest integer ≤ y (e.g. if yi > 0, then
y′i is the “remainder” beyond the largest multiple of 2−i ≤ yi). Then 0 ≤ y′i ≤ 2−i.
Since the projection of kerπ onto Rω is Z× 1

2Z× · · ·, we can find w ∈ kerπ of the
form (w1, . . . , yi− y′i). But the element a′ = (x1w

−1
1 , . . . y′1, . . . ) ∈ L×G1× · · · ×E

has the property that a′−1a = (w1, . . . , yi − y′i) ∈ kerπ, so π(a′) = π(a) = x.
Provide L with a left invariant Riemannian metric, each Gi with a bi-invariant

Riemannian metric so that the
∑

δ(Gi)2 < ∞ (where δ(Gi) denotes the diameter
of Gi), and E with the usual Hilbert space metric. Then the product metric on
G̃M := L × G1 × · · · × E is an inner metric of curvature ≥ min{0, k}, where k
is a lower sectional curvature bound for L (cf. [23]). (The product metric on a
countable product

∏
(Xi, di) of metric spaces having square summable diameters

is given by d((x1, . . . .), (y1, . . . )) =
√∑

di(xi, yi)2.) We claim that the inclusion
G̃M ↪→ G̃ is continuous with respect to the metric topology on G̃M and the product
topology on G̃. Let

U = U1 × · · · × Un ×Gn+1 × · · · × I1 × · · · × Im × R× · · ·
be a basis element at e in the topology of G̃. Let ε > 0 be small enough that if
Bi = Bi(e, ε) denotes the metric ball in Gi centered at e of radius ε, then Bi ⊂ Ui

for all 1 ≤ i ≤ n and (−ε, ε) ⊂ Ij for all 1 ≤ j ≤ m. Since the projection onto any
factor is distance non-increasing (with the product metric), we see that the metric
ball B = B(e, ε) in G̃M satisfies

B ⊂ B1 × · · · ×Bn ×Gn+1 × · · · × (−ε, ε)× · · · × (−ε, ε)× R× · · · ⊂ U.

Since the inclusion G̃M ↪→ G̃ is continuous, we see that kerπ′ = kerπ ∩ G̃M is
closed in G̃M . Note also that, as pointed out in the proof of Theorem 2.9, kerπ is
central in G̃, so kerπ′ is central, and hence normal, in G̃M .

Let G′ := G̃M/ kerπ′ have the quotient metric (see Proposition 1.6). To conclude
the proof we need to show that G′ is topologically isomorphic to G. Consider the
natural homomorphism φ : G′ → G given by φ(g kerπ′) = g kerπ. We have already
seen that φ is surjective, and clearly φ is also injective. A set in G (resp. G′) is
open if and only if its pre-image in G̃ (resp. G̃M ) is open. Thus it is immediate
from the continuity of the inclusion G̃M ↪→ G̃ that φ is continuous. Now consider

B(e, ε) ⊂ G′. Choose n large enough that
∞∑

i=n+1

δ(Gi)2 < ε2/3 and m large enough

that 2−m < ε2/3. Now let η = ε√
3(m+n)

and consider the basis element

V = B1(e, η)× · · · ×Bn(e, η)×Gn+1 × · · · × (−η, η)× · · · × (−η, η)× R× · · ·
where there are m copies of (−η, η). Then for any x ∈ π(V ),

d(x, e)2 < nη2 +
∞∑

i=n+1

δ(Gi)2 + mη2 +
∞∑

i=m+1

2−i < ε2,

so π(V ) ⊂ B(e, ε). This proves that φ is open, and completes the proof of the
theorem. �
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Restricting to G̃M is necessary to induce any kind of invariant inner metric R
on G, as we will now show. The proof of the next lemma is trivial (the geometry
forms the desired basis). Still, this formulation seems to be useful. Note that any
locally compact group satisfies the conclusion of the lemma.

Lemma 3.2. Let G be a group with having a geometry {Ur} over R+. Then there
exists a basis B for the topology of G at the identity such that for every U, V ∈ B
there exists an n such that Un ⊃ V .

Proposition 3.3. The group R∞ does not admit an invariant inner metric.

Proof. Suppose, to the contrary, that B is a basis satisfying the conclusion of
Lemma 3.2. Any open set in R∞ (hence any U ∈ B) contains the set Cm =
{(0, . . . , 0, xm+1, xm+2, . . . ) : xk ∈ R, k > m} for large enough m. Let I be a
bounded open interval in R. Then the open set V := Im+1 × R × · · · has the
property that V n does not contain Cm, and hence U , for any n. The same holds
for any element of B contained contained in V , a contradiction. �

Note that R∞ is arcwise and locally arcwise connected, and metrizable. We can
ask: does every group satisfying the previous three conditions and the conclusion
to Lemma 3.2 admit a geometry over R+?

Proposition 3.4. Let X, Y be (not necessarily inner) metric spaces and suppose
φ : X → Y is a weak submetry. If X has curvature ≥ k for some k, then Y has
curvature ≥ k.

Proof. First observe that φ has the following two properties: (1) it is distance non-
increasing and (2) for any points x, y ∈ Y and x′ ∈ X such that φ(x′) = x, there is
a point y′ ∈ X such that φ(y′) = y and d(x′, y′) is arbitrarily close to d(x, y). Let
q ∈ Y be arbitrary. Since X has curvature ≥ k, then by definition ([2]) for any p ∈
X , in particular for p ∈ φ−1(q), there exists an open set U such that if a, b, c, d ∈ U ,
αk(a; b, c)+αk(a; b, d)+αk(a; c, d) ≤ 2π, where αk(x; y, z) denotes the representative
angle in S2

k of the triple (x; y, z). We can assume, without loss of generality, that U
is an open metric ball BX(p, r). Let V = BY (q, r/3). Suppose that x, y, z, w ∈ V .
By the above two properties we can find first a point x′ ∈ BX(p, r/3) such that
φ(x′) = x, then points y′, z′, w′ ∈ U such that d(x′, v′) is arbitrarily close to d(x, v)
and φ(v′) = v, where v = y, z, w. Now αk(x′; y′, z′)+αk(x′; y′, w′)+αk(x′; z′, w′) ≤
2π and since φ is distance non-increasing, d(y′, z′) ≥ d(y, z), d(y′, w′) ≥ d(y, w),
and d(z′, w′) ≥ d(z, w). Recall that the function αk(x; y, z), is monotone increasing
as a function of d(y, z) (fixing the other two distances), and is continuous in x, y, z,
and k. It now follows that αk(x; y, z) + αk(x; y, w) + αk(x; z, w) ≤ 2π + ε for any
ε > 0. �

Note that in the above proof it is clear that if X has globally curvature ≥ k (i.e.
U = Y in the above notation), then Y also has globally curvature ≥ k.

4. Geodesics and the fundamental group

We first construct a simple example of an inner metric space and a curve having
no geodesic in some (free or based) path homotopy class. Begin with the unit
upper half circle C in the plane; let s(θ) = (cos θπ, sin θπ). Join s(0) and s(1) by
a segment in the plane. Now join s(0) and s(1/2) by a segment, and s(1/2) and
s(1) by a segment. Next join s(0) to s(1/4), s(1/4) to s(1/2), s(1/2) to s(3/4), and
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so on. In the end we have constucted a set S by adding infinitely many segments
to C, and between any two points on C there are two points joined by a segment.
We take S with the induced inner metric (that is, the distance between any two
points is the length of the shortest path joining them). Clearly C is not a geodesic;
a shorter path between any two points on C can always be found by moving along
a segment instead. On the other hand, shortening C always involves changing the
homotopy class; hence C has no shorter curve in its homotopy class. Note that
this example is compact and finite dimensional but does not have a lower curvature
bound (geodesics bifurcate).

We now show that similar behavior occurs in T∞ =
∏

Si with the product
metric, where the Si have square summable diameters. Let γi be one of the
two unit parameterized geodesics in Si such that γi(0) = e, and define γ(t) =
(γ1(t), γ2(2t), . . . ) ∈ T∞. Note that γ is a 1-parameter subgroup whose image
in T∞ is a topologically a circle, but γ is not a geodesic. To see this, note that
for any t, if 2−i < t, then γi : [0, t] → Si is a curve whose length exceeds the
diameter of Si. We can therefore find a shorter minimal curve αi : [0, t] → Si

joining γi(0) and γi(t), which extends to a geodesic also denoted by αi. But
then γ′(t) = (γ1(t), . . . , γi−1(2i−1t), αi(t), γi+1(2i+1t), . . . ) is shorter than γ be-
tween γ(0) and γ(t). From [23] we know that any unit geodesic β in T∞ is of the
form (β1(k1t), β2(k2t), . . . ), where each βi is a unit geodesic in Si,

∑
ki = 1, and

diamSi

ki
> δ for some fixed δ > 0. If β is a geodesic loop and πi : T∞ → Si is the

projection, then βi = πi(β) is a loop in Si, so, letting pi denote πi restricted to β,
we can consider pi as a mapping from S1 onto S1, whose degree is easily seen to be

ki

diamSi
, which is bounded above by 1

δ . In other words, the components of a geodesic
loop have bounded degree. A similar argument shows that the degree of qi = πi |γ
tends to infinity as i becomes large. If H were a homotopy between γ and β, then
πi ◦H would give rise to a homotopy between pi and qi, which is a contradiction
for large i. In a similar way, γ is not null-homotopic; i.e., γ represents a non-trivial
homotopy class which contains no geodesic.

We make the following additional observations, whose proofs can be found in
[27].

1. Every path homotopy class based at e in T∞contains a unique 1-parameter
subgroup.

2. There are path homotopy classes containing no rectifiable curves.
3. The unique 1-parameter subgroup in a homotopy class in T∞is the shortest

path in the class if the class contains any rectifiable curve.
4. Even if it is rectifiable, the unique 1-parameter subgroup in any homotopy

class T∞may not be a geodesic. In this case there are rectifiable (and hence
shortest) curves in the class, but no geodesics.

5. In general, even for compact Lie groups (e.g. SO(3)), there may not be a
unique 1-parameter subgroup in a given path homotopy class.

Note that in the universal covering group G̃ (Theorem 1.5) of a compact, metriz-
able, arcwise connected group G, the factor L is trivial. Since each compact Lie
group has the property that every point lies on a 1-parameter subgroup, the same
is true of G̃, and so every homotopy class based at e in G contains a (possibly non-
rectifiable in a given metric) 1-parameter subgroup. This fact was also shown earlier
by Rickert in [25]. Such a statement is false even for non-compact Lie groups, but
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given a left-invariant Riemannian metric we can find (by passing to the universal
cover) a geodesic in any homotopy class.

Proof of Theorem 1.10. Let G̃ = L×G1× · · ·×Rω be the universal covering group
of G and π be the projection map. Let κ represent some homotopy class based at
e. Lift κ to a curve κ̃ in G̃ based at e ending at a point a. We can join e to a by a
curve c̃ which is a product c̃(t) = (γ̃(t), ω̃(t)) = (γ̃(t), e)(e, ω̃(t)) = (e, ω̃(t))(γ̃(t), e)
where γ̃ is a geodesic in the factor L (with the given Riemannian metric from
Theorem 1.8) and ω̃ is a 1-parameter subgroup in the factor G1 × · · · × Rω. Now
c(t) := π(c̃(t)) = γ(t)ω(t) = ω(t)γ(t), where γ(t) = π(γ̃(t), e) and ω(t) = π(e, ω̃(t)),
and c(t) lies in the same homotopy class as κ. Since ω(t) is trivially a 1-parameter
subgroup, we need only show that γ(t) is a geodesic. We can consider γ = (γ̃, e) as
a curve in G̃M = L×G1× · · ·× l2. Note that γ is a geodesic in G̃M with any other
choice of metric on G1 × · · ·× l2, and π′(γ) = π((γ̃, e)) = γ. We now factor the
mapping π′ in the following way. Recall that G̃ was constructed by first covering
G (in the usual sense—with discrete kernel) by the product group L×K, where K
is a compact group, then by covering K with the product G1 × · · · ×Rω . Thus we
have π′ = π2 ◦π1, where π2 : L×K → G has discrete kernel and π1 : G̃M → L×K
is of the form I × π′′, where I : L→ L is the identity map and π′′ : G1 × · · · × l2 is
the restriction of the covering map for K. We put bi-invariant Riemannian metrics
on the Gi having square summable diameters and a Euclidean metric on l2, and
take the product metric on G̃M . Let L×K have the quotient geometry induced by
π1. We claim that β := π1(γ) is a geodesic in L×K. Since the metric is invariant,
we need only check that β has a minimal segment about e = β(0). Suppose that
no segment βt of β from β(−t) to β(t) is minimal. Let lt(β) denote the length of
βt. Then for all t, d(β(−t), β(t)) < lt(β) ≤ 2t (the last inequality is because π1

is distance non-increasing). Because π1 is a weak submetry we can find a point
xt ∈ G × H such that d(xt, γ(−t)) < 2t and π(xt) = β(t). However, kerπ1 is
contained in the slice e ×G1 × · · · × l2, so the projection yt of xt onto L must be
γ(t). For small enough t,

2t > d(xt, γ(−t)) ≥ d(yt, γ(−t)) = d(γ(−t), γ(t)) = 2t,

a contradiction. (Here the second inequality is a property of the product metric
and the second equality is because γ is a geodesic).

To finish the proof of the theorem, note that the quotient geometry on G induced
from L×K by π2 is the same as the original geometry on G. Since kerπ2 is discrete,
π2 is a local isometry, and γ = π2(β) is a geodesic. �
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